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In the field of cognitive neuroscience, researchers have been studying to clarify the 
mechanism of the brain that causes various phenomena using functional magnetic 
resonance imaging (fMRI). With the development of new approaches have come attempts 
to apply fMRI to real-world problems, specifically in medical contexts. The approaches 
can be roughly divided into two types. One approach is prediction of outcomes (e.g. a 
diagnosis) from neuroimaging data. Growing studies of a data-driven approach point to 
the utility of resting-state fMRI can be used to interrogate a multitude of functional brain 
network (functional connectivity) simultaneously to discover the functional connectivity 
which associated with psychiatric disorder. This leads, for example, to assist in 
diagnosing whether participant is psychiatric disorder or not by observing functional 
connectivity pattern. The other approach is intervention for psychiatric disorders using 
fMRI neurofeedback in which real-time online fMRI signals are used to self-regulate 
brain function. FMRI neurofeedback is expected to become a next-generation therapy for 
psychiatric disorders, because this technique can non-invasively manipulate the brain 
activity. In the former, however, many previous studies have not been achieved to 
construct prediction model that can be truly useful for any imaging site because they used 
the dataset from few imaging sites and were mainly relying on the diagnosis which 
recently been known that the relationship with the neurobiological basis is weak. In the 
latter, since neurofeedback manipulating the local brain activity has not broad utility, 
improvement of technique is necessary to become a next-generation therapy for 
psychiatric disorders. In this thesis, we conducted three researches to solve these 
problems. In the first work, we developed a state-of-the-art harmonization method which 
enable us to analyze large-scale resting-state fMRI dataset from multiple imaging sites. In 
the second work, by using large-scale multi-site resting-state fMRI dataset we constructed 
a reliable prediction model of depressive symptoms which more directly related with 
biological basis than diagnosis. We found the functional connections which associated 
with major depressive disorder diagnosis and depressed symptoms simultaneously. These 
functional connections are likely to be a therapeutic target of intervention for psychiatric 
disorder. In the third work, we developed a connectivity neurofeedback which can induce 
an aimed direction of change in functional connectivity and a differential change in 
cognitive performance. This technique could be used for intervening the functional 
connectivity of therapeutic target. These works would provide possible framework of 
therapeutic intervention for psychiatric disorder using fMRI. 
 
 



iv |  
 

Acknowledgements 
First of all, I would like to express my gratitude to Dr. Hiroshi Imamizu who has 

given me permission to study freely and continuous guidance. I would like to thank you 
for encouraging my research and for allowing me to grow as a research scientist. I deeply 
grateful the consistent support and advice of Dr. Mitsuo Kawato. He has given many 
insightful comments and suggestions and taught me how good research is done. I am 
greatly appreciating to Dr. Shin Ishii who is my supervisor in Kyoto University. He has 
given me a lot of continuous supports to improve my Ph.D. thesis. I would also like to 
thank my committee members, Dr. Tetsuya Matsuda and Dr. Manabu Kano for comments 
that greatly improved my Ph.D. thesis. 

I would like to thank all previous and current Advanced Telecommunications 
Research Institute International (ATR) members, especially to Dr. Takeo Watanabe, Dr. 
Yuka Sasaki, Dr. Okito Yamashita, Dr. Jun Morimoto, Dr. Saori C. Tanaka, Dr. Yukiyasu 
Kamitani, Dr. Motoaki Kawanabe, Dr. Kazushi Ikeda, Dr. Tomohiro Shibata, Dr. Yuki 
Sakai, Dr. Takashi Yamada, Dr. Shunsuke Hayasaka, Dr. Atsunori Kanemura, Dr. 
Kazuhisa Shibata, Dr. Ai Koizumi, Dr. Tomohisa Asai, Dr. Cai Chang, Dr. Tomoyasu 
Horikawa, Dr. Kei Majima, Dr. Masahiro Yamashita, Dr. Makoto Fukushima，Dr. Lisi 
Giuseppe, Dr. Cortese Aurelio, Dr. Megumi Fukuda, Dr. Junichiro Furukawa, Dr. Ryu 
Ohata, Dr. Asuka Takai, Dr. Shunta Togo, Dr. Yu Takagi, Dr. Koji Ishihara, Mr. Shinya 
Chiyohara, Mr. Masashi Hamaya, Mr. Keita Suzuki, Mr. Yuto Okada, Mr. Kai Suwabe, 
and Mr. Takeshi Ito. They gave me a lot of useful and interesting knowledge about 
machine-learning and computational neuroscience. My long Ph.D. student days were 
supported by these collaborators. 

I would also like to thank support ATR and Brain Activity Imaging Center staffs, 
especially to Mieko Namba, Ritsuko Mashimo, Mieko Hirata, Yoko Matsumoto, Kaori 
Nakamura, Kana Inoue, Kaori Tachi, Toshinori Yoshioka, Koujiro Fujii, Mitsutoshi 
Uchida, Yasuhiro Shimada, Akikazu Nishikido, Ichiro Fujimoto, Takanori Kochiyama, 
and all participants for my experiments. I could not conduct my research projects without 
their administrative help.  

My sincere thanks also go to Dr. Hidehiko Takahashi in Kyoto University, Dr. 
Ryuichiro Hashimoto in Showa University, Dr. Noriaki Yahata in National Institutes for 
Quantum and Radiological Science and Technology, Dr. Yasumasa Okamoto in 
Hiroshima University, Dr. Kiyoto Kasai in University of Tokyo, Dr. Koji Matsuo in 
Yamaguchi University and their laboratory members for their help to collect data and 
many discussions. Without their precious support it would not be possible to conduct this 
research.  

I was helped by many people in Kyoto University during pursuing my doctoral 
course study. I would like to thank the previous and current members of Ishii-laboratory. 
My significant interest to the informatics is founded during continuous discussion with 
them. Thanks to Dr. Shigeyuki Oba and Dr. Shin-ichi Maeda, Dr. Hidetoshi Urakubo, Dr. 
Henrik Skibbe, Dr. Ken Nakae, Dr. Naoki Honda, Dr. Yohei Kondo, Dr. Hiroshi Morioka, 
Dr. Yumi Shikauchi, Dr. Kourosh Meshgi, Dr. Kousuke Yoshida for giving valuable 
advice.  

The short period of my belonging at Laboratory for Brain Connectomics Imaging 
at RIKEN Center for Biosystems Dynamics Research has given me the knowledge about 
the latest analysis pipeline of functional magnetic resonance imaging. I would like to 
thank Dr. Takuya Hayashi, Group leader of this laboratory, for his many supports. 
 



 | v 

The studies in this thesis were conducted under the “Development of BMI Technologies 
for Clinical Application” of the Strategic Research Program for Brain Sciences supported 
by the Japan Agency for Medical Research and Development (AMED). These studies 
were also partially supported by the ImPACT Program of the Council for Science, 
Technology and Innovation (Cabinet Office, Government of Japan). These studies were 
supported also by the Japan Society for the Promotion of Science through Grant-in-Aid 
for JSPS Fellows.  

Special thanks also to the CiNet tennis club, ATR tennis club, and Kyoto 
University tennis club members for precious time to play tennis. Without their precious 
support it would not be possible to continue my PhD. student days. 

Finally, I am deeply grateful to my beloved family: my mother, father, sister, and 
brother. Thank you for supporting me for everything.  



vi |  
 

Contents 

Chapter 1 ...................................................................................................... 15 

The history of functional magnetic resonance imaging studies .............. 15 

1.1 Functional magnetic resonance imaging ..................................................................... 15 

1.1.1 From a hypothesis-driven to a data-driven approach .............................................. 16 

1.1.2 From a brain-measurement to a brain-manipulation approach ............................... 16 

1.2 Translational fMRI study for psychiatric disorder ................................................... 17 

1.2.1 Prediction of diagnosis and response to treatment .................................................. 18 

1.2.2 Intervention with fMRI neurofeedback training ..................................................... 18 

1.3 Problems addressed in this thesis ................................................................................ 19 

1.3.1 Problem of using data collected from small number of imaging site ...................... 19 

1.3.2 Problem of diagnosis-based analysis ...................................................................... 20 

1.3.3 Problem of controllability of neurofeedback training ............................................. 20 

1.4 Organization of this thesis ............................................................................................ 21 

1.4.1 Development of a harmonization method of rs-fMRI data across multiple imaging 

sites ......................................................................................................................... 21 

1.4.2 Investigation of common resting-state functional connectivity underlying MDD 

diagnosis and depressed symptoms ........................................................................ 21 

1.4.3 Development of functional connectivity neurofeedback ........................................ 22 

Chapter 2 ...................................................................................................... 23 

Harmonization of rs-fMRI data across multiple imaging sites via the 

separation of site differences into sampling bias and measurement bias

 ....................................................................................................................... 23 

2.1 Materials and methods ................................................................................................. 23 

2.1.1 Datasets ................................................................................................................... 23 

2.1.2 Preprocessing and calculation of the resting-state functional connectivity matrix . 28 

2.1.3 Estimation of biases and factors .............................................................................. 29 

2.1.4 Quantification of the site differences ...................................................................... 30 

2.1.5 Spatial characteristics of measurement bias, sampling bias, and each factor in the 

brain ........................................................................................................................ 31 

2.1.6 Hierarchical clustering analysis for measurement bias ........................................... 31 

2.1.7 Comparison of models for sampling bias ................................................................ 32 

2.1.8 Traveling-subject harmonization procedures .......................................................... 34 



 | vii 

2.1.9 Principal component analysis .................................................................................. 34 

2.1.10 Two-fold cross-validation evaluation procedure ..................................................... 34 

2.2 Results ............................................................................................................................ 37 

2.2.1 Quantification of site differences............................................................................. 37 

2.2.2 Brain regions contributing most to biases and associated factors ........................... 39 

2.2.3 Characteristics of measurement bias ....................................................................... 40 

2.2.4 Sampling bias is because of sampling from among a subpopulation ...................... 41 

2.2.5 Visualization of the harmonization effect ................................................................ 42 

2.2.6 Quantification of the effect of traveling-subject harmonization .............................. 45 

2.3 Discussion ....................................................................................................................... 46 

2.3.1 The effect sizes of measurement and sampling biases ............................................ 46 

2.3.2 Characteristics of measurement bias ....................................................................... 46 

2.3.3 Characteristics of sampling bias .............................................................................. 47 

2.3.4 The effect of harmonization method ........................................................................ 47 

2.3.5 Limitations ............................................................................................................... 48 

2.3.6 Summary .................................................................................................................. 48 

Chapter 3 ...................................................................................................... 51 

A common brain network between major depressive disorder and 

symptoms of depression ............................................................................... 51 

3.1 Material and Methods ................................................................................................... 52 

3.1.1 Participants .............................................................................................................. 52 

3.1.2 Datasets .................................................................................................................... 53 

3.1.3 Preprocessing and calculation of the resting-state FC matrix .................................. 57 

3.1.4 MDD classifier in the training dataset ..................................................................... 59 

3.1.5 BDI score regression model in the training dataset ................................................. 59 

3.1.6 Generalization performance of the classifier and regression model ........................ 61 

3.1.7 Identification of the FCs linked to diagnosis and symptoms ................................... 61 

3.2 Results ............................................................................................................................ 61 

3.2.1 MDD classifier in the discovery dataset .................................................................. 61 

3.2.2 Regression models of BDI score in the discovery dataset ....................................... 62 

3.2.3 Generalization performance of the classifier and the regression model .................. 63 

3.2.4 Common FCs between major depressive disorder diagnosis and symptoms of 

depression ................................................................................................................ 65 

3.3 Discussion ....................................................................................................................... 67 

3.3.1 Signatures of our classifier of MDD ........................................................................ 67 



viii |  
 

3.3.2 Common FCs between diagnosis of MDD and symptoms of depression ............... 68 

3.3.3 Importance of symptom-based approach, rather than diagnosis-based approach ... 68 

3.3.4 Candidate of theranostic biomarker ........................................................................ 68 

3.3.5 Summary ................................................................................................................. 69 

Chapter 4 ...................................................................................................... 71 

Development of functional connectivity neurofeedback ......................... 71 

4.1 Materials and Methods ................................................................................................. 71 

4.1.1 Participants .............................................................................................................. 71 

4.1.2 Neurofeedback training ........................................................................................... 72 

4.1.3 Resting-state fMRI (rs-fMRI) ................................................................................. 76 

4.1.4 Cognitive tasks ........................................................................................................ 77 

4.2 Results ............................................................................................................................ 78 

4.2.1 Change in score ....................................................................................................... 78 

4.2.2 Change in functional connectivity during training .................................................. 79 

4.2.3 Change in resting-state functional connectivity ...................................................... 80 

4.2.4 Change in cognitive performance ........................................................................... 81 

4.3 Discussion ...................................................................................................................... 82 

4.3.1 Directions of change in reaction times dependent on the tasks ............................... 82 

4.3.2 Difference in behaviors during training between subject groups ............................ 83 

4.3.3 Difference in the activity of target ROIs during training between the groups ........ 84 

4.3.4 Change in resting-state functional connectivity ...................................................... 84 

4.3.5 Effect of the initial functional connectivity on training .......................................... 85 

4.3.6 Associations among change in functional connectivity during training, change in 

resting-state functional connectivity, and change in cognitive performance .......... 85 

4.3.7 Application of connectivity neurofeedback training ............................................... 85 

4.3.8 Summary ................................................................................................................. 86 

Chapter 5 ...................................................................................................... 87 

Conclusion and Future Directions ............................................................. 87 

5.1 Main contributions of this thesis ................................................................................. 87 

5.2 Challenges for the future .............................................................................................. 88 

5.2.1 Challenges in the data-driven approach .................................................................. 88 

5.2.2 Challenges in the brain-manipulation approach ...................................................... 88 

Appendix A .................................................................................................. 91 

Appendix of Chapter 2 ............................................................................... 91 



 | ix 

A.1 Magnitude distribution of both biases and each factor on functional connectivity 91 

A.2 Field map correction ..................................................................................................... 91 

A.3 Selection of the regularization hyper-parameter lambda .......................................... 92 

A.4 Brain regions contributing the measurement bias of each site ................................. 92 

A.5 Classifiers for MDD and SCZ, based on the four harmonization methods ............. 92 

A.6 Regression models for age based on the four harmonization methods .................... 94 

Appendix B ................................................................................................. 112 

Appendix of Chapter 4 .............................................................................. 113 

B.1 Other behavioral metrics in behavioral tasks ........................................................... 113 

B.2 Difference in total score between subject groups ..................................................... 113 

B.3 Strategies adopted by subjects to increase their score ............................................. 114 

B.4 Regional brain activity during the training .............................................................. 114 

B.5 Relationship between online score and activity in each ROI .................................. 115 

B.6 Effect of the initial functional connectivity on training ........................................... 115 

B.7 Moderation/mediation analysis .................................................................................. 116 

Bibliography ............................................................................................... 123 

 

  



x |  
 

List of Figures 

FIGURE 2.1 | Schematic examples illustrating the two main datasets. ..................... 25 

FIGURE 2.2 | Statistics of magnitude distributions for each type of bias and each 

factor. ................................................................................................. 38 

FIGURE 2.3 | Spatial distribution of each type of bias and each factor in various 

brain regions....................................................................................... 40 

FIGURE 2.4 | Clustering dendrogram for measurement bias. ................................... 41 

FIGURE 2.5 | Comparison of the two models of sampling bias. .............................. 42 

FIGURE 2.6 | PCA dimension reduction in the SRPBS multi-disorder dataset after 

harmonization. ................................................................................... 44 

FIGURE 2.7 | Reduction of the measurement bias and improvement of signal to 

noise ratios for different harmonization methods. ............................. 45 

FIGURE 3.1 | Schematic illustration of the study design. ......................................... 52 

FIGURE 3.2 | Schematic representation of the procedure for selecting FCs in the 

MDD classifier and BDI regression model, and assessing their 

predictive power. ................................................................................ 60 

FIGURE 3.3 | Classifier performance for MDD and regression performance for BDI 

score in the discovery dataset. ........................................................... 62 

FIGURE 3.4 | Classifier performances for MDD and regression performance for BDI 

score in the independent validation dataset. ...................................... 64 

FIGURE 3.5 | Results of permutation test for MDD classifier. ................................. 65 

FIGURE 3.6 | Common functional connectivity between diagnosis and symptoms. 66 

FIGURE 3.7 | Similar FC values between training dataset and independent validation 

dataset in 7 common FCs. .................................................................. 67 

FIGURE 4.1 | Neurofeedback training procedures. ................................................... 73 

FIGURE 4.2 | Change in score during neurofeedback training. ................................ 79 

FIGURE 4.3 | Change in functional connectivity between the left primary motor area 

(lM1) and the left lateral parietal region (lLP) during neurofeedback 

training. .............................................................................................. 80 

FIGURE 4.4 | Changes in cognitive performance from pre-neurofeedback to 

post-neurofeedback training............................................................... 81 



 | xi 

List of Tables 

TABLE 2.1 | Demographic characteristics of patients included in the SRPBS 

multi-disorder dataset........................................................................... 26 

TABLE 2.2 | Imaging protocols for resting-state fMRI in the SRPBS multi-disorder 

dataset .................................................................................................. 27 

TABLE 3.1 | Demographic characteristics of participants in the discovery dataset .. 54 

TABLE 3.2 | Unified imaging protocols for resting-state fMRI in the discovery 

dataset .................................................................................................. 54 

TABLE 3.3 | Different imaging protocols among sites for resting-state fMRI in the 

discovery dataset .................................................................................. 55 

TABLE 3.4 | Demographic characteristics of participants in the independent 

validation dataset ................................................................................. 55 

TABLE 3.5 | Imaging protocols for resting-state fMRI in the independent validation 

dataset .................................................................................................. 56 

TABLE 3.6 | Data availability statement ................................................................... 57 

TABLE 3.7 | All common functional connections and weights in regression model of 

BDI score ............................................................................................. 66 

  



xii |  
 

Abbreviations Glossary 
Abbreviations  Full Term 

AAL  Anatomical Automatic Labeling 

ABIDE  Autism Brain Imaging Data Exchange 

ADHD  Attention-Deficit Hyperactivity Disorder 

AIC  Akaike Information Criteria 

AMED  the Japan Agency for MEdical research and Development 

ANOVA ANalysis Of VAriance 

ASD  Autism Spectrum Disorder 

ATR  Advanced Telecommunications Research Institute International 

ATT  Advanced Telecommunications Research Institute International Trio  

ATV  Advanced Telecommunications Research Institute International Verio 

AUC  Area Under the Curve 

BDI  Beck Depression Inventory-Ⅱ 

BIC  Bayesian Information Criteria 

BOLD  Blood Oxygen Level Dependent 

COI  Center Of Innovation 

CRHD  Connectomes Related to Human Disease 

CSF  CerebroSpinal Fluid 

CV  Cross Validation 

CWST  Color-Word Stroop Task 

DecNef  Decoded Neurofeedback 

DMN  Default Mode Network 

EFT  Eriksen Flanker Task 

EPI  Echo Planar Imaging 

FC  Functional Connectivity 

FD  Frame-wise Displacement 

fMRI  functional Magnetic Resonance Imaging 

GE  General Electric Company 

GLM  General Linear Model 

HC  Healthy Control 

HCP  Human Connectome Project 

HKH  Hiroshima Kajikawa Hospital 

HRC  Hiroshima Rehabilitation Center 

HUH  Hiroshima University Hospital 

KPM  Kyoto Prefectural University of Medicine 



 | xiii 

 

 
KUS  Kyoto University Skyra 

KUT  Kyoto University Trio 

LASSO  Least Absolute Shrinkage and Selection Operator 

lLP  left Lateral Parietal cortex 

lM1  left primary Motor cortex 

MAE  Mean Absolute Error 

MCC  Matthews Correlation Coefficient 

MDD  Major Depressive Disorder 

MNI  Montreal Neurological Institute 

MR  Magnetic Resonance 

MVN  Motor/Visuospatial Network 

OCD  Obsessive-Compulsive Disorder 

PC  Principal Component 

PCA  Principal Component Analysis 

PVT  Psychomotor Vigilance Task 

ROI  Region Of Interest 

rs-fMRI resting-state functional Magnetic Resonance Imaging 

rs-fcMRI resting-state functional connectivity Magnetic Resonance Imaging 

SD  Standard Deviation 

SCZ  SChiZophrenia 

SRPBS  Strategic Research Program for Brain Sciences 

SWA  ShoWA University 

TD  Typically Developed controls 

tDCS  transcranial Direct Current Stimulation 

TE  Echo Time 

TMS  Transcranial Magnetic Stimulus 

TR  Repetition Time 

UTO  University of TOkyo 

UYA  YAmaguchi University 

WM  White Matter 

YC1  Yaesu Clinic scanner 1 

YC2  Yaesu Clinic scanner 2 

 



 

 



 

Chapter 1 

The history of functional magnetic 
resonance imaging studies 
We are able to appreciate a beautiful view seen on the way to the laboratory, to reach for a 
cup of coffee to drink, and to be excited by watching sports. All these phenomena are 
caused by our brain. Brain further cause various dysfunction of our cognitive ability in 
psychiatric disorders due to its breakdown. To elucidate how our brain causes these 
phenomena and abnormality, cognitive neuroscientists have measured brain activity 
during various cognitive tasks and in many psychiatric disorders. Brain activity of a living 
human was invasively measured for the first time in 1924 (Adrian and Matthews, 1934; 
Berger, 1929; Compston, 2010). Seventy years later, with the discovery of the 
blood-oxygen level dependent (BOLD) response (Ogawa et al., 1990a; Ogawa et al., 
1990b), it became possible to noninvasively measure human whole brain activity using 
functional magnetic resonance imaging (fMRI). The invention of fMRI was a break 
through that allowed basic cognitive neuroscience research to elucidate human brain 
mechanisms. Rapid advances of the technologies that measure and manipulate brain 
function have come attempts to apply fMRI to real-world problems (translational fMRI), 
specifically in medical contexts (Matthews et al., 2006; Poldrack and Farah, 2015). The 
30 years adventure of fMRI studies generated great optimism about its potential for 
delivering clinically useful applications. While much progress has been made on the basic 
cognitive neuroscience research to elucidate human brain mechanisms, few results have 
been incorporated into clinical practice due to some problems. In this thesis, we 
conducted three researches to resolve these problems that are bottlenecks to develop the 
applications of fMRI resolving the real-world problems.  

This chapter will first explain the basic principles of fMRI, summarize two recent major 
innovations in approach to research using fMRI in cognitive neuroscience field and 
introduce some recent translational fMRI studies accompanying with these two 
innovations. Finally, this chapter will summarize their bottlenecks to develop the 
applications of fMRI and explain how this thesis expands these bottlenecks. 

1.1 Functional magnetic resonance imaging 
MRI is a standard tool in Radiology that is used to capture high resolution images with 
good contrast between different body tissues such as in the brain. Using the phenomenon 
of nuclear magnetic resonance, the hydrogen nuclei generate a magnetic resonance (MR) 
signal that can be mapped and turned into an MR image. MR signal changes depending 
on the blood-oxygen level (Ogawa et al., 1990a; Ogawa et al., 1990b; Ogawa et al., 1992) 
in which deoxidized hemoglobin attenuates the MR signal and the MR signal changes 
dependent upon the amount of deoxidized hemoglobin in the blood. That is, when neural 
activities occur locally in a brain region, oxygen consumption in that brain region 
increases. To supply oxygen for that region, blood flow for that region increases 
(neurovascular coupling) (Roy and Sherrington, 1890). The total amount of deoxidized 
hemoglobin in that brain region decreases and the attenuated MR signal recovers. We 
must always be aware that fMRI does not directly measure electrical activity, such as the 
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firing of neurons, but rather that it indirectly measures brain activity by measuring the 
blood flow change accompanying the neural activity. In the last two decades, fMRI has 
routinely been used to answer questions about mind–brain relationships that go far 
beyond the simple localization of brain function (Bandettini, 2012; Norman et al., 2006; 
Poldrack and Farah, 2015). 

1.1.1 From a hypothesis-driven to a data-driven approach 

Since the development of fMRI, cognitive neuroscientists have traditionally focused on 
hypothesis-driven task-based approaches. However, data-driven discovery science, which 
has been very successful in the genetic research field (Wise, 2008), has not been 
conducted in the cognitive neuroscience field, because the accumulation and sharing of 
large-scale datasets for data mining is necessary for discovery science (Biswal et al., 
2010). 

Resting-state fMRI (rs-fMRI) has recently emerged as a powerful tool for the data-driven 
approach in the cognitive neuroscience field (Buckner et al., 2013; Smith et al., 2013). 
Imaging the brain during rest reveals large amplitude spontaneous low-frequency 
(<0.1Hz) fluctuations in fMRI signal (Fox and Raichle, 2007). For many years, 
researchers regarded theses spontaneous fluctuations as noise. However, the importance 
of rs-fMRI was eventually realized due to the facts that energy consumption is very large 
at rest and spontaneous fluctuations are temporally correlated across functionally related 
brain regions (Blamire et al., 1992; Fox and Raichle, 2007; Fox et al., 2005; Raichle, 
2015a, b; Raichle et al., 2001). This temporal correlation between two brain regions is 
called “functional connectivity” (FC). Although there is still controversy regarding the 
relationship between the spontaneous fluctuations of the BOLD signal and neural activity 
at rest (Winder et al., 2017), electrophysiological studies in non-humans have revealed its 
neural basis (Arieli et al., 1996; Berkes et al., 2011; He et al., 2018; Kenet et al., 2003; 
Laufs et al., 2003; Lu et al., 2007; Ma et al., 2016; Magri et al., 2012; Mateo et al., 2017; 
Matsui et al., 2016; Scholvinck et al., 2010; Shmuel and Leopold, 2008; Vincent et al., 
2007). Rs-fMRI can be used to interrogate a multitude of functional brain network 
simultaneously, without the requirement of selecting a priori hypotheses (Biswal et al., 
2010; Smith et al., 2013). In recent years, it is becoming more and more possible to 
predict various personal characteristics such as sustained attention ability and age from 
individual brain networks estimated from rs-fMRI using machine learning techniques 
(Dosenbach et al., 2010; Rosenberg et al., 2016; Smith et al., 2013). There is also growing 
evidence that these networks may be important in psychiatric disorders (Deco and 
Kringelbach, 2014; Fornito et al., 2015). 

1.1.2 From a brain-measurement to a brain-manipulation approach 

In the cognitive neuroscience field, scientists have typically regarded physical variables, 
psychological variables, and human behavior as independent variables and brain activity 
as a dependent variable. That is, scientists have measured changes in brain activity, that 
occur as physical variables, psychological variables, and human behavior are varied (a 
brain-measurement approach). In such an experimental design, however, although we can 
measure how the brain activity correlates with these independent variables, we cannot 
clarify how the brain causes phenomena such as perception and emotion. Therefore, a 
different type of experimental design, in which brain activity is regarded as an 
independent variable and human behavior is regarded as a dependent variable, has 
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emerged in the cognitive neuroscience field (a brain-manipulation approach). For 
example, there are experiments where transcranial magnetic stimulation (TMS), 
transcranial direct current stimulation (tDCS), and fMRI neurofeedback training, are 
utilized. FMRI neurofeedback is a type of biofeedback in which real-time online fMRI 
signals are used to self-regulate brain function (Cox et al., 1995; deCharms, 2008; 
Sitaram et al., 2017; Sulzer et al., 2013). Some fMRI neurofeedback techniques are 
superior to brain stimulation methods in their ability to manipulate the brain, because 
these fMRI neurofeedback techniques can be integrated with advanced technology such 
as multi variate pattern analysis (Cohen et al., 2017; Kamitani and Tong, 2005; Norman et 
al., 2006) and network analysis (Bassett and Sporns, 2017), and can induce a specific 
activation pattern in the targeted brain region and alter the brain network, rather than 
simply increasing or decreasing the mean activation level (Megumi et al., 2015; Shibata 
et al., 2011; Sitaram et al., 2017; Watanabe et al., 2017). Furthermore, fMRI 
neurofeedback is also superior to brain stimulation in ethical aspects, because brain 
activation is voluntarily regulated through learning in fMRI neurofeedback training rather 
than via compulsorily changing brain activity by external stimuli such as TMS and tDCS. 

Currently, there are three types of fMRI neurofeedback that differ based on the type of 
information used for feedback. The first, univariate neurofeedback, uses the average 
BOLD signal within a specific brain region of interest to increase or decrease the average 
activity in that region (deCharms, 2008; deCharms et al., 2005; Weiskopf et al., 2004). 
The second, decoded neurofeedback, uses the multi-variate activity pattern in a region to 
induce a specific piece of information in that region, such as orientation, color, or facial 
preference (Amano et al., 2016; deBettencourt et al., 2015; LaConte et al., 2007; Shibata 
et al., 2016; Shibata et al., 2011). The third, connectivity neurofeedback, uses the FC 
between regions to modulate connectivity between two targeted brain regions (Koush et 
al., 2015; Koush et al., 2013; Liew et al., 2016; Megumi et al., 2015). To our 
understanding, there are two mainstream sets of studies on connectivity neurofeedback. 
One uses dynamic causal modeling to modulate the state of a brain network and cognitive 
performance (Koush et al., 2015; Koush et al., 2013). The other uses Pearson’s 
correlation coefficients of activity time courses between two targeted brain regions (Liew 
et al., 2016; Megumi et al., 2015).  

1.2 Translational fMRI study for psychiatric 
disorder 

With the development of these new approaches have come attempts to apply fMRI to 
real-world problems, specifically in medical contexts for psychiatric disorder (Matthews 
et al., 2006; Poldrack and Farah, 2015). Basic cognitive neuroscience is concerned with 
understanding brain mechanisms, whereas translational neuroscience is concerned with 
developing tools that are useful for clinical context (Castellanos et al., 2013). There are 
two mainstreams of translational fMRI study for psychiatric disorder. One is prediction of 
current state and future state such as diagnosis and response to treatment of psychiatric 
disorder using fMRI data (Woo et al., 2017). The other is fMRI neurofeedback as 
therapeutic interventions for psychiatric disorder (Sitaram et al., 2017; Stoeckel et al., 
2014; Watanabe et al., 2017), in response to the urgent need for better treatments for 
psychiatric disorder. It is because that advanced fMRI neurofeedback could voluntarily 
regulate the brain function not just increase or decrease the brain activity through learning 
(Watanabe et al., 2017). 
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Recently, the functional connectome is in the foreground of cognitive neuroscience 
research aiming to achieve these clinical applications (Castellanos et al., 2013). The 
reason is that the view that the localization of psychological processes to specific areas of 
the brain provides only a partial account of brain function (Fornito et al., 2015). And now 
the brain is considered as a highly complex system in which interconnected network 
balances regional segregation and integration of function with strong specialization. 

1.2.1 Prediction of diagnosis and response to treatment 

With the development of the data-driven approach, current state of patients with 
psychiatric disorder (e.g. diagnosis) could be predicted from individual brain network 
(Woo et al., 2017; Xia and He, 2017). Rs-fMRI methods can lead to this purpose, because 
its relatively widespread availability (e.g. applicable at hospital without special 
equipment) and amenability (e.g. applicable for almost all psychiatric disorders without 
complex task) to large-scale aggregation across imaging sites and populations. Indeed, the 
rate of growth for studies incorporating rs-fMRI approaches has overtaken that of 
traditional task-based fMRI, with an increasing focus on clinical questions. Task-based 
imaging has struggled with marked variability in approaches and findings across 
laboratories, even when studying the same cognitive construct. Such variability is 
problematic for data aggregation (Milham, 2012).  

In order to predict subject’s state, variety of machine learning techniques have been 
applied to functional brain networks. For example, Rosenberg and colleagues constructed 
a prediction model of sustained attention ability based on functional connections (FCs) 
and this model can also predict symptoms of attention-deficit hyperactivity disorder 
(ADHD) (Rosenberg et al., 2016). Yahata and colleagues constructed a biomarker of 
autism spectrum disorder (ASD) which distinguishes between typically developed 
controls (TDs) and ASD patients based on a small number of resting-state FCs, using 
rs-fMRI data collected from imaging sites in Japan. Furthermore, this biomarker was 
found to generalize to data collected in the USA (Yahata et al., 2016). Drysdale and 
colleagues showed that patients with major depressive disorder (MDD) can be subdivided 
into four neurophysiological subtypes defined by distinct patterns of FCs. Clustering 
patients on this basis enabled the development of biomarkers with high performance for 
depression subtypes in multisite validation and independent validation datasets (Drysdale 
et al., 2017).  

Some studies have begun to develop brain models for more difficult prediction problems 
that are future state of patients (e.g. response to treatment). For example, Reggente and 
colleagues collected rs-fMRI data from adults with obsessive-compulsive disorder (OCD) 
before and after 4 weeks of intensive daily cognitive behavioral therapy. They showed 
that pretreatment FC patterns could predict post treatment OCD severity (Reggente et al., 
2018). The study reported above by Drysdale et al., also showed that biotypes of 
depression, defined based on FC, could predict responsiveness to TMS therapy (Drysdale 
et al., 2017).

1.2.2 Intervention with fMRI neurofeedback training  

Whereas neuroscience applications of fMRI-based neurofeedback training have been used 
for investigating neural mechanisms (Amano et al., 2016; Shibata et al., 2016; Shibata et 
al., 2011), translational studies have attempted therapeutic interventions for psychiatric 
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disorders (Niv, 2013; Sitaram et al., 2017; Stoeckel et al., 2014; Sulzer et al., 2013; 
Watanabe et al., 2017). Using univariate neurofeedback, deCharms and colleagues 
showed that they could control pain perception by controlling activation in the rostral 
anterior cingulate cortex, a region putatively involved in pain perception (deCharms et al., 
2005). Scheinost and colleagues demonstrated control of contamination anxiety by 
controlling activation in the orbitofrontal cortex (Scheinost et al., 2013). Young and 
Linden were able to control emotion by controlling activation in the amygdala and 
emotion network which included the ventrolateral prefrontal cortex and insula (Linden et 
al., 2012; Young et al., 2014). Using decoded neurofeedback, Koizumi and 
Taschereau-Dumouchel showed that they could reduce fear towards a target object (e.g. 
spider) by pairing reward with activation patterns in the visual cortex that representing the 
target object. Participants remained unaware of the content and purpose of the procedure 
(Koizumi et al., 2016; Taschereau-Dumouchel et al., 2018). However, although numerous 
studies have reported that psychiatric disorders are related to abnormal brain networks 
rather than local brain activity (Broyd et al., 2009; Fornito et al., 2015; Stam, 2014), there 
is no intervention using connectivity neurofeedbck due to its immature.

1.3 Problems addressed in this thesis 
As this thesis have explained so far, although some progress has been made on the 
translational fMRI research for clinical application, fMRI has not thus far been truly 
useful in resolving the real-world problems. It is because that nobody constructed a 
reliable prediction model which generalize to data collected from any imaging site and 
that there is no intervention method which can apply for various psychiatric disorders. 
This section will explain some of the scientific reasons why this is the case.  

1.3.1 Problem of using data collected from small number of 
imaging site 

First problem is that almost all previous studies used neuroimaging dataset collected from 
small number of imaging site. The prediction model constructed from the dataset 
collected from small number of imaging site lacks the generalization ability to the data 
collected from new site not included when constructing the prediction model. To 
construct a reliable prediction model which generalize to dataset collected from any 
imaging site, it is essential to use a large sample size of data collected from multiple 
imaging sites. Therefore, acquiring and sharing large neuroimaging data have recently 
become critical to conduct reliable discovery science (Human Connectome Project (HCP) 
(Glasser et al., 2016b), [http://www.humanconnectomeproject.org/]; Human Brain Project 
[https://www.humanbrainproject.eu/en/]; UK Biobank [http://www.ukbiobank.ac.uk/];  
and Strategic Research Program for Brain Sciences (SRPBS) (Yamada et al., 2017) 
[https://www.amed.go.jp/program/list/01/04/001_nopro.html]) (Biswal et al., 2010; Woo 
et al., 2017; Xia and He, 2017), especially for dataset including psychiatric disorders 
(Connectomes Related to Human Disease (CRHD), 
[https://www.humanconnectome.org/disease-studies]; Autism Brain Imaging Data 
Exchange (ABIDE); and SRPBS) (Di Martino et al., 2014; Pearlson, 2009; Yahata et al., 
2017; Yamada et al., 2017). However, multisite datasets with multiple disorders raises 
difficult problems which are not present in a single-site based dataset of healthy 
population (e.g., HCP and UK Biobank). That is, even if a unified protocol is determined 
there exists difficulty in full control of scanner type, imaging protocol, and patient 



20 |         Chapter1. The history of functional magnetic resonance imaging studies 
 

demographics (Abraham et al., 2017; Nieuwenhuis et al., 2017; Orban et al., 2018; Yahata 
et al., 2016). Moreover, there often exists unpredictable differences in participant 
population among sites. Therefore, researchers must work with heterogeneous 
neuroimaging data when they analyze multisite dataset. In particular, site differences 
represent the greatest barrier when extracting disease factors by applying 
machine-learning techniques to such heterogeneous data (Dansereau et al., 2017) because 
disease factors tend to be confounded with site factors (Abraham et al., 2017; 
Nieuwenhuis et al., 2017; Orban et al., 2018; Watanabe et al., 2017; Yahata et al., 2017; 
Yahata et al., 2016; Yamada et al., 2017). This confounding occurs because a single site 
(or hospital) is apt to sample only a few types of psychiatric disorders (e.g., primarily 
schizophrenia from site A and primarily autism spectrum disorder from site B). 
Furthermore, site differences essentially consist of two types of biases: engineering bias 
(i.e., measurement bias) and biological bias (i.e., sampling bias). Measurement bias is 
completely noise, which includes differences in the properties of MRI scanners such as 
imaging parameters, field strength, MRI manufacturers, and scanner models, whereas 
sampling bias is biologically meaningful information which refers to differences in 
participant groups among sites. However, previous studies have not divided site 
differences into measurement bias and sampling bias. Therefore, existing methods to 
correct site-differences might fail to eliminate both biologically meaningless 
measurement bias and biologically meaningful sampling bias. 

1.3.2 Problem of diagnosis-based analysis 

Second problem is that most previous studies depend on clinical diagnosis. These 
previous studies identified resting-state FCs that characterized patients or sought to 
construct a biomarker which distinguishes between disordered patients and healthy 
controls (HCs) based on resting-state FCs (Woo et al., 2017). However, an increasing 
number of studies have highlighted the difficulty in finding a clear association between 
existing clinical diagnostic categories and neurobiological abnormalities (Clementz et al., 
2016; Insel and Cuthbert, 2015; Singh and Rose, 2009). This is due to the fact that the 
diagnosis of patients is based on a complex mix of information, such as symptoms, 
epidemiological surveys, and clinical experience. The high co-morbidity of structural, 
functional, and genetic abnormalities across psychiatric disorders exacerbates this 
difficulty (Goodkind et al., 2015; Jacobi et al., 2004; Lee et al., 2013; McTeague et al., 
2017). In order to understand the nature of mental health and psychiatric disorders in 
terms of varying degrees of dysfunctions in general psychological/biological systems, the 
importance of the research not dependent on diagnosis such as research domain criteria in 
which the goal is to understand the nature of mental health and illness in terms of varying 
degrees of dysfunctions in general psychological/biological systems has attracted 
attention. 

1.3.3 Problem of controllability of neurofeedback training 

Third problem is that most previous fMRI neurofeedback focus on manipulating brain 
activity within local brain region. Numerous studies have reported that psychiatric 
disorders are related to abnormal brain networks rather than local brain activity (Broyd et 
al., 2009; Fornito et al., 2015; Stam, 2014). Importantly, brain networks are also 
associated with certain cognitive functions (Barch et al., 2013; He et al., 2007; Kelly et al., 
2008; Thompson et al., 2013). This indicates that using connectivity neurofeedback could 
be a promising approach for therapeutic intervention in psychiatric disorders and to 
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improve cognitive function. However, fewer studies have been conducted on connectivity 
neurofeedback. In particular, the controllability of connectivity neurofeedback is critical 
for applications aimed at psychiatric disorders. That is, it is important to examine whether 
connectivity neurofeedback can induce the aimed direction of change (i.e., an increase or 
a decrease) in FC and a change in cognitive performance. Previous studies using 
Pearson’s correlation coefficients tested only increases in connectivity. 

1.4 Organization of this thesis 

1.4.1 Development of a harmonization method of rs-fMRI data 
across multiple imaging sites 

In chapter 2, we first quantitatively investigated site-difference on rs-fMRI data and 
developed a novel harmonization method to make multi-site dataset available for analysis. 
To achieve this objective, we utilized a traveling-subject rs-fMRI dataset, wherein 
multiple participants travel to multiple sites for the assessment of measurement bias. This 
was used in conjunction with a multi-site multi-disorder rs-fMRI dataset to demonstrate 
that site differences are composed of biological sampling bias and engineering 
measurement bias. We found that effects on resting-state FC caused by both bias types 
were greater than or equal to those caused by psychiatric disorders. Furthermore, our 
findings indicated that each site can sample only from among a subpopulation of 
participants. This result suggests that it is essential to collect large neuroimaging data 
from as many sites as possible to appropriately estimate the distribution of the grand 
population. Finally, we developed a novel harmonization method that removed only the 
measurement bias by using the traveling-subject dataset. This achieved reduction of the 
measurement bias by 29% and improvement of the signal to noise ratios by 40%. 
Development of an accurate harmonization method promotes large-scale data analysis for 
the discovery approach. 

1.4.2 Investigation of common resting-state functional 
connectivity underlying MDD diagnosis and depressed 
symptoms 

In chapter 3, to break away from diagnosis-dependent analysis framework, we conducted 
a symptom-based approach, which describes the association between symptoms and 
neurobiological abnormalities. We constructed a reliable resting-state FC-based classifier 
for MDD and also constructed a regression model of Beck Depression Inventory-Ⅱ (BDI) 
score, which is one of the most widely used test for measuring severity of depressed 
symptoms. The MDD classifier and the regression model of BDI generalized to an 
independent validation dataset obtained at completely different imaging sites. We found 
an overlap of about 30% between the connections related to depressed symptoms and 
those related to the diagnosis of MDD. These functional connections were particularly 
related to the salience network and the default mode network. Our study revealed a 
partially overlapping relationship between the biological basis of depressed symptoms 
and that of MDD diagnosis. 
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1.4.3 Development of functional connectivity neurofeedback 

In chapter 4, in order to investigate whether the connectivity neurofeedback is a versatile 
tool that can be used as an intervention for psychiatric disorders, we investigated the 
hypothesis that connectivity neurofeedback can induce the aimed direction of change in 
FC, and the differential change in cognitive performance according to the direction of 
change in connectivity. We selected connectivity between the left primary motor cortex 
and the left lateral parietal cortex as the target. Subjects were divided into 2 groups, 
between which only the direction of change (an increase or a decrease in correlation) in 
the experimentally manipulated connectivity differed. Results showed that subjects were 
successfully able to induce the expected connectivity change in both directions. 
Furthermore, cognitive performance significantly and differentially changed from 
preneurofeedback to postneurofeedback training between the 2 groups. These findings 
indicate that connectivity neurofeedback can induce the aimed direction of change in 
connectivity and also a differential change in cognitive performance. 

 



 

Chapter 2 

Harmonization of rs-fMRI data across 
multiple imaging sites via the separation 
of site differences into sampling bias and 
measurement bias 
In chapter 2, we developed a novel harmonization method to make large-scale multi-site 
rs-fMRI data available for data-driven analysis.  

When collecting large neuroimaging data associated with psychiatric disorders, images 
must be acquired from multiple sites because of the limited capacity of a single site. 
However, site differences represent the greatest barrier when acquiring multi-site 
neuroimaging data. We utilized a traveling-subject dataset in conjunction with a multi-site, 
multi-disorder dataset to demonstrate that site differences are composed of biological 
sampling bias and engineering measurement bias. Effects on resting-state functional 
connectivity (FC) based on pair-wise correlations because of both bias types were greater 
than or equal to those because of psychiatric disorders. Furthermore, our findings 
indicated that each site can sample only from among a subpopulation of participants. This 
result suggests that it is essential to collect large neuroimaging data from as many sites as 
possible to appropriately estimate the distribution of the grand population. Finally, we 
developed a novel harmonization method that removed only the measurement bias by 
using traveling-subject dataset and achieved the reduction of the measurement bias by 
29% and the improvement of the signal to noise ratios by 40%. Our results provide 
fundamental knowledges on site-effects with future research using multi-site 
multi-disorder rs-fMRI data. 

2.1 Materials and methods 

2.1.1 Datasets 

We used two resting-state fMRI datasets for all analyses: (1) the SRPBS multi-disorder 
dataset, which encompasses multiple psychiatric disorders; (2) a traveling-subject dataset.  

SRPBS multi-disorder dataset 

This dataset included patients with five different disorders and healthy controls (HCs) 
who were examined at nine sites belonging to eight research institutions. A total of 805 
participants were included: 482 HCs from nine sites, 161 patients with major depressive 
disorder (MDD) from five sites, 49 patients with autism spectrum disorder (ASD) from 
one site, 65 patients with obsessive-compulsive disorder (OCD) from one site, and 48 
patients with schizophrenia (SCZ) from three sites (Table 2.1). Data were acquired using 
a Siemens TimTrio scanner at Advanced Telecommunications Research Institute 
International (ATT), a Siemens Verio scanner at Advanced Telecommunications Research 
Institute International (ATV), a Siemens Verio at the Center of Innovation in Hiroshima 
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University (COI), a GE Signa HDxt scanner at Hiroshima University Hospital (HUH), a 
Siemens Spectra scanner at Hiroshima Kajikawa Hospital (HKH), a Philips Achieva 
scanner at Kyoto Prefectural University of Medicine (KPM), a Siemens Verio scanner at 
Showa University (SWA), a Siemens TimTrio scanner at Kyoto University (KUT), and a 
GE MR750W scanner at the University of Tokyo (UTO). The rs-fMRI data were acquired 
using a unified imaging protocol at all but three sites (Table 2.2; 
https://bicr.atr.jp/rs-fmri-protocol-2/). Site differences in this dataset included both 
measurement and sampling biases (Fig. 2.1a). During the rs-fMRI scans, participants 
were instructed as follows, except at one site: “Please relax. Don’t sleep. Fixate on the 
central crosshair mark and do not think about specific things.” At the remaining site, 
participants were instructed to close their eyes rather than fixate on a central crosshair. 
For bias estimation, we only used data obtained using the unified protocol. (Patients with 
OCD were not scanned using this unified protocol; therefore, a disorder factor could not 
be estimated for OCD). 

Traveling-subject dataset 

We acquired a traveling-subject dataset to estimate measurement bias across sites in the 
SRPBS dataset. Nine healthy participants (all male participants; age range, 24–32 years; 
mean age, 27±2.6 years) were scanned at each of 12 sites in the SRPBS consortium, 
producing a total of 411 scan sessions. Data were acquired at the sites included in the 
SRPBS multi-disorder database (i.e., ATT, ATV, COI, HUH, HKH, KPM, SWA, KUT, 
and UTO) and three additional sites: Kyoto University (KUS; Siemens Skyra) and Yaesu 
Clinic 1 and 2 (YC1 and YC2; Philips Achieva) (Appendix Table A.1). Each participant 
underwent three rs-fMRI sessions of 10 min each at nine sites, two sessions of 10 min 
each at two sites (HKH & HUH), and five cycles (morning, afternoon, next day, next 
week, next month) consisting of three 10-minute sessions each at a single site (ATT). In 
the latter situation, one participant underwent four rather than five sessions at the ATT site 
because of a poor physical condition. Thus, a total of 411 sessions were conducted [8 
participants × (3×9＋2×2+5×3×1)＋1 participant × (3×9＋2×2+4×3×1)]. During each 
rs-fMRI session, participants were instructed to maintain a focus on a fixation point at the 
center of a screen, remain still and awake, and to think about nothing in particular. For 
sites that could not use a screen in conjunction with fMRI (HKH & KUS), a seal 
indicating the fixation point was placed on the inside wall of the MRI gantry. Although 
we had attempted to acquire this dataset using the same imaging protocol as that in the 
SRPBS multi-disorder dataset, there were some differences in the imaging protocol across 
sites because of limitations in parameter settings or the scanning conventions of each site 
(Appendix Table A.2). There were two phase-encoding directions (P→A and A→P), three 
MRI manufacturers (Siemens, GE, and Philips), four numbers of channels per coil (8, 12, 
24, and 32), and seven scanner types (TimTrio, Verio, Skyra, Spectra, MR750W, 
SignaHDxt, and Achieva). Site differences in this dataset included measurement bias only 
as the same nine participants were scanned across the 12 sites (Fig. 2.1b).  

All participants in all datasets provided written informed consent, and all recruitment 
procedures and experimental protocols were approved by the Institutional Review Boards 
of the principal investigators’ respective institutions (Advanced Telecommunications 
Research Institute International (ATR), Hiroshima University, Kyoto Prefectural 
University of Medicine, Showa University, The University of Tokyo). 
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FIGURE 2.1 | Schematic examples illustrating the two main datasets. 

(a) The SRPBS multi-disorder dataset includes patients with psychiatric disorders and 
healthy controls. The number of patients and scanner types differed among sites. Thus, 
site differences consist of sampling bias and measurement bias. (b) The traveling-subject 
dataset includes only healthy controls, and the participants were the same across all sites. 
Thus, site differences consist of measurement bias only. SRPBS: Strategic Research 
Program for Brain Sciences. 
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TABLE 2.1 | Demographic characteristics of patients included in the SRPBS multi-disorder dataset 

Site 
HC MDD ASD OCD SCZ ALL

*1 *2 
Number 

Male 
/Female

Age  
(yr) 

Number 
Male 

/Female
Age  
(yr) 

Number
Male 

/Female
Age 
 (yr) 

Number
Male 

/Female 
Age  
(yr) 

Number
Male 

/Female
Age  
(yr) 

Number
Male 

/Female
Age  
(yr) 

ATR TimTrio 
(ATT) 

31 28/3 23.0±1.9 0 - - 0 - - 0 - - 0 - - 31 28/3 23.0±1.9 〇 〇 

ATR Verio 
(ATV) 

77 60/17 22.6±2.0 0 - - 0 - - 0 - - 0 - - 77 60/17 22.6±2.0 〇 〇 

Hiroshima 
University 
Hospital 
(HUH) 

66 37/29 34.6±13.0 57 32/25 43.3±12.2 0 - - 0 - - 0 - - 123 69/54 38.6±13.3 - 〇 

Hiroshima 
Kajikawa 
Hospital 
(HKH) 

29 17/12 45.4±9.5 23 13/10 43.6±11.6 0 - - 0 - - 0 - - 52 30/22 44.6±10.5 - 〇 

Center of 
Innovation in 

Hiroshima 
University 

(COI) 

10 5/5 43.5±13.5 38 20/18 44.0±11.0 0 - - 0 - - 0 - - 48 25/23 43.9±11.4 〇 〇 

Kyoto 
Prefectural 

University of 
Medicine 
(KPM) 

52 28/24 29.1±7.3 0 - - 0 - - 65 30/35 31.9±9.8 0 - - 117 58/59 30.6±8.8 - 〇 

Kyoto 
University 

(KUT) 
35 18/17 36.3±8.9 9 5/4 45.2±15.9 0 - - 0 - - 22 11/11 40.4±8.4 66 34/32 38.9±10.2 〇 〇 

Showa 
University 

(SWA) 
40 8/32 30.9±8.5 0 - - 49 45/4 32.9±8.1 0 - - 12 11/1 41.8±9.2 101 64/37 33.2±8.9 〇 〇 

University of 
Tokyo 
(UTO) 

142 72/70 29.7±11.0 34 16/18 38.5±9.9 0 - - 0 - - 14 7/7 33.3±14.0 190 95/95 31.6±11.5 〇 〇 

Summary 482 273/209 30.6±10.9 161 86/75 42.6±11.7 49 45/4 32.9±8.1 65 30/35 31.9±9.8 48 28/19 38.7±10.8 805 463/342 33.7±11.9 - - 

*1: Participants scanned using the unified protocol 
*2: Sites used for constructing prediction models and principal component analysis 
ATR: Advanced Telecommunications Research Institute International; HC: healthy control; MDD: major depressive disorder; ASD: autism spectrum 
disorder; OCD: obsessive-compulsive disorder; SCZ: schizophrenia; SRPBS: Strategic Research Program for Brain Sciences. 
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TABLE 2.2 | Imaging protocols for resting-state fMRI in the SRPBS multi-disorder dataset 

Site ATR 
TimTrio 

ATR 
Verio 

Center of Innovation 
in Hiroshima 

University 

Hiroshima 
University Hospital 

Hiroshima Kajikawa 
Hospital 

Kyoto Prefectural 
University of 

Medicine 

Showa 
University

Kyoto University 
TimTrio 

University of 
Tokyo 

Abbreviation ATT ATV COI HUH HKH KPM SWA KUT UTO 

MRI scanner 
Siemens 
TimTrio 

Siemens 
Verio 

Siemens 
Verio 

GE 
Signa HDxt 

Siemens 
Spectra 

Philips 
Achieva 

Siemens
Verio 

Siemens 
TimTrio 

GE 
MR750w 

Magnetic field strength 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 

Number of channels per coil 12 12 12 8 12 8 12 32 24 

Field-of-view (mm) 212 × 212 212 × 212 212 × 212 256 × 256 192 × 192 192 × 192 212 × 212 212 × 212 212 × 212 

Matrix 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 

Number of slices 40 or 39 39 40 32 38 39 40 40 40 

Number of volumes 240 240 240 143 107 194 240 240 240 

In-plane resolution (mm) 
3.3125 × 
3.3125 

3.3125 × 
3.3125 

3.3125 × 3.3125 4.0 × 4.0 3.0 × 3.0 3.0 × 3.0 
3.3125 × 
3.3125 

3.3125 × 3.3125
3.3125 × 
3.3125 

Slice thickness (mm) 3.2 3.2 3.2 3.2 3.0 3.0 3.2 3.2 3.2 

Slice gap (mm) 0.8 0.8 0.8 0 0 0 0.8 0.8 0.8 

TR (ms) 2,500 2,500 2,500 2,000 2,700 2,000 2,500 2,500 2,500 

TE (ms) 30 30 30 27 31 30 30 30 30 

Total scan time (min:s) 10:00 10:00 10:00 5:00 5:00 6:30 10:00 10:00 10:00 

Flip angle (deg) 80 80 80 90 90 80 80 80 80 

Slice acquisition order Ascending Ascending Ascending 
Ascending 

(Interleaved) 
Ascending Ascending Ascending Ascending Ascending 

Phase encoding PA PA AP PA AP AP PA PA PA 

Eye closed / fixate Fixate Fixate Fixate Fixate Fixate Closed Fixate Fixate Fixate 

ATR: Advanced Telecommunications Research Institute International; fMRI: functional magnetic resonance imaging; SRPBS: Strategic Research 
Program for Brain Sciences; TR: repetition time; TE: echo time. 
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2.1.2 Preprocessing and calculation of the resting-state functional 
connectivity matrix 

The rs-fMRI data were preprocessed using SPM8 implemented in MATLAB. The first 10 
s of data were discarded to allow for T1 equilibration. Preprocessing steps included 
slice-timing correction, realignment, co-registration, segmentation of T1-weighted 
structural images, normalization to Montreal Neurological Institute (MNI) space, and 
spatial smoothing with an isotropic Gaussian kernel of 6 mm full-width at half-maximum. 
For the analysis of connectivity matrices, region of interests (ROIs) were delineated 
according to a 268-node gray matter atlas developed to cluster maximally similar voxels 
(Shen et al., 2013). The blood-oxygen-level dependent (BOLD) signal time courses were 
extracted from these 268 ROIs. To remove several sources of spurious variance, we used 
linear regression with 36 regression parameters (Ciric et al., 2017) such as six motion 
parameters, average signals over the whole brain, white matter, and cerebrospinal fluid. 
Derivatives and quadratic terms were also included for all parameters. A temporal 
band-pass filter was applied to the time series using a first-order Butterworth filter with a 
pass band between 0.01 Hz and 0.08 Hz to restrict the analysis to low-frequency 
fluctuations, which are characteristic of rs-fMRI BOLD activity (Ciric et al., 2017). 
Furthermore, to reduce spurious changes in FC because of head motion, we calculated 
frame-wise displacement (FD) and removed volumes with FD > 0.5 mm, as proposed in a 
previous study (Power et al., 2014). The FD represents head motion between two 
consecutive volumes as a scalar quantity (i.e., the summation of absolute displacements in 
translation and rotation). Using the aforementioned threshold, 5.4% ± 10.6% volumes 
(i.e., the average [approximately 13 volumes] ± 1 SD) were removed per 10 min of 
rs-fMRI scanning (240 volumes) in the traveling-subject dataset, 6.2% ± 13.2% volumes 
were removed per rs-fMRI session in the SRPBS multi-disorder dataset. If the number of 
volumes removed after scrubbing exceeded the average of –3 SD across participants in 
each dataset, the participants or sessions were excluded from the analysis. As a result, 14 
sessions were removed from the traveling-subject dataset, 20 participants were removed 
from the SRPBS multi-disorder dataset. Furthermore, we excluded participants for whom 
we could not calculate FC at all 35,778 connections, primarily because of the lack of 
BOLD signals within an ROI. As a result, 99 participants were further removed from the 
SRPBS multi-disorder dataset. 

We computed the ROI-based pairwise correlations as measure of FC. For each participant, 
the temporal correlations of rs-fMRI BOLD signals between pairs of ROIs were 
computed after averaging each voxelwise BOLD signal in each ROI. There are some 
candidates for the measure of FC such as the tangent method and partial correlation 
(Abraham et al., 2017; Ng et al., 2014); however, we used Pearson’s correlation 
coefficients because they have been the most commonly used values in previous studies. 
FC was defined based on a functional brain atlas consisting of 268 nodes (regions) 
covering the whole brain, which has been widely utilized in previous studies (Finn et al., 
2015; Noble et al., 2017; Rosenberg et al., 2016; Shen et al., 2013). The Fisher’s 
z-transformed Pearson’s correlation coefficients between the preprocessed BOLD signal 
time courses of each possible pair of nodes were calculated and used to construct 268 × 
268 symmetrical connectivity matrices in which each element represents a connection 
strength, or edge, between two nodes. We used 35,778 connectivity values [(268 × 
267)/2] of the lower triangular matrix of the connectivity matrix. To briefly investigate 
any site-effect on FC, we conducted one-way ANOVA with Site (9sites) as a factor to the 
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functional connections in the SRPBS multi-disorder dataset and recorded the number of 
significant differences between sites. We set the threshold to p<0.05, after Bonferroni 
correction. As a result, >30% of all connections (11,888/35,778) were significantly 
different between sites. Next, we briefly investigated the reproducibility of the resting 
state functional connectivity pattern due to the difference in site and the difference in day. 
We compared the reproducibility across days using ATR Tim Trio data (different 5 days) 
and the reproducibility among sites using all other sites data (11 sites). We calculated the 
reproducibility as a Pearson’s correlation among 35,778 connectivity values. As a result, 
the average of the Pearson’s correlation across days was 0.61 and the average of the 
Pearson’s correlation among sites was 0.51. We found significant difference between 
these two correlation values (paired t-test, df = 8, t = 6.72, p < 0.0005). This result 
indicates that the reproducibility of resting state functional connectivity pattern decreased 
due to the difference of imaging sites. 

2.1.3 Estimation of biases and factors 

To quantitatively investigate the site differences in the rs-fcMRI data, we identified 
measurement biases, sampling biases, and disorder factors. We defined measurement bias 
for each site as a deviation of the correlation value for each functional connection from its 
average across all sites. We assumed that the sampling biases of the HCs and patients 
with psychiatric disorders differed from one another. Therefore, we calculated the 
sampling biases for each site separately for HCs and patients with each disorder. Disorder 
factors were defined as deviations from the HC values. Sampling biases were estimated 
for patients with MDD and SCZ because only these patients were sampled at multiple 
sites. Disorder factors were estimated for MDD, SCZ, and ASD because patients with 
OCD were not scanned using the unified protocol.  

It is difficult to separate site differences into measurement and sampling biases using the 
SRPBS multi-disorder dataset alone because these two types of bias covaried across sites. 
Different samples (participants) were scanned using different parameters (scanners and 
imaging protocols). In contrast, the traveling-subject dataset included only measurement 
bias because the participants were fixed. By combining the traveling-subject dataset with 
the SRPBS multi-disorder dataset, we simultaneously estimated measurement bias and 
sampling bias as different factors affected by different sites. We utilized a constrained 
linear regression model to assess the effects of both types of bias and disorder factors on 
FC, as follows. In the regression model for the SRPBS multi-disorder dataset, the 
connectivity values of each participant in the SRPBS multi-disorder dataset were 
composed of the sum of the average connectivity values across all participants and all 
sites at baseline, measurement bias, sampling bias, and disorder factors. The combined 
effect of participant factors (individual difference) and scan-to-scan variations was 
regarded as noise. In the regression model for the traveling-subject dataset, the 
connectivity values of each participant for a specific scan in the traveling-subject dataset 
were composed of the sum of the average connectivity values across all participants and 
all sites, participant factors, and measurement bias. Scan-to-scan variation was regarded 
as noise. For each participant, we defined the participant factor as a deviation of 
connectivity values from the average across all participants. We estimated all biases and 
factors by simultaneously fitting the aforementioned two regression models to the FC 
values of the two different datasets. For this regression analysis, we used data from 
participants scanned using a unified imaging protocol in the SRPBS multi-disorder 
dataset and from all participants in the traveling-subject dataset. In summary, each bias or 
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each factor was estimated as a vector that included a dimension reflecting the number of 
connectivity values (35,778). Vectors included in our further analyses are those for 
measurement bias at 12 sites, sampling bias of HCs at six sites, sampling bias for patients 
with MDD at three sites, sampling bias for patients with SCZ at three sites, participant 
factors of nine traveling-subjects, and disorder factors for MDD, SCZ, and ASD. 
Although it seems difficult to separately estimate an effect of ASD and measurement bias 
because the data with ASD patients are acquired from one site, we could separately 
estimate by combining traveling subject dataset. For each connectivity, the regression 
model can be written as follows: 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ൌ 𝐱𝒎
୘𝒎 ൅ 𝐱𝒔𝒉𝒄

୘𝒔𝒉𝒄 ൅ 𝐱𝒔𝒎𝒅𝒅
୘𝒔𝒎𝒅𝒅 ൅ 𝐱𝒔𝒔𝒄𝒛

୘𝒔𝒔𝒄𝒛 ൅ 𝐱𝒅
୘𝒅 ൅ 𝐱𝒑

୘𝒑 ൅ 𝑐𝑜𝑛𝑠𝑡 ൅ 𝑒,  

such that ෍ 𝑝௝

ଽ

௝
ൌ 0, ෍ 𝑚௞

ଵଶ

௞
ൌ 0, ෍ 𝑠௛௖௞

଺

௞
ൌ 0, ෍ 𝑠௠ௗௗ௞

ଷ

௞
ൌ 0, ෍ 𝑠௦௖௭௞

ଷ

௞
ൌ 0,  𝑑ଵሺHCሻ ൌ 0, 

in which 𝒎  represents the measurement bias  ሺ12 sites ൈ 1ሻ , 𝒔𝒉𝒄  represents the 
sampling bias of HCs ሺ6 sites ൈ 1ሻ, 𝒔𝒎𝒅𝒅 represents the sampling bias of patients with 
MDD ሺ3 sites ൈ 1ሻ, 𝒔𝒔𝒄𝒛 represents the sampling bias of patients with SCZ ሺ3 sites ൈ
1ሻ , 𝒅  represents the disorder factor ሺ3 ൈ 1ሻ , 𝒑  represents the participant factor 
( nine traveling subjects ൈ 1 ), 𝑐𝑜𝑛𝑠𝑡  represents the average FC value across all 
participants from all sites, and 𝑒~𝒩ሺ0, 𝛾ିଵሻ represents noise. 𝐱𝒎, 𝐱𝒔𝒉𝒄

, 𝐱𝒔𝒎𝒅𝒅
, 𝐱𝒔𝒔𝒄𝒛

, 𝐱𝒅, 𝐱𝒑 

are vectors represented by 1-of-K binary coding in which the target vector (e.g., 𝐱𝒎) for 
a measurement bias 𝒎 belonging to site 𝑘 is a binary vector with all elements equal to 
zero—except for element 𝑘, which equals 1. If a participant does not belong to any class, 
the target vector is a vector with all elements equal to zero. A superscript T denotes the 
transposition of a matrix or vector, such that 𝐱୘ represents a row vector. To eliminate the 
uncertainty of the constant term, we estimated measurement bias and each sampling bias 
by imposing constraints so that their average across sites would be 0. For each FC value, 
we estimated the respective parameters using regular ordinary least squares regression 
with L2 regularization, as the design matrix of the regression model is rank-deficient. 
When regularization was not applied, we observed spurious anticorrelation between the 
measurement bias and the sampling bias for HCs, and spurious correlation between the 
sampling bias for HCs and the sampling bias for patients with psychiatric disorders 
(Appendix Figure A.3a, left). These spurious correlations were also observed in the 
permutation data in which there were no associations between the site label and data 
(Appendix Figure A.3a, right). This finding suggests that the spurious correlations were 
caused by the rank-deficient property of the design matrix. We tuned the hyper-parameter 
lambda to minimize the absolute mean of these spurious correlations (Appendix Figure 
A.3c, left).   

2.1.4 Quantification of the site differences 

To quantitatively evaluate the magnitude of the effect of measurement and sampling 
biases on FC, we compared the magnitudes of both types of bias (𝒎, 𝒔𝒉𝒄, 𝒔𝒎𝒅𝒅, and 𝒔𝒔𝒄𝒛) 
with the magnitudes of psychiatric disorders (𝒅ሻ and participant factors (𝒑). For this 
purpose, we investigated the magnitude distribution of both biases, as well as the effects 
of psychiatric disorders and participant factors on FC overall 35,778 elements in a 
35,778-dimensional vector to see how many functional connectivities were largely 
affected (Appendix Figures A.1ab). To quantitatively summarize the magnitude of the 
effect of each factor, we calculated the first, second, and third statistical moments of each 
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distribution. Furthermore, we calculated and compared the contribution size to determine 
the extent to which each bias type and factor explain the variance of the data in our linear 
model. After fitting the model, the b-th connectivity from subject a can be written, as 
follows: 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௔,௕ ൌ 𝐱𝒎
௔ ୘𝒎𝒃 ൅ 𝐱𝒔𝒉𝒄

௔ ୘𝒔௛௖
௕ ൅ 𝐱𝒔𝒎𝒅𝒅

௔ ୘𝒔௠ௗௗ
௕ ൅ 𝐱𝒔𝒔𝒄𝒛

௔ ୘𝒔௦௖௭
௕ ൅ 𝐱𝒅

௔୘𝒅𝒃 ൅ 𝐱𝒑
௔୘𝒑𝒃 ൅ 𝑐𝑜𝑛𝑠𝑡 ൅ 𝑒, 

For example, the contribution size of measurement bias (i.e., the first term) in this model 
was calculated as 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒௠ ൌ
1

𝑁௠

1
𝑁௦ ∗ 𝑁

෍ ෍
൫𝐱𝒎

௔ ୘𝒎𝒃൯
𝟐

൫𝐱𝒎
௔ ୘𝒎𝒃൯

𝟐
൅ ൫𝐱𝒔𝒉𝒄

௔ ୘𝒔௛௖
௕ ൯

𝟐
൅ ൫𝐱𝒔𝒎𝒅𝒅

௔ ୘𝒔௠ௗௗ
௕ ൯

𝟐
൅ ൫𝐱𝒔𝒔𝒄𝒛

௔ ୘𝒔௦௖௭
௕ ൯

𝟐
൅ ൫𝐱𝒅

௔୘𝒅𝒃൯
𝟐

൅ ൫𝐱𝒑
௔୘𝒑𝒃൯

𝟐
൅ 𝒆ଶ

ே

௕ୀଵ

ேೞ

௔ୀଵ

, 

in which 𝑁௠ represents the number of components for each factor, 𝑁 represents the 
number of connectivities, 𝑁௦  represents the number of subjects, and 
𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒௠ represents the magnitude of the contribution size of measurement 
bias. These formulas were used to assess the contribution sizes of individual factors 
related to measurement bias (e.g., phase-encoding direction, scanner, coil, and fMRI 
manufacturer: Fig. 2.4b). We decomposed the measurement bias into these factors, after 
which the relevant parameters were estimated. Other parameters were fixed at the same 
values as previously estimated. 

2.1.5 Spatial characteristics of measurement bias, sampling bias, 
and each factor in the brain 

To evaluate the spatial characteristics of each type of bias and each factor in the brain, we 
calculated the magnitude of the effect on each ROI. First, we calculated the median 
absolute value of the effect on each functional connection among sites or participants for 
each bias and participant factor. We then calculated the absolute value of each connection 
for each disorder factor. The uppercase bold letters (e.g., 𝑴) and subscript vectors 
(e.g., 𝒎௞) represent the vectors for the number of functional connections:   

 𝑴 ൌ median
௞

ሺ|𝒎௞|ሻ , 𝑺𝒉𝒄 ൌ median
௞

൫ห𝒔𝒉𝒄௞ห൯ , 𝑺𝒎𝒅𝒅 ൌ median
௞

൫ห𝒔𝒎𝒅𝒅௞ห൯,  

𝑺𝒔𝒄𝒛 ൌ median
௞

൫ห𝒔𝒔𝒄𝒛௞ห൯ , 𝑫ଶ ൌ |𝒅ଶ|, 𝑫ଷ ൌ |𝒅ଷ|, 𝑷 ൌ median
௝

൫ห𝒑௝ห൯. 

We next calculated the magnitude of the effect on ROIs as the average connectivity value 
between all ROIs, except for themselves. 

𝐸𝑓𝑓𝑒𝑐𝑡_𝑜𝑛_𝑅𝑂𝐼௡ ൌ
1

𝑁ோைூ െ 1
෍ 𝐸𝑓𝑓𝑒𝑐𝑡_𝑜𝑛_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௡,௩

ேೃೀ಺

௩ஷ௡

, 

in which 𝑁ோைூ  represents the number of ROIs, 𝐸𝑓𝑓𝑒𝑐𝑡_𝑜𝑛_𝑅𝑂𝐼௡  represents the 
magnitude of the effect on the n-th ROI, and 𝐸𝑓𝑓𝑒𝑐𝑡_𝑜𝑛_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௡,௩ represents the 
magnitude of the effect on connectivity between the n-th ROI and v-th ROI. 

2.1.6 Hierarchical clustering analysis for measurement bias 

We next investigated the characteristics of measurement bias. We first examined whether 
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similarities among the estimated measurement bias vectors for the 12 included sites 
reflect certain properties of MRI scanners such as phase-encoding direction, MRI 
manufacturer, coil type, and scanner type. We used hierarchical clustering analysis to 
discover clusters of similar patterns for measurement bias. This method has previously 
been used to distinguish subtypes of MDD, based on rs-fcMRI data (Drysdale et al., 
2017). We calculated the Pearson’s correlation coefficients among measurement biases 
𝒎௞ ሺ𝑁 ൈ 1, where 𝑁 is the number of functional connectionsሻ  for each site k, 
and performed a hierarchical clustering analysis based on the correlation coefficients 
across measurement biases. To visualize the dendrogram, we used the “dendrogram”, 
“linkage”, and “optimalleaforder” functions in MATLAB (R2016b, Mathworks, USA). 

2.1.7 Comparison of models for sampling bias 

We investigated two alternative models for the mechanisms underlying sampling bias. We 
first theorized how the number of participants at each site affects the variance of sampling 
biases across connectivity values, as follows: 

In the single-population model, we assumed that the FC values of each participant were 
generated from an independent Gaussian distribution, with a mean of 0 and a variance of 
𝜉ଶ for each connectivity value. Then, the FC vector for participant j at site k can be 
described as 

𝒄௝
௞~𝒩ሺ𝟎, 𝜉ଶ𝐈ሻ. 

Let 𝒄௞ be the vector of FC at site k averaged across participants. In this model, 𝒄௞ 
represents the sampling bias and can be described as  

𝒄௞ ൌ
1

𝑁௞
෍ 𝒄௝

௞

ேೖ

௝ୀଵ

~𝒩 ቆ𝟎,
𝜉ଶ

𝑁௞
𝐈ቇ, 

in which 𝑁௞ represents the number of participants at site k. The variance across FC 
values for 𝒄௞ is described as 

𝑉௞ ൌ
1
𝑁

෍ሺ𝑐௞௜ െ 𝒄௞തതതሻଶ

ே

௜ୀଵ

ൌ
1
𝑁

𝒄௞
୘ ൬𝐈 െ

1
𝑁

𝟏𝟏ᇱ൰
୘

൬𝐈 െ
1
𝑁

𝟏𝟏ᇱ൰ 𝒄௞ ൎ
1
𝑁

𝒄௞
୘𝒄௞, 

in which 𝟏 represents the 𝑁 ൈ 1 vector of ones and 𝐈 represents the 𝑁 ൈ 𝑁 identity 

matrix. Since 𝑁  equals 35,778 and 
ଵ

ଷହ଻଻଼
 is sufficiently smaller than 1, we can 

approximate  

𝐈 െ
1
𝑁

𝟏𝟏ᇱ ൎ 𝐈. 

Then, the expected value of variance across FC values for sampling-bias can be described 
as 

𝔼ሾ𝑉௞ሿ ൎ
1
𝑁

𝔼ሾ𝒄௞
୘𝒄௞ሿ ൌ

1
𝑁

𝑇𝑟 ቆ
𝜉ଶ

𝑁௞
𝐈ቇ ൌ

𝜉ଶ

𝑁௞
. 
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In the different-population model, we assumed that the FC values of each participant were 
generated from a different independent Gaussian distribution, with an average of 𝜷𝒌 and 
a variance of 𝜉ଶ depending on the population of each site. In this situation, the FC vector 
for participant j at site k can be described as 

𝒄௝
௞~𝒩ሺ𝜷௞, 𝜉ଶ𝐈ሻ. 

Here, we assume that the average of the population 𝜷𝒌 is sampled from an independent 
Gaussian distribution with an average of 0 and a variance of 𝜎ଶ . That is, 𝜷௞  is 
expressed as  

𝜷௞~𝒩ሺ𝟎, 𝜎ଶ𝐈ሻ. 

The vector of FC for site k averaged across participants can then be described as  

𝒄௞~𝒩 ቆ𝟎, ቆ
𝜉ଶ

𝑁௞
൅ 𝜎ଶቇ 𝐈ቇ. 

The variance across FC values for 𝒄௞ can be described as 

𝔼ሾ𝑉௞ሿ ൎ
𝜉ଶ

𝑁௞
൅ 𝜎ଶ. 

In summary, the variance of sampling bias across FC values in each model is expressed 
by the number of participants at a given site, as follows:  

single-population model: 𝑦௞ ൌ െ𝑥௞ ൅ 2 logଵ଴ 𝜉 

different-population model: 𝑦௞ ൌ െ logଵ଴ሺ𝜉ଶ10ି௫ೖ ൅ 𝜎ଶሻ, 

in which 𝑦௞ ൌ logଵ଴ሺ𝑣௞ሻ , 𝑣௞  represents the variance across FC values for 𝒔𝒉𝒄௞ , 
 𝒔𝒉𝒄௞ represents the sampling bias of HCs at site k ሺ𝑁 ൈ 1: 𝑁 is the number of FCሻ, 
𝑥௞ ൌ logଵ଴ሺ𝑁௞ሻ, and 𝑁௞ represents the number of participants at site k. We estimated the 
parameters 𝜉  and 𝜎  using the MATLAB (R2016b, Mathworks, USA) optimization 
function “fminunc”. To simplify statistical analyses, sampling bias was estimated based 
on FC in which the average across all participants was set to zero.  

We aimed to determine which model provided the best explanation of sampling bias in 
our data by calculating the corrected Akaike information criterion (AICc; under the 
assumption of a Gaussian distribution) for small-sample data (Burnham and Anderson, 
2003; Cortese et al., 2016), as well as BIC: 

AICc ൌ ෍ ln 𝜑௞
ଶ

଺

௞ୀଵ

൅ 2𝑞 ൅
2𝑞ሺ𝑞 ൅ 1ሻ

ሺ6 െ 𝑞 െ 1ሻ
, 

BIC ൌ ෍ ln 𝜑௞
ଶ

଺

௞ୀଵ

൅ 𝑞 ∗ log ሺ6ሻ, 

in which 𝜑௞ ൌ 𝑣௞ െ 𝑣௞ෞ, 𝑣௞ෞ represents the estimated variance, and 𝑞 represents the 
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number of parameters in each model (1 or 2).  

To investigate prediction performance, we used leave-one-site-out-cross-validation in 
which we estimated the parameters 𝜉 and 𝜎 using data from five sites. The variance of 
sampling bias was predicted based on the number of participants at the remaining site. 
This procedure was repeated to predict variance values for sampling bias at all six sites. 
We then calculated the absolute errors between predicted and actual variances for all sites. 

2.1.8 Traveling-subject harmonization procedures 

We next developed a novel harmonization method that enabled us to subtract only the 
measurement bias using the traveling-subject dataset. Using a constrained linear model, 
we estimated the measurement bias separately from sampling bias (see 2.1.3 “Estimation 
of biases and factors”). Thus, measurement bias was removed by subtracting the 
estimated measurement biases. The harmonized FC values were set, as follows: 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦்௥௔௩௘௟௜௡௚ି௦௨௕௝௘௖௧ ൌ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 െ 𝐱𝒎
୘𝒎ෝ , 

in which 𝒎ෝ  represents the estimated measurement bias. 

2.1.9 Principal component analysis  

To visualize the site differences and disorder effects in the SRPBS multi-disorder dataset 
while maintaining its quantitative properties, we first visualized the site differences and 
disorder effects in the SRPBS multi-disorder rs-fcMRI dataset while maintaining its 
quantitative properties by using a principal component analysis (PCA)—an unsupervised 
dimension reduction method. To visualize whether most of the variation in the SRPBS 
multi-disorder dataset was still associated with imaging site after harmonization, we 
performed a PCA of FC values in the harmonized SRPBS multi-disorder dataset. We used 
the traveling-subject method for harmonization, as described in the following section. 
Finally, to visualize the measurement bias in the SRPBS multi-disorder dataset, we 
performed a PCA of FC values in the SRPBS multi-disorder data after subtracting only 
the sampling bias. 

2.1.10 Two-fold cross-validation evaluation procedure 

Existing harmonization methods estimate the site difference without separating site 
difference into the measurement bias and the sampling bias and subtract the site 
difference from data. Therefore, existing harmonization methods might have pitfall to 
eliminate not only biologically meaningless measurement bias but also eliminate 
biologically meaningful sampling bias. Here, we tested whether the traveling-subject 
harmonization method indeed removes only the measurement bias and whether the 
existing harmonization methods simultaneously remove the measurement and sampling 
biases. There are three commonly used harmonization methods: (1) a general linear model 
(GLM) harmonization method, site difference was estimated without adjusting for 
biological covariates (e.g., diagnosis) (Drysdale et al., 2017; Fortin et al., 2018; Rao et al., 
2017). The GLM harmonization method adjusts the FC value for site difference using 
GLM. Site differences were estimated by fitting the regression model, which included site 
label only, to the SRPBS multi-disorder dataset only. The regression model can be written 
as 
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𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ൌ 𝑐𝑜𝑛𝑠𝑡 ൅ 𝐱𝒔𝒊𝒕𝒆
୘𝒔𝒊𝒕𝒆ீ௅ெ ൅ 𝑒, ሺ𝟏ሻ 

in which 𝒔𝒊𝒕𝒆ீ௅ெ represents the site difference ሺ9 sites ൈ 1ሻ. For each FC value, we 
estimated the parameters using regular ordinary least squares regression. Site differences 
were removed by subtracting the estimated site differences. Thus, the harmonized FC 
values were set, as follows: 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦ீ௅ெ ൌ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 െ 𝐱𝒔𝒊𝒕𝒆
୘𝒔ଙ𝒕𝒆ீ௅ெ෣ , 

in which 𝒔ଙ𝒕𝒆ீ௅ெ෣  represents the estimated site difference. 

(2) an adjusted GLM method, site difference was estimated while adjusting for biological 
covariates (Fortin et al., 2018; Rao et al., 2017). Site differences were estimated by fitting 
the regression model, which included site label and diagnosis label, to the SRPBS 
multi-disorder dataset. The regression model can be written as 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ൌ 𝑐𝑜𝑛𝑠𝑡 ൅ 𝐱𝒔𝒊𝒕𝒆
୘𝒔𝒊𝒕𝒆𝑨𝒅𝒋 ൅ 𝐱𝒅

୘𝒅𝑨𝒅𝒋 ൅ 𝑒, ሺ𝟐ሻ 

In which 𝒔𝒊𝒕𝒆஺ௗ௝ represents the site difference ሺ9 sites ൈ 1ሻ. For each FC value, we 
estimated the parameters via regular ordinary least squares regression. Site differences 
were removed by subtracting the estimated site difference only. Thus, the harmonized FC 
values were set, as follows: 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦஺ௗ௝ ൌ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 െ 𝐱𝒔𝒊𝒕𝒆
୘𝒔ଙ𝒕𝒆஺ௗఫ෣ , 

in which 𝒔ଙ𝒕𝒆஺ௗఫ෣  represents the estimated site difference.  

(3) a ComBat method (Fortin et al., 2018; Fortin et al., 2017; Johnson et al., 2007; Yu et 
al., 2018), a batch-effect correction tool commonly used in genomics, site difference was 
modeled and removed. The ComBat harmonization model extends the adjusted GLM 
harmonization method in two ways: (i) it models site-specific scaling factors and (ii) it 
uses empirical Bayesian criteria to improve the estimation of site parameters for small 
sample sizes. The model assumes that the expected connectivity value can be modeled as 
a linear combination of the biological variables and the site differences in which the error 
term is modulated by additional site-specific scaling factors. 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ൌ 𝑐𝑜𝑛𝑠𝑡 ൅ 𝐱𝒔𝒊𝒕𝒆
୘𝒔𝒊𝒕𝒆𝑪𝒐𝒎𝑩𝒂𝒕 ൅ 𝐱𝒅

୘𝒅𝑪𝒐𝒎𝑩𝒂𝒕 ൅ 𝛿௞𝑒, ሺ𝟑ሻ 

in which 𝒔𝒊𝒕𝒆஼௢௠஻௔௧ represents the site difference (9 sites × 1), and 𝛿௞ represents the 
scale parameter for site differences at site k for the respective connectivity value. The 
harmonized FC values were set, as follows: 

 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦஼௢௠஻௔௧ ൌ
஼௢௡௡௘௖௧௜௩௜௧௬ି௖௢௡௦௧ି𝐱𝒔𝒊𝒕𝒆

౐𝒔ଙ𝒕𝒆಴೚೘ಳೌ೟෣ ି𝐱𝒅
౐𝒅಴೚೘ಳೌ೟෣

ఋೖ෢ ൅ 𝑐𝑜𝑛𝑠𝑡 ൅ 𝐱𝒅
୘𝒅஼௢௠஻௔௧෣ , 

in which 𝛿௞
෢ , 𝒅஼௢௠஻௔௧෣ , and 𝒔ଙ𝒕𝒆஼௢௠஻௔௧෣  are the empirical Bayes estimates of 𝛿௞ , 

𝒅஼௢௠஻௔௧ , and 𝒔𝒊𝒕𝒆஼௢௠஻௔௧ , respectively using “combat” function in 
https://github.com/Jfortin1/ComBatHarmonization. Thus, ComBat simultaneously models 
and estimates biological and nonbiological terms and algebraically removes the estimated 
additive and multiplicative site differences. Of note, in the ComBat model, we included 
diagnosis as covariates to preserve important biological trends in the data and avoid 
overcorrection. 
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For evaluation, we performed 2-fold cross-validation evaluations in which the SRPBS 
multi-disorder dataset was partitioned into two equal-size subsamples (fold1 data and 
fold2 data) with the same proportions of sites. Between these two subsamples, the 
measurement bias is common, but the sampling bias is different (because the scanners are 
common, and participants are different). We estimated the measurement bias (or site 
difference including the measurement bias and the sampling bias for the existing 
methods) by applying the harmonization methods to the fold1 data and subtracted the 
measurement bias or site difference from the fold2 data. We then estimated the 
measurement bias in the fold2 data. For the existing harmonization methods, if the site 
difference estimated by using fold1 contains only the measurement bias, the measurement 
bias estimated in fold2 data after subtracting the site difference should be smaller than 
that of without subtracting the site difference (Raw). To separately estimate measurement 
bias and sampling bias in both subsamples while avoiding information leak, we also 
divided the traveling-subject dataset into two equal-size subsamples with the same 
proportions of sites and subjects. We concatenated one subsample of traveling-subject 
dataset to fold1 data to estimate the measurement bias for traveling-subject method 
(estimating dataset) and concatenated the other subsample of traveling-subject dataset to 
fold2 data for testing (testing dataset). That is, in the traveling-subject harmonization 
method, we estimated the measurement bias using the estimating dataset and removed the 
measurement bias from the testing dataset. By contrast, in the other harmonization 
methods, we estimated the site difference using the fold1 data (not including the 
subsample of traveling-subject dataset) and removed the site difference from the testing 
dataset. We then estimated the measurement bias using the testing dataset and evaluated 
the standard deviation of the magnitude distribution of measurement bias calculated in the 
same way as described in “2.1.4 Analysis of contribution size” section. To verify whether 
important information such as participant factors and disorder factors are kept in the 
testing dataset, we also estimated the disorder factors and participant factors and 
calculated the ratio of the standard deviation of measurement bias to the standard 
deviation of participant factor and disorder factor as signal to noise ratios. This procedure 
was done again by exchanging the estimating dataset and the testing dataset. In the 
traveling-subject harmonization method, we estimated the measurement bias by applying 
the regression model. Thus, the harmonized FC values in testing dataset were set, as 
follows: 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௧௘௦௧௜௡௚ ௗ௔௧௔௦௘௧
்௥௔௩௘௟௜௡௚ି௦௨௕௝௘௖௧ ൌ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௧௘௦௧௜௡௚ ௗ௔௧௔௦௘௧ െ 𝐱𝒎

୘𝒎ෝ ௘௦௧௜௠௔௧௜௡௚ ௗ௔௧௔௦௘௧, 

in which 𝒎ෝ ௘௦௧௜௠௔௧௜௡௚ ௗ௔௧௔௦௘௧  represents the estimated measurement bias using the 
estimating dataset. 

By contrast, in the other harmonization methods, we estimated the site differences by 
applying the regression models written in equations (1)–(3) to the estimating dataset 
(fold1 data). Thus, the harmonized FC values in testing dataset were set, as follows: 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௧௘௦௧௜௡௚ ௗ௔௧௔௦௘௧
ீ௅ெ ൌ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௧௘௦௧௜௡௚ ௗ௔௧௔௦௘௧ െ 𝐱𝒔𝒊𝒕𝒆

୘𝒔ଙ𝒕𝒆ீ௅ெ෣
௙௢௟ௗଵ, 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௧௘௦௧௜௡௚ ௗ௔௧௔௦௘௧
஺ௗ௝ ൌ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௧௘௦௧௜௡௚ ௗ௔௧௔௦௘௧ െ 𝐱𝒔𝒊𝒕𝒆

୘𝒔ଙ𝒕𝒆஺ௗఫ෣
௙௢௟ௗଵ, 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௧௘௦௧௜௡௚ ௗ௔௧௔௦௘௧
஼௢௠஻௔௧ ൌ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦௧௘௦௧௜௡௚ ௗ௔௧௔௦௘௧ െ 𝐱𝒔𝒊𝒕𝒆

୘𝒔ଙ𝒕𝒆஼௢௠஻௔௧෣
௙௢௟ௗଵ, 
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in which 𝒔ଙ𝒕𝒆ீ௅ெ෣
௙௢௟ௗଵ, 𝒔ଙ𝒕𝒆஺ௗఫ෣

௙௢௟ௗଵ, 𝒔ଙ𝒕𝒆஼௢௠஻௔௧෣
௙௢௟ௗଵ  represents the estimated site 

differences using fold1 data.

We then estimated the measurement bias, participant factor, and disorder factors by 
applying the regression model written in equation (1) to the harmonized FC values in the 
testing dataset. Finally, we evaluated the standard deviation of the magnitude distribution 
of measurement bias calculated in the same way as described in “Quantification of site 
differences” section among the harmonization methods. This procedure was done again 
by exchanging the estimating dataset and the testing dataset. 

2.2 Results 

2.2.1 Quantification of site differences 

To quantitatively evaluate the magnitude of the effect of measurement and sampling 
biases on FC, we investigated the magnitude distribution of both biases, as well as the 
effects of psychiatric disorders and participant factors on FC and calculated the first, 
second, and third statistical moments of each distribution. Based on the mean values and 
cube roots of the third moments (Fig. 2.2a), all distributions could be approximated as 
bilaterally symmetric with a mean of zero. Thus, distributions with larger squared roots of 
the second moments (standard deviations) affect more connections with larger effect sizes 
(Fig. 2.2b). The value of the standard deviation was largest for the participant factor 
(0.0662), followed by these values for the measurement bias (0.0411), the SCZ factor 
(0.0377), the MDD factor (0.0328), the ASD factor (0.0297), the sampling bias for HCs 
(0.0267), sampling bias for patients with SCZ (0.0217), and sampling bias for patients 
with MDD (0.0214). To compare the sizes of the standard deviation of the magnitude 
distribution between participant factors and measurement bias, we evaluated the variance 
of each distribution. All pairs of variances were analyzed using Ansari–Bradley tests. Our 
findings indicated that the variances of magnitude distributions in 10 of 12 measurement 
biases were significantly larger than in the MDD factor; the variances of magnitude 
distributions in seven of 12 measurement biases were significantly larger than in the SCZ 
factor; and the variances of all magnitude distributions in measurement biases were 
significantly larger than the variance of the MDD factor (Appendix Table A.6). The 
largest variance of magnitude distribution in the sampling bias was significantly larger 
than in the MDD factor (Appendix Table A.7). Variances of magnitude distributions in all 
participant factors were significantly larger than that in all measurement biases (nine 
participant factors × 12 measurement biases = 108 pairs; W*: mean = –59.80, max = –
116.81, min = –3.69; p value after Bonferroni correction: max = 0.011, min = 0, n = 
35,778). The standard deviation of the magnitude distribution in the participant factor was 
approximately twice that in the SCZ, MDD, and ASD factors. Furthermore, we plotted 
fractions of the data variance determined using the aforementioned factors (contribution 
size) in our linear model (Fig. 2.2d). The results were consistent with the analysis of the 
standard deviation (Fig. 2.2c, middle).  

These results indicated that the effect size of the measurement bias on FC is smaller than 
that of the participant factor but is mostly larger than the disorder factors, which 
suggested that measurement bias represents a serious limitation in research regarding 
psychiatric disorders. Furthermore, the effect sizes of the sampling biases were 
comparable with those of the disorder factors. This finding indicates that sampling bias 
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also represents a major limitation in psychiatric research. In addition, the effect size of the 
participant factor was much greater than that among patients with SCZ, MDD, or ASD. 
Such relationships make the development of rs-fcMRI-based classifiers of psychiatric or 
developmental disorders very challenging. If the disorder factor and site factor are 
confounded in functional connections, to develop robust and generalizable classifiers 
across multiple sites, we have to select disorder-specific and site-independent abnormal 
functional connections (Takagi et al., 2017; Watanabe et al., 2017; Yahata et al., 2017; 
Yahata et al., 2016; Yamada et al., 2017). 

 

FIGURE 2.2 | Statistics of magnitude distributions for each type of bias and each 
factor. 

(a) The means, standard deviations, and third moments standardized to the same scale on 
the vertical axis (i.e., cube root) for each type of bias and each factor. Bars represent the 
average value, while the error bars represent the standard deviation across sites or 
participants. Each data point represents one participant or one site. (b) Schematic 
examples illustrating the magnitude distribution. (c) Contribution size of each bias and 
each factor. HC: healthy controls; SCZ: schizophrenia; MDD: major depressive disorder; 
ASD: autism spectrum disorder. 
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2.2.2 Brain regions contributing most to biases and associated 
factors 

To evaluate the spatial characteristics of each type of bias and each factor in the brain, we 
were able to visualize the relative contribution of individual ROIs to each bias or factor in 
the whole brain (Fig. 2.3). Consistent with the findings of previous studies, the effect of 
the participant factor was large for several ROIs in the cerebral cortex, especially in the 
prefrontal cortex, but small in the cerebellum and visual cortex (Finn et al., 2015). The 
effect of measurement bias was large in inferior brain regions where functional images 
are differentially distorted depending on the phase-encoding direction (Jezzard and 
Balaban, 1995; Weiskopf et al., 2006). Connections involving the medial dorsal nucleus 
of the thalamus were also heavily affected by both MDD, SCZ and ASD. Effects of the 
MDD factor were observed in the dorsomedial prefrontal cortex and the superior temporal 
gyrus in which abnormalities have also been reported in previous studies (Drysdale et al., 
2017; Kaiser et al., 2015; Mulders et al., 2015). Effects of the SCZ factor were observed 
in the left inferior parietal lobule, bilateral anterior cingulate cortices, and left middle 
frontal gyrus in which abnormalities have been reported in previous studies (Kuhn and 
Gallinat, 2013; Li et al., 2017; Minzenberg et al., 2009). Effects of the ASD factor were 
observed in the putamen, the medial prefrontal cortex, and the right middle temporal 
gyrus in which abnormalities have also been reported in previous studies (Abraham et al., 
2017; Anderson et al., 2011; Yahata et al., 2016). The effect of sampling bias for HCs was 
large in the inferior parietal lobule and the precuneus, both of which are involved in the 
default mode network and the middle frontal gyrus. Sampling bias for disorders was large 
in the medial dorsal nucleus of the thalamus, left dorsolateral prefrontal cortex, 
dorsomedial prefrontal cortex, and cerebellum for MDD (Drysdale et al., 2017); and in 
the prefrontal cortex, cuneus, and cerebellum for SCZ (Li et al., 2017). 
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FIGURE 2.3 | Spatial distribution of each type of bias and each factor in various 
brain regions. 

Mean effects of connectivity for all 268 ROIs. For each ROI, the mean effects of all 
functional connections associated with that ROI were calculated for each bias and each 
factor. Warmer (red) and cooler (blue) colors correspond to large and small effects, 
respectively. The magnitudes of the effects are normalized within each bias or each factor 
(z-score). ROI: region of interest; HC: healthy control; SCZ: schizophrenia; MDD: major 
depressive disorder; ASD: autism spectrum disorder. 

2.2.3 Characteristics of measurement bias 

We next investigated the characteristics of measurement bias. We first examined whether 
similarities among the estimated measurement bias vectors for the 12 included sites 
reflect certain properties of MRI scanners such as phase-encoding direction, MRI 
manufacturer, coil type, and scanner type. As a result, the measurement biases of the 12 
sites were divided into phase-encoding direction clusters at the first level (Fig. 2.4a). 
They were divided into fMRI manufacturer clusters at the second level, and further 
divided into coil type clusters, followed by scanner model clusters. Furthermore, we 
quantitatively verified the magnitude relationship among factors by using the same model 
to assess the contribution of each factor (Fig. 2.4b; “2.1.4 Quantification of the site 
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differences”). The contribution size was largest for the phase-encoding direction (0.0391), 
followed by the contribution sized for fMRI manufacturer (0.0318), coil type (0.0239), 
and scanner model (0.0152). These findings indicate that the main factor influencing 
measurement bias is the difference in the phase-encoding direction, followed by fMRI 
manufacturer, coil type, and scanner model, respectively. 

 

FIGURE 2.4 | Clustering dendrogram for measurement bias. 

(a) The height of each linkage in the dendrogram represents the dissimilarity (1 - r) 
between the clusters joined by that link. (b) Contribution size of each factor. UTO: 
University of Tokyo; HUH: Hiroshima University Hospital; KUT: Siemens TimTrio 
scanner at Kyoto University; ATT: Siemens TimTrio scanner at Advanced 
Telecommunications Research Institute International; ATV: Siemens Verio scanner at 
Advanced Telecommunications Research Institute International; SWA: Showa University; 
HKH: Hiroshima Kajikawa Hospital; COI: Center of Innovation in Hiroshima University; 
KUS: Siemens Skyra scanner at Kyoto University; KPM: Kyoto Prefectural University of 
Medicine; YC1: Yaesu Clinic 1; YC2: Yaesu Clinic 2. 

2.2.4 Sampling bias is because of sampling from among a 
subpopulation 

To investigate the characteristics of sampling bias, we investigated two alternative models 
for the mechanisms underlying sampling bias. Our results indicated that the 
different-subpopulation model provided a better fit for our data than the single-population 
model (Fig. 2.5c; different-subpopulation model: AICc = -108.80 and BIC = -113.22; 
single-population model: AICc = -96.71 and BIC = -97.92). Furthermore, the predictive 
performance was significantly higher for the different-subpopulation model than for the 
single-population model (one-tailed Wilcoxon signed-rank test applied to absolute errors: 
Z = 1.67, p = .0469, n = 6; Figs. 2.5d and 2.5e). This result indicates that sampling bias is 
not only caused by random sampling from a single grand population, depending on the 
number of participants among sites, but also by sampling from among different 
subpopulations. Sampling biases thus represent a major limitation in attempting to 
estimate a true single distribution of HC or patient data based on measurements obtained 
from a finite number of sites and participants. 
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FIGURE 2.5 | Comparison of the two models of sampling bias. 

Schematic examples illustrating the single-population (a) and different-subpopulation 
models (b) and the results of model fitting (c). The x-axis represents the number of 
participants on a logarithmic scale, while the y-axis represents the variance of sampling 
bias on a logarithmic scale. The broken line represents the prediction of the 
single-population model, while the solid line represents the prediction of the 
different-subpopulation model. Each data point represents one site. (d) Results of the 
predictions determined by using each model. The x-axis represents the actual variance, 
while the y-axis represents the predicted variance. Open triangles correspond to the 
single-population model, while filled squares correspond to the different-subpopulation 
model. (e) Performance of prediction using the two models, based on the absolute error 
between the actual and predicted variance. UTO: University of Tokyo; COI: Center of 
Innovation in Hiroshima University; SWA: Showa University; KUT: Siemens TimTrio 
scanner at Kyoto University; ATT: Siemens TimTrio scanner at Advanced 
Telecommunications Research Institute International; ATV: Siemens Verio scanner at 
Advanced Telecommunications Research Institute International. 

2.2.5 Visualization of the harmonization effect 

To visualize the site differences and disorder effects in the SRPBS multi-disorder dataset 
while maintaining its quantitative properties, we first performed an unsupervised 
dimension reduction of the raw rs-fcMRI data using a PCA. All participant data in the 
SRPBS multi-disorder dataset were plotted on two axes consisting of the first two PCs 
(Fig. 2.6a, small, light-colored symbols). First two PCs could explain about 6% of the 
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variance in the whole data (Fig 2.6b, 3.5% for 1st PC and 2.5% for 2nd PC). Dark-colored 
markers indicated the averages of projected data across healthy controls in each site and 
the average within each psychiatric disorder in the subspace spanned by the 2 components. 
For the raw data, there was a clear separation of the Hiroshima University Hospital 
(HUH) site for PC1, which explained most of the variance in the data. To visualize the 
effects of the harmonization process, we plotted the data after subtracting only the 
measurement bias from the SRPBS multi-disorder dataset (Fig. 2.6c). In Fig. 2.6b, the 
differences among sites represent the sampling bias. Relative to the result of raw data, 
which reflects the data before harmonization, the HUH site moved much closer to the 
origin (i.e., grand average) and showed no marked separation from the other sites. This 
result indicates that the separation of the HUH site observed in Fig. 2.6a was caused by 
measurement bias, which was removed following harmonization. Furthermore, 
harmonization was effective in distinguishing patients and HCs scanned at the same site. 
Since patients with ASD were only scanned at the Showa University (SWA) site, the 
averages for patients with ASD (▲) and HCs (blue ●) scanned at this site were projected 
to nearly identical positions (Fig. 2.6a). However, the two symbols are clearly separated 
from one another in Fig. 2.6c. The effect of a psychiatric disorder (ASD) could not be 
observed in the first two PCs without harmonization but became detectable following the 
removal of measurement bias. Finally, to visualize the measurement bias in the SRPBS 
multi-disorder dataset, we plotted the data after subtracting only the sampling bias from 
the SRPBS multi-disorder dataset (Fig. 2.6d). Relative to the result of harmonized data, 
the HUH site showed marked separation from the other sites as same as in raw data (Fig. 
2.6a). 
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FIGURE 2.6 | PCA dimension reduction in the SRPBS multi-disorder dataset after 
harmonization. 

Comparison among (a) raw data, (c) harmonized data (measurement bias subtracted data), 
and (d) sampling bias subtracted data. All participants in the SRPBS multi-disorder 
dataset projected into the first two principal components (PCs), as indicated by small, 
light-colored markers. Dark-colored markers indicated the averages of the projected data 
across healthy controls at each site and the average within each psychiatric disorder in the 
subspace spanned by the 2 components. The color of the marker represents the site, while 
the shape represents the psychiatric disorder. (b) The pareto plot of the PCA 
decomposition for raw data. The pareto plot shows how much variance is explained by 
each principal component. PCA: principal component analysis; SRPBS: Strategic 
Research Program for Brain Sciences; ATT: Siemens TimTrio scanner at Advanced 
Telecommunications Research Institute International; ATV: Siemens Verio scanner at 
Advanced Telecommunications Research Institute International; KUT: Siemens TimTrio 
scanner at Kyoto University; SWA: Showa University; HUH: Hiroshima University 
Hospital; HKH: Hiroshima Kajikawa Hospital; COI: Center of Innovation in Hiroshima 
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University; KPM: Kyoto Prefectural University of Medicine; UTO: University of Tokyo; 
ASD: Autism Spectrum Disorder. MDD: Major Depressive Disorder. OCD: Obsessive 
Compulsive Disorder. SCZ: Schizophrenia. SIE: Siemens fMRI. GE: GE fMRI. PHI: 
Philips fMRI. 

2.2.6 Quantification of the effect of traveling-subject 
harmonization 

We tested whether the traveling-subject harmonization method indeed removes only the 
measurement bias and whether the existing harmonization methods simultaneously 
remove the measurement and sampling biases. Fig. 2.7 shows that the standard deviation 
of the magnitude distribution of the measurement bias and the ratio of the standard 
deviation of the magnitude distribution of the measurement bias to that of participant 
factor and disorder factor in the both fold data for the four harmonization methods and 
without harmonization (Raw). Our result shows that the reduction of the standard 
deviation of the magnitude distribution of the measurement bias from the Raw was 
highest in the traveling-subject method among all methods (29% reduction compared to 
3% in the second highest value for ComBat method). Moreover, improvement in the 
signal to noise ratios were also highest in our method for participant factor (41% 
improvement compared to 3% in the second highest value for ComBat method) and for 
disorder factor (39% improvement compared to 3% in the second highest value for 
ComBat method). These results indicate that the traveling-subject harmonization method 
indeed removed the measurement bias and improved the signal to noise ratios. 

 

FIGURE 2.7 | Reduction of the measurement bias and improvement of signal to 
noise ratios for different harmonization methods. 

(a) Standard deviation of the magnitude distribution of the measurement bias. The error 
bars represent the standard deviation across sites. Each data point represents one site. (b) 
Ratio of standard deviation of the magnitude distribution of the measurement bias to that 
of the participant factor. (c) Ratio of standard deviation of the magnitude distribution of 
the measurement bias to that of the disorder factor. Different colored columns show the 
results from different harmonization method. Two columns of the same color show the 
results of the two folds. GLM: generalized linear model. 
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2.3 Discussion 
In the present study, by acquiring a separate traveling-subject dataset and the SRPBS 
multi-disorder dataset, we separately estimated measurement and sampling biases for 
multiple sites, which we then compared with the magnitude of disorder factors. 
Furthermore, we investigated the origin of each bias in multi-site datasets. Finally, to 
overcome the problem of site difference, we developed a novel harmonization method 
that enabled us to subtract the measurement bias by using a traveling-subject dataset and 
achieved the reduction of the measurement bias by 29% and the improvement of the 
signal to noise ratios by 40%. 

2.3.1 The effect sizes of measurement and sampling biases 

Previous studies have focused on measurement bias and compared its magnitude to the 
participant factor by using a traveling subject design in a finger tapping task-fMRI 
(Gountouna et al., 2010) and resting-state fMRI (Noble et al., 2017). These studies 
revealed the magnitude of measurement bias is smaller than the participant factor. 
Although such a result was also obtained in this study, the novelty of this study exists in 
that we separately estimated measurement and sampling biases and then compared them 
with the magnitude of disorder factors. We assessed the effect sizes of measurement and 
sampling biases in comparison with the effects of psychiatric disorders on resting-state 
FC. Our findings indicated that measurement bias exerted significantly greater effects 
than disorder factors, whereas sampling bias was comparable to (or even larger than) the 
disorder effects (Fig. 2.2). This result is very important finding to collect resting-state 
fMRI data from multiple sites and to construct biomarkers of psychiatric disorder based 
on multi-site data in the clinical field. However, we did not control for variations in 
disease stage and treatment in our dataset. Although controlling for such heterogeneity 
may increase the effect size of disorder factors, such control is not feasible when 
collecting big data from multiple sites. Therefore, it is important to appropriately remove 
measurement bias from heterogeneous patient data to identify relatively small disorder 
effects. This issue is essential for investigating the relationships among different 
psychiatric disorders because disease factors are often confounded by site differences. As 
previously mentioned, it is common for a single site to sample only a few types of 
psychiatric disorders (SCZ and ASD from sites A and B, respectively). In this situation, it 
is critical to dissociate disease factors from site differences. This dissociation can be 
accomplished by subtracting only the measurement bias, which is estimated using the 
traveling subject dataset. 

2.3.2 Characteristics of measurement bias 

Our results indicated that measurement bias is primarily influenced by differences in the 
phase-encoding direction, followed by differences in fMRI manufacturer, coil type, and 
scanner model (Fig. 2.4). These results are consistent with our finding of large 
measurement biases in the inferior brain regions (Fig. 2.3), the functional imaging of 
which is known to be influenced by the phase-encoding direction (Jezzard and Clare, 
1999; Weiskopf et al., 2006). Previous studies have reported that the effect because of the 
difference in the phase-encoding direction can be corrected using the field map obtained 
at the time of imaging (Hutton et al., 2002; Jenkinson, 2003; Jezzard and Balaban, 1995; 
Jezzard and Clare, 1999). The field map was acquired in parts of the traveling-subject 
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dataset; therefore, we investigated the effectiveness of field map correction by comparing 
the effect size of the measurement bias and the participant factor between functional 
images with and without field map correction. Our prediction was as follows: if field map 
correction is effective, the effect of measurement bias will decrease, while that of the 
participant factor will increase following field map correction. Field map correction using 
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) reduced the effect of 
measurement bias in the inferior brain regions (whole brain: 3% reduction in the standard 
deviation of the magnitude distribution of the measurement bias) and increased the effect 
of the participant factor in the whole brain (3% increase in the standard deviation of the 
magnitude distribution of the participant factor; Appendix Figures A.2a and A.2b). 
However, the effect of measurement bias remained large in inferior brain regions 
(Appendix Figure A.2a), and hierarchical clustering analysis revealed that the clusters of 
the phase-encoding direction remained dominant (Appendix Figure A.2c). These results 
indicate that, even with field map correction, it is largely impossible to remove the 
influence of differences in phase-encoding direction on FC. Thus, harmonization methods 
are still necessary to remove the effect of these differences and other measurement-related 
factors. However, some distortion correction methods have been developed, such as 
top-up method and symmetric normalization (Andersson et al., 2003; Gorgolewski et al., 
2017), and further studies are required to verify the efficacy of these methods. 

2.3.3 Characteristics of sampling bias 

Our data supported the different-subpopulation model rather than the single-population 
model (Fig. 2.5), which indicates that sampling bias is caused by sampling from among 
different subpopulations. Furthermore, these findings suggest that, during big data 
collection, it is better to sample participants from several imaging sites than to sample 
many participants from a few imaging sites. These results were obtained only by 
combining the SRPBS multi-disorder database with a traveling-subject dataset 
(https://bicr.atr.jp/decnefpro/). To the best of our knowledge, the present study is the first 
to demonstrate the presence of sampling bias in rs-fcMRI data, the mechanisms 
underlying this sampling bias, and the effect size of sampling bias on resting-state FC, 
which was comparable to that of psychiatric disorders. We analyzed sampling bias among 
HCs only, because the number of sites was too small to conduct an analysis of patients 
with psychiatric diseases.  

2.3.4 The effect of harmonization method 

We developed a novel harmonization method using a traveling-subject dataset (i.e., 
traveling-subject method), which was then compared with existing harmonization 
methods. Our results demonstrated that the traveling-subject method outperformed other 
conventional GLM-based harmonization methods and ComBat method. The 
traveling-subject method achieved reduction of the measurement bias by 29% compared 
to 3% in the second highest value for ComBat method and improvement of the signal to 
noise ratios by 40% compared to 3% in the second highest value for ComBat method. 
This result indicates that the traveling-subject dataset helps to properly estimate the 
measurement bias and also helps to harmonize the rs-fMRI data across imaging sites 
towards development of a wide range of final applications. As one example of final 
application, we constructed biomarkers for psychiatric disorders based on rs-fcMRI data, 
which distinguishes between HCs and patients, and a regression model to predict 
participants’ age based on rs-fcMRI data using SRPBS multi-disorder dataset (see 
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“Classifiers for MDD and SCZ, based on the four harmonization methods” and 
“Regression models of participant age based on the four harmonization methods” in 
Appendix A). We quantitatively evaluated the harmonization method to investigate the 
generalization performance to independent validation dataset, which was not included in 
SRPBS multi-disorder dataset. Although the ComBat method achieved the highest 
performance for the MDD classifier and regression model of age, it was inferior to the 
raw method for the SCZ classifier. By contrast, the traveling-subject harmonization 
method always improved the generalization performance as compared with the case 
where harmonization was not performed. These results indicate that the traveling-subject 
dataset also helps the constructing a prediction model based on multi-site rs-fMRI data. 
As a future work, it is necessary to improve traveling-subject method by incorporating 
hierarchy like ComBat. 

2.3.5 Limitations 

The present study possesses some limitations of note. The accuracy of measurement bias 
estimation may be improved by further expanding the traveling-subject dataset. This can 
be achieved by increasing the number of traveling participants or sessions per site. 
However, as mentioned in a previous traveling-subject study (Noble et al., 2017), it is 
costly and time-consuming to ensure that numerous participants travel to every site 
involved in big database projects. Thus, the cost-performance tradeoff must be evaluated 
in practical settings. The numbers of traveling participants and MRI sites used in this 
study (nine and twelve, respectively) were larger than those used in a previous study 
(eight and eight, respectively) (Noble et al., 2017), and the number of total sessions in this 
study (411) was more than three times larger than that used in the previous study (128) 
(Noble et al., 2017). Furthermore, although we estimated the measurement bias for each 
connectivity, hierarchical models of the brain (e.g., ComBat) may be more appropriate for 
improving the estimates of measurement bias. Regarding the number of sites in the data 
with psychiatric disorders, we believe that uniqueness of our study exists in the datasets 
of multiple disorders and multiple sites with traveling subject data rather than the number 
of sites for a single disorder. For example, although ABIDE (Abraham et al., 2017; Di 
Martino et al., 2014) collected the data from patients with ASD from 17 sites, it 
significantly differs from our study because it does not use a unified protocol for data 
collection and does not include a traveling subject dataset. In this study, we have collected 
the data using a unified protocol with healthy controls from 6 sites, patients with MDD 
from 3 sites, patients with ASD from one site, patients with SCZ from 3 sites, patients 
with OCD from one site, and a traveling subject dataset from 12 sites. These datasets 
enabled us to compare the magnitude of the effect between site differences (measurement 
or sampling bias) and multiple disorder factors, which is the key point of our study. To the 
best of our knowledge, such multi-site multi-disorder resting-state fMRI dataset has not 
existed so far. 

2.3.6 Summary 

In this chapter, by acquiring a separate traveling-subject dataset and the SRPBS 
multi-disorder database, we revealed that site differences were composed of biological 
sampling bias and engineering measurement bias. The effect sizes of these biases on FC 
were greater than or equal to the effect sizes of psychiatric disorders, highlighting the 
importance of controlling for site differences when investigating psychiatric disorders. 
Furthermore, using the traveling-subject dataset, we developed a novel traveling-subject 
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method that harmonizes the measurement bias only by separating sampling bias from site 
differences. Our findings verified that the traveling-subject method outperformed 
conventional GLM-based harmonization methods and ComBat method. These results 
suggest that a traveling-subject dataset can help to harmonize the rs-fMRI data across 
imaging sites. 

 



 

 

 

 



 

Chapter 3 

A common brain network between major 
depressive disorder and symptoms of 
depression 
In chapter 3, we constructed a reliable resting-state functional connectivity (FC)-based 
classifier of psychiatric disorder and also constructed a regression model of disorder 
symptoms to resolve the problem of diagnosis-based analysis. 

In our study, we focused on major depressive disorder (MDD). MDD is diagnosed when 
depressed symptoms persist for more than two weeks and causes the greatest worldwide 
social loss (Ferrari et al., 2013; Hay et al., 2017; Kassebaum et al., 2016; Vos et al., 2015). 
Despite the significance of this disorder, its neurobiological basis remains poorly 
understood. Therefore, it is important to investigate resting-state FC that is associated 
with the depressed symptoms and compare this to FCs associated with MDD to 
strengthen neuroscientific understanding, and aid future diagnosis and treatment of MDD. 
In this study, we harnessed a machine-learning algorithm to automatically and objectively 
identify resting-state FC related to diagnosis and symptoms. We constructed an MDD 
classifier that distinguished between HCs and MDD patients based on FC patterns. We 
examined the FCs that were identified as important for constructing the MDD classifier. 
In addition, we constructed a regression model of Beck Depression Inventory-II (BDI) 
scores (Dozois and Covin, 2004). This scale is widely used for measuring the severity of 
depressed symptoms. We examined the FCs that were identified as important for 
constructing this regression model. Furthermore, we investigated the common FCs 
between MDD diagnosis and depressed symptoms (Fig. 3.1). 

We have developed a regression model of Beck Depression Inventory-II (BDI) scores 
based on resting-state functional connectivity, and a classifier for major depressive 
disorder (MDD) that could distinguish between healthy controls (HCs) and MDD patients 
based on resting-state functional connectivity. Next, we investigated the common 
connectivity patterns between MDD diagnosis and depressed symptoms. 

To construct a reliable classifier and regression model using a machine-learning algorithm, 
it is essential to use a large sample size of data collected from multiple imaging sites for 
training. We used a discovery rs-fMRI dataset of 713 participants, which included 149 
MDD patients, collected from 4 imaging sites in different regions of Japan. Furthermore, 
to ensure the reproducibility of the identified FCs, it is critical to demonstrate the 
generalizability of the classifier and regression model with an independent validation 
dataset (Munafò et al., 2017; Nosek and Errington, 2017; Poldrack et al., 2017; Whelan 
and Garavan, 2014). Our independent validation dataset consisted of 449 participants, 
which included 185 MDD patients, collected from 4 imaging sites that were not included 
in the discovery dataset.  

As a result, a reliable and reproducible neuroimaging-based classifier for MDD and 
regression model for BDI scores, respectively, were developed. Furthermore, this 
classifier and regression model could be generalized to the independent validation dataset. 
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We found an overlap of approximately 30% FCs between depressed symptoms and MDD 
diagnosis. Interestingly, common FCs were associated with the salience and default mode 
networks. Taken together, our study has revealed some neurobiological underpinnings of 
the depressed symptoms in MDD patients. This result leads to the elucidation of the 
neurological basis of MDD and development of a theranostic biomarker that can 
contribute to MDD diagnosis and the determination of therapeutic targets for depressed 
symptoms (Watanabe et al., 2017; Yahata et al., 2017; Yamada et al., 2017).  

FIGURE 3.1 | Schematic illustration of the study design. 

We have developed a regression model of Beck Depression Inventory-II (BDI) scores 
based on resting-state FC, and a classifier for major depressive disorder (MDD) that could 
distinguish between healthy controls (HCs) and MDD patients based on resting-state FC. 
Next, we investigated the common connectivity patterns between MDD diagnosis and 
depressed symptoms. 

3.1 Material and Methods 

3.1.1 Participants 

We used two rs-fMRI datasets for the analyses: (1) Dataset 1 contained data from 713 
participants (564 HCs from 4 sites, 149 MDD patients from 3 sites; Table 1); (2) Dataset 
2 contained data from 449 participants (264 HCs from independent 4 sites, 185 MDD 
patients from independent 4 sites; Table 3). Depressed symptoms were evaluated using 
the BDI-II score obtained from most participants in each dataset. This study was carried 
out in accordance with the recommendations of the institutional review boards of the 
principal investigators’ respective institutions (Hiroshima University, Kyoto University, 
Showa University, University of Tokyo, and Yamaguchi University) with written 
informed consent from all subjects. All subjects gave written informed consent in 
accordance with the Declaration of Helsinki. The protocol was approved by the 
institutional review boards of the principal investigators’ respective institutions 
(Hiroshima University, Kyoto University, Showa University, University of Tokyo, and 
Yamaguchi University). 
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3.1.2 Datasets 

Dataset 1—the “discovery dataset”—was used to construct an MDD classifier and BDI 
linear regression model. Data were acquired using parameters shown in Table 2. Each 
participant underwent a single rs-fMRI session for 10 min. Within the Japanese SRPBS 
DecNef project, we planned to acquire the rs-fMRI data using a unified imaging protocol 
(Table 3.2; http://bicr.atr.jp/rs-fmri-protocol-2/). However, there were erroneously two 
phase-encoding directions (P→A and A→P). In addition, different sites had different MRI 
hardware (Table 3.3). During the rs-fMRI scans, participants were instructed to “Relax. 
Stay awake. Fixate on the central crosshair mark, and do not concentrate on specific 
things.” 

Dataset 2—the “independent validation dataset”—was used to test the MDD classifier 
and BDI regression model. Data were acquired following protocols reported in Table 3.5. 
The sites used were different from Dataset 1. Each participant underwent a single rs-fMRI 
session of 5 or 8 min. 

Most data utilized in this study can be downloaded publicly from the DecNef Project 
Brain Data Repository at https://bicr-resource.atr.jp/decnefpro/. The data availability 
statement of each site were described in Table 3.6. 
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TABLE 3.1 | Demographic characteristics of participants in the discovery dataset 

Site 
HC MDD ALL 

Number 
Male/ 

Female
Age (yr) BDI Number

Male/ 
Female

Age (yr) BDI Number
Male/ 

Female 
Age (yr) BDI 

Center of 
Innovation in 

Hiroshima 
University 

(COI)

124 
(123) 

46/78 51.9±13.4 8.2±6.3
70 

(70) 
31/39 45.0±12.5 26.2±9.9 

194 
(193) 

77/117 49.4±13.5 14.7±11.7

Kyoto 
University 

(KUT) 

169 
(139) 

100/69 35.9±13.6 6.0±5.4
17 

(17) 
11/6 43.9±13.3 27.7±10.1

186 
(156) 

111/75 36.7±13.7 8.3±9.1 

Showa 
University 

(SWA) 

101 
(97) 

86/15 28.4±7.9 4.4±3.8 0 - - - 
101 
(97) 

86/15 28.4±7.9 4.4±3.8 

University of 
Tokyo 
(UTO) 

170 
(24) 

78/92 35.6±17.5 6.7±6.5
62 

(32) 
36/26 38.7±11.6 20.4±11.4

232 
(56) 

114/118 36.4±16.2 14.5±11.8

Summary 
564 

(383) 
310/254 38.0±16.1 6.3±5.6

149 
(119) 

78/71 42.3±12.5 24.9±10.7
713 

(502) 
388/325 38.9±15.5 10.7±10.6

The number in parentheses indicate the number of participants with BDI score. All demographic distributions are matched between the MDD and HC 

populations in the discovery dataset (p > 0.05). BDI: Beck Depression Inventory-Ⅱ; HC: Healthy Control; MDD: Major Depressive Disorder. 

 

 

 

TABLE 3.2 | Unified imaging protocols for resting-state fMRI in the discovery dataset 

Magnetic 
field 

strength

Field 
of 

view 
(mm) 

Matrix 
Number 
of slices

Number of 
volumes 

In-plane 
resolution 

(mm) 

Slice thickness 
(mm) 

Slice gap 
(mm) 

TR 
(ms)

TE 
(ms)

Total scan time 
(min:s) 

Flip angle 
(deg) 

Slice 
acquisition 

order 

Eye 
closed / 
fixate 

3.0 T 
212 × 
212 

64 × 64 40 240 
3.3125 × 
3.3125 

3.2 0.8 2,500 30 10:00 80 Ascending Fixate
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TABLE 3.3 | Different imaging protocols among sites for resting-state fMRI in the discovery dataset 

Site Center of Innovation in Hiroshima University Kyoto University TimTrio Showa University University of Tokyo 

Abbreviation COI KUT SWA UTO 

MRI scanner 
Siemens 

Verio 
Siemens 
TimTrio 

Siemens 
Verio 

GE 
MR750w 

Channels per coil 12 32 12 24 

Phase encoding AP PA PA PA 

 

TABLE 3.4 | Demographic characteristics of participants in the independent validation dataset 

Site 
HC MDD ALL 

Number 
Male/ 

Female 
Age (yr) BDI Number

Male/ 
Female

Age (yr) BDI Number
Male/ 

Female 
Age (yr) BDI 

Hiroshima 
Kajikawa 
Hospital 
(HKH)

29 
(29) 

12/17 45.4±9.5 5.1±4.6
33 

(33) 
20/13 44.8±11.5 28.5±8.7 

62 
(62) 

32/30 45.1±10.5 17.6±13.7

Hiroshima 
Rehabilitation 

Center  
(HRC) 

49 
(49) 

13/36 41.7±11.7 9.1±8.5
16 

(16) 
6/10 40.5±11.5 35.3±9.5 

65 
(65) 

19/46 41.4±11.5 15.6±14.3

Hiroshima 
University 
Hospital 
(HUH)

66 
(66) 

29/37 34.6±13.0 6.9±5.9
57 

(57) 
32/25 43.3±12.2 30.9±9.0 

123 
(123) 

61/62 38.6±13.3 18.0±14.1

Yamaguchi 
University 

(UYA) 

120 
(120) 

50/70 45.9±19.5 7.1±5.6
79 

(78) 
36/43 50.3±13.6 29.7±10.7

199 
(198) 

86/113 47.6±17.5 16.0±13.6

Summary 
264 

(264) 
104/160 42.2±16.5 7.2±6.3

185 
 (184) 

94/91 46.3±13.0 30.3±9.9 
449 

(448) 
198/251 43.9±15.3 16.7±13.9

The number in parentheses indicate the number of participants with BDI score. Demographic distribution of age is matched 
between the MDD and HC populations in the independent validation dataset (p > 0.05). Demographic distribution of sex ratio is 
not matched between the MDD and HC populations in the independent validation dataset (p < 0.05). BDI: Beck Depression 
Inventory-Ⅱ; HC: Healthy Control; MDD: Major Depressive Disorder. 
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TABLE 3.5 | Imaging protocols for resting-state fMRI in the independent validation dataset 

Site Hiroshima Kajikawa Hospital Hiroshima Rehabilitation Center Hiroshima University Hospital Yamaguchi University

Abbreviation HKH HRC HUH UYA 

MRI scanner 
Siemens 
Spectra 

GE 
Signa HDxt 

GE 
Signa HDxt 

Siemens 
Skyra 

Magnetic field strength  3.0 T 3.0 T 3.0 T 3.0 T 

Channels per coil 12 8 8 20 

Field-of-view (mm) 192 × 192 256 × 256 256 × 256 220 × 220 

Matrix 64 × 64 64 × 64 64 × 64 64 × 64 

Number of slices 38 32 32 34 

Number of volumes 107 143 143 200 

In-plane resolution (mm) 3.0 × 3.0 4.0 × 4.0 4.0 × 4.0 3.4 × 3.4 

Slice thickness (mm) 3.0 4 3.2 4.0 

Slice gap (mm) 0 0 0 1.0 

TR (ms) 2,700 2,000 2,000 2,500 

TE (ms) 31 27 27 30 

Total scan time (min:s) 5:00 4:46 5:00 8:28 

Flip angle (deg) 90 90 90 80 

Slice acquisition order Ascending 
Ascending 

(Interleaved) 
Ascending 

(Interleaved) 
Ascending 

Phase encoding AP AP PA PA 

Eyes closed / open / fixate Fixate Fixate Fixate Closed 



3.1. Materials and Methods  | 57 
 

 

TABLE 3.6 | Data availability statement 

Site 
Number of 

subjects 
Type of data 
availablity 

Center of Innovation in Hiroshima University (COI) 194 1

Kyoto University (KUT) 186 2

Showa University (SWA) 101 2

University of Tokyo (UTO) 232 2

Hiroshima University Hospital (HUH) 123 1

Hiroshima Kajikawa Hospital (HKH) 62 1

Hiroshima Rehabilitation Center (HRC) 65 1

Yamaguchi University (UYA) 199 4

Traveling subject 9 3

Summary 1171

 

Note: Type of data availability 

1) freely available without restriction allowing commercial re-use 

2) freely available but not allowing commercial re-use 

3) available after registration to our record but not allowing commercial re-use 

4) available only to our research group 
 

3.1.3 Preprocessing and calculation of the resting-state FC matrix 

We performed preprocessing of the rs-fMRI data using FMRIPREP version 1.0.8 
(Esteban et al., 2018). The first 10 s of the data were discarded to allow for T1 
equilibration. Preprocessing steps included slice-timing correction, realignment, 
co-registration, distortion correction, segmentation of T1-weighted structural images, 
normalization to Montreal Neurological Institute (MNI) space, and spatial smoothing 
with an isotropic Gaussian kernel of 6 mm full-width at half-maximum. The distortion 
correction was not performed for dataset 2 due to the lack of fieldmap data. For more 
details of the pipeline see http://fmriprep.readthedocs.io/en/latest/workflows.html. 

Parcellation of brain regions: To analyze the data using Human Connectome Project 
(HCP) style surface-based methods we used the ciftify toolbox version 2.0.2 
(https://edickie.github.io/ciftify/#/). This allowed us to analyze our data, which lacked the 
T2-weighted image required for HCP pipelines, using an HCP-like surface-based pipeline. 
Next, we used the Glasser’s 379 surface-based parcellations (cortical 360 parcellations + 
subcortical 19 parcellations) as regions of interests (ROIs), which are considered reliable 
brain parcellations (Glasser et al., 2016a). The BOLD signal time courses were extracted 
from these 379 ROIs. To facilitate the comparison of our results with previous studies, we 
identified the anatomical names of important ROIs and the names of intrinsic brain 
networks that included the ROIs using anatomical automatic labeling (AAL) 
(Tzourio-Mazoyer et al., 2002) and Neurosynth (http://neurosynth.org/locations/). 

Physiological noise regression: Physiological noise regressors were extracted by applying 
CompCor (Behzadi et al., 2007). Principal components were estimated for the anatomical 
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CompCor (aCompCor). A mask to exclude signals with a cortical origin was obtained by 
eroding the brain mask and ensuring that it contained subcortical structures only. Five 
aCompCor components were calculated within the intersection of the subcortical mask 
and union of the CSF and WM masks calculated in T1-weighted image space, after their 
projection to the native space of functional images in each session. To remove several 
sources of spurious variance, we used linear regression with twelve regression parameters, 
such as six motion parameters, average signals over the whole brain, and five aCompCor 
components. 

Temporal filtering: A temporal band-pass filter was applied to the time series using a 
first-order Butterworth filter with a pass band between 0.01 Hz and 0.08 Hz to restrict the 
analysis to low-frequency fluctuations, which are characteristic of rs-fMRI BOLD 
activity (Ciric et al., 2017).  

Head motion: Frame-wise displacement (FD) (Power et al., 2014) was calculated for each 
functional session using Nipype (https://nipype.readthedocs.io/en/latest/). FD was used in 
the subsequent scrubbing procedure. To reduce spurious changes in FC from head motion, 
we removed volumes with FD >0.5 mm, as proposed in a previous study (Power et al., 
2014). The FD represents head motion between two consecutive volumes as a scalar 
quantity (i.e., the summation of absolute displacements in translation and rotation). Using 
the aforementioned threshold, 6.3% ± 13.5 volumes (mean ± SD) were removed per one 
rs-fMRI session in all datasets. If the ratio of the excluded volumes after scrubbing 
exceeded the mean + 3 SD, participants were excluded from the analysis. As a result, 35 
participants were removed from all datasets. Thus, we included 683 participants (545 HCs, 
138 MDD patients) in the discovery dataset and 444 participants (263 HCs, 181 MDD 
patients) in the independent validation dataset for further analysis.  

Calculation of FC matrix: FC was calculated as the temporal correlation of rs-fMRI 
BOLD signals across 379 ROIs for each participant. There are some candidates to 
measure FC, such as the tangent method and partial correlation; however, we used 
Pearson’s correlation coefficients because they are the most commonly used values in 
previous studies. The Fisher’s z-transformed Pearson’s correlation coefficients were 
calculated between the preprocessed BOLD signal time courses of each possible pair of 
ROIs and used to construct 379 × 379 symmetrical connectivity matrices in which each 
element represented a connection strength between two ROIs. We used 71,631 FC values 
[(379 × 378)/2] of the lower triangular matrix of the connectivity matrix for further 
analysis.  

Control of site differences: Next, we used a traveling-subject harmonization method to 
control for site differences in FC in the discovery dataset. This method enabled us to 
subtract pure site differences (measurement bias), which are estimated from the 
traveling-subject dataset wherein multiple participants travel to multiple sites to assess 
measurement bias. More detailed information has been described in Chapter 2 (see 2.1.8 
“Traveling-subject harmonization procedures”). We used the ComBat harmonization 
method (Fortin et al., 2018; Fortin et al., 2017; Johnson et al., 2007; Yu et al., 2018) to 
control for site differences in FC in the independent validation dataset because we did not 
have a traveling-subject dataset for those sites. Note that the ComBat method is a more 
advanced method to control for site effects when compared with the conventional 
regression method. 
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3.1.4 MDD classifier in the training dataset 

We constructed a biomarker for MDD, which distinguished between HCs and MDD 
patients, using the discovery dataset based on 71,631 FC values. To construct the 
classifier, a machine-learning technique was applied. Based on our previous study (Yahata 
et al., 2016), we have assumed that psychiatric disorder factors were not associated with 
whole-brain connectivity, but with a specific subset of connections. Therefore, we 
conducted logistic regression analyses using the least absolute shrinkage and selection 
operator (LASSO) method to select the optimal subset of FCs (Tibshirani, 1996). A 
logistic function was used to define the probability of a participant belonging to the MDD 
class, as follows: 

𝑃௦௨௕ሺ𝑦௦௨௕ ൌ 1|𝒄௦௨௕; 𝒘ሻ ൌ
1

1 ൅ expሺെ𝒘୘𝒄௦௨௕ሻ
, 

in which 𝑦௦௨௕ represents the class label (MDD, y = 1; HC, y = 0) of a participant, 𝒄௦௨௕ 
represents a FC vector for a given participant, and w represents the weight vector. The 
weight vector w was determined so as to minimize 

𝐽ሺ𝐰ሻ ൌ െ
1

𝑛௦௨௕
෍ log 𝑃௝൫𝑦௝ ൌ 1|𝒄𝒋; 𝒘൯

௡ೞೠ್

௝ୀଵ

൅ λ‖𝒘‖ଵ, 

in which ‖𝒘‖ଵ ൌ ∑ |𝑤௜|ே
௜  and λ represent hyper-parameters that control the amount of 

shrinkage applied to the estimates. To estimate λ, we conducted a nested cross-validation 
procedure by using the “lassoglm” function in MATLAB (R2016b, Mathworks, USA) 
and set “NumLambda” = 25 and “CV” = 10. Classification accuracy was evaluated using 
a 10-fold cross validation (CV) procedure (Fig. 3.2). At each CV, we used the 
under-sampling (Wallace et al., 2011) method to construct the classifier, because the 
training dataset was unbalanced with regard to the numbers of MDD patients and HCs. 
Almost 130 MDD patients and 130 HCs were randomly sampled from the 10-fold 
training set, and classifier performance was tested using the 10-fold test set (Fig. 3.2). 
Under-sampling is disadvantageous because it does not allow the classifier to learn using 
the excluded data; therefore, we repeated the aforementioned random sampling procedure 
10 times (i.e., subsampling), and the mean classifier output value (diagnostic probability) 
was considered indicative of the classifier output (Fig. 3.2). Diagnostic probability values 
>0.5 were considered indicative of MDD patients. We calculated the area under the curve 
(AUC) using the “perfcurve” function in MATLAB (R2016b, Mathworks, USA). In 
addition, we calculated the accuracy, sensitivity, and specificity. Furthermore, we 
evaluated classifier performance for the unbalanced dataset using the Matthews 
correlation coefficient (MCC) (Chicco, 2017; Matthews, 1975a), which takes into account 
the ratio of the confusion matrix size.  

3.1.5 BDI score regression model in the training dataset 

We constructed a linear regression model to predict the BDI score using the discovery 
dataset based on 71,631 FC values. To construct the linear regression model, a 
machine-learning technique was applied to participants with BDI scores in the discovery 
dataset. Next, we employed linear regression using the LASSO method, as follows: 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝐷𝐼௦௨௕ ൌ 𝒘୘𝒄௦௨௕, 

in which 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝐷𝐼௦௨௕ represents the BDI score of a participant; 𝒄௦௨௕ represents 
a FC vector for a given participant; and w represents the weight vector of the linear 
regression. We also conducted a 10-fold CV procedure for this regression model (Fig. 
3.2); however, no FC values were selected by LASSO in 7 out of 10 folds. Therefore, we 
constructed a regression model using the combination of FC values selected in all 10 
folds in the training dataset (Fig. 3.2). This caused information leakage across the folds; 
therefore, the training dataset may be overfitting. This meant that it was important to 
confirm generalization performance by applying this regression model to an independent 
validation dataset, as described below. Finally, we calculated the mean absolute error 
(MAE) and Pearson’s correlation coefficients between the predicted and measured BDI 
scores. 

 

FIGURE 3.2 | Schematic representation of the procedure for selecting FCs in the 
MDD classifier and BDI regression model, and assessing their predictive power. 

Both the MDD classifier and the BDI regression model were constructed using 10-fold 
cross validation in the discovery dataset. The number of participants in the 10-fold cross 
validation (68 or 69 for the MDD classifier, and 47 or 48 for the BDI regression model) 
and subsampling (250 or 248) changed according to the folds. Generalization 
performances were evaluated by applying the constructed model to the independent 
validation dataset. BDI: Beck Depression Inventory-II; MDD: Major Depressive 
Disorder; FC: functional connection. 

Discovery dataset for MDD classifier (n = 683)

Independent validation dataset (n = 444)

10-fold training set
(n = 615 or 614)

10-fold test set
(n = 68 or 69)

Discovery dataset for BDI
 regression model (n = 477)

10-fold training set
(n = 430 or 429)

10-fold test set
(n = 47 or 48)

Under-sampling & subsampling x 10

Subsample 1
(n = 250 or 248) ・ ・ ・

Subsample 10
(n = 250 or 248)

The output of a probability of a
participant belonging to the MDD class

in the test set is the average value
across the outputs of 10 classifiers

R
e

p
ea

t 
w

ith
 e

ac
h

 1
0-

fo
ld

Prediction performance for the
training dataset

Union of FCs selected
in the 10-fold cross

validation

Prediction performance for the
training dataset

R
ep

e
at

 w
ith

 e
a

ch
 1

0
-f

ol
d

Apply 100 classifiers Apply a regression model

The output of a probability of a participant
belonging to the MDD class in the validation

dataset is the average value across the
outputs of 100 classifiers

The output of a predicted
BDI score of a participant in

the validation dataset

Generalization performance of MDD classfier
for the independent validation dataset

Generalization performance of BDI regression
model for the independent validation dataset

Use participants with BDI score

Apply 10 classifiers

Apply a regression model

Retraining of regression model by only using union
of FCs selected in the 10-fold cross validation



3.1. Materials and Methods  | 61 
 

 

3.1.6 Generalization performance of the classifier and regression 
model 

We tested the generalizability of the classifier and regression model using an independent 
validation dataset. We had created 100 classifiers of MDD (10-fold × 10 subsamples); 
therefore, we applied all trained classifiers to the independent validation dataset. Next, we 
averaged the 100 outputs (diagnostic probability) for each participant and considered the 
participant as a patient with MDD if the averaged diagnostic probability value was >0.5. 
In contrast, we created the BDI regression model using all the discovery dataset samples; 
therefore, we applied the trained regression model to the independent validation dataset 
and considered its output as the predicted BDI score.

To test the statistical significance of the MDD classifier performance, we performed a 
permutation test. We permuted the diagnostic labels of the discovery dataset and 
conducted a 10-fold cross validation and 10-subsampling procedure. Next, we took an 
average of the 100 outputs (diagnostic probability); a mean diagnostic probability value 
>0.5 was considered indicative of a diagnosis of MDD. We repeated this permutation 
procedure 100 times and calculated the AUC and MCC as the performance of each 
permutation. We also performed a permutation test for the BDI regression model. We 
permuted the BDI scores of the discovery dataset, conducted a 10-fold cross validation, 
and repeated this permutation procedure 100 times. 

3.1.7 Identification of the FCs linked to diagnosis and symptoms 

We examined resting-state FC for MDD diagnosis and depressed symptoms by extracting 
the important FCs that related to MDD classifier and BDI regression model, respectively. 
Briefly, we counted the number of times an FC was selected by LASSO during the 
10-fold CV. We considered that this FC was important if this number was significantly 
higher than chance, according to a binomial test. The mean number of FCs included in the 
MDD classifier per 1 CV was 329.1 (the number of FCs selected at least once in 10 
subsampling); therefore, we assumed that the binomial distribution was B(10, 329/71631). 
We set the significance level as 0.05/71631, correcting for multiple comparisons 
(Bonferroni correction). Therefore, FCs selected ≥3 times during the 10-fold CV were 
regarded as diagnostically important. Similarly, the mean number of FCs included in the 
BDI regression model per 1 CV was 3.4; therefore, we assumed that the binomial 
distribution was B(10, 3/71631). In this case, FCs that were selected ≥1 time during the 
10-fold CV were regarded as relevant to depressed symptoms. 

3.2 Results 

3.2.1 MDD classifier in the discovery dataset 

The classifier separated MDD- from HC-populations with an accuracy of 66%. The 
corresponding AUC was 0.77, indicating acceptable discriminatory ability. Figure 3.3a 
shows that the two diagnostic-probability distributions of the MDD and HC populations 
were clearly separated by the threshold of 0.5, to the right (MDD) and to the left (HCs) 
for the discovery dataset. The sensitivity was 77% and specificity was 64%. This led to an 
acceptable MCC of 0.33. We found that acceptable classification accuracy was achieved 
for not only the entire dataset but also individual datasets of the three imaging sites (Fig. 
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3.3b) almost to the same degree. We have only HC population in SWA dataset but note 
that its probability distribution is comparable to those of HC populations in the other 
sites.  

 

FIGURE 3.3 | Classifier performance for MDD and regression performance for BDI 
score in the discovery dataset. 

(a) The probability distribution for the diagnosis of MDD in the discovery dataset and (b) 
the probability distributions for each imaging sites. The MDD and HC distributions are 
depicted in red and blue, respectively. (c) Scatter plots of measured BDI and predicted 
BDI. The solid line indicates the linear regression of the measured BDI from the 
predicted BDI. The correlation coefficient (r) and the mean absolute error (MAE) are 
shown. Each data point represents one participant. BDI: Beck Depression Inventory-Ⅱ; 
HC: Healthy Control; MDD: Major Depressive Disorder; AUC: area under the curve; 
MCC: Matthews correlation coefficient; COI: Center of Innovation in Hiroshima 
University; KUT: Kyoto University; SWA: Showa University; UTO: University of Tokyo. 

3.2.2 Regression models of BDI score in the discovery dataset 

We found that the BDI score was well predicted with statistically significant correlation (r 
= 0.62, 𝑝 ൌ 5.3 ൈ 10ିହଶ; mean absolute error = 6.24, Fig. 3.3c). Furthermore, we found 
that significant correlation was achieved not only for the entire data set but also separately 
for HC population and MDD population (HC population, r = 0.38, 𝑝 ൌ 5.3 ൈ 10ିଵସ; 
MDD population; r = 0.42, 𝑝 ൌ 4.5 ൈ 10ି଺). 
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3.2.3 Generalization performance of the classifier and the 
regression model 

The classifier separated MDD- from HC-populations with an accuracy of 70% in the 
independent validation dataset. The corresponding AUC was 0.75 (Permutation test, p < 
0.01; see below), indicating acceptable discriminatory ability. Figure 3.4a shows that the 
two diagnostic-probability distributions of the MDD and HC populations were clearly 
separated by the threshold of 0.5, to the right (MDD) and to the left (HCs). The sensitivity 
was 68% and specificity was 71%. This led to an acceptable MCC of 0.38 (Permutation 
test, p < 0.01; see below). We found that acceptable classification accuracy was achieved 
for not only the entire data set but also individual dataset of the four imaging sites (Fig. 
3.4b). Furthermore, we also found that the BDI score was moderately well predicted with 
statistically significant correlation (r = 0.21, 𝑝 ൌ 9.1 ൈ 10ି଺; mean absolute error = 11.8; 
Fig. 3.4c; Permutation test, p < 0.01; see below). 

Figure 3.5 shows the histograms of the AUC and the MCC in the permutation test (100 
repetitions) for MDD classifier. The vertical red lines indicate the AUC and MCC of the 
MDD classifier in the independent validation data without permutation. These results 
indicate that both AUC and MCC were significant at p = 0.01. For the BDI classifier, we 
could not construct any regression model in the whole permutation procedure, because no 
FC was selected at the nested cross validation in the LASSO procedure. This result 
indicates that the performance of the BDI regression model in the independent validation 
data without permutation was significant at p = 0.01. 
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FIGURE 3.4 | Classifier performances for MDD and regression performance for 
BDI score in the independent validation dataset. 

(a) The probability distribution for the diagnosis of MDD in the independent validation 
dataset and (b) the probability distributions for each imaging sites. The MDD and HC 
distributions are depicted in red and blue, respectively. (c) Scatter plots of measured BDI 
and predicted BDI. The solid line indicates the linear regression of the measured BDI 
from the predicted BDI. The correlation coefficient (r) and the mean absolute error 
(MAE) are shown. Each data point represents one participant. BDI: Beck Depression 
Inventory-Ⅱ; HC: Healthy Control; MDD: Major Depressive Disorder; AUC: area under 
the curve; MCC: Matthews correlation coefficient; HKH: Hiroshima Kajikawa Hospital; 
HRC: Hiroshima Rehabilitation Center; HUH: Hiroshima University Hospital; UYA: 
Yamaguchi University. 
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FIGURE 3.5 | Results of permutation test for MDD classifier. 

Panels (a) and (b) show the histograms of the performances in the permutation test (100 
repetitions) for the independent validation data, area under the curve (AUC) and 
Matthews correlation coefficient (MCC) respectively. The vertical red lines indicate the 
AUC and MCC of the MDD classifier in the independent validation data without 
permutation. Both AUC and MCC were significant at p = 0.01, as demonstrated by the 
two panels. 

3.2.4 Common FCs between major depressive disorder diagnosis 
and symptoms of depression 

We identified the 340 FCs related to the diagnosis and the 21 FCs related to the symptoms 
that were automatically and objectively identified from the data for the reliable 
classification of MDD and HCs and the regression model of BDI score by the 
machine-learning algorithms. Seven FCs were common between the diagnosis 340 FCs 
and the symptoms 21 FCs. Figure 3.6 shows the spatial distribution of the common 7 FCs. 
A detailed list of FC properties is provided in Table 6. Furthermore, the mean FC values 
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of these 7 FCs were very similar between in the discovery dataset and in the independent 
validation dataset (Fig. 3.7). This result suggests that the intersected 7 FCs are 
trustworthy in characterizing neural substrates of MDD and depressed symptoms.  

 To test statistical significance of the possibility of 7 FCs overlap, we tried to 
compare the number of FCs in permutation test. However, as stated in the previous 
subsection, no BDI regression model could be meaningfully constructed in the 
permutation test. This result indicates that the overlap of 7 FCs with MDD classifier and 
BDI regression model were significant. We also checked the significance of overlap by 
calculating the probability of 7 overlap FCs when we randomly selected 340 FCs from 
71,631 FCs and 21 FCs from 71,631 FCs independently. We repeated this random sample 
10,000 times. As a result, the number of 1 overlap FC was 891 times, the number of 2 
overlap FCs was 48 times, and the number of 3 overlap FCs was 1 time. That is, even the 
probability of 2 FCs overlap was p < 0.005. This result also indicates that the overlap of 7 
FCs with MDD classifier and BDI regression model were significant. 

 

FIGURE 3.6 | Common functional connectivity between diagnosis and symptoms. 

The 7 common functional connectivity viewed from left, back, right, and top. 
Inter-hemisphere connections are shown only in back and top views. Regions are 
color-coded by intrinsic network.  

TABLE 3.7 | All common functional connections and weights in regression model of BDI score 

ID 

ROI1 ROI2 

WeightGlasser’s 
area 

name 
AAL Label Network 

Glasser’s 
area 

name 
AAL Label Network 

1 R.52 R.Insula Salience R.s32 R.Frontal_Med_Orb Default mode -4.84 

2 L.FOP5 L.Insula Salience R.FFC R.Fusiform Uncertain 4.12 

3 L.9m L.Frontal_Sup_Medial Default mode R.9m R.Frontal_Sup_Medial Default mode -4.02 

4 L.STSvp L.Temporal_Mid Default mode L.TE1m L.Temporal_Mid Default mode -3.80 

5 R.52 R.Insula Salience R.a24 R.Cingulum_Ant Default mode -1.71 

6 L.PBelt L.Temporal_Sup Auditory L.A4 L.Temporal_Sup Auditory -0.78 

7 L.a24pr L.Cingulum_Mid Salience R.p24pr R.Cingulum_Mid Salience -0.17 

Labels of ROIs were determined by referring to AAL and Neurosynth (http://neurosynth.org/locations/) 

Common connectivity between diagnosis and symptoms

AuditorySalienceDefault mode Uncertain

③

④

⑥

①

⑤

②

⑦
Top viewLeft hemisphere Back view Right hemisphere
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(a) The functional connectivity (FC) values of 7 common FC for both healthy controls 
(HCs; blue bar) and major depressive disorders (MDD; red bar) in the discovery dataset. 
(b) The FC values of 7 common FC for both HCs and MDD in the independent validation 
dataset. Error bar shows the standard error. 

3.3 Discussion 

3.3.1 Signatures of our classifier of MDD 

In the present study, we constructed the reliable neuroimaging-based classifier for MDD 
and the regression model of BDI by investigating the whole-brain patterns of FCs using 
the rs-fMRI data of 138 MDD patients and 545 HCs collected at multiple sites. The 
constructed MDD classifier achieved acceptable generalized prediction performance AUC 
of 0.75 and MCC of 0.38 for the independent validation dataset. Furthermore, acceptable 
generalized prediction performance was achieved for not only the entire data set but also 
datasets of the four imaging sites (Fig. 3.4b), from where no data were included in the 
discovery dataset. This generalization was achieved even though the imaging protocols in 
the independent validation datasets were different from those of the discovery dataset, 
that is the unified SRPBS DecNef protocol. Successful construction of FC-based MDD 
classifiers, which generalized to independent validation data, have been reported 
previously (Drysdale et al., 2017; Ichikawa et al., 2017). However, our work presents the 
first achievement, to our knowledge, of successful generalized classification for MDD 
without a restriction on the MDD subtype: Drysdale concentrated the MDD patients with 
treatment resistance and Ichikawa restricted the MDD patients only with melancholic 
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FIGURE 3.7 | Similar FC values between discovery dataset and independent
validation dataset in 7 common FCs. 
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type.  

For comparison, we constructed the BDI-based classifier for MDD using 
discovery dataset. The constructed MDD classifier achieved high generalized prediction 
performance AUC of 0.97 and MCC of 0.80 for the independent validation dataset. In this 
classifier, the subjects with BDI score of 14 or more were diagnosed as MDD patients. 

3.3.2 Common FCs between diagnosis of MDD and symptoms of 
depression 

The machine-learning algorithms reliably identified the common 7 FCs as important FCs 
for both the classifier of MDD and the regression model of BDI score (Figs. 3.6, 3.7 and 
Table 3.7). We could summarize characteristics of the 7 FCs as following two points. First, 
regarding the strength of FCs, all of the 7 FCs exhibited the hypoconnectivity in the MDD 
populations (that is, strength, or an absolute value, of FC is closer to 0 in MDD than HC 
individuals; Fig. 3.7). Second, the common 7 FCs are closely related to the default mode 
network and the salience network regarding their attribution to intrinsic functional 
networks. Out of the 13 brain regions comprising these 7 FCs, 5 regions belonged to the 
default mode network and 5 regions belonged to the salience network. Furthermore, 6 
FCs have nodes (ROIs) in either the default mode network or the salience network. 2 FCs 
out of 7 FCs were connectivity between the two networks. 2 FCs were connectivity 
within the default mode network, and 1 FC was connectivity within the salience network. 
The default mode network and the salience network have been repeatedly implicated as 
essential neural correlates of  depression (Dutta et al., 2014; Greicius et al., 2007; Kaiser 
et al., 2015; Menon, 2015; Mulders et al., 2015; Peng et al., 2018; Wang et al., 2012). 

3.3.3 Importance of symptom-based approach, rather than 
diagnosis-based approach 

As we mentioned in Chapter 1 (see 1.3.2 “Problem of diagnosis-based analysis”), most of 
previous studies (75%) on predictive models of psychiatric disorders have focused on 
diagnosis-based approach (Woo et al., 2017). However, research interests have recently 
moved to symptom-based approach that describes how symptoms are related to 
neurobiological abnormality. To the best of our knowledge, our work presents the first 
achievement of the regression model of BDI score based on resting-state FC that 
generalized across discovery and independent validation datasets all in a data-driven 
manner with a large sample size of about 1000 participants (Connolly et al., 2013; Davey 
et al., 2012; Furman et al., 2011; Peng et al., 2018; Salomons et al., 2014; Sheline et al., 
2010; Strikwerda-Brown et al., 2015). Depressed symptoms can be seen in other diseases 
such as bipolar disorder and schizophrenia (Takizawa et al., 2014). Therefore, it may be 
possible to identify relationship in neurobiological abnormalities among such diseases by 
investigating the co-morbidity of the neurological basis of the depressed symptoms, 
which were revealed in this study, in the future work. Such approach would lead to an 
integrated understanding of mental illness (Ayuso-Mateos et al., 2010; Xia et al., 2018). 

3.3.4 Candidate of theranostic biomarker 

Although biomarkers have been developed with the aim of diagnosing patients, the focus 
has shifted to the identification of biomarkers that determine therapeutic targets (i.e. 
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theranostic biomarker), which would allow for more personalized treatment approaches. 
The seven FCs discovered in this study are promising candidates of theranostic biomarker 
for MDD, because these FCs are related to not only diagnosis of MDD but also depressed 
symptoms. It is a future work to investigate if modulation of these FCs would truly 
change depression symptoms or the effect of treatment by using an intervention method 
on FC such as a functional connectivity neurofeedback training (Koush et al., 2017; 
Megumi et al., 2015; Yahata et al., 2017; Yamada et al., 2017; Yamashita et al., 2017). 

3.3.5 Summary 

In this chapter, we constructed a reliable neuroimaging-based classifier for MDD and a 
regression model of BDI by investigating the whole-brain patterns of FCs using the 
rs-fMRI data. The MDD classifier and the regression model of BDI achieved acceptable 
generalization performance: Their predictions successfully generalized to the independent 
validation dataset collected with different imaging protocols at different imaging sites 
from those of the discovery dataset. We found overlap of about 30% between the 
resting-state FCs (7 FCs out of 21 FCs) related to depressed symptoms and those related 
to diagnosis of MDD. These common 7 FCs were particularly related to the salience 
network and the default mode network. Our study revealed the biological basis of 
depressed symptoms, which is one of heterogeneous symptoms in MDD. This result 
would contribute to the elucidation of the neurological basis of MDD. 

  



 

 

 



 

Chapter 4 

Development of functional connectivity 
neurofeedback 
In chapter 4, we investigated the hypothesis that connectivity neurofeedback can induce 
the aimed direction of change in functional connectivity (FC), and the differential change 
in cognitive performance according to the direction of change in connectivity to resolve 
the problem of controllability of neurofeedback training in order to develop applications 
aimed at treatment for psychiatric disorders. Our connectivity neurofeedback training 
developed previously can control FC by rewarding spontaneous changes in FC (Megumi 
et al., 2015). Subjects underwent training with intermittent feedback of the temporal 
correlation (FC) between BOLD signals in two brain regions immediately after each trial. 
Subjects learned to control connectivity in a trial-and-error manner through training. To 
investigate our hypothesis, we separated subjects into two groups, in which we aimed to 
increase or decrease the FC and compared the resulting changes in cognitive performance 
from pre-neurofeedback to post-neurofeedback training between the two groups.  

Because our previous study (Megumi et al., 2015) already successfully increased the 
connectivity between the left primary motor cortex (lM1), which belongs to the 
motor/visuospatial network (MVN), and the left lateral parietal cortex (lLP), which 
belongs to the default mode network (DMN) (Raichle, 2010, 2015a), we selected this 
connectivity as the target for neurofeedback training. Furthermore, we conducted a 
psychomotor vigilance task (PVT), the Eriksen flanker task (EFT), and the color-word 
Stroop task (CWST) before and after the neurofeedback training, since previous studies 
have shown that these three tasks are associated with the MVN, the DMN, or both (Hinds 
et al., 2013; Kelly et al., 2008; Liu et al., 2015; Thompson et al., 2013). In the current 
study, FC between lM1 and lLP was normally negative (e.g., r = -0.4). Therefore, we 
hereafter refer to a change in FC from r = -0.4 to -0.1, for instance, as an “increase,” 
while we refer to a change such as that from r = -0.4 to -0.7 as a “decrease.” 

4.1 Materials and Methods 

4.1.1 Participants 

Thirty healthy subjects (4 women; mean age [mean ± standard deviation: SD], 22.7 ± 1.7 
years; age range, 20–27 years) participated in the neurofeedback experiment. We 
randomly assigned subjects to an “increased FC” group (n = 18: 1 woman; mean age, 
22.6 ± 1.8 years; age range, 20–27 years) or a “decreased FC” group (n = 12: 3 women; 
mean age, 22.8 ± 1.6 years; age range, 21–26 years). Although there are fewer female 
participants, there was no significant difference in the male:female ratio between the two 
groups (Fisher’s exact test: p = 0.27). Twenty-five (13 in the “increased FC” group and 12 
in the “decreased FC” group) out of 30 subjects completed behavioral testing sessions 
before and after the neurofeedback training. The other five subjects did not participate in 
the behavioral testing sessions. We excluded one subject in the “decreased FC” group 
from cognitive performance analysis because that subject did not follow the instructions. 
We also excluded another subject in the “decreased FC” group from the EFT analysis 
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because that subject misunderstood the instructions. All subjects were right-handed 
according to the Edinburgh inventory (Oldfield, 1971). The Institutional Review Board of 
Advanced Telecommunications Research Institute International (ATR) approved this 
study, which was performed in accordance with the tenets of the Declaration of Helsinki. 
All subjects provided written informed consent. 

4.1.2 Neurofeedback training  

Brain imaging and region of interest (ROI) definition 

MR images were obtained using a 3-T Siemens MAGNETOM Verio scanner (Kyoto, 
Japan). BOLD signals were measured using an echo planar imaging (EPI) sequence 
(repetition time [TR], 2000 ms; echo time [TE], 26 ms; flip angle, 80). The entire brain 
was covered in 33 axial slices (3.5 mm of thickness, no gap), voxel size was 3  3  3.5 
mm, and field of view was 192  192 mm. T1-weighted structural images were acquired 
with a resolution of 1  1  1 mm. T2-weighted structural images were acquired with a 
resolution of 0.75  0.75  3.5 mm.  

Following our previous study (Megumi et al., 2015), we selected the lM1, which is 
included in the MVN, and the lLP, which is included in the DMN, as the two target ROIs 
for calculating a feedback score in the connectivity neurofeedback training. lM1 was 
defined as Brodmann area 4 according to the anatomical map given in PickAtlas 
(http://fmri.wfubmc.edu/software/PickAtlas) (Lancaster et al., 1997; Maldjian et al., 
2003). lLP was defined as a sphere with a 7.5-mm radius centered at (x, y, z) = (-45, -67, 
36) in the Montreal Neurological Institute standard brain coordinates (MNI; Montreal, 
QC) according to a previous study of brain networks (Fox et al., 2005). We adopted the 
spherical ROI for lLP because we could not find an anatomical definition of LP as a part 
of DMN in the literature. By contrast, we adopted the anatomical ROI for lM1 because 1) 
it is well defined in anatomical maps including PickAtlas, and 2) the spherical ROI 
centered at M1 may include the somatosensory cortex. 

Because these ROIs were defined in the standard brain, we identified corresponding 
voxels in the functional images of each individual subject’s brain using a deformation 
module in SPM8 (Wellcome Trust Center for Neuroimaging, London, UK; 
www.fil.ion.ucl.ac.uk/spm/). We obtained several volumes of functional images for this 
purpose at the beginning of the experiment on each day and used the identified voxels as 
ROIs for calculating scores in the subsequent training blocks. Furthermore, the position 
and orientation of scan images on every training day were carefully matched those on the 
first day. 

Neurofeedback training procedure 

Subjects received neurofeedback training to increase or decrease FC between the two 
target ROIs. Each subject received training for 4 days (Fig. 4.1a: DAY1–DAY4). On each 
training day, subjects performed 6 blocks, each of which was composed of 10 trials. Prior 
to training, subjects underwent four baseline-estimation blocks to measure a 
subject-specific baseline correlation between the two target ROIs (Fig. 4.1a: BASE). The 
baseline-estimation block was identical to the neurofeedback training block, except that 
the score was randomly determined (see “Online calculation of feedback score”).  
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Our training procedure in each trial followed our previous study (Megumi et al., 2015). A 
trial in each block began with a rest period of 14 s, during which the “=” cue was 
presented on the screen (Fig. 4.1b: Rest). When the cue changed to “+,” subjects 
performed the tapping motor imagery task for 14 s (Fig. 4.1b: Motor Imagery). Subjects 
were instructed to imagine tapping their thumbs with their fingers randomly as fast as 
possible. Furthermore, they were asked to produce kinesthetic imagery, rather than 
attempt visual imagery, and to not overtly move their hands during the task. If no task 
instruction was provided, cognitive states during learning were expected to differ largely 
among subjects, thereby making data analysis difficult. Therefore, we administered a 
motor imagery task to the subjects to constraint the subjects’ cognitive states. After the 
motor imagery period, a feedback score calculated by the online MRI system (see “Online 
calculation of feedback score”) was presented on the screen as a green disc (Fig. 4.1b: 
Feedback). Subjects were instructed that the disc becomes bigger as they improve at 
producing tapping imagery; however, the disc size actually corresponded to the score 
determined by the temporal correlation (FC) between BOLD signals in lM1 and lLP (see 
“Online calculation of feedback score”). Subjects were instructed to make the disc size as 
large as possible so that it would become larger than the red circle (a baseline) and reach 
the outer green circle (a target). The calculations of the baseline and target are described 
in section “Online calculation of feedback score”. Subjects were informed that additional 
monetary reward (up to JPY 3,000) would be paid in proportion to their total score, and 
they received this at the end of the experiments on each day. 

 

FIGURE 4.1 | Neurofeedback training procedures. 

(a) Neurofeedback (NFB) training schedule. Experiments lasted for 5 days, including 
baseline estimation of temporal correlation between BOLD signals in the target regions 



74 |  Chapter 4. Development of functional connectivity neurofeedback 

 

(BASE). Resting-state activity (rs-fMRI) was measured daily before NFB training from 
BASE to DAY3. On DAY4, rs-fMRI was measured after NFB training. Subjects 
performed a cognitive task on BASE and DAY4. (b) Timeline and displays for subjects in 
a training trial. After a rest period while the “=” cue was presented on the screen, subjects 
were instructed to imagine finger tapping during the motor imagery period while the “+” 
cue was presented. A solid green disc was presented to the subjects in the feedback 
period: the disc size was proportional to the correlation between BOLD signals in two 
target regions (left primary motor area [lM1] and left lateral parietal region [lLP]) during 
the motor imagery period. (c) Display for subjects in rs-fMRI. Subjects were instructed to 
keep looking at a fixation point at the screen center, to keep still, to stay awake, and to not 
think about specific things. 

Online calculation of feedback score 

We used in-house MATLAB software (Mathworks Inc., Natick, MA), including 
realignment modules of SPM8, for online processing. This software ran on a connected 
computer and accessed data files in the MRI system. Each volume of the functional image 
was realigned in real time to the first volume obtained on each day.  

Seven volumes were obtained during the motor imagery period in each trial, but the first 
volume was discarded and one volume from the feedback period was added as 
compensation for hemodynamic delay. One may argue that a one-volume shift (2 s) is not 
enough to fully compensate for the hemodynamic delay (4–8 s); however, we followed 
two previous neurofeedback studies (Bray et al., 2007; Megumi et al., 2015) that used a 
2-s shift and succeeded in changing brain activity. We followed these studies to minimize 
the delay of feedback to participants.  

BOLD signal time courses were extracted from the lM1 and lLP ROIs (averaged across 
voxels) in these volumes. To remove several sources of spurious artifacts in BOLD 
signals, we conducted an online linear regression, including (i) six motion parameters, in 
addition to averaged signals over (ii) gray matter, (iii) white matter, and (iv) cerebrospinal 
fluid (Fox et al., 2005). To completely remove global signals that may be related to 
instrumental, motion-related, and physiological fluctuations (Caballero-Gaudes and 
Reynolds, 2017), we included signals averaged over the gray matter in the regression 
model. However, this may have removed neuronal signals in the ROIs if their activity 
strongly affected the average signal. In our post-hoc analysis, we calculated signals 
averaged over the gray matter excluding the ROIs, but they were similar to those 
including the ROIs (temporal correlation: r > 0.999), suggesting that the activity of the 
ROI unlikely affected the average signal.  

We estimated coefficients for these parameters from the preceding 180 volumes (a 
moving window), which corresponded to one neurofeedback block, and regressed out the 
signals correlated with the parameters from a newly acquired volume. To maintain a 
constant number of moving volumes (180), we used the volumes acquired in the 
preceding block for the online regression in the early part of each block. Because there 
was no preceding block for the first block in the neurofeedback training, we conducted 
the 6-min resting condition block just before the training, which was not included in the 
offline analysis. Furthermore, to remove low-frequency trends from BOLD signals, a 
high-pass temporal filter (cutoff frequency of 0.0075 Hz) was applied to the time courses 
within each block (using only volumes from the same block). 
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Using the time courses after the noise reduction, the feedback score of the i-th trial was 
calculated as  

𝑆𝑐𝑜𝑟𝑒௜  ൌ  
ହ଴൫஼௢௥௥௘௟௔௧௜௢௡೔ା஼௢௥௥௘௟௔௧௜௢௡೅ೌೝ೒೐೟ିଶ஼௢௥௥௘௟௔௧௜௢௡ಳೌೞ೐൯

஼௢௥௥௘௟௔௧௜௢௡೅ೌೝ೒೐೟ି஼௢௥௥௘௟௔௧௜௢௡ಳೌೞ೐
. (1) 

 0 ൑ 𝑆𝑐𝑜𝑟𝑒௜  ൑  100 

Here, 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛௜ represents the correlation between the BOLD signals averaged in 
each of the two ROIs. We developed this score for an intuitive feedback to participants: 
their baseline performance corresponded to 50 while their better performance was 
rewarded by the increase in the score from 50. Specifically, 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘ was the 
median correlation in the baseline-estimation block (40 trials) on the first day (BASE). 
SD was also calculated in the baseline-estimation block. 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛்௔௥௚௘௧  was 
determined to restrict the appearance of a score of 100 to one time per block on average: 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛்௔௥௚௘௧ was (𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘ + 1.28 SD) in the “increased FC” group and 
(𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘ – 1.28 SD) in the “decreased FC” group. Therefore, if 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛௜ 
is equal to 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘, the score is 50 in both groups. If 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛௜ increases 
in the “increased FC” group (or decreases in the “decreased FC” group) from 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘  to 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛்௔௥௚௘௧ , the score rises from 50 to 100. If 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛௜  decreases in the “increased FC” group from 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘  to 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘ െ 1.28 SD (or if 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛௜ increases in the “decreased FC” group 
from 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘to 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛஻௔௦௘ ൅ 1.28 SD), the score decreases from 50 to 
0. Any score below 0 or above 100 was maintained at 0 or 100, respectively. The score 
was calculated immediately after the acquisition of the first volume in the feedback 
period (2 s). Preprocessing and score calculation were completed within 2 s. Thus, 
subjects received the score within 4 s after the end of the imagery periods. 

To prevent learning in the baseline-estimation block, we gave the subjects a 
pseudo-random score, which was generated from a normal distribution having a mean of 
50 and SD of 30.3. The SD was determined to restrict the appearance of a score of 0 or 
100 to one time per block. At the beginning of the first training day (DAY1), we told 
subjects that the feedback score had been randomly determined on the previous day 
(BASE).  

Change in score during training 

We investigated the daily changes in score during the neurofeedback training. In total, 
each subject had 280 scores (BASE = 40 scores, DAY1–DAY4 = 60  4 scores). To 
investigate the daily changes in the score, we applied a mixed-effects model based on 
linear regression (Aarts et al., 2014) to the scores adopting training day (a continuous 
value) as a fixed effect and subject as a random effect. We used a maximum likelihood 
method for estimation of coefficients as implemented in the lme4 package 
(https://github.com/lme4/lme4) of R version 3.2.1 (https://www.r-project.org). We 
calculated p-values using the lmeTest package of R.  

Change in functional connectivity during training 

We investigated the daily changes in FC between lM1 and lLP during the neurofeedback 
training in our offline analysis. The fMRI data were preprocessed with SPM8 on 
MATLAB. Preprocessing steps included slice-timing correction, realignment, 
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coregistration, segmentation of T1-weighted structural image, normalization into MNI 
space, and spatial smoothing with an isotropic Gaussian kernel of 8 mm full width at half 
maximum. BOLD signal time courses were extracted from the two ROIs (averaged across 
voxels). Sources of spurious variance were removed as described in “Online calculation 
of feedback score” in this section. Then, we calculated the FC as Fisher’s z-transformed 
Pearson’s correlation coefficients between the BOLD signals in the two ROIs using seven 
volumes during the motor imagery period in each trial, in the same fashion as the online 
calculation of the feedback score, i.e., the first volume was discarded and one volume 
from the feedback period was added as compensation for hemodynamic delay. In total, 
each subject had 280 functional connectivities (BASE = 40 connectivities, DAY1–DAY4 
= 60  4 connectivities).  

To compare the daily changes in FC between groups, we applied a mixed-effects model to 
the functional connectivities including training day (a continuous value), group, and the 
interaction between group and day as fixed effects, and subject as a random effect. 
Further, to investigate whether the changes of FC were induced in the aimed direction in 
each group, we applied the mixed-effects model, as a post-hoc analysis of the effect of 
training day on FC, separately to each group.  

4.1.3 Resting-state fMRI (rs-fMRI) 

To investigate the daily changes in resting-state FC between the target ROIs (lM1 and 
lLP) as well as in connectivity between the network-level ROIs (DMN and MVN), we 
measured rs-fMRI every day (Fig. 4.1A). The rs-fMRIs were measured before the 
neurofeedback training except for the last day (after the neurofeedback on DAY4). 

Brain imaging and calculation of the resting-state functional connectivity 

During the rs-fMRI measurements, subjects were instructed to keep looking at a fixation 
point at the center of a screen, to keep still, to stay awake, and to not think about specific 
things. MRI scans were obtained using a 3-T Siemens MAGNETOM Verio scanner. 
BOLD signals were measured using an EPI sequence (time, 10 min; TR, 2500 ms; TE, 30 
ms; flip angle, 80). The entire brain was covered in 40 axial slices (3.5 mm of thickness, 
no gap), voxel size was 3.3  3.3  3.5 mm, and field of view was 212  212 mm.  

The rs-fMRI data were preprocessed with SPM8 on MATLAB. The first four volumes 
were discarded to allow for T1 equilibration. Preprocessing steps were same as those 
listed in Change in Functional Connectivity during Training in the section 4.1.2 
“Neurofeedback training”. BOLD signal time courses were extracted from the four ROIs 
(lM1, lLP, MVN, and DMN) and averaged across voxels in each ROI. To determine 
network-level ROIs (DMN and MVN), we applied a spatial independent component 
analysis (Calhoun et al., 2001) to rs-fMRI data from 66 subjects (12 women; mean age, 
23.2 ± 2.3; age range, 20–31 years). We visually inspected MVN and DMN ROIs based 
on the following criteria: MVN includes bilateral primary motor cortex and 
supplementary motor area (Biswal et al., 1995), while DMN includes the medial 
prefrontal cortex, medial parietal cortex, and lateral parietal cortex (Raichle, 2010). These 
network ROIs correspond to ICN8 (MVN) and ICN13 (DMN) as shown in Fig. 2 of a 
previous study (Laird et al., 2011). To remove several sources of spurious variance, linear 
regression was performed, including (i) six motion parameters in addition to averaged 
signals over (ii) whole brain, (iii) white matter, and (iv) cerebrospinal fluid. A temporal 
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band-pass filter of 0.009–0.08 Hz was applied to the time series to restrict the analysis to 
low-frequency fluctuations that characterize rs-fMRI BOLD activity (Fox et al., 2005). 
Furthermore, to reduce spurious changes in FC by head motion, we calculated frame-wise 
displacement (FD) and removed volumes with FD > 0.5 mm, as proposed by the original 
article on scrubbing (Power et al., 2014). FD represents head motion between two 
consecutive volumes as a scalar quantity (summation of absolute displacements in 
translation and rotation). According to the above threshold, 3.8% (almost 9 volumes) ± 
7.0% (1 SD) volumes were removed per 10 min of rs-fMRI session (240 volumes). Then, 
we computed the resting-state FC as Fisher’s z-transformed Pearson correlation 
coefficients between the preprocessed BOLD signals in two target ROIs (lM1 and lLP) 
and in two network-level ROIs (MVN and DMN).  

Change in resting-state functional connectivity 

To statistically evaluate the daily changes in resting-state FC and to compare the changes 
between groups, we applied a mixed-effects model to the resting-state functional 
connectivities. We included group, training day, and the interaction between group and 
day as fixed effects and subject as a random effect. Further, as a post-hoc analysis of the 
effect of day on the resting-state functional connectivities in each group, we applied a 
mixed-effects model, as a post-hoc analysis of the effect of day on resting-state FC, 
separately to each group. 

4.1.4 Cognitive tasks 

To investigate the effect of the neurofeedback training on cognitive performance, subjects 
carried out a PVT, EFT, and CWST outside the MRI using a personal computer and 
keyboard before and after the entire neurofeedback training. Here, we know the direct 
relationship between cognitive performance and strength of the FC of MVN and DMN 
only in the vigilance task, in which the more the FC decreases the faster subjects react to 
a target and vice versa. 

Cognitive task procedures 

Task procedures in the current study followed those in the previous studies. 

1) PVT: PVT is a task that measures the ability to sustain attentional focus. Subjects 
pressed a key in response to a stimulus that occasionally appeared on a screen. Subjects 
fixated on a centrally presented white cross on a gray background. When the cross was 
changed to black, subjects pressed the left arrow key with their right index finger as 
quickly as possible. Then, the cross changed to white again. If subjects failed to respond 
within 9 s, the cross automatically returned to white. Subjects performed four blocks 
(about 5 min × 4), each block containing 5 trials. The inter-trial interval varied from 10 to 
90 s. We measured reaction time as the time from the change of the cross color to the key 
press. If reaction time was over 2 SD from average in each subject, the trial was excluded 
from further analysis. This definition of reaction time and exclusion criterion was also 
used in the following tasks. 

2) EFT: EFT is a response inhibition test that measures the ability to suppress 
inappropriate responses in a particular context. Subjects fixated on a centrally presented 
black cross on a gray background. When five arrows (arrow direction was right or left) 
appeared on screen, subjects pressed the right or left arrow key as quickly as possible, 
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which corresponded to the direction of the central arrow in the array of 5 arrows. Subjects 
used their right index or middle finger to press the right or left arrow key, respectively. 
The task included incongruent and congruent conditions. Under the congruent condition, 
five arrows pointed in the same direction (e.g. <<<<<), whereas under the incongruent 
condition, the central arrow pointed to the opposite direction from the others (e.g. <<><<). 
If subjects failed to respond within 3 s, the arrows disappeared. Subjects performed two 
blocks (6 min × 2), each block containing 24 trials for each condition, presented in a 
pseudorandom order. Inter trial interval was 4.5 s. We calculated the reaction time for 
each condition. 

3) CWST: CWST is also a response inhibition test, and it measures the ability to suppress 
inappropriate responses in a particular context. Subjects fixated on a centrally presented 
black cross on a gray background. According to the pre-task cue (“+” or “-”) presented 
before presenting stimuli, subjects pressed the key that corresponded to the meaning or 
color of the presented stimulus with their right index, middle or ring finger as quickly as 
possible. The stimulus was word (red, blue, or yellow, in Japanese) with color (red, blue, 
or yellow). For example, if the pre-task cue was “+,” subjects pressed the key 
corresponding to the meaning of the word; if the pre-task cue was “-,” subjects pressed 
the key corresponding to the color of the word. The task included incongruent and 
congruent conditions. Under the congruent condition, the color of the word was the same 
as the meaning of the word, whereas under the incongruent condition, the color of the 
word was different from the meaning of the word. If subjects failed to respond within 3 s, 
the stimulus disappeared. Subjects performed two blocks (6 min × 2), each block 
containing 24 trials for each condition presented in a pseudorandom order. Inter trial 
interval was again 4.5 s. We calculated the reaction time for each condition. 

Change in cognitive performance 

To compare the changes in the reaction time of each task from pre-neurofeedback to 
post-neurofeedback training between the two groups, we applied a mixed-effects model to 
the all reaction times separately for each task. We included group, day (pre-neurofeedback 
and post-neurofeedback training), and the interaction between group and day as fixed 
effects and subject as a random effect. Further, as a post-hoc analysis of the effect of day 
on reaction times in each group, we applied a mixed-effects model including day as a 
fixed effect and subject as a random effect separately to each group in each task. 

4.2 Results 

4.2.1 Change in score 

Figure 4.2 shows the change in score during the neurofeedback training, averaged across 
the blocks and subjects as a function of training day. Here, the score increases when the 
connectivity changes in the aimed direction for each subject group (Equation 1). We 
applied a mixed-effects model to the scores and examined whether a regression 
coefficient for the day was greater than zero. As a result, we found a significantly positive 
effect of day on the score (DAY: t = 1.70, p = 0.044 [one-side]). This result indicates that 
subjects increased their score during the neurofeedback training.  
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Score averaged across subjects (n = 30) as a function of training day (error bars: standard 
error). A mixed-effects model identified a significant main effect of training day (t = 1.73, 
p = 0.044 [one-side]). *: p < 0.05  

4.2.2 Change in functional connectivity during training 

Figure 4.3 shows the change in FC between lM1 and lLP during the neurofeedback 
training, averaged across the blocks and subjects as a function of training day in each 
group. To compare the daily changes in FC between groups, we applied a mixed-effects 
model to the FC. As a result, we found significant effects for the day and the interaction 
between group and day (DAY: t = -3.22, p = 0.0012; DAY × Group: t = 3.86, p = 0.00011) 
but not for the group (Group: t = -0.627, p = 0.53). This suggests that the change in FC 
across days was different between the groups.  

Since we defined the lLP ROI as a sphere with a 7.5-mm radius, one may argue that the 
size was so large it could include confounding noise. In our post-hoc analysis, we reduced 
the radius from 7.5 to 4.0 mm, and recalculated the connectivity between the ROIs. We 
still found significant effects for the day and the interaction between group and day 
(DAY: t = -3.34, p = 0.00082; DAY × Group: t = 3.82, p = 0.00013), but not for the 
group (Group: t = -0.834, p = 0.40). 

Further, to investigate whether the changes in FC were induced in the aimed direction 
during the training in each group, we applied a mixed-effects model separately for each 
group. We found a significant effect of training day in both groups (“increased FC” 
group: t = 2.17, p = 0.029; “decreased FC” group: t = -3.18, p = 0.0014). Mean FC 
increased from -0.12 ± 0.029 at BASE to -0.061 ± 0.046 on DAY4 in the “increased FC” 
group and decreased from -0.11 ± 0.034 at BASE to -0.22 ± 0.044 on DAY4 in the 
“decreased FC” group. These results indicate that FC between lM1 and lLP during the 
training changed from pre-neurofeedback to post-neurofeedback training in the aimed 
direction in each group, i.e., the FC increased in the “increased FC” group and decreased 
in the “decreased FC” group.  

FIGURE 4.2 | Change in score during neurofeedback training. 
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FIGURE 4.3 | Change in functional connectivity between the left primary motor 
area (lM1) and the left lateral parietal region (lLP) during neurofeedback training. 

Functional connectivity (FC) averaged across subjects in each group (solid line: increased 
FC group, n = 18; broken line: decreased FC group, n = 12) as a function of training day 
(error bars: standard error). A mixed-effects model identified a significant interaction 
between group and day (t = 3.86, p = 0.0014). ***: p < 0.005, *: p < 0.05 according to 
post-hoc analysis of the main effect of day for each group. 

4.2.3 Change in resting-state functional connectivity 

To compare the daily changes in resting-state FC between the two groups, we applied a 
mixed-effects model to the resting-state functional connectivities between lM1 and lLP 
and to the connectivity between MVN and DMN. We did not find any significant effect in 
any connectivity (for lM1–lLP, DAY: t = 0.41, p = 0.67; Group: t = 1.28, p = 0.20; DAY × 
Group: t = -0.78, p = 0.43; for MVN-DMN, DAY: t = 1.20, p = 0.23; Group: t = -0.11, p = 
0.91; DAY × Group: t = 0.89, p = 0.37). Further, to investigate the change in connectivity 
across days in each group, we applied a mixed-effects model separately for each group. 
Consequently, we found a significant effect of training day in the “increased FC” group 
for the connectivity between MVN and DMN (“increased FC” group: t = 2.93, p = 
0.0045; “decreased FC” group: t = 1.18, p = 0.24), but not for the connectivity between 
lM1 and lLP (“increased FC” group: t = -0.70, p = 0.48; “decreased FC” group: t = 0.43, 
p = 0.66). Specifically, FC between MVN and DMN increased from -0.26 ± 0.058 at 
BASE to -0.13 ± 0.064 on DAY4 in the “increased FC” group. Therefore, the direction of 
change in FC between MVN and DMN in the “increased FC” group was consistent with 
our aimed direction, the connectivity change in the neurofeedback sessions (Fig. 4.3), and 
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that in a previous study (Megumi et al. 2015).  

4.2.4 Change in cognitive performance 

Figure 4.4 shows the changes in reaction time from the pre-neurofeedback to 
post-neurofeedback training stage averaged across subjects in each group. Note that there 
was no significant difference in reaction time or error rate between the two groups for the 
pre-neurofeedback training stage (Appendix Table B.1). Owing to the absence of 
significant differences in task performance before the training, we show only the changes 
in reaction time in Fig. 4.4. However, the following statistical analyses were applied to 
raw reaction-time data without subtraction or averaging. To compare the changes in 
reaction time from the pre-neurofeedback to post-neurofeedback training stage between 
the two groups, we applied a mixed-effects model to the reaction times in each task. As a 
result, the interaction effect between group and day was significant in PVT, EFT 
congruent, and CWST congruent (PVT: t = -2.72, p = 0.0065; EFT congruent: t = 2.41, p 
= 0.016; CWST congruent: t = -2.67, p = 0.0075), but not in EFT incongruent or CWST 
incongruent (EFT incongruent: t = 1.18, p = 0.23; CWST incongruent: t = -0.50, p = 
0.61). These significant interactions suggest that the changes in reaction time from the 
pre-neurofeedback to post-neurofeedback training stage were different between the 
groups.  

Further, we applied a mixed-effects model to the reaction times separately for each group 
in PVT, EFT congruent, and CWST congruent. The main effect of training day was 
significant in the “increased FC” group in PVT and CWST congruent (PVT: t = -3.85, p = 
0.00013; EFT congruent: t = 0.58, p = 0.56; CWST congruent: t = 6.93, p < 0.0001) and 
in the “decreased FC” group in EFT congruent and CWST congruent (PVT: t = 0.12, p = 
0.90; EFT congruent: t = -2.52, p = 0.011; CWST congruent: t = 8.53, p < 0.0001). These 
results indicate that the change in the reaction time from the pre-neurofeedback to 
post-neurofeedback training stage could be identified in the “increased FC” group in PVT 
and CWST congruent and in the “decreased FC” group in EFT congruent and CWST 
congruent. Although some of these main effects of day might have been affected by 
repetition of the same task, the interaction effects between the groups could not be 
explained by such repetition. 

 

FIGURE 4.4 | Changes in cognitive performance from pre-neurofeedback to 
post-neurofeedback training. 
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All panels show changes in reaction time of the increased (n = 13) and decreased (n = 11) 
FC groups. Each marker (black or white circle) represents one subject; each bar 
represents each group’s average (error bars: standard error). A mixed-effects model 
identified a significant interaction between group and training day (Vigilance: t = -2.72, p 
= 0.0065; Flanker congruent: t = 2.41, p = 0.016; Stroop congruent: t = -2.67, p = 0.0075). 
Among these tasks, in which interaction effects were significant, the main effect of day 
was significant in the increased FC group in Vigilance and Stroop congruent (Vigilance: t 
= -3.85, p = 0.00013; Stroop congruent: t = 6.93, p < 0.0001) and in the decreased FC 
group in Flanker congruent and Stroop congruent (Flanker congruent: t = -2.52, p = 
0.011; Stroop congruent: t = 8.53, p < 0.0001). *****: p < 0.0001, ****: p < 0.0005, **: 
p < 0.01, *: p < 0.05, n.s.: not significant. 

4.3 Discussion 
Using the connectivity neurofeedback training method, we experimentally manipulated 
the FC between lM1 and lLP and examined the change in performance from the 
pre-neurofeedback to post-neurofeedback training stage. The FC in each group indeed 
changed in the aimed direction during the training (Fig. 4.3). Furthermore, we identified 
significant change in some cognitive performances between the groups (Fig. 4.4). These 
findings indicate that connectivity neurofeedback can induce the aimed direction of 
change in FC as well as induce a differential change in cognitive performance.  

4.3.1 Directions of change in reaction times dependent on the tasks 

We found significant change in some cognitive performances, but the directions of change 
in reaction time were different for each task. For example, the reaction times of the 
vigilance task increased in the “increased FC” group but the reaction times of the flanker 
task (congruent) increased in the “decreased FC” group.  

Regarding the EFT, a previous study (Kelly et al., 2008) on brain–behavior relationships 
investigated the coefficient of variation (standard deviation divided the by mean) as an 
index of task performance. Thus, we could not predict the direction of change in reaction 
time for EFT. However, Kelly et al. (2008) showed that the FC between MVN and DMN 
is positively correlated with coefficient of variation. Our additional analysis indicated that 
the directions of change in coefficient of variation were consistent with those in the 
previous study, i.e., coefficient of variation increased from pre-neurofeedback to 
post-neurofeedback training in the “increased FC” group and decreased in the “decreased 
FC” group, although their interaction effect did not reach a statistically significant level 
(Appendix B.1).  

Regarding the CWST, a previous study (Liu et al., 2015) on brain–behavior relationships 
investigated the Stroop effect (mean reaction time of incongruent condition  mean 
reaction time of congruent condition) as an index of task performance. However, because 
they investigated the relationship between the regional homogeneity and Stroop effect, we 
also could not predict the direction of change in reaction time. Our additional analysis 
indicated that the change in Stroop effect was not significant (Appendix B.1). 
Furthermore, from Fig. 4.4, we can easily assume that there are considerable learning 
effects on the reaction time in both groups, since the Stroop task may be more difficult 
than the other two tasks. However, even if there were learning effects, the significant 
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interaction between group and day suggests that the reaction times were significantly and 
differentially changed from pre-neurofeedback to post-neurofeedback training between 
the two groups. However, we could not conclude that neurofeedback training influenced 
the reaction time itself or the learning effect in the Stroop task (congruent). 

Unlike the other two tasks, previous studies found a concrete relationship between 
reaction time in the vigilance task and FC (Thompson et al., 2013). Thompson et al. 
(2013) divided their subjects into two groups according to fast or slow reaction time for 
PVT. They reported that the fast reaction time group showed more greatly decreased 
negative resting-state FC between MVN and DMN than did the slow reaction time group. 
This finding is consistent with our results. Hinds et al. (2013) examined fMRI activities of 
MVN and DMN during PVT. Their subjects could rapidly respond to a stimulus when 
activity in a part of MVN (the supplementary motor area) increased and activity in DMN 
decreased (Hinds et al., 2013). It is assumed that DMN is more active than MVN when 
subjects are waiting for a stimulus in PVT, whereas MVN becomes more active than 
DMN when subjects respond to the stimulus. Based on these studies, as well as our own, 
one could hypothesize that subjects who have a more negative resting-state FC could 
more rapidly enhance MVN activity and suppress DMN activity, which leads to a shorter 
reaction time. However, further evidence is needed to verify this hypothesis.  

4.3.2 Difference in behaviors during training between subject 
groups 

In the neurofeedback experiment, only the rewarded direction of change in FC was 
flipped during the neurofeedback training between the “increased FC” and “decreased FC” 
groups. Nevertheless, the changes in the reaction time of some tasks from the 
pre-neurofeedback to post-neurofeedback training stage differed between the two groups 
(Fig. 4.4). This suggests that the change in FC influences the change in cognitive 
performance. However, factors other than the rewarded direction, which cannot be 
experimentally controlled, may have differed between the two groups and caused the 
difference in the change in cognitive performance. We examined these factors as follows. 

Total score during training: The score was calculated according to the equivalent formula 
for the two groups (see “Online calculation of feedback score”). The resulting total score 
may have differed between the groups, and this difference may have caused a difference 
in their motivation during training and thus a change in cognitive performance. Therefore, 
we compared the total score over the training in the increase group with the score in the 
decrease group (Appendix B.2). The total score averaged across subjects was 14379 ± 
809 (mean ± 95% confidence interval) for the “increased FC” group and 13860 ± 1448 
for the “decreased FC” group. We used a two-sample t-test to compare the total score but 
did not obtain a significant difference between the groups (t = 0.68, p = 0.50).  

Strategies adopted by subjects: We provided identical instructions to both groups, telling 
them that the disc (score) becomes bigger as subjects improve at producing the tapping 
imagery during the training. However, the actual strategies that were adopted by the 
subjects may have differed between the groups through their trial-and-error learning. The 
difference in strategy may have caused a difference in regional brain activity and thus 
affected subsequent cognitive performance. We conducted a post-experiment debriefing 
with 25 of the 30 subjects (13 subjects in the increase group and 12 subjects in the 
decrease group) and examined the differences in their strategy for the motor imagery 
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(Appendix B.3 and Appendix Table B.2). We analyzed the reported strategies in five 
aspects: image category (items: kinesthetic, visual, or both), hand laterality (left, right, or 
both hands), tapping sequence (fixed or random), imagery with or without manipulated 
object (e.g., a subject imagined typing on a computer keyboard), and imagery with or 
without a rhythm (Appendix Table B.3). We counted the numbers of items across subjects 
and compared these numbers between the groups. We calculated the p value as the 
probability that these results would be obtained if we separated subjects randomly 
(Appendix Table B.4). As a result, there was no significant difference in the numbers 
between the groups. 

4.3.3 Difference in the activity of target ROIs during training 
between the groups 

Because the aim of the current study is to control the FC but not to control the averaged 
activity in a specific ROI, it is important to check the changes in activities in the target 
regions. We applied a mixed effects model to averaged activity in each target region in the 
same manner as our analysis of FC (see 4.2.2 “Change in functional connectivity during 
training” and Appendix B.4). As a result, we found a significant interaction effect of day 
on the lLP activation. This result may indicate that subjects altered only the activity in the 
lLP and that the change in temporal correlation between the target regions is an 
epiphenomenon. However, this was not the case owing to the following reason. We 
investigated whether subjects could get the information about the activity in the lLP from 
the feedback score to calculate the correlation between the feedback score and the activity 
in lLP (Appendix B.5). If there is no correlation between the feedback score and the brain 
activity in lLP, subjects could not have directly altered the activity in lLP through the 
training. As a result, we did not find a significant correlation between the feedback score 
and activity in the lLP (“increased FC” group: r = 0.016, p = 0.23; “decreased FC” group: 
r = -0.01, p = 0.54). These results indicate that subjects could not get information about 
activity in the lLP from the feedback score. Therefore, subjects altered the FC between 
the lLP and lM1, and the activity in the lLP might have been collaterally altered. 

4.3.4 Change in resting-state functional connectivity 

Our previous study (Megumi et al., 2015) showed the significant increase in the 
resting-state FC between the target ROIs (lM1 and lLP) from pre-neurofeedback to 
post-neurofeedback training. However, our current study failed to observe a significant 
change in the resting-state FC between the target ROIs. A possible reason is that the effect 
of neurofeedback training may have been smaller than in our previous study. In fact, our 
previous study showed an increase of about 0.2 in correlation between the two target 
ROIs during the training in comparison to about 0.1 in our current study. This change in 
correlation between ROIs might have been insufficient for generalization of the training 
effect from the training to rest periods.  

By contrast, at the network level, we found a significant increase in resting-state FC 
between MVN and DMN from pre-neurofeedback to post-neurofeedback training despite 
the smaller effect of neurofeedback training than that in our previous study. A possible 
reason is the difference in the number of voxels between ROI and network analyses: 
network-level ROIs have more voxels (about 5000 voxels) than target ROIs (lM1 and 
lLP: about 100 voxels). Correlation calculated from signal time courses averaged over the 
larger number of voxels is more reliable than that from smaller number of voxels in most 
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cases. This may have helped us find a significant increase in resting-state FC between the 
two network-level ROIs. However, we did not observe a significant decrease in the 
resting-state FC between MVN and DMN in the “decreased FC” group. Because the 
connectivity is negative between MVN and DMN in nature, further decreasing the 
negative connectivity may be difficult (e.g., changing correlation from r = -0.4 to -0.6) in 
comparison to increasing it (e.g., from r = -0.4 to -0.2). In fact, we confirmed that the 
distribution of the FC between DMN and MVN is positively skewed (skewness = 0.68), 
suggesting that probability of a decrease is less than that of an increase in correlation.  

4.3.5 Effect of the initial functional connectivity on training 

We examined whether the differential changes in FC and cognitive performances between 
the two groups were induced by the difference in initial FC (Appendix B.6). At group 
level, we did not observe a significant difference in the initial FC (lM1-lLP) between the 
two groups (t-test, t = 0.20, p = 0.84). Thus, the initial difference unlikely explains the 
differential changes between the two groups. At individual level, we did not find any 
significant correlations between the initial FC and the change in FC and cognitive 
performances (see Appendix B.6 for details). These results indicate that the change in FC 
and cognitive performances were not induced by the difference in the initial FC between 
the two groups. 

4.3.6 Associations among change in functional connectivity during 
training, change in resting-state functional connectivity, and 
change in cognitive performance 

We examined the associations among 1) the changes in FC of lM1-lLP during 
neurofeedback training, 2) the changes in resting-state FC of MVN-DMN, and 3) the 
changes in cognitive performance of the three tasks, in which the interaction between 
groups and days yielded significant effects. We analyzed data of the “increased FC” group, 
in which a significant change in resting-state connectivity of MVN-DMN was observed. 
Using linear regression, we conducted a moderation/mediation analysis. This displayed a 
significant effect of the change in FC during training on the change in reaction time of 
CWST congruent (β = -1.41, SE = 0.61, t = -2.29, p = 0.044, adjusted R2 = −0.22) 
(Appendix B.7 and Appendix B.1). This result suggests that the change in reaction time of 
CWST congruent was directly affected by changes in the FC during training rather than 
by changes in the resting-state FC. However, our moderation/mediation analysis shed 
light on only a fraction of many factors related to the connectivity neurofeedback. Further 
studies are required to verify the robust relationship between cognitive function and FC. 

4.3.7 Application of connectivity neurofeedback training 

Disturbances in regional or brain-wide FC have been reported for numerous neurological 
and psychiatric diseases (Broyd et al., 2009; Fornito et al., 2015; Fox and Raichle, 2007; 
Stam, 2014). These pathological disturbances have been related to the severity of 
cognitive dysfunctions in individual patients (Hawellek et al., 2011; He et al., 2007; 
Yahata et al., 2016). From this perspective, online fMRI neurofeedback (Sulzer et al., 
2013) is expected to become a next-generation therapeutic tool (Esmail and Linden, 2014; 
Stoeckel et al., 2014)(Decoded Neurofeedback Project within the Strategic Research 
Program for Brain Sciences [SRPBS]: https://bicr.atr.jp/decnefpro/). In the future, 
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connectivity neurofeedback training methods may contribute to a remedy for such 
disturbances and to improvement of impaired cognitive functions by regulating the FC 
rather than only the level of regional brain activity, as traditionally implemented by most 
neuromodulation techniques such as single-ROI-based neurofeedback, transcranial 
magnetic stimulation, and deep brain stimulation.  

Our current study shows that connectivity neurofeedback can not only increase but also 
decrease FC. Therefore, connectivity neurofeedback shows potential for future 
therapeutic interventions against psychiatric and neurological disorders caused by not 
only hyper-connectivity but also hypo-connectivity. For example, in patients with 
Alzheimer’s disease, FC is reduced between the right hippocampus and many component 
regions of the DMN, while connectivity increases between the left hippocampus and the 
right dorsolateral prefrontal cortex (Broyd et al., 2009). In patients with depression, FC is 
increased between the subgenual cingulate cortex and the DMN (Broyd et al., 2009; 
Greicius et al., 2007). In autism spectrum disorders, connectivity is reduced between the 
anterior and posterior DMN regions (Broyd et al., 2009). 

Furthermore, our study suggests the possibility of developing a technique of 
neurofeedback manipulation to cancel out the behavioral change induced by previous 
methods of neurofeedback manipulation. This is important for ensuring safeguards in 
clinical applications of connectivity neurofeedback.  

4.3.8 Summary 

In this chapter, using the connectivity neurofeedback training method, we tested the 
hypothesis that connectivity neurofeedback can induce the aimed direction of change in 
FC and cognitive performance. As a result, subjects could increase or decrease the FC 
between two brain regions, and cognitive performance was significantly and differentially 
changed from pre-neurofeedback to post-neurofeedback training between the two groups. 
We did not find a significant difference in behaviors between the groups during the 
training, except for the rewarded direction of change in FC between the two regions. 
These findings suggest that connectivity neurofeedback can induce the aimed direction of 
change in FC as well as a change in cognitive performance.  

  



 

Chapter 5 

Conclusion and Future Directions 
This thesis demonstrated three types of research to expand the bottlenecks that prevent us 
to develop the application of fMRI resolving the clinical and cognitive problems. This 
thesis is here summed up by describing its contributions and the remaining challenges for 
future translational fMRI study.  

5.1 Main contributions of this thesis 
The chapter 2 demonstrated that site differences are composed of biological sampling 
bias and engineering measurement bias by utilizing a traveling-subject dataset in 
conjunction with a multi-site, multi-disorder dataset. The effects on resting-state 
functional connectivity because of both bias types were greater than or equal to 
psychiatric disorder effects. Furthermore, our findings indicated that each site can sample 
only from a subpopulation of participants. This result suggests that it is essential to 
collect large neuroimaging data from as many sites as possible to appropriately estimate 
the distribution of the grand population. And also, we developed a state-of-the-art 
harmonization method for multi-site rs-fMRI data by using traveling-subject dataset and 
achieved the reduction of the measurement bias. Since development of an accurate 
harmonization method enable us to analyze large multi-site multi-disorder dataset, it 
promotes discovery science in cognitive neuroscience field. 

In the chapter 3, we constructed a reliable neuroimaging-based classifier and regression 
model for MDD and BDI score, respectively, by investigating whole-brain resting-state 
functional connectivity patterns. The MDD classifier and BDI regression model 
generalized to an independent validation dataset obtained at different imaging sites. We 
found an approximately 30% overlap in functional connections related to depressed 
symptoms and MDD diagnosis. These functional connections were associated with the 
salience and default mode networks. Our study revealed a partially overlapping 
relationship between the biological basis of depressed symptoms and MDD diagnosis. 
Our study would make a significant contribution to the elucidation of the neurological 
basis of MDD and future development of a theranostic biomarker that contribute to not 
only diagnosis, but also determination of therapeutic targets in depressive symptoms. 
That is, since overlap connections related to MDD diagnosis and depressed symptoms, 
we can diagnose MDD by observing these connections and these connections may 
express disease state and intervention to these connections would cause improvement of 
depressed symptoms. 

In the chapter 4, we investigated the hypothesis that connectivity neurofeedback can 
induce the aimed direction of change in functional connectivity, and the differential 
change in cognitive performance according to the direction of change in connectivity. We 
showed evidence that connectivity neurofeedback can induce the aimed direction of 
change in connectivity and a differential change in cognitive performance depending on 
the direction of the change in connectivity. Our results provide experimental evidence to 
the theory that manipulating brain networks lead a change in cognitive function. 
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As a translational fMRI study, these results would provide one possible framework of 
therapeutic intervention for psychiatric disorder using fMRI. First, a theranostic 
biomarker of functional connectivity is discovered by analyzing large-scale multisite 
rs-fMRI data which can be enabled by harmonization method. Therapeutic intervention 
for patients with disorder would be done by modify that functional connectivity by using 
connectivity neurofeedback. 

5.2 Challenges for the future 
Although this thesis would contribute to translational fMRI study, we have several 
important challenges to make fMRI truly useful in real-world. 

5.2.1 Challenges in the data-driven approach 

In the data-driven approach, if we can achieve the following things, it could be truly 
useful for clinical application of psychiatric disorder. 

1. Redefinition of psychiatric disorder based on biological neural basis. An increasing 
number of studies have pointed out difficulty in finding a clear association between 
existing clinical diagnostic categories and neurobiological abnormalities (Clementz 
et al., 2016; Insel and Cuthbert, 2015; Singh and Rose, 2009). Therefore, redefinition 
of psychiatric disorder based on biological neural bases have been focused. This may 
be feasible by applying unsupervised learning techniques such as clustering analysis 
to large multi-site multi-disorder neuroimaging dataset.  

2. Achievement of precision medicine. Precision medicine is treatment targeted to the 
needs of individual patients on the basis of genetic, or biological neural bases that 
distinguish a given patient from other patients with similar clinical presentations. 
This may be feasible by acquiring longitudinal data which include neuroimaging data 
before and after treatment such as medication or cognitive behavioral therapy.  

5.2.2 Challenges in the brain-manipulation approach 

In the brain-manipulation approach, if we can achieve the following things, fMRI 
neurofeedback training could have truly useful clinical intervention for psychiatric 
disorder. 

3. Placebo-controlled experiment. The effectiveness of fMRI neurofeedback training is 
still under discussion; we must therefore conduct more double-blind, 
placebo-controlled, randomized neurofeedback studies. There are thus far still only 
two papers which show the effectiveness of neurofeedback training in double-blind, 
placebo-controlled, randomized conditions (Vincent et al., 2007; Young et al., 2017; 
Young et al., 2018). 

4. Optimization of experiment protocol. Since the current experiment protocol often 
requires one full week of neurofeedback training, the burden on the patients is large. 
As it is yet unclear which approach is appropriate for clinical application, more work 
is needed to provide evidence-based guidelines (Stoeckel et al., 2014; Sulzer et al., 
2013; Yahata et al., 2017; Yamada et al., 2017). 
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5. Elucidation of neural mechanism in neurofeedback. Why can fMRI neurofeedback 
training cause changes in the brain, despite the fact that fMRI neurofeedback 
manipulates the BOLD signal rather than neural activity itself? (Sitaram et al., 2017; 
Watanabe et al., 2017) This question may be answered in non-human 
electrophysiological studies by investigating the change in neural activity when the 
BOLD signal is altered. 

6. Elucidation of the relationship between brain networks and cognitive function. Even 
if neurofeedback training can change the connectivity within brain networks, it is 
difficult to apply this knowledge to the real-world without better understanding of 
how brain networks give rise to cognitive functions. This may be clarified by 
constructing and verifying a mathematical model of cognitive function based on 
brain networks (Anzellotti and Coutanche, 2018; Ezaki et al., 2017; Ito et al., 2017; 
Mill et al., 2017; Tompson et al., 2018). 

Finally, in translational studies, we tend to conduct research from the viewpoint of “being 
useful for the real-world”. However, I would like to continue my research without 
forgetting that scientists should also be responsible for elucidating the mechanisms 
behind phenomena, in order to prevent a repeat of past mistakes such as the era of the 
lobotomy. 

  



 

 

 



 

Appendix A 

Appendix of Chapter 2 

A.1 Magnitude distribution of both biases and 
each factor on functional connectivity 

To quantitatively evaluate the effect of measurement and sampling biases on functional 
connectivity (FC), we compared the magnitudes of both types of bias with the 
magnitudes of psychiatric disorders and participant factors. For this purpose, we 
investigated the magnitude distribution of both biases, as well as the effects of psychiatric 
disorders and participant factors on FC overall 35,778 elements in a 35,778-dimensional 
vector to see how many functional connectivities were largely affected. Figure A.1a: the 
x-axis shows the magnitude as Fisher’s z-transformed Pearson’s correlation coefficients, 
while the y-axis shows the density of the number of connectivities. Figure A.1b shows the 
same data, except the y-axis represents the log-transformed number of connectivities for 
better visualization of small values.  There were significant differences among biases 
and factors for larger magnitudes near the tails of their distributions. For example, the 
number of connectivities, which was largely affected (i.e., a magnitude larger than 0.2), 
was more than 100 for the participant factor, approximately 100 for measurement bias, 
and nearly 0 for all sampling biases, as well as all disorder factors. 

A.2 Field map correction 
We investigated the effect of field-map correction on data harmonization (Hutton et al., 
2002; Jenkinson, 2003; Jezzard and Balaban, 1995). We used SPM12 for field-map 
correction, in accordance with the SPM protocol. A total of 35,778 functional connections 
were calculated from echo-planar images (EPIs) following field-map correction. 
Participant factors and measurement biases were estimated by fitting the regression 
model to the traveling-subject dataset only. The regression model can be described as 
follows: 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ൌ 𝑐𝑜𝑛𝑠𝑡 ൅ 𝐱𝒑
୘𝒑 ൅ 𝐱𝒎

୘𝒎 ൅ 𝑒,  

such that ෍ 𝑝௝

ଽ

௝
ൌ 0, ෍ 𝑚௞

ଵଶ

௞
ൌ 0. 

To evaluate the spatial effect of field-map correction on various brain regions, we 
visualized the difference in the effect on each ROI between datasets with and without 
field-map correction. We also visualized the effect of measurement bias on each ROI 
using data subjected to field-map correction (Figure A.2a). We calculated the standard 
deviation of the measurement bias and the participant factor and compared the results 
between datasets with and without field-map correction (Figure A.2b). Furthermore, we 
performed hierarchical clustering analysis of measurement bias in the dataset subjected to 
field-map correction (Figure A.2c). Figures A.1a and A.1b demonstrate that field-map 
correction remarkably reduced the effect of measurement bias in the cerebellum and 
lower regions of the frontal cortex, while also increasing the effect of the participant 
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factor. However, the presence of the cluster for phase-encoding direction in Figure A.2c 
indicates that field-map correction did not completely eliminate the influence of the 
difference in the phase-encoding direction. 

A.3 Selection of the regularization 
hyper-parameter lambda 

Because the design matrix of the regression model was rank-deficient, L2 regularization 
was applied when estimating each type of bias and factor. When regularization was not 
applied, we observed spurious anti-correlation between measurement bias and sampling 
bias for healthy controls, as well as spurious correlation between sampling bias for 
healthy controls and sampling bias for patients with psychiatric disorders (Figure A.3a, 
left). These spurious correlations can even be observed in the permutation data, in which 
there were no associations between site label and data (Figure A.3a, right). This suggests 
that the spurious correlations were caused by the rank-deficient property of the design 
matrix. We utilized the hyper-parameter lambda to minimize the absolute mean of these 
spurious correlations (Figure A.3c, left). We confirmed that the values of lambda for the 
real data were almost identical to those for the permutation data (Figure A.3c, right). 
Furthermore, although the ability to explain the data decreases when using regularization, 
we confirmed that the degree of decrease due to regularization was less than 1% (Figure 
A.3d). 

A.4 Brain regions contributing the measurement 
bias of each site 

To evaluate the spatial distribution of the measurement bias of each site in the whole 
brain, we utilized the same method in figure 3.3 in the main text. We projected 
connectivity information to anatomical regions of interest (ROIs). Figure A.4 shows the 
relative contribution of individual ROIs to measurement bias of each site in the whole 
brain.

A.5 Classifiers for MDD and SCZ, based on the 
four harmonization methods 

To quantitatively evaluate the harmonization method, we constructed biomarkers for 
psychiatric disorders using the SRPBS multi-disorder dataset, which distinguishes 
between HCs and patients, based on resting-state FC. We compared four different 
harmonization methods for the removal of site difference from the SRPBS multi-disorder 
dataset: (1) by using a traveling-subject method; (2) by using a ComBat method; (3) by 
using a GLM method; and (4) by using an Adjusted GLM. We also compared these four 
methods to the non-harmonization method (Raw method).  

We aimed to focus on multi-site data; therefore, we targeted data from patients with 
MDD and SCZ who were sampled from multiple sites. To construct each classifier, a 
machine-learning technique was applied to (1) whole brain FCs for HCs and patients with 
MDD from the SRPBS multi-disorder dataset (425 HCs from nine sites and 135 patients 
with MDD from five sites; Table 1 in the main text) or (2) whole brain FCs for HCs and 
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patients with SCZ from the SRPBS multi-disorder dataset (425 HCs from nine sites and 
44 patients with SCZ from three sites; Table 1 in the main text). Based on our previous 
results, we assumed that disorder factors were not associated with whole-brain 
connectivity, but with a specific subset of connections (Yahata et al., 2016). Therefore, 
we conducted logistic regression analyses using the least absolute shrinkage and selection 
operator (LASSO) method to select the optimal subset of functional connections from 
among 35,778 connections. A logistic function was used to define the probability of a 
participant belonging to the MDD (or SCZ) class, as follows: 

𝑃௦௨௕ሺ𝑦௦௨௕ ൌ 1|𝒄௦௨௕; 𝒘ሻ ൌ ଵ

ଵାୣ୶୮ሺି𝒘౐𝒄ೞೠ್ሻ
, 

in which 𝑦௦௨௕ represents the class label (MDD or SCZ, y = 1; HC, y = 0) of a participant, 
𝒄௦௨௕ represents a FC vector for a given participant, and w represents the weight vector. 
The weight vector w was determined so as to minimize 

𝐽ሺ𝐰ሻ ൌ െ
1

𝑛௦௨௕
෍ log 𝑃௝൫𝑦௝ ൌ 1|𝒄𝒋; 𝒘൯

௡ೞೠ್

௝ୀଵ

൅ λ‖𝒘‖ଵ, 

in which ‖𝒘‖ଵ ൌ ∑ |𝑤௜|ே
௜  and λ represent hyper-parameters that controls the amount 

of shrinkage applied to the estimates. To estimate λ properly, we used the “lassoglm” 
function in MATLAB (R2016b, Mathworks, USA) and set “NumLambda” = 25 and “CV” 
= 10.  

Because the SRPBS multi-disorder dataset is unbalanced with regard to the numbers of 
patients and HCs, we used the under-sampling (Wallace et al., 2011) and resampling 
method to develop and evaluate classifiers. To train the MDD classifier, 130 patients with 
MDD and 130 HCs were randomly sampled from the dataset, and classifier performance 
was tested among the remaining participants. For the SCZ classifier, data were randomly 
sampled for 40 patients with SCZ and 40 HCs. We calculated the area under the curve 
(AUC), accuracy, sensitivity, and specificity. Furthermore, to properly evaluate classifier 
performance even for the unbalanced dataset, we calculated the Matthews correlation 
coefficients (MCC) (Chicco, 2017; Matthews, 1975b) as indicators of classifier 
performance. MCC correctly takes into account the ratio of the confusion matrix size. 
Especially in unbalanced datasets, the MCC is able to identify whether prediction is 
proceeding appropriately, whereas accuracy is not. Under-sampling is disadvantageous in 
that it does not allow the classifier to learn using the excluded data. Therefore, to ensure 
all participants were used during classifier training, we repeated the aforementioned 
procedure 100 times (i.e., resampling), and the average value of classifier performance 
was considered indicative of classifier performance in the training dataset. Figs. A.5a and 
A.5b show the classifier performances and the left panels of Figs. A.6a and A.6b depict 
the distribution of the average probability for a given disorder. The generalizability of the 
models was tested using parts of the dataset for the completely independent validation 
cohort obtained from the following sites: Hiroshima Rehabilitation Center (HRC) and 
Yamaguchi University (UYA) (47 HCs and 12 patients with MDD from HRC; 117 HCs 
and 76 patients with MDD from UYA) for the MDD classifier; Kyoto University Trio 
(KTT) for the SCZ classifier (61 HCs and 36 patients with SCZ from KTT) (see Tables 
A.2, A.3 and A.5). Since we created 100 classifiers using the training data, we entered the 
independent cohort data into all trained classifiers and averaged the resultant probability 
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values. For each participant, when the average probability was greater than 0.5, the 
diagnostic class label y of this participant was set equal to 1 (MDD or SCZ, y = 1; HC, y 
= 0). Classifier performance in the independent cohort is shown in Figs. A.6c and A.6d 
and the right panels of Figs. A.6a and A.6b depict the distribution of the average 
probability for a given disorder. Further details of classifier performance are presented in 
Tables A.8– A.11. 

Classifier output was defined as the probability of a participant being 
categorized into the MDD or SCZ class. Diagnostic probability values greater than 0.5 
were considered indicative of a psychiatric disorder. The distribution of diagnostic 
probability in the training dataset (left panels in Figs. A.6a and A.6b) revealed that 
patients with psychiatric disorders and HCs were clearly separated by a threshold of 0.5 
(the middle line in each panel) for all methods. By contrast, the distribution of diagnostic 
probability in the independent cohort (right panels in Figs. A.6a and A.6b) revealed that 
patients with psychiatric disorders and HCs were separated by a threshold of 0.5 only for 
the traveling-subject and ComBat methods. No such separation was observed for the 
other methods because of the leftward shift of the distributions for HCs and patients. 
Thus, in the independent cohort, very low sensitivity (below 0.5) and unduly high 
specificity were observed for the GLM and adjusted GLM methods, whereas medium 
sensitivity (approximately 0.5) and unduly high specificity were observed for the raw 
methods for the MDD and SCZ classifiers (Figs. A.6c and A.6). Unduly high specificity 
was achieved because patients and HCs were indifferently classified as HCs. This result 
indicates that the GLM and adjusted GLM methods are unable to remove site differences 
and may even negatively impact classification (Fortin et al., 2018; Rao et al., 2017).  

We next compared the generalizability of the traveling-subject, ComBat, and raw 
methods. Classifier performance was evaluated using MCC and the traveling-subject 
method was superior to the raw method for MDD and SCZ classifiers. The ComBat 
method was also superior to the raw method for the MDD classifier but inferior to the 
raw method for the SCZ classifier. The index values for the MDD classifier were as 
follows for MCC: 0.376 (ComBat method) > 0.348 (traveling-subject method) > 0.267 
(raw method). The values for the SCZ classifier were as follows for the MCC: 0.520 
(traveling-subject method) > 0.474 (raw method) > 0.400 (ComBat method). In the 
traveling-subject and ComBat methods, the threshold of 0.5 was nearly correctly set at 
the approximate intersection between the HC and patient distributions, whereas the 
threshold was shifted slightly rightward in the raw method. These results indicate that 
harmonization of the SRPBS multi-disorder dataset, based on the traveling-subject and 
ComBat methods, outperformed other harmonization methods with regard to classifier 
generalizability. However, because the ComBat method was inferior to even the raw 
method for the SCZ classifier, ComBat may not be appropriate for certain datasets.

A.6 Regression models for age based on the four 
harmonization methods 

To further investigate the effectiveness of the harmonization methods, we constructed 
regression models to predict participant age using four different harmonization methods, 
as well as the raw method, and compared prediction performance among the models. To 
construct each regression model, a machine-learning technique was applied to whole 
brain FCs from HCs (425 HCs from nine sites; Table 1 in the main text). We then 
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employed linear regression using the LASSO method, as follows: 

𝑦௦௨௕ ൌ 𝒘୘𝒄௦௨௕, 

in which 𝑦௦௨௕ represents the age of the participant, 𝒄௦௨௕ represents a FC vector of the 
participant, and w represents the weight vector of the linear regression. The performance 
of linear regression in the training data was evaluated via 10-fold cross validation. We 
calculated the MAE and Pearson’s correlation coefficients between predicted age and 
actual age. The generalizability of the models was examined using parts of the 
completely independent validation cohort dataset obtained from the ATR TimTrio, ATR 
Verio, and ATR Prisma sites (223 HCs, Tables A.4 and A.5). This dataset is collected for 
different purpose from this study and contains subjects from a wide range of ages (20–69). 
We developed 10 linear regression models using the training data (each cross validation); 
therefore, we entered the independent cohort data into all trained linear regression models. 
The average output was regarded as the predicted age. We also calculated the MAE and 
Pearson’s correlation coefficients between the predicted age and the actual age. Figure 
A.7 shows the scatter plot of the actual age and the predicted age in the independent 
cohort. Figure A.5c shows the same plot in the training dataset. 

The ComBat method achieved the lowest mean absolute error (MAE) value and the 
highest r value, whereas the traveling-subject method achieved the second lowest MAE 
value and the second highest r value (Fig. A.7). Furthermore, the MAE values of the 
ComBat and traveling-subject methods were significantly lower than that of the raw 
method (two-tailed paired t-test; ComBat: p = 3.1 ൈ 10-20, t = -10.18, df = 222; 
traveling-subject: p = 6.3 ൈ 10-8, t = -5.5, df = 222). These results indicate that the 
ComBat and traveling-subject methods outperformed the other harmonization methods 
for constructing a regression model to predict a participant’s age with regard to 
generalizability.
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FIGURE A.1 | Distributions and statistics for each type of bias and each factor. (a, b) 
The distribution of the effects of each bias and each factor on functional connectivity 
vectors. Functional connectivity was measured based on Fisher’s z-transformed Pearson’s 
correlation coefficients. The x-axis represents the effect size of the Fisher’s z-transformed 
Pearson’s correlation coefficients. In (a) and (b), the y-axis represents the density of 
connectivity and the log-transformed the number of connections, respectively. Each line 
represents one participant or one site. HC: healthy controls; SCZ: schizophrenia; MDD: 
major depressive disorder; ASD: autism spectrum disorder. 
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FIGURE A.2 | Effects of field-map correction. (a) Top: Mean effects of connectivity at 
all 268 ROIs with field-map correction. Color-coding follows that for Figure 4 in the 
main text. Difference between field-map-corrected and -uncorrected datasets for 
participant factor (middle) and measurement bias (bottom). Red represents positive 
effects due to correction (i.e., increase in participant factor and decrease in measurement 
bias). Blue represents negative effects (i.e., decrease in participant factor and increase in 
measurement bias). (b) The standard deviations of participant factor and measurement 
bias after field-map correction. Bars represent the average, while error bars represent the 
standard deviation across sites or participants. Each data point represents one participant 
or one site. (c) Clustering dendrogram for measurement bias after field-map correction. 
The height of each linkage in the dendrogram represents the distance between the clusters 
joined by that link. ROI: region of interest; UTO: University of Tokyo; KUT: Siemens 
TimTrio scanner at Kyoto University; ATT: Siemens TimTrio scanner at Advanced 
Telecommunications Research Institute International; ATV: Siemens Verio scanner at 
Advanced Telecommunications Research Institute International; SWA: Showa 
University; COI: Center of Innovation in Hiroshima University; KUS: Siemens Skyra 
scanner at Kyoto University; KPM: Kyoto Prefectural University of Medicine; YC1: 
Yaesu Clinic 1. 
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FIGURE A.3 | Selection of the regularization hyper-parameter lambda. (a) 
Correlation matrix between measurement biases and sampling biases in healthy controls 
(HCs), and matrices between sampling biases of HCs and sampling biases of patients 
with psychiatric disorders at lambda = 0 and lambda = 14, 12 (left: real data, right: 
permutation data). (b) Correlation values between the two types of bias as functions of 
lambda from 0 to 20 (left: real data, right: permutation data). Correlations were calculated 
between the measurement and sampling biases of HCs, and between the sampling biases 
of HCs and sampling biases of patients with psychiatric disorders. (c) Absolute mean of 
three correlations as a function of lambda. (d) Percentage change in the residual error 
between model and real data as a function of lambda. UTO: University of Tokyo; KUT: 
Siemens TimTrio scanner at Kyoto University; ATT: Siemens TimTrio scanner at 
Advanced Telecommunications Research Institute International; ATV: Siemens Verio 
scanner at Advanced Telecommunications Research Institute International; SWA: Showa 
University; COI: Center of Innovation in Hiroshima University; MDD: major depressive 
disorder; SCZ: schizophrenia.  
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FIGURE A.4 | Spatial distribution of the measurement bias of each site in various 
brain regions. Mean effects of connectivity for all 268 ROIs. For each ROI, the mean 
effects of all functional connections associated with that ROI were calculated for the 
measurement bias of each site. Warmer (red) and cooler (blue) colors correspond to large 
and small effects, respectively. The magnitudes of the effects are normalized within each 
site (z-score). ROI: region of interest; UTO: University of Tokyo; HUH: Hiroshima 
University Hospital; KUT: Siemens TimTrio scanner at Kyoto University; ATT: Siemens 
TimTrio scanner at Advanced Telecommunications Research Institute International; ATV: 
Siemens Verio scanner at Advanced Telecommunications Research Institute International; 
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SWA: Showa University; HKH: Hiroshima Kajikawa Hospital; COI: Center of 
Innovation in Hiroshima University; KUS: Siemens Skyra scanner at Kyoto University; 
KPM: Kyoto Prefectural University of Medicine; YC1: Yaesu Clinic 1; YC2: Yaesu 
Clinic 2. 

 

FIGURE A.5 | Performance of disorder classifiers and age regression model in the 
training dataset. (a, b) Performance of each classifier in the training dataset for each 
harmonization method (blue for MDD, red for SCZ). Bars represent the average, while 
error bars represent the standard deviation across 100 re-samplings. (c) Scatter plot of 
actual age and predicted age for each harmonization method. The solid line represents the 
linear regression of the actual age from the predicted age. The mean absolute error 
(MAE) and correlation coefficient (r) are also shown. Each data point represents one 
participant. MDD: major depressive disorder; SCZ: schizophrenia; MCC: Matthews 
correlation coefficient; AUC: area under the curve.  
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FIGURE A.6 | Classifier performances for MDD and SCZ for different 
harmonization methods. (a) The probability distribution for the diagnosis of MDD in 
the training dataset (left) and independent cohort (right) for each harmonization method. 
The MDD and HC distributions are depicted in blue and gray, respectively. (b) The 
probability distribution for the diagnosis of SCZ in the training dataset (left) and 
independent cohort (right) for each harmonization method. The SCZ and HC distributions 
are depicted in red and gray, respectively. (c, d) Classifier performance in the independent 
cohort for each harmonization method and each classifier (blue for MDD, red for SCZ). 
MCC: Matthews correlation coefficient; AUC: area under the curve; MDD: major 
depressive disorder; SCZ: schizophrenia; HC: healthy control. 
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FIGURE A.7 | Performance of a regression model for the prediction of a 
participant’s age for different harmonization methods. Scatter plots of actual age and 
predicted age. The solid line indicates the linear regression of the actual age from the 
predicted age. The mean absolute error (MAE) and correlation coefficient (r) are shown 
in each panel. Each data point represents one participant. Each panel shows the results for 
the (a) traveling-subject method, (b) ComBat method, (c) GLM method, (d) adjusted 
GLM method, or (e) raw method (i.e., the data were not harmonized across sites). GLM: 
general linear model. 

 

 

d Adjusted GLM e Rawc GLM

20

25

30

35

40

20 30 40 50 60 70

Actual Age

P
re

di
ct

ed
 A

ge

20

25

30

35

40

20 30 40 50 60 70

Actual Age

P
re

di
ct

ed
 A

ge

20

25

30

35

40

20 30 40 50 60 70

Actual Age

P
re

di
ct

ed
 A

ge
20

25

30

35

40

20 30 40 50 60 70

P
re

di
ct

ed
 A

ge

20

25

30

35

40

20 30 40 50 60 70

P
re

di
ct

ed
 A

ge

a Traveling-subject b ComBat

MAE = 14.83, r = 0.56

MAE = 15.92, r = NA MAE = 15.50, r = 0.50MAE = 15.45, r = 0.52

MAE = 13.85, r = 0.65

Actual AgeActual Age



Appendix TABLE A.1            | 103 
 

 

TABLE A.1 | Imaging protocols for resting-state fMRI in the traveling-subject dataset 

Site 
ATR 

TimTrio 
ATR 
Verio 

Center of 
Innovation in 

Hiroshima 
University 

Hiroshima 
University 
Hospital 

Hiroshima 
Kajikawa 
Hospital

Kyoto 
Prefectural 

University of 
Medicine 

Showa 
University

Kyoto 
University 
TimTrio

Kyoto 
University

Skyra

University 
of Tokyo

Yaesu-clinic 
scanner 1

Yaesu-clinic 
scanner 2 

Abbreviation ATT ATV COI HUH HKH KPM SWA KUT KUS UTO YC1 YC2 

MRI scanner Siemens 
TimTrio 

Siemens 
Verio 

Siemens 
Verio 

GE 
Signa HDxt

Siemens
Spectra 

Philips 
Achieva 

Siemens
Verio 

Siemens
TimTrio

Siemens
Skyra 

GE 
MR750W

Philips 
Achieva 

Philips 
Achieva 

Magnetic field 
strength 

3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 

Number of 
channels per coil

12 12 12 8 12 8 12 32 32 24 8 8 

Field-of-view 
(mm) 

212 x 212 212 x 212 212 x 212 212 x 212 212 x 212 212 x 212 212 x 212 212 x 212 212 x 212 212 x 212 212 x 212 212 x 212 

Matrix 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 
Number of slices 40 39 40 35 35 40 40 40 40 40 40 40 

Number of 
volumes 

240 240 240 240 240 240 240 240 240 240 240 240 

In-plane resolution 
(mm) 

3.3125 × 
3.3125 

3.3125 × 
3.3125 

3.3125 × 
3.3125 

3.3125 × 
3.3125 

3.3125 × 
3.3125 

3.3125 × 
3.3125 

3.3125 × 
3.3125

3.3125 × 
3.3125 

3.3125 × 
3.3125

3.3125 × 
3.3125

3.3125 × 
3.3125 

3.3125 × 
3.3125 

Slice thickness 
(mm) 

3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 

Slice gap (mm) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
TR (ms) 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 
TE (ms) 30 30 30 30 30 30 30 30 30 30 30 30 

Total scan time 
(min:s) 

10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 

Flip angle (deg) 80 80 80 80 80 80 80 80 80 80 80 80 
Slice acquisition 

order 
Ascending Ascending Ascending Ascending Ascending Ascending Ascending Ascending Ascending Ascending Ascending Ascending 

Phase encoding PA PA AP PA PA AP PA PA AP PA AP AP 
Eye closed / fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate 

Field map ✔ ✔ ✔ - - ✔ ✔ ✔ ✔ ✔ ✔ - 

UTO: University of Tokyo; HUH: Hiroshima University Hospital; KUT: Siemens TimTrio scanner at Kyoto University; ATT: Siemens TimTrio scanner 
at Advanced Telecommunications Research Institute International; ATV: Siemens Verio scanner at Advanced Telecommunications Research Institute 
International; SWA: Showa University; HKH: Hiroshima Kajikawa Hospital; COI: Center of Innovation in Hiroshima University; KUS: Siemens Skyra 
scanner at Kyoto University; KPM: Kyoto Prefectural University of Medicine; YC1: Yaesu Clinic 1; YC2: Yaesu Clinic 2; TR: repetition time; TE: echo 
time. 
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TABLE A.2 | Demographic characteristics of patients in the independent validation cohort dataset for MDD prediction 

Site 
HC MDD ALL

Number 
Male 

/Female 
Age (y) Number 

Male 
/Female 

Age (y) Number 
Male 

/Female 
Age (y) 

HRC 47 12/35 42.4±11.3 14 4/10 38.2±9.1 61 16/45 41.5±10.9 

UYA 120 50/70 45.9±19.5 79 36/43 50.3±13.6 199 86/113 47.6±17.5 

Summary 167 62/105 44.9±17.6 93 40/53 42.6±11.7 260 102/158 46.2±16.4 
HRC: Hiroshima Rehabilitation Center; UYA: Yamaguchi University; HC: healthy control; MDD: major depressive disorder 
 

TABLE A.3 | Demographic characteristics of patients in the independent validation cohort dataset for SCZ prediction 

Site 
HC SCZ ALL

Number 
Male 

/Female 
Age (y) Number 

Male 
/Female 

Age (y) Number 
Male 

/Female 
Age (y) 

KTT 77 50/27 28.8±8.98 56 29/27 37.8±9.42 133 79/54 32.6±10.2 
KTT: Kyoto University (Trio scanner); HC: healthy control; SCZ: schizophrenia 

 
TABLE A.4 | Demographic characteristics of patients in the independent validation cohort dataset for age prediction 

Site 
HC 

Number Male /Female Age (y) 

ATT 40 16/24 42.3±15.4 

ATV 134 77/57 43.2±14.6 
ATP 48 21/27 41.8±16.6 

Summary 232 124/108 42.7±15.1 
ATP: Prisma scanner at Advanced Telecommunications Research Institute International; ATT: Siemens TimTrio scanner at Advanced 
Telecommunications Research Institute International; ATV: Siemens Verio scanner at Advanced Telecommunications Research Institute International; 
HC: healthy control 
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TABLE A.5 | Imaging protocols for resting-state fMRI in the independent validation cohort dataset 

Site 
ATR 

TimTrio 
ATR Verio 

ATR 
Prisma 

Hiroshima 
Rehabilitation Center

Yamaguchi 
University 

Kyoto University 
Trio 

Abbreviation ATT ATV ATP HRC UYA KTT 

MRI scanner 
Siemens 
TimTrio 

Siemens 
Verio 

Siemens 
Prisma 

GE 
Signa HDxt 

Siemens 
Skyra 

Siemens 
Trio 

Magnetic field strength (T) 3.0 3.0 3.0 3.0 3.0 3.0 
Number of channels per coil 12 12 12 8 20 8 

Field-of-view (mm) 212 × 212 212 × 212 212 × 212 256 × 256 220 × 220 256 × 192 
Matrix 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 48 

Number of slices 40 or 39 39 40 32 34 30 
Number of volumes 240 240 240 143 200 180 

In-plane resolution (mm) 
3.3125 × 
3.3125 

3.3125 × 
3.3125 

3.3125 × 
3.3125 

4.0 × 4.0 3.4 × 3.4 4.0 × 4.0 

Slice thickness (mm) 3.2 3.2 3.2 4 4.0 4.0 
Slice gap (mm) 0.8 0.8 0.8 0 1.0 0 

TR (ms) 2,500 2,500 2,500 2,000 2,500 2,000 
TE (ms) 30 30 30 27 30 30 

Total scan time (min:s) 10:00 10:00 10:00 4:46 8:28 6:00 
Flip angle (deg) 80 80 80 90 80 90 

Slice acquisition order Ascending Ascending Ascending 
Ascending 

(Interleaved) 
Ascending 

Ascending 
(Interleaved) 

Phase encoding PA PA PA AP PA AP 
Eyes closed / open / fixate Fixate Fixate Fixate Fixate Closed Fixate 

ATR: Advanced Telecommunications Research Institute International 

 
 
 



106 |  Appendix A. Appendix of Chapter 2 

 

TABLE A.6 | Comparison between the variances of distributions in measurement bias and disorder factor 

 ATT ATV COI HKH HUH KPM KUS KUT SWA UTO YC1 YC2 

MDD 
- 

W* = 1.31 

MDD > M 

W* = -9.55

M > MDD 

W* = 30.51

M > MDD 

W* = 25.25

M > MDD 

W* = 59.76

M > MDD 

W* = 33.72 

M > MDD 

W* = 31.96

M > MDD 

W* = 13.92

M > MDD 

W* = 19.64

M > MDD 

W* = 21.46

M > MDD 

W* = 42.94

M > MDD 

W* = 34.85 

SCZ 
SCZ > M 

W* = -17.95 

SCZ > M 

W* = -28.89

M > SCZ 

W* = 11.38

M > SCZ 

W* = 6.48 

M > SCZ 

W* = 41.53

M > SCZ 

W* = 14.40 

M > SCZ 

W* = 12.55

SCZ > M 

W* = -5.36

- 

W* = 0.23 

- 

W* = 2.00 

M > SCZ 

W* = 23.46

M > SCZ 

W* = 15.75 

ASD 
M > ASD 

W* = 14.61 

M > ASD 

W* = 3.76 

M > ASD 

W* = 43.53

M > ASD 

W* = 38.66

M > ASD 

W* = 71.98

M > ASD 

W* = 46.62 

M > ASD 

W* = 45.13

M > ASD 

W* = 27.21

M > ASD 

W* = 32.9 

M > ASD 

W* = 34.6 

M > ASD 

W* = 55.74

M > ASD 

W* = 47.61 

M > MDD (SCZ, ASD): Measurement-bias is larger than MDD (SCZ, ASD) factor; MDD (SCZ, ASD) > M: MDD (SCZ, ASD) factor is 
larger than measurement-bias 
* if W* = 2.63, then p = 0.05 after Bonferroni correction (12), n = 35,778 
UTO: University of Tokyo; HUH: Hiroshima University Hospital; KUT: Siemens TimTrio scanner at Kyoto University; ATT: Siemens 
TimTrio scanner at Advanced Telecommunications Research Institute International; ATV: Siemens Verio scanner at Advanced 
Telecommunications Research Institute International; SWA: Showa University; HKH: Hiroshima Kajikawa Hospital; COI: Center of 
Innovation in Hiroshima University; KUS: Siemens Skyra scanner at Kyoto University; KPM: Kyoto Prefectural University of Medicine; 
YC1: Yaesu Clinic 1; YC2: Yaesu Clinic 2; MDD: major depressive disorder; SCZ: schizophrenia. 

 

 

 

 

 

 

 

Measurement bias 

Disorder factors 
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TABLE A.7 | Comparison between variances of the distributions in sampling bias for healthy control and disorder factors 

 ATT ATV COI KUT SWA UTO 

MDD 
MDD > S 

W* = -26.52 

MDD > S 

W* = -22.77 

S > MDD 

W* = 8.28 

MDD > S 

W* = -24.01 

MDD > S 

W* = -49.66 

MDD > S 

W* = -54.40 

SCZ 
SCZ > S 

W* = -45.87 

SCZ > S 

W* = -41.95 

SCZ > S 

W* = -11.53 

SCZ > S 

W* = -42.85 

SCZ > S 

W* = -67.90 

SCZ > S 

W* = -72.35 

ASD 
ASD > S 

W* = -13.02 

ASD > S 

W* = -9.51 

S > ASD 

W* = 21.66 

ASD > S 

W* = -10.51 

ASD > S 

W* = -36.66 

ASD > S 

W* = -41.64 

S > MDD (SCZ, ASD): Sampling-bias is larger than MDD (SCZ, ASD) factor, MDD (SCZ, ASD) > S: MDD (SCZ, ASD) factor is larger 
than sampling-bias 
* if W* = 2.4, then p = 0.05 after Bonferroni correction (6), n = 35,778 
UTO: University of Tokyo; KUT: Siemens TimTrio scanner at Kyoto University; ATT: Siemens TimTrio scanner at Advanced 
Telecommunications Research Institute International; ATV: Siemens Verio scanner at Advanced Telecommunications Research Institute 
International; SWA: Showa University; COI: Center of Innovation in Hiroshima University; MDD: major depressive disorder; SCZ: 
schizophrenia. 

 

 

 

 

 

 

 

Disorder factors 

Sampling bias 
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TABLE A.8 | Results of MDD prediction 

Training dataset 
Matthews 
correlation 

coefficient (MCC)

Diagnostic 
odds ratio 

(DOR)
F-value 

Area under 
the curve 

(AUC)
Accuracy Precision Sensitivity Specificity 

 Traveling-subject 0.1 - 0.07 0.74 0.7 0.04 0.65 0.7 
 ComBat 0.12 - 0.07 0.78 0.7 0.04 0.72 0.7 
 GLM 0.01 - 0.02 0.53 0.79 0.01 0.24 0.8 
 Adjusted GLM  0.03 - 0.04 0.61 0.56 0.02 0.57 0.56 
 Raw 0.12 - 0.07 0.77 0.72 0.04 0.69 0.72 

Independent 
cohort 

Matthews 
correlation 

coefficient (MCC) 

Diagnostic 
odds ratio 

(DOR) 
F-value 

Area under 
the curve 

(AUC) 
Accuracy Precision Sensitivity Specificity 

 Traveling-subject 0.35 5.09 0.61 0.73 0.65 0.50 0.80 0.57 
 ComBat 0.38 6.21 0.63 0.75 0.65 0.50 0.83 0.56 
 GLM 0.15 2.24 0.31 0.71 0.65 0.51 0.23 0.88 
 Adjusted GLM NA NA NA 0.63 0.65 NA 0 1 
 Raw 0.27 3.15 0.55 0.72 0.65 0.50 0.61 0.66 

MDD: major depressive disorder; GLM: general linear model 
TP: true positive, TN: true negative, FP: false positive, FN: false negative 

MCC ൌ
𝑇𝑃 ∗ 𝑇𝑁 െ 𝐹𝑃 ∗ 𝐹𝑁

ඥሺ𝑇𝑃 ൅ 𝐹𝑃ሻሺ𝑇𝑃 ൅ 𝐹𝑁ሻሺ𝑇𝑁 ൅ 𝐹𝑃ሻሺ𝑇𝑁 ൅ 𝐹𝑁ሻ
, 

DOR ൌ
𝑇𝑃 ∗ 𝑇𝑁
𝐹𝑃 ∗ 𝐹𝑁

, 

F value ൌ 2
precision ∗ sensitivity

precision ൅ recall
, precision ൌ

𝑇𝑃
𝑇𝑃 ൅ 𝐹𝑃

, sensitivity ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
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TABLE A.9 | All results for MDD prediction at each site 

Training 
dataset 

Area under the curve (AUC) Accuracy Sensitivity Specificity
Traveling- 

subject
ComBat GLM 

Adjusted 
GLM 

Raw
Traveling-

subject
ComBat GLM

Adjusted 
GLM 

Raw
Traveling- 

subject 
ComBat GLM

Adjusted 
GLM 

Raw
Traveling-

subject
ComBat GLM

Adjusted 
GLM

Raw 

 ATT - - - - - 0.77 0.68 0.76 0.99 0.9 - - - - - 0.77 0.68 0.76 0.99 0.9 

 ATV - - - - - 0.82 0.70 0.78 1 0.91 - - - - - 0.82 0.70 0.78 1 0.91 

 COI 0.74 0.71 0.64 0.5 0.69 0.66 0.67 0.84 0.15 0.49 0.67 0.64 0.26 0.99 0.79 0.66 0.67 0.94 0.01 0.44 

 HUH 0.64 0.87 0.52 0.55 0.59 0.51 0.77 0.81 0.87 0.34 0.68 0.80 0.18 0.14 0.85 0.5 0.77 0.84 0.9 0.31 

 HKH 0.47 0.72 0.48 0.56 0.54 0.47 0.71 0.79 0.24 0.44 0.59 0.65 0.17 0.78 0.59 0.47 0.71 0.8 0.22 0.44 

 KPM - - - - - 0.68 0.71 0.78 0.06 0.75 - - - - - 0.68 0.71 0.78 0.06 0.75 

 SWA - - - - - 0.74 0.65 0.77 0.99 0.9 - - - - - 0.74 0.65 0.77 0.99 0.9 

 KUT 0.83 0.81 0.6 0.49 0.72 0.76 0.76 0.83 0.8 0.82 0.7 0.73 0.36 0.18 0.48 0.77 0.76 0.83 0.8 0.82 

 UTO 0.71 0.68 0.58 0.54 0.66 0.72 0.65 0.8 0.05 0.74 0.55 0.61 0.27 1 0.41 0.72 0.65 0.81 0.04 0.75 

Independent 
cohort 

AUC Accuracy Sensitivity Specificity 

Traveling- 
subject

ComBat GLM 
Adjusted 

GLM 
Raw

Traveling-
subject

ComBat GLM
Adjusted 

GLM 
Raw

Traveling- 
subject 

ComBat GLM
Adjusted 

GLM 
Raw

Traveling-
subject

ComBat GLM
Adjusted 

GLM
Raw 

 HRC 0.73 0.76 0.64 0.74 0.73 0.54 0.68 0.8 0.8 0.47 0.83 0.75 0 0 0.83 0.47 0.66 1 1 0.38 

 UYA 0.76 0.74 0.74 0.7 0.78 0.68 0.65 0.61 0.61 0.7 0.76 0.82 0 0 0.57 0.62 0.55 1 1 0.79 

MDD: major depressive disorder; GLM: general linear model; UTO: University of Tokyo; HUH: Hiroshima University Hospital; KUT: 
Siemens TimTrio scanner at Kyoto University; ATT: Siemens TimTrio scanner at Advanced Telecommunications Research Institute 
International; ATV: Siemens Verio scanner at Advanced Telecommunications Research Institute International; SWA: Showa University; 
HKH: Hiroshima Kajikawa Hospital; COI: Center of Innovation in Hiroshima University; KPM: Kyoto Prefectural University of Medicine; 
HRC: Hiroshima Rehabilitation Center; UYA: Yamaguchi University. 
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TABLE A.10 | Results of SCZ prediction 

Training dataset 

Matthews 
correlation 
coefficient 

(MCC) 

Diagnostic 
odds ratio 

(DOR) 
F-value 

Area under the 
curve (AUC) 

Accuracy Precision Sensitivity Specificity 

 Traveling-subject 0.07 - 0.04 0.73 0.67 0.02 0.64 0.67 

 ComBat 0.06 - 0.03 0.69 0.74 0.02 0.52 0.74 

 GLM 0.02 - 0.01 0.58 0.78 0.01 0.32 0.78 
 Adjusted GLM 0.08 - 0.04 0.74 0.7 0.02 0.65 0.7 
 Raw 0.06 - 0.03 0.7 0.71 0.02 0.59 0.71 

Independent 
cohort 

Matthews 
correlation 
coefficient 

(MCC) 

Diagnostic 
odds ratio 

(DOR) 
F-value 

Area under the 
curve (AUC) 

Accuracy Precision Sensitivity Specificity 

 Traveling-subject 0.52 10.62 0.70 0.77 0.77 0.68 0.72 0.80 

 ComBat 0.40 6.90 0.57 0.81 0.73 0.71 0.47 0.89 

 GLM NA NA NA 0.80 0.63 NA 0 1 
 Adjusted GLM 0.4 9.07 0.52 0.81 0.73 0.78 0.39 0.93 
 Raw 0.47 10.24 0.62 0.80 0.76 0.76 0.53 0.9 

SCZ: schizophrenia; GLM: general linear model 
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TABLE A.11 | All results for SCZ prediction at each site 

Training 
dataset 

Area under the curve (AUC) Accuracy Sensitivity Specificity
Traveling- 

subject
ComBat GLM 

Adjusted
GLM 

Raw
Traveling-

subject 
ComBat GLM

Adjusted
GLM 

Raw
Traveling-

subject 
ComBat GLM

Adjusted
GLM 

Raw
Traveling-

subject 
ComBat GLM

Adjusted 
GLM 

Raw 

 ATT - - - - - 0.6 0.72 0.76 0.74 0.71 - - - - - 0.6 0.72 0.76 0.74 0.71 

 ATV - - - - - 0.7 0.73 0.76 0.78 0.74 - - - - - 0.7 0.73 0.76 0.78 0.74 

 COI - - - - - 0.74 0.77 0.75 0.81 0.78 - - - - - 0.74 0.77 0.75 0.81 0.78 

 HUH - - - - - 0.64 0.74 0.76 0.72 0.69 - - - - - 0.64 0.74 0.76 0.72 0.69 

 HKH - - - - - 0.6 0.75 0.74 0.76 0.75 - - - - - 0.6 0.75 0.74 0.76 0.75 

 KPM - - - - - 0.7 0.77 0.76 0.84 0.81 - - - - - 0.7 0.77 0.76 0.84 0.81 

 SWA 0.78 0.73 0.62 0.78 0.78 0.65 0.73 0.82 0.61 0.68 0.78 0.57 0.34 0.81 0.79 0.65 0.73 0.83 0.6 0.67 

 KUT 0.75 0.73 0.63 0.7 0.7 0.64 0.75 0.86 0.53 0.63 0.67 0.57 0.31 0.7 0.62 0.64 0.76 0.89 0.52 0.63 

 UTO 0.64 0.61 0.56 0.58 0.59 0.69 0.72 0.78 0.68 0.7 0.52 0.42 0.27 0.45 0.39 0.69 0.73 0.78 0.68 0.71 

Independen
t cohort 

AUC Accuracy Sensitivity Specificity 

Traveling- 
subject

ComBat GLM 
Adjusted

GLM 
Raw

Traveling-
subject 

ComBat GLM
Adjusted

GLM 
Raw

Traveling-
subject 

ComBat GLM
Adjusted

GLM 
Raw

Traveling-
subject 

ComBat GLM
Adjusted 

GLM 
Raw 

 KTT 0.77 0.81 0.8 0.81 0.8 0.77 0.73 0.63 0.73 0.76 0.72 0.47 0 0.39 0.53 0.8 0.89 1 0.93 0.9 

SCZ: schizophrenia; GLM: general linear model; UTO: University of Tokyo; HUH: Hiroshima University Hospital; KUT: Siemens 
TimTrio scanner at Kyoto University; ATT: Siemens TimTrio scanner at Advanced Telecommunications Research Institute International; 
ATV: Siemens Verio scanner at Advanced Telecommunications Research Institute International; SWA: Showa University; HKH: Hiroshima 
Kajikawa Hospital; COI: Center of Innovation in Hiroshima University; KPM: Kyoto Prefectural University of Medicine; KTT: Siemens 
Trio scanner at Kyoto University.  
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TABLE A.12 | Data availability statement 

Site 
Number of 

subjects 
Type of data 
availablity 

ATR TimTrio (ATT) 31 3 

ATR Verio (ATV) 77 3 

Hiroshima University Hospital (HUH) 123 1 

Hiroshima Kajikawa Hospital (HKH) 52 1 

Center of Innovation in Hiroshima University (COI) 48 1 

Kyoto Prefectural University of Medicine (KPM) 117 4 

Kyoto University (KUT) 66 2 

Showa University (SWA) 101 2 

University of Tokyo (UTO) 190 2 

Traveling subject 9 3 

Summary 814

Note: Type of data availability 

1) freely available without restriction allowing commercial re-use 

2) freely available but not allowing commercial re-use 

3) available after registration to our record but not allowing commercial re-use 

4) available only to our research group 
 

 



 

Appendix B 

Appendix of Chapter 4 

B.1 Other behavioral metrics in behavioral tasks 
In previous studies, Kelly et al. (2008) showed the relationship between the functional 
connectivity (FC) of the default mode network (DMN) and task positive network (TPN) 
and the reaction time coefficient of variation (standard deviation divided by the mean) in 
the Flanker task (Kelly et al., 2008), and Liu et al. (2015) showed the relationship 
between the FC of DMN and Stroop effect measured by the difference in mean reaction 
time between conditions (mean reaction time of incongruent condition  mean reaction 
time of congruent condition) (Liu et al., 2015). Therefore, we investigated the change in 
these behavioral metrics from pre- to post-neurofeedback training. Furthermore, we also 
investigated the changes in error rate in all tasks. 

We applied a mixed-effects model to each metric in the same manner as in our 
analysis of mean reaction times (main text, section 3.4). We did not find any interaction 
effect between group and day in any metric (Table A.1). From these results, we could not 
conclude that the error rate, the coefficient of variation in the Flanker task, or the Stroop 
effect changed from pre- to post-neurofeedback training in any group. However, the 
direction of change in coefficient of variation is consistent with previous studies. The 
coefficient of variation increased from 0.084 ± 0.0084 (mean ± 95% confidence interval) 
for pre-neurofeedback training to 0.087 ± 0.010 for post-neurofeedback training in the 
“increased FC” group and decreased from 0.097 ± 0.020 for pre- to 0.87 ± 0.012 for post- 
neurofeedback training in the “decreased FC” group.  

B.2 Difference in total score between subject 
groups 

The total score during the training was associated with monetary reward received by the 
subjects. Thus, the difference in the score between the groups may have caused 
differences in motivation for involvement in the experiment and thus performance in the 
cognitive task. Therefore, we compared the difference in total score between the groups 
using a two-sample t-test. There was no difference between the groups (t = 0.68, p = 0.50). 
The total score averaged across subjects was 14379 ± 809 (mean ± 95% confidence 
interval) for the “increased FC” group and 13860 ± 1448 for the “decreased FC” group. 
Thus, the difference in score was only 3.7% of the average score across the groups. This 
result indicates that there was no significant difference in the amount of reward between 
the groups and little possibility that the difference in score caused different changes in 
cognitive performance. 
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B.3 Strategies adopted by subjects to increase 
their score 

Because the difference in subjects’ strategies for getting a high score may have affected 
the cognitive task performance, we examined whether the strategies differed between the 
groups. We conducted a post-experiment questionnaire with 25 of the 30 subjects 
(“increased FC” group: n = 13; “decreased FC” group: n = 12). The experimenter told 
subjects, “Please let me know how you imagined the finger tapping during neurofeedback 
training. Also, if you tried any strategy other than the one that I instructed, please let me 
know what you did.” The free answers of the individual subjects are listed in Table A.2. 

We tabulated their answers with respect to five categories: 1) modality of imagery 
(items: kinesthetic*, visual, or both), 2) moved finger (right*, left, or both), 3) movement 
sequence (random* or fixed), 4) presence of an object (present or absent*), and 5) 
presence of a rhythm (present or absent*). Our instruction was to imagine tapping the 
thumbs with the fingers randomly as fast as possible and to produce kinesthetic imagery 
related to tapping. Thus, the items marked with asterisks (default items) should be 
mentioned if subjects had followed our instructions and if they made any comment on 
each category. We assumed that subjects adopted a strategy including the default items 
when they did not make a comment on the category (Table A.3). We counted the numbers 
of items across subjects and compared the numbers between the groups. We calculated 
the p value as the probability that these results would have been obtained if we had 
separated subjects randomly. As a result, there were no significant differences in the 
numbers between the groups (Table A.4). These results indicate that there was no 
significant difference in the strategy adopted for increasing the score between the groups. 

B.4 Regional brain activity during the training 
We investigated the daily changes in the regional brain activity in two target ROIs (lM1 
and lLP) during neurofeedback training in our offline analysis in the same manner as in 
our analysis of FC between the two ROIs.  

We used the mean BOLD signals in each ROI instead of the connectivity. We 
averaged the signals in seven volumes during a motor imagery period in each trial (the 
first volume was discarded and one volume from the feedback period was added as 
compensation for hemodynamic delay following the online calculation of the feedback 
score). In total, each subject had 280 mean BOLD signals in each ROI (BASE = 40, 
DAY1–DAY4 = 60 * 4). Then, to compare the daily changes in mean BOLD signals 
between the two groups, we applied a mixed-effects model to the mean BOLD signals in 
each ROI.  

As a result, we found a significant interaction effect in lLP (DAY: t = 4.87, p = 1.1 × 
10-6; Group: t = 0.17, p = 0.86; DAY × Group: t = -2.83, p = 0.0045) but not in lM1 
(DAY: t = -4.41, p = 1.0 × 10-5; Group: t = 0.49, p = 0.62; DAY × Group: t = 0.17, p = 
0.86). The significant interaction suggests that the change in the regional brain activity in 
lLP across days was different between the groups. 
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B.5 Relationship between online score and 
activity in each ROI 

To investigate the relationship between the online score and regional activities in the two 
target ROIs, we calculated the correlation between the scores and activity averaged within 
each ROI using the offline data for each group. Because each subject underwent 280 trials 
(BASE = 40, DAY1–DAY4 = 60 × 4), we used 280 × 18 pairs of score and activity in 
each ROI to calculate the correlation in the “increased FC” group and 280 × 12 pairs in 
the “decreased FC” group. 

As a result, we did not find any significant correlation between the feedback 
score and the regional brain activity in lLP (“increased FC” group: r = 0.016, p = 0.23; 
“decreased FC” group: r = -0.01, p = 0.54) or in lM1 (“increased FC” group: r = 0.0071, 
p = 0.61; “decreased FC” group: r = 0.028, p = 0.10). This result indicates that subjects 
could not get information about regional brain activities in either of the target ROIs from 
the online score. 

B.6 Effect of the initial functional connectivity on 
training 

To investigate whether the differential changes in FC and cognitive performances 
between the two groups were induced by the difference in initial resting-state FC, we 
examined whether 1) the average initial resting-state FC of lM1 and lLP in this study was 
different from that in a healthy population and 2) the observed differences in changes in 
FC during training and cognitive performances were induced by the differences in the 
initial FC during training between the two groups.  

Average resting-state FC in a healthy population was estimated using another data 
set collected in our laboratory (232 healthy subjects [108 women]; mean age, 42.7 ± 15.1 
years; age range, 20–69 years). In order to match subjects’ ages to those in this study, we 
only included subjects aged ≤ 30 years (61 healthy subjects [27 women]; mean age, 23.4 
± 3.1 years; age range, 20–30 years) in the dataset. We calculated the average resting-state 
FC of lM1 and lLP in this data set and compared it to the average resting-state FC in this 
study. As a result, the average resting-state FC of lM1 and lLP in this study (mean ± SD = 
-0.0568 ± 0.1936) was not different from that in the healthy population (mean ± SD = 
-0.0605 ± 0.228). 

Further, we investigated whether the differences in changes in FC during training 
and cognitive performances were affected by the difference in initial FC during training 
between the two groups. First, we defined the initial FC as that measured on the first day 
(BASE) and confirmed that the average was not different between the two groups (t-test, t 
= 0.20, p = 0.84). This suggests that the initial FC probably did not explain the differential 
changes between the two groups.  

Moreover, we conducted correlation analyses between an individual’s initial FC 
and the effect of training in the following two aspects. In the first aspect, we tested 
whether the individual’s initial FC was correlated with the slope of FC across training 
days. We used a linear model to assess FC across training days for each subject and used 



116 |  Appendix B. Appendix of Chapter 4 

 

the slope as an index of individual differences in training effects. As a result, we did not 
find any significant correlation between an individual’s initial FC and the effect of 
training (“increased FC” group: r = -0.13, p = 0.58; “decreased FC” group: r = -0.068, p = 
0.83; all subjects: r = 0.11, p = 0.55). These results indicate that the subject-specific initial 
FC could not affect the effect of neurofeedback training.  

In the second aspect, we investigated the relationship between an individual’s 
initial FC and the changes in reaction time. As a result, we did not find any significant 
correlations (“increased FC” group: PVT, r = -0.14, p = 0.63; EFT congruent, r = 0.30, p 
= 0.30; CWST congruent, r = -0.056, p = 0.85; “decreased FC” group: PVT, r = -0.29, p 
= 0.37; EFT congruent, r = -0.22, p = 0.53; CWST congruent, r = -0.43, p = 0.18; all 
subjects: PVT, r = -0.16, p = 0.43; EFT congruent, r = -0.28, p = 0.18; CWST congruent, 
r = -0.26, p = 0.21). This result also indicates that subject-specific initial FC cannot 
explain the differential changes in reaction time between the two groups. 

B.7 Moderation/mediation analysis 
We examined the associations among 1) the changes in FC of lM1-lLP during 
neurofeedback training, 2) the changes in resting-state FC of MVN-DMN, and 3) the 
changes in cognitive performance of the three tasks, in which the interaction between 
group and day yielded significant effects. We analyzed data of the “increased FC” group, 
in which a significant change in resting-state connectivity of MVN-DMN was observed (t 
= 2.93, p = 0.0045; see 4.2.3 “Change in resting-state functional connectivity”). First, 
using a linear regression, we examined the effect of the change in FC during training on 
the changes in reaction time of the three tasks. We found a significant effect on the 
change in reaction time of CWST congruent (β = -1.42, SE = 0.58, t = -2.42, p = 0.033, 
adjusted R2 = 0.28) but not on PVT and EFT congruent (PVT: β = -0.091, SE = 0.37, t = 
-0.24, p = 0.81, adjusted R2 = 0.084; EFT congruent: β = 0.026, SE = 0.14, t = 0.18, p = 
0.85, adjusted R2 = −0.087; Figure B.1C). Second, we examined the effects of the change 
in FC during training on the change in resting-state FC. We did not find any significant 
effect (β = -0.11, SE = 0.54, t = -0.20, p = 0.84, adjusted R2 = 0.086; Figure B.1A). Finally, 
we examined the effects of the change in resting-state FC on the changes in reaction time 
of the three tasks. We did not find any significant effects (PVT: β = 0.33, SE = 0.18, t = 
1.83, p = 0.094, adjusted R2 = 0.16; EFT congruent: β = 0.11, SE = 0.069, t = 1.68, p = 
0.12, adjusted R2 = 0.13; CWST congruent: β = 0.15, SE = 0.39, t = 0.38, p = 0.70, 
adjusted R2 = 0.076; Figure B.1B). Additionally, a regression analysis was performed 
while including both the change in FC during training and the change in resting-state FC 
in the model. We found a significant effect on the change in reaction time of CWST 
congruent (β = -1.41, SE = 0.61, t = -2.29, p = 0.044, adjusted R2 = 0.22) but not on PVT 
and EFT congruent (PVT: β = -0.055, SE = 0.34, t = -0.16, p = 0.87, adjusted R2 = 0.082; 
EFT congruent: β = 0.039, SE = 0.13, t = 0.29, p = 0.77, adjusted R2 = 0.053; Figure 
B.1C’).  
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FIGURE B.1 | (a) Predictor is the change in functional connectivity between lM1-lLP during neurofeedback training. (b) Mediator is the 

change in resting-state functional connectivity between MVN-DMN. (c) Outcomes are the changes in cognitive performances. c denotes the 

relationship between predictor and outcomes, and c’ denotes the same relationship after controlling for the effect of the mediator. 
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TABLE B.1 | All results of the cognitive performances tasks 

 Pre-training
Two-sample t-test for 

pre-training (Inc. vs. Dec.)
Post-training 

Interaction effect of 
day and group 

Main effect of day 

Reaction time (s) Inc. Dec. t-value p-value Inc. Dec. t-value p-value
Inc. Dec. 

t-value p-value t-value p-value 

 Vigilance 0.39 0.43 -1.28 0.21 0.42 0.42 -2.72 0.0065 -3.85 0.00013 0.12 0.90 

 Flanker congruent 0.38 0.39 -0.77 0.44 0.39 0.40 2.41 0.016 0.58 0.56 -2.52 0.011 

 Flanker incongruent 0.48 0.49 -0.45 0.65 0.47 0.48 1.18 0.23 4.49 <0.0001 1.87 0.060 

 Stroop congruent 0.69 0.73 -0.56 0.57 0.60 0.59 -2.67 0.0075 6.93 <0.0001 8.53 <0.0001 

 Stroop incongruent 0.96 1.01 -0.44 0.66 0.80 0.87 -0.50 0.61 6.67 <0.0001 6.25 <0.0001 

Error rate (%)     

 Vigilance 5.41 4.00 1.39 0.17 5.83 5.50 1.20 0.24 -0.59 0.55 -1.78 0.10 

 Flanker congruent 3.99 3.95 0.046 0.96 4.16 4.37 0.43 0.66 -0.24 0.80 -0.80 0.43 

 Flanker incongruent 7.29 9.16 -0.79 0.43 6.07 8.12 0.18 0.85 1.45 0.17 0.55 0.59 

 Stroop congruent 6.59 7.29 -0.59 0.55 6.42 6.25 -0.55 0.58 0.20 0.83 1.00 0.34 

 Stroop incongruent 18.4 22.2 -1.02 0.31 13.5 15.8 -0.13 0.89 2.02 0.065 1.89 0.087 

Coefficient of variation     

 Flanker congruent 0.081 0.090 -1.04 0.30 0.085 0.094 -0.049 0.96 0.68 0.50 0.49 0.63 

 Flanker incongruent 0.084 0.97 -1.31 0.21 0.087 0.87 -1.22 0.23 0.44 0.66 -1.13 0.28 

Stroop effect (s)     

 Stroop 0.28 0.30 -0.22 0.82 0.23 0.27 0.34 0.73 -1.48 0.16 -0.61 0.55 

Inc., “increased functional connectivity” group; Dec., “decreased functional connectivity” group 
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TABLE B.2 | Free answers given by individual subjects 

Participants
Strategy 

“Increased functional connectivity” group 

1 I performed kinesthetic motor imagery. 
2 I visualized three-dimensional images. 

3 I performed kinesthetic motor imagery. I imagined the haptic sensation of two fingers touching. 

4 I visualized an image while trying to alter the location to which the image was projected. 
5 I performed motor imagery, and the imagined movement was rhythmic. 
6 I performed kinesthetic motor imagery of my hand. 
7 I vividly imagined my hand and fingers moving slowly. 
8 I imagined moving my fingers, as well as the movements of my hands and feet as if I were walking. 

9 
I imagined the thumb rapidly tapping with every other finger, from index to little finger, for both hands. I continued to look at the fixation point without 
any thought during rest. 

10 I tried to imagine moving hands without making actual movements. 
11 I imagined running at the same time I imagined the thumb tapping with every other finger, from index to little finger, for both hands. 
12 I imagined tapping the thumb with every other finger, randomly. I also imagined tapping a keyboard or buttons on a calculator, and scratching objects. 

13 
I performed kinesthetic motor imagery of my right hand and visualized it in front of my face. I imagined the thumb tapping with every other finger, from 
index to little finger, and then backwards. 

 “Decreased functional connectivity” group 

14 
I performed motor imagery of all fingers, excluding the thumb, and the imagined movement was rhythmic. I performed kinesthetic motor imagery of my 
right hand. 

15 I performed kinesthetic and visual motor imagery. 
16 I performed kinesthetic motor imagery of my right hand. 
17 I performed visual motor imagery. I imagined the thumb tapping with every other finger precisely. 
18 I kinesthetically imagined the thumb having prolonged contact with every other finger. I also imagined the same movement at a higher speed. 
19 I performed motor imagery, without particularly focusing on my hand. 
20 I imagined tapping my thumb with my little finger. 
21 I performed motor imagery and the imagined movement was in sync with the rhythm of music in my head. 

22 
I imagined the thumb tapping with every other finger, from index to little finger, mainly with the right hand. Occasionally, the order of tapping was 
random. 

23 

At first, I imagined the movement of either the right or the left hand and discovered that using the left hand led to a higher score. From then on, I kept 
using the left hand. I shaped my right hand as if it formed the Japanese character Tsu (つ, similar to alphabet ‘C’), and imagined the thumb tapping with 
every other finger, from index to little finger. I also performed motor imagery according to the instructions. I also imagined the same movement, while 
shaping my hand as if holding a hamburger. I again imagined the same movement, while holding my hand with only the thumb sticking out. 

24 I performed motor imagery using my right hand, which is my dominant hand. I also visualized my hand from different angles. 

25 I performed motor imagery using my right hand. 
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TABLE B.3 | Subjects’ answers with respect to five categories 

Participants 
Image Hand Sequence Object Rhythm 

“Increased functional connectivity” group 

1 Kinesthetic * * * * 
2 Visual * * * * 
3 Kinesthetic * * * * 
4 Visual * * * * 
5 * * * * Present 
6 Kinesthetic * * * * 
7 * * * * Present 
8 * * * * * 
9 * Both Fixed * * 

10 Kinesthetic * * * * 
11 * Both Fixed * * 
12 * * Random Present * 
13 Kinesthetic Right Fixed * * 

 “Decreased functional connectivity” group 
14 Kinesthetic Right * * Present 
15 Both * * * * 
16 Kinesthetic Right * * * 
17 Visual * * * * 
18 Kinesthetic * * * * 
19 * * * * * 
20 * * Fixed * * 
21 * * * * Present 
22 * Right Fixed * * 
23 * Both * * * 
24 Visual Right * * * 
25 * Right * * * 

* When subjects made no comments on image type, hand, sequence or object, default items were filled in each cell (image: kinesthetic, hand: right, order: 
absent, object: absent, rhythm: absent)  
 
 
 



Appendix TABLE B.4       | 121 
 

 

TABLE B.4 | The number of items in free answers 

Summary 
Image Hand Sequence Object Rhythm 

Kinesthetic Visual Both Right Left Both Fixed Random Present Absent Present Absent 

Increase 11 2 0 11 0 2 3 10 1 12 2 11 

Decrease 9 2 1 11 0 1 2 10 0 12 2 10 

Probability p = 0.19 p = 0.40 p = 0.35 p = 0.52 p = 0.40 
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