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Chapter 1

General introduction

Currently, complex fluid flow in engineering applications can be analyzed using Compu-

tational Fluid Dynamics (CFD) through the use of commercial or open-source software.

Additionally, due to steady progress in CPU performance, structural optimization approaches

have become more attractive and realistic in engineering design applications. For the design

of highly efficient configurations of fluidic devices, a numerical approach using structural

optimization is considered most useful for exploring the most promising designs among a

number of design candidates. In particular, the structures of fluidic devices such as switches,

amplifiers, and oscillators, are often composed of complicated flow channel layouts which

have multi-terminal and number of inlets and outlets. For the design of such kind of fluidic

devices, the achievement of the designated flow rate on each flow channels or outlets is the

important design issue in the design process.

With respect to optimization approaches, especially based on the adjoint method, after

the pioneering work of Pironneau [60], wide-ranging research for fluid dynamics problems

has been conducted [61, 56, 84, 85, 16]. A shape optimization approach is most often applied

in aerodynamic optimization problems, such as the optimal shape design of NACA airfoils

[37], turbine blades [71], and aircraft wings [16], since small modifications in shape have
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Sizing optimization Shape optimization Topology optimization

Fig. 1.1 Classification of structural optimization.

sufficient impact on the improvement of a performance, e.g., when drag minimization is an

objective.

Regarding to the optimization methods, as shown in Fig. 1.1, the topology optimization

approach [12] is an attractive optimization method that offers certain advantages compared

with sizing and shape optimization methods, due to its superior flexibility with respect to

configuration changes, and allowance of the creation and disappearance of holes during the

optimization, which can lead to innovative optimal configurations.

Concerning topology optimization methods applied to fluid problems, Borrvall and

Petersson first proposed a method for minimum power dissipation under Stokes flow [14],

and this method was later extended to moderate Reynolds number (<1000) laminar flow

regimes [31, 51, 30, 83, 24, 1, 20, 44, 80].

In particular, concerning the flow rate constraint for a topology optimization problem,

Gersborg-Hansen et al. [30] addressed a topology optimization problem that included an

outflow rate constraint under Stokes flow, and obtained an appropriate maximum penalization

value corresponding to an artificial source term that was added to the governing equation

for the fluid. Aage et al. [1] later extended this approach to large scale 2D and 3D problems.

Deng et al. [20] dealt with unsteady incompressible Navier-Stokes flow for the minimization

of viscous energy dissipation under an outflow rate constraint within a specific time interval.

Liu et al. [44] used the augmented Lagrangian method [34, 62] to replace a flow rate con-

strained optimization problem under steady-state incompressible Navier-Stokes flow with an

unconstrained problem. In their method, the Lagrange multipliers were calculated by solving
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additional linearized Navier-Stokes equations, separately from the optimization calculation.

Moreover, most of these studies have been on basic topics, for example, examination the

formulation or implementation of a topology optimization method for fluids; studies on the

development of design methods for actual microchannel devices are relatively scarce.

By the way, from an engineering point of view, in addition to the laminar flow regimes,

fluid behavior can be assumed to be turbulent flow, except in microscale fluid machinery

such as a microelectromechanical systems (MEMS). However, there has been relatively little

research conducted on topology optimization for turbulent flow regimes, compared with the

prevalence of shape optimization approaches.

In the conventional topology optimization approaches[57, 38, 82, 23] based on the pio-

neering work by Borrvall and Petersson[14], employing the so-called Brinkman penalization

method, the fixed design domain is assumed to be a porous medium by introducing the

Darcy force term as an external source term in the Navier-Stokes equation, where the local

porosities are considered as design variables. When considering the physical and numerical

characteristics in turbulent flows, the imposition of the wall function, which express the

interpolated velocity profile near the wall based on empirical laws, requires clear boundaries

in the expression of the fluid-solid interface in the topology optimization. However, in those

conventional approaches, the fluid-solid interface lacks clear boundaries because the interface

is expressed as a porous medium. Also, when the Brinkman penalization method is used, the

no-slip boundary condition can not be explicitly applied to the fluid-solid interface because

the porous medium by nature has an indistinct interface.

To fundamentally overcome the problem of the imprecise expression of the fluid-solid

interface, there are two important requirements: 1) explicit imposition of the no-slip boundary

condition on the interface during the topology optimization process, and 2) a method that

expresses the fluid-solid interface with clear boundaries.
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Corresponding to the first requirement, an immersed boundary method (IBM) [59, 58] is

a popular technique used in CFD analyses to explicitly impose the no-slip boundary condition

by adding a body force to the Navier-Stokes equation as a reaction force from an object,

using a fixed Cartesian grid.

For clear expression of the fluid-solid interface, the second critical requirement for precise

evaluation of the fluid behavior near the wall under turbulent flow, a level set method is

attractive. Following the basic methodology for tracking fronts and free boundaries proposed

by Osher and Sethian [52], a level set method proposed for structural optimization [77, 3]

enjoyed wide use for structural topology optimization problems, along with the SIMP method.

In this method, the design domain is fundamentally free of grayscales because structural

boundaries are represented as the iso-surface of a scalar function, the level set function (LSF).

In a previous study of a level set-based topology optimization method using the IBM,

Kreissl et al. [39] proposed a topology optimization method for a laminar flow problem using

an XFEM formulation of the incompressible Navier-Stokes equations, without employing

the Brinkman approach. In their method, the no-slip boundary condition along the fluid-solid

interface is enforced with a stabilized Lagrange multiplier method. Accordingly, the use of

the XFEM inhibits the unrealistic flow penetration through thin walls that can occur when

applying Brinkman penalization.

The outline of this thesis is as follows:

In Chapter 2, to develop an energy-efficient structure for MEMS scale fluidic device,

we apply a topology optimization method to an optimal design problem for a steady state

incompressible viscous flow. We use a level set-based topology optimization method in-

corporating the concept of the phase field method so that clear boundaries between the

solid and fluid domains are expressed in the optimal configurations. To define the topology

optimization problem for a fluid regime, the expressions of the primary and adjoint problems

are formulated concretely, to minimize the total potential energy of fluids. Moreover, to
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ensure the intended design outflow rate at a designated outlet, the optimization problem

includes an outflow rate inequality constraint. To deal with the flow rate constraint, we

propose a simple way to determine the Lagrange multiplier, which need not to be obtained

by additional calculations during the optimization process. Following the concept of the

standard adjoint variable method, a stable optimization process that satisfies the outflow rate

inequality constraint is achieved. Two numerical examples, one for two-terminal and the

other for multi-terminal flow, are provided to demonstrate the usefulness of the proposed

level set-based topology optimization method.

In Chapter 3, we propose an optimal design method for plate-type microchannel reactor

manifolds, based on the topology optimization method considering the flow rate constraints

constructed in Chapter 2. Here, we implement a flow rate inequality constraint, which

constrains the flow rate deviation in each target microchannel to achieve an acceptable degree

of flow uniformity. We provide the validity of our proposed optimization method applying the

manifold design problems for Z- and U-type microchannel reactors as numerical examples.

In Chapter 4, we propose a level set-based topology optimization method for duct flow

problems considering turbulent flow without using the Brinkman penalization approach.

We apply a RANS model based on the high-Reynolds-number treatment and include the

wall function in the optimization problem, and introduce two-equation turbulence models,

k-ϵ and k-ω, in this thesis. In the proposed topology optimization process, owing to the

introduction of a LSF, we precisely and explicitly impose a no-slip boundary condition

along the fluid-solid interface in the fixed design domain, using the IBM, a much different

approach than the previous Brinkman penalization method in which the fluid-solid interface

is expressed as a porosity. Finally, we present numerical examples to verify the utility of our

proposed optimization method.

The last Chapter of this thesis provides a general conclusion.





Chapter 2

Topology optimization for laminar flow

considering outflow rate constraints

2.1 Introduction

The aim of this Chapter is to construct the level set-based topology optimization method

considering out flow rate inequality constraints to minimize the total potential energy of the

laminar flows.

Historically, fluidic devices such as switches, amplifiers, and oscillators, have an advan-

tage, compared with electronic devices, in terms of maintenance-free operation and operating

life. Therefore, prior to the great progress in electronic technologies that has occurred during

the past several decades, the structure and function of fluidic devices were the subject of

extensive research. In particular, the structures of these fluidic devices are often composed of

complicated flow channel layouts. Recently, fluidic devices are again attracting significant

attention, stimulated by progress in the development of MEMS technologies.

In this Chapter, to develop an energy-efficient structure for a MEMS-scale fluidic device,

we apply a topology optimization method to an optimal design problem for a steady state

incompressible viscous flow field. We also introduce a level set-based topology optimization
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method incorporating the concept of the phase field method for the topology optimization

so that clear boundaries between the solid and fluid domains are expressed in the optimal

configurations. To define the topology optimization problem for a fluid regime, the ex-

pressions of the primary and adjoint problems are formulated concretely, to minimize the

total potential energy of fluids. Moreover, to ensure the intended design outflow rate at a

designated outlet, the optimization problem includes an outflow rate inequality constraint.

Following the concept of the standard adjoint variable method, a stable optimization process

that satisfies the outflow rate inequality constraint is achieved. Two numerical examples,

one for two-terminal and the other for multi-terminal flow, are provided to demonstrate the

usefulness of the proposed level set-based topology optimization method.

2.2 Topology optimization method

Topology optimization methods [12] can be employed as an alternative to size and shape

optimization methods, and offer superior flexibility for the creation of innovative structural

configurations of the microchannel reactors because changes in both the shape and the

topology of the target structure can be allowed. Currently, topology optimization methods are

widely applied to a variety of structural optimization problems such as stiffness maximization

problems [72, 3], vibration problems [21, 45], optimum design problems for compliant

mechanisms [65, 50], and thermal problems [15, 47].

The basic concept of topology optimization is the extension of a design domain to a fixed

design domain and the replacement of a structural optimization problem with a material

distribution problem, using a characteristic function. The density approach, also called the

solid isotropic material with penalization (SIMP) method [13], is widely used for solving

topology optimization problems. The basic idea of the density approach is to introduce a

fictitious isotropic material whose elasticity tensor is assumed to be a function of penalized

material density. However, in the density approach, the existence of intermediate material
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density, the so-called grayscales, are essentially allowed in the fixed design domain. From

an engineering standpoint, since the grayscales which can be regarded as a porous material

in the physical sense are difficult to manufacture and may be infeasible, it is necessary to

introduce a filtering technique, e.g., [66], to remove the grayscales.

Level set method for structural optimization [77, 3] is an another popular approach in the

field of structural optimization, since Osher and Sethian [52] proposed a basic methodology

for tracking fronts and free boundaries. In this method, since the structural boundaries are

represented as the iso-surface of a scalar function called level set function, the design domain

is essentially grayscale-free. However, conventional level set-based approaches are classified

as shape optimization methods because their basic idea is that an optimal configuration is

obtained by moving the structural boundaries, which are expressed using the iso-surface

of level set function and are evolved by solving a Hamilton-Jacobi equation. In particular,

Otomori et al. [54] mentioned that when an advection equation is used for updating the

level set function, the generation of new hole boundaries can occur when the boundary

of an existing hole is pinched off during advection, and this situation can easily occur in

three-dimensional problems. As a result, the obtained optimal configurations are dependent

on the initial configuration settings. To overcome this dependency and allow explicit creation

of new holes inside the fixed design domain during the optimization process, Allaire et al.

[2] proposed a methodology based on the concept of the bubble method [27] incorporating

topological derivatives [68]. Yamada et al. [81] have recently proposed a level set-based

approach that uses a topological derivative and a reaction-diffusion equation, whereas the

conventional level set-based approach uses a shape derivative and the advection equation for

evolving the level set function. The advantage of Yamada et al.’s method is that not only the

topological changes are allowed during the optimization process but also it is unnecessary to

conduct a reinitialization treatment, which is typically required conventional approaches to

ensure accuracy when solving the Hamilton-Jacobi equation.
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In this thesis, we construct the topology optimization method for fluid problems based on

the level set-based boundary expression proposed by Yamada et al. [81].

2.3 Level set-based topology optimization method

Here, we introduce the level-set based topology optimization method used in this thesis. The

basic concept in topology optimization is composed of the definition of the fixed design

domain D and the introduction of the characteristic function χΩ(xxx) as described below.

χΩ(xxx) =


1 if xxx ∈Ω

0 if xxx ∈ D \Ω
(2.1)

where xxx is the position of the arbitrary nodal point in the fixed design domain D. The intro-

duction of the characteristic function χΩ(xxx) means that the optimization problem is replaced

as the material distribution problem in the fixed design D which includes the domain Ω to

be optimal domain. However, as long as using this definition of the characteristic function

above, the optimization problem could be ill-posed problem, because the characteristic

function χΩ(xxx) is allowed to be a discontinuous value wherever in Ω. In order to overcome

this problem, some kind of regularization method should be introduced. In this thesis, the

regularization method based on the concept of phase field method is introduced. At first of it,

as shown in Fig. 2.1, the level-set functional is defined below.



0 < ϕ (xxx) ≤ 1 for ∀xxx ∈Ω \∂Ω

ϕ (xxx) = 0 for ∀xxx ∈ ∂Ω

−1 ≤ ϕ (xxx) < 0 for ∀xxx ∈ D \Ω

(2.2)
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Then, the characteristic function χΩ(ϕ) is re-defined regarding it as the level-set functional,

χϕ(ϕ) =


1 if ϕ ≥ 0

0 if ϕ < 0
(2.3)

By introduction of this definition, the arbitrary topology in the fixed design domain D can be

represented by the level-set functional.

( )yx,φ

0

x

y

Ω
D\Ω

Ω∂

1

Fig. 2.1 Fixed design domain D and level set function ϕ

By using above shape representation method in level-set functional, the optimization

problem can be represented by using the objective functional J and the constraint functional

G like below.

inf
ϕ

J (Ω (ϕ)) =
∫

D
j (xxx)χϕdD (2.4)

subject to G (Ω (ϕ)) =
∫

D
g (xxx)χϕdD−Gmax ≤ 0 (2.5)
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where Gmax is the upper limit of
∫

D g (xxx)χϕdD.

The level set function that satisfies the Karush-Kuhn-Tucker (KKT) conditions is a

candidate solution for the optimal configuration. However, since it is not easy to find such

solutions directly, we introduce a fictitious time, t, and then update the level set function ϕ

using a convergence calculation of a time evolution equation. Since the level set function ϕ

is assumed to be driven in proportion to the gradient of the augmented objective functional,

the following time evolution equation can be derived [81]:

∂ϕ

∂t
= −KJ̄′, (2.6)

where K > 0 is a positive coefficient, and J̄′ represents the gradient of the augmented objective

functional J̄, which is defined as follows.

J̄ = J+λG, (2.7)

where λ is a Lagrange undetermined multiplier.

Next, since the smoothness of the level set function, updated using Eq. (2.6), may not

be preserved during the optimization process, a regularization term is introduced to the

right-hand side of Eq. (2.6), as follows, to regularize of the optimization problem.

∂ϕ

∂t
= −K

(
J̄′−τ∇2ϕ

)
. (2.8)

Since the regularization term in the above equation is expressed as a diffusion term, ∇2ϕ,

Eq. (2.8) is a reaction-diffusion equation, and this term ensures the smoothness of the level

set function in this method. Furthermore, since the degree of diffusivity can be controlled

by setting the regularization parameter τ to a particular value, the geometric complexity of

the obtained configuration can be qualitatively controlled. In this thesis, the distribution



2.4 Topology optimization of fluid problem 13

of the level set function in the fixed design domain can be obtained by solving the above

reaction diffusion equation. Due to introduction of this kind of regularization method, we can

get the optimal configuration without grayscales in contrast with the conventional topology

optimization method using the variable as the regularized density. Comprehensive literature

concerning structural topology optimization based on level set methods is reviewed in [22].

2.4 Topology optimization of fluid problem

2.4.1 Governing equations

The time-independent behavior of the fluid can be described using the steady-state incom-

pressible Navier-Stokes and continuity equations, as follows.

(uuu · ∇)uuu+∇p−
1

Re
∇2uuu− fff = 0 (2.9)

−∇ ·uuu = 0, (2.10)

where uuu is velocity vector of the fluid, p is the pressure, and all variables in Eqs. (2.9)

and (2.10) are normalized using the characteristic length L as the channel inlet length, the

characteristic flow velocity U as the mean velocity at the channel inlet, the reference pressure

p0 at the channel outlet, and the fluid density ρ, as follows.

uuu∗ =
uuu
U
, p∗ =

p− p0

ρU2 , xxx∗ =
x
L

(2.11)

And in this thesis, the normalized variables are simply represented by uuu, p instead of uuu∗,

p∗. Furthermore, in Eq (2.9), fff is the source term and Re is the Reynolds number which is
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defined as,

Re =
ρLU
µ

, (2.12)

where µ is a coefficient of molecular viscosity.

Regarding as boundary conditions, the prescribed flow inlet velocity at inlet boundary, Γin,

and a no-slip condition at wall boundary, Γwall, as the Dirichlet condition, and the Neumann

condition for pressure at outlet boundary, Γout, are assumed in this thesis:

uuu = uuuin on Γin (2.13)[
−pI+

1
Re

{
∇uuu+ (∇uuu)T

}]
·nnn = 0 on Γout (2.14)

uuu = 0 on Γwall (2.15)

where I is the identity matrix.

2.4.2 Expression of fluid and solid domains

Although, governing equations are defined only within the fluid domain Ω, the topology

optimization is considered within the set of the fixed design domain D in which the shape of

object can be deformed freely, combining the fluid domain Ω and the solid domain D\Ω.

Generally in topology optimization of fluids, to permit the changing of the topology of

fluid domain Ω in the fixed design domain D, a source term fff in Eq. (2.9) is assumed base

on Darcy law, which is expressed as a body force fff resisting flows [? ]. Then,

fff = −αuuu (2.16)

α = (αmin−αmax)χϕ+αmax, (2.17)
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here, αmin and αmax are the impermeability coefficient in the fluid and solid domain, respec-

tively.

Through the impermeability α, the fluid velocity uuu and the fluid pressure p depend

on the level set function ϕ (xxx), which is defined as the design variable. Furthermore, the

Navier-Stokes equation defined in the fluid domain Ω is extended to the fixed design domain

D because of the α introduction. When the value χϕ = 1 in the fluid domain, αmin should be

set as the small value so as to fff = −αmin uuu becomes the extremely small value. On the other

hand, in the solid domain, identically, αmax should be set as the large value so as to let the

body force fff be large compared with the value of the other terms in Eq. (2.9).

2.4.3 Objective functional

Objective functional J in this study represents the total potential energy of the fluid in the

device, defined as the sum of the dissipated power and the work done by an external force, as

formulated below [14].

J
(
uuu,χϕ

)
:=

∫
D

1
2Re

{
∇uuu+ (∇uuu)T

}
:
{
∇uuu+ (∇uuu)T

}
dD−

∫
D

fff ·uuudD, (2.18)

where {∇uuu+ (∇uuu)T} and ∇uuu are the shear strain rate tensor and the velocity gradient tensor,

respectively, and ‘ : ’ expresses a tensor product. Under this formulation, when the flow field

is specified using a fixed velocity at the inlet boundary that is subject to a Dirichlet boundary

condition, minimization of the dissipated power is equivalent to minimization of the pressure

drop across the flow field [14, 51, 20].

2.4.4 Outflow rate constraint

In general fluidic device such as the microchannels, a flow rate that is evenly distributed

among the channels is a design priority. To achieve an designated flow rate distribution among
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the channels, constraint functional Gn (uuu) of out flow rate ratio on the outlet boundaries Γn
out

(1 ≤ n ≤ N) can be defined as follows, using the out flow rate ratio rn (0 ≤ rn ≤ 1) between the

inflow rate Qin and the flow rate at each of the outlets, under flow at a prescribed Reynolds

number:

Gn (uuu) =
∫
Γn

out

nnn ·uuudΓ− rnQin

2

≤ R (2.19)

where nnn is the outward normal unit vector.

The error tolerance R in Eq (2.19) denotes the deviation in flow rate among the outlets.

In this thesis, the error tolerance is set with R = 1.0×10−4.

2.4.5 Sensitivity analysis

The optimization problem for minimizing the total potential energy under the outflow rate

inequality constraint is now formulated as

inf
ϕ

J
(
uuu,χϕ

)
(2.20)

subject to G1
(
χϕ

)
≤ 0 (2.21)

Gn
2 (uuu) ≤ R , (2.22)

where the fluid velocity uuu satisfies the Navier-Stokes equation, Eq. (2.9), and continuity

equation, Eq. (2.10), operating under the boundary conditions formulated in Eqs. (2.13)–

(2.15). G1 is the fluid volume constraint functional, with G1 =
∫
Ωd
χϕ dD− Vmax, Vmax

representing the upper limit of the fluid region in the design domain, and Gn
2 is the outflow

rate constraint functional defined in Eq. (2.19).

Based on the Lagrange multiplier method, the Lagrangian L can be defined as

L = J
(
uuu,χϕ

)
+λ1G1

(
χϕ

)
+

n∑
i=1

λi
2Gi

2 (uuu) , (2.23)
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where λ1 and λi
2 (i = 1, · · · ,n) are the Lagrange multipliers. We now assume that the level

set function is sufficiently smooth. An optimal configuration candidate then satisfies the

following KKT conditions:

L ′ ≥ 0, if ϕ = −1, (2.24)

L ′ = 0, if −1 < ϕ < 1, (2.25)

L ′ ≤ 0, if ϕ = 1, (2.26)

λ1G1 = 0, (2.27)

λ1 ≥ 0, (2.28)

G1 ≤ 0, (2.29)

λi
2Gi

2 = 0, (2.30)

λi
2 ≥ 0, (2.31)

Gi
2 ≤ 0, (2.32)

where L ′ represents the gradient of L with respect to the design variable.

A key component of topology optimization is the use of the adjoint variable method

for derivation of the design sensitivity. To do this, we introduce an augmented objective

functional J̄, with

J̄ = J
(
uuu,χϕ

)
+A

(
uuu, ũuu, p,χϕ

)
+B (uuu, p̃)+λ1G1

(
χϕ

)
+

n∑
i=1

λi
2Gi

2 (uuu) , (2.33)

where ũuu and p̃ are arbitrary functions and the terms A and B represent the weak form of the

Navier-Stokes equation, Eq. (2.9), and continuity equation, Eq. (2.10), respectively, described

as bellow.
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A :=
∫

D

{
(uuu · ∇)uuu+∇p−

1
Re
∇2uuu− fff

}
ũuudD (2.34)

B := −
∫

D
∇ ·uuup̃dD (2.35)

where (uuu, p) ∈ U×P and (ũuu, p̃) ∈ U0×P are defined as the functional space as bellow.

U =
{
ũuu ∈ H1 (D) | ũuu = uuuin on Γin

}
(2.36)

U0 =
{
ũuu ∈ H1 (D) | ũuu = 0 on Γin

}
(2.37)

P =
{

p̃ ∈ L2 (D) |
∫

D
p̃dD = 0 in D

}
(2.38)

where H1 (D) and L2 (D) are Sobolev and Lubegue space, respectively.

Next, the global variation of the state variables for the augmented objective functional is

derived.

〈
dJ̄R

dϕ
,δϕ

〉
=

〈
dJR

dϕ
,δϕ

〉
+

〈
dA
dϕ
,δϕ

〉
+

〈
dB
dϕ
,δϕ

〉
+λ1

〈
dG1

dϕ
,δϕ

〉
+

n∑
i=1

λi
2

〈dGi
2

dϕ
,δϕ

〉
=

〈
∂JR

∂uuu
, δuuu

〉
+

〈
∂JR

∂ϕ
,δϕ

〉
+

〈
∂A
∂uuu
, δuuu

〉
+

〈
∂A
∂p
, δp

〉
+

〈
∂A

∂ (∇uuu)
, δ (∇uuu)

〉
+

〈
∂A
∂ϕ
,δϕ

〉
+

〈
∂B
∂uuu
, δuuu

〉
+

〈
∂B
∂ϕ
,δϕ

〉
+λ1

〈
∂G1

∂ϕ
,δϕ

〉
+

n∑
i=1

λi
2

〈
∂Gi

2

∂uuu
, δuuu

〉
(2.39)

where ⟨·, ·⟩ denotes the Freche derivative. Here, the term including the derivative of flow

velocity uuu and pressure p are vanished by solving the adjoint equations. By using the Gauss’s

divergence theorem and partial integration considering the boundary conditions, the above
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equations can be transformed into,

〈
∂JR

∂uuu
, δuuu

〉
+

〈
∂A
∂uuu
, δuuu

〉
+

〈
∂A
∂p
, δp

〉
+

〈
∂A

∂ (∇uuu)
, δ (∇uuu)

〉
+

〈
∂B
∂uuu
, δuuu

〉
+

〈
∂B
∂ϕ
,δϕ

〉
+

n∑
i=1

λi
2

〈
∂Gi

2

∂uuu
, δuuu

〉
=

∫
D

(
1

Re
∇2uuu+2αuuu−∇ ·

2
Re
∇uuu−

1
Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+αvvv+∇q

)
δuuudD

+

∫
D

(−∇ · vvv)δpdD

+

∫
ΓN

 2
Re
∇uuu ·nnn−q ·nnn+

1
Re
∇vvv ·nnn+ (uuu ·nnn) · vvv+

n∑
i=1

λi
2

2
riQin

 Qi
out

riQin
−1

 ·nnnδuuudΓ

+

∫
ΓD

(vvv ·nnn)δpdΓ (2.40)

where ΓD and ΓN are the Dirichlet and Neumann boundaries, respectively, and the outflow

rate
∫
Γn

out
nnn ·uuudΓ on the boundary Γi

out is denoted as Qi
out.

Here, the arbitrary Lagrange multipliers vvv, q are obtained by solving the adjoint equations

with the adjoint boundary conditions, which satisfy the integrand equally zero, as follows.

−
1

Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+∇q = −αvvv−

(
1

Re
∇2uuu+2αuuu−∇ ·

2
Re
∇uuu

)
in D (2.41)

−∇ · vvv = 0 in D (2.42)

vvv = 0 on ΓD (2.43)(
−qIII+

1
Re
∇vvv

)
·nnn = − (uuu ·nnn) · vvv−

2
Re
∇uuu ·nnn−

n∑
i=1

λi
2

2
riQin

 Qi
out

riQin
−1

 ·nnn on Γi
N (2.44)

Consequently, the sensitivity can be derived as follows.

J̄′ = (αmin−αmax)
(
|uuu|2+ vvv ·uuu

)
+λ1. (2.45)

In Appendix A, the derivation of the adjoint equations are presented for general descrip-

tion of the objective functional in detail. Furthermore, the specific adjoint equations for

several kind of the objective functionals are introduced in Appendix B.
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2.4.6 Determination of the Lagrange multiplier corresponding to the

flow rate inequality constraint

We note that the Lagrange multiplier, λn
2 in Eq. (2.44), which is present due to the introduction

of the flow rate inequality constraint, must be obtained beforehand in order to solve the

adjoint equations.

To impose the flow rate inequality constraint, Liu et al. [44] employed an augmented

Lagrangian method [34, 62] with a penalty function, but their approach requires an additional

calculation to determine the Lagrange multiplier. Furthermore, in conventional augmented

Lagrangian methods, the arbitrary coefficient setting of the penalty function may lead to

numerical oscillations when the constraint functional value approaches the threshold between

active or inactive conditions. In this thesis, we propose a simple method for determining

the value of the Lagrange multiplier with respect to the flow rate inequality constraint, as

described below.

As shown in Fig. 2.2, when the flow rate constraint Eq. (2.19) is inactive, λn
2 = 0. On

the other hand, when this constraint is active, λn
2 is defined so that it assumes a value that

depends on the relative error between the prescribed flow rate and the actual flow rate at each

optimization iteration, by introducing a coefficient, C1, in the following exponential function:

λn
2 =C1λ̄

n
2, (2.46)

where C1 and λ̄n
2 are defined, respectively, as

C1 = exp


(

Qn
e

rnQin
−1

)2

+an


bn

> 0, (2.47)

λ̄n
2 =

∫
Γn

out

∣∣∣∣∣∣∂Gn
2

∂uuu

∣∣∣∣∣∣ dD∫
Γn

out
dD

≥ 0, (2.48)
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Fig. 2.2 Schematic diagram of the Lagrange multiplier λn
2.

where an and bn are arbitrary parameters that influence the shape of the exponential function.

Furthermore, because the obtained values of λn
2 in Eq. (2.46) are always positive, our proposed

method for determining λn
2 is consistent with one of the KKT conditions in Eq. (2.31). Here,

the values of arbitrary parameters a and b are set so that the order of the last term of the right-

hand side in Eq. (2.44) is the same as that of the other terms, by estimating its approximate

order using the initial result obtained by calculating the Navier-Stokes equations without the

imposition of the flow rate inequality constraint. Therefore, when the flow rate inequality

constraint is active, the last term of the right-hand side in Eq. (2.44) assumes a large absolute

value.

From the standpoint of numerical stability, the introduction of the exponential function

(Fig. 2.3) suppresses numerical oscillations, so that fluctuations in the value of lambda

are sufficiently reduced, depending on the set values of a and b. When the relative error

approaches a sufficiently small value, the value of coefficient C1 becomes small, which

provides numerical stability near the activity threshold of the flow rate inequality constraint.
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Fig. 2.3 Lagrange multiplier λn
2 versus flow rate inequality constraint for different values of a

and b.

2.4.7 Numerical implementation

Optimization algorithm

In practice, the characteristic function χϕ is replaced with a smoothed Heaviside function,

χϕ (ϕ) ≈ H (ϕ), to improve the stability of the numerical computation, as follows:

H (ϕ) =



0 (−1 ≤ ϕ (xxx) < w){
1
2
+
ϕ

w

[
15
16
−
ϕ2

w2

(
5
8
−

3
16

ϕ2

w2

)]}
(−w ≤ ϕ (xxx) ≤ w)

1 (w < ϕ (xxx) ≤ 1) ,

(2.49)

where w represents a parameter used for setting the transition width of the smoothed Heaviside

function.

Figure 2.4 shows the optimization algorithm applied in this study. The procedure is as

follows.

(1) The initial distribution of the level set function is defined with ϕ = 1 in the fixed

design domain D, so that it is filled with fluid.
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(2) The governing equations of the fluid problem are solved using FEM analysis and

the distributions of velocity uuu and pressure p are obtained, as are the values of the objective

functional J and constraint functionals G1 and G2.

(3) If the criteria of the objective and constraint functionals are satisfied, the optimization

is finished and an optimal configuration is obtained; otherwise, the adjoint problem is solved.

(4) The design sensitivity is calculated using the solution of the governing equations and

adjoint equations. The level set function is then updated by calculating the reaction diffusion

equation, using FEM analysis, after calculating the design sensitivity.

In this thesis, the volume constraint and flow rate inequality constraints are checked at

every iteration using Eq. (2.19), and if they are sufficiently converged, the following stopping

criterion is evaluated. The optimization procedure is repeated until the value of objective

functional satisfies this stopping criterion.

∣∣∣∣∣ Jt+1− Jt

Jt

∣∣∣∣∣ < ϵ, (2.50)

where index t represents the time interval for iteration of the optimization procedure. We

implement this criterion with ϵ = 1×10−4.

Numerical method for the time evolution equation

First, the equation below can be obtained by discretizing Eq. (2.8) with respect to time.

ϕ (t+∆t)−ϕ (t)
∆t

= −K
(
J̄′−τ∇2ϕ (t+∆t)

)
, (2.51)

where ∆t represents the time increment.
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Fig. 2.4 Flowchart of the optimization procedure.

Next, the above equation is expressed in weak form as follows, to discretize the space

prior to performing the FEM analysis.

∫
D

ϕ (t+∆t)
∆t

ϕ̃dD+
∫

D
∇Tϕ (t+∆t)

(
τK∇ϕ̃

)
dD

=

∫
D

(
−Kϕ (t) J̄′+

ϕ (t)
∆t

)
ϕ̃dD for ϕ,∀ϕ̃ ∈ Φ̃ (2.52)

The level set function ϕ (t+∆t) can be obtained by solving Eq. (2.52). Φ̃ represents a

functional space defined as

Φ̃ =
{
ϕ ∈ H1 (D) |ϕ = 0 on ∂D

}
, (2.53)

where ∂D is boundary where the Dirichlet boundary condition is applied.



2.5 Numerical examples 25

Concerning the volume constraint G1, the Lagrange multiplier λ1 is set as zero when it is

inactive, and when it is active, the following condition is satisfied,

δG1 = 0. (2.54)

By substituting Eq. (2.54) into Eq. (2.8), the Lagrange multiplier can be estimated as

λ1 = −

∫
D

(
J̄′+τ∇2ϕ

)
dD∫

D dD
. (2.55)

Here, the Lagrange multiplier λ1 is updated using the following exponential function,

λ̄1 = λ1exp(G1). (2.56)

2.5 Numerical examples

In this section, the proposed level set-based topology optimization method for the minimiza-

tion of the total potential energy of steady-state incompressible viscous flow considering the

outflow rate inequality constraint for an internal channel design problem is applied in two

numerical examples. Throughout the following numerical examples, the flow distribution uuuin

at Γin is assumed to be a developed flow distribution in a channel within Cartesian coordinates

s ∈ [−L/2,L/2], as represented below.

uuuin ·nnn = −ḡ

1−
(
2s
L

)2
 , (2.57)

where ḡ is the maximum magnitude of the velocity at the center of the flow inlet Γin, whose

length is symbolically represented as L.

The fixed design domain is discretized with quadrilateral quadratic elements for uuu and

vvv, and quadrilateral linear elements for p and q. The initial distribution of ϕ is set as 1 for
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the entire fixed design domain in all numerical examples, so that the fixed design domain is

filled with fluid for the initial configuration in the optimization problems.

2.5.1 Example 1: two-terminal flow problem

In Example 1, we verify that the proposed outflow rate inequality constraint functions

appropriately and the difference of the optimal channel design if outflow rate inequality

constraint is applied or not.

Figure. 2.5 shows the design settings of two-terminal flow problem. The fixed design

domain D has a flow inlet boundary Γin and two outlets boundaries Γ1
out and Γ2

out. The

following parameters are set: regularization parameter τ = 5.0×10−3, transition width of the

approximate Heaviside function w = 0.8, the impermeability coefficient in the fluid αmin = 0

and solid domain αmax = 1.0×104, and the upper limit of the fluid region Vmax = 0.5
∫
Ω
χϕ dΩ.

The maximum magnitude of the velocity at the center of the flow inlet is defined as ḡ = 1.0,

and the flow field is defined as the laminar flow with the Reynolds number Re = 10 based

on the characteristic flow velocity as the averaged inlet flow velocity and the characteristic

length as the inlet boundary length. The number of elements of the fixed design domain D is

35×25 = 875.

Figure. 2.6 shows the optimal channel design without considering the outflow rate

inequality constraint. In this numerical example, the objective functional is sum of the

viscous energy dissipation of fluid and the power of resistance. Therefore, the flow resistance

becomes small, when the length of interface between fluid and solid region is shorter

and the channel configuration is rectilinear. Consequently, the rectilinear optimal channel

configuration is obtained. In this numerical example, it seems that the channel is connected

only to the outlet boundary Γ1
out so as to decrease the flow resistance. From this result, it can

be concluded that the flow channel configuration connected to both outlet boundaries Γ1
out

and Γ2
out could not be obtained only considering the volume constraint G1.
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Fig. 2.5 Design settings of two-terminal flow
problem

Fig. 2.6 Optimized flow channel lay-
out (Re = 10) (blue, fluid domain;
white, solid domain)

For the comparison, we address the optimization problem considering the outflow rate

inequality condition G2 on each outlet boundaries in addition to the fluid volume constraint

G1. Firstly, the optimal channel configuration under the prescribed outflow rate r1 = 0.3

in Re = 10 is shown in Fig. 2.7. The parameters are set as
(
a1,2,b1,2

)
= (0.3,0.8). As

shown in Fig. 2.7, the optimal channel is connected from the inlet boundary to both outlet

boundaries owing to the outflow rate inequality constraint G2. The convergence histories of

the optimization calculation is shown in Fig. 2.8. While the outflow rate greatly changed at

the early stage of the optimization with the drastic changing of the objective functional, both

of the outflow rate and the objective functional sufficiently converged and the outflow rate

satisfied the specific outflow rate constraint at the end of the optimization steps. The variety of

the optimal channel configuration under the prescribed outflow rate r1 = 0.4,0.5,0.6,0.7 are

shown in Fig. 2.9 Additionally, the value of the outflow rate on each outlet boundaries Qn
out,

the volume constraint functional G1, the residual R1 of the outflow rate constraint on the outlet

boundary Γ1
out and the objective functional J are indicated in Table 2.1 for every outflow

rate inequality conditions. The following parameters are set:
(
a1,2,b1,2

)
= (0.1,2.0) for
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r1 = 0.4,
(
a1,2,b1,2

)
= (0.3,5.0) for r1 = 0.5,

(
a1,2,b1,2

)
= (0.1,2.0) for r1 = 0.6, and (a1,b1) =

(0.2,5.0) and (a2,b2) = (0.2,8.0) for r1 = 0.7. As shown in Fig. 2.9, different optimal channel

configurations which have specific channel width connecting to the outlet boundaries could

be obtained depending on the prescribed outflow rate r1 settings. Furthermore, the length of

interface between fluid and solid regions of the optimal configurations of r1 = 0.3,0.7 are

shorter compared with the other optimal configurations. This is also confirmed that the value

of the objective functional of r1 = 0.3,0.7 are small compared with that of r1 = 0.4,0.5,0.6.

Fig. 2.7 Optimized flow
channel layout (r1=0.3,
Re = 10) (blue, fluid
domain; white, solid
domain)

Fig. 2.8 Convergence histories of the objective func-
tion value (J) and the actual outflow rates relative
to inflow rate on each outlet boundaries Γ1

out and
Γ2

out (Q1
out/Qin, Q2

out/Qin)

Table 2.1 Computational results of two-terminal flow

r1 Q1
out Q2

out G1 R1 J
0.3 0.31 0.69 0.42 4.5×10−4 2.75
0.4 0.41 0.59 0.26 7.3×10−4 3.88
0.5 0.51 0.49 0.26 1.4×10−4 3.81
0.6 0.61 0.39 0.25 3.5×10−4 4.04
0.7 0.68 0.32 0.36 1.2×10−3 3.10
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r1 =0.4 r1 =0.5 r1 =0.6 r1 =0.7

Fig. 2.9 Comparison of optimized flow channel layouts (Re = 10) (blue, fluid domain; white,
solid domain)

2.5.2 Example 2: multi-terminal flow problem

In Example 2, the fixed design domain which has three inlet and outlet boundaries are

addressed for the topology optimization problem as the multi-terminal flow problem. This

means that the flow comes from the three inlet boundaries Γn
in (n = 1,2,3) and separately exit

to the three outlet boundaries Γn
out.

In this numerical example, the following parameters are set: the maximum magnitude of

the velocity un
in at the center of every flow inlet boundaries ḡn = 1.0(Re = 10), regularization

parameter τ = 1.0×10−5, transition width of the approximate Heaviside function w = 0.4,

the impermeability coefficient in the fluid αmin = 0 and solid domain αmax = 1.0×104, and

the upper limit of the fluid region Vmax = 0.7
∫
Ω
χϕ dΩ. The number of elements of the fixed

design domain D is 58×60 = 3480.

Firstly of all, the optimization problem in which the flow exits equally to the three

outlet boundaries is addressed as an equally prescribed outflow rate condition (rn = 1/3).

The parameters are set as
(
a1,2,3,b1,2,3

)
= (0.3,4.0). Figure. 2.11 shows the optimal channel

configuration. As shown in Figs. 2.11 and 2.12, the optimal configuration has the three

separated flow channels and each flow channels are connected to the nearest outlet boundaries.
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Fig. 2.10 Design settings of multi-terminal flow problem

Next, the optimization problem with the outflow rate r1 = 0.6, r2 = 0.2 and r3 = 0.2 is

addressed. The parameters are set as (a1,b1) = (−3.0,15.5), (a2,b2) = (2.5,0.2), (a3,b3) =

(7.0,0.1). From the result of the optimization as shown in Figs. 2.13 and 2.14, the flow

coming from the inlet boundaries Γ2
in and Γ3

in exits not only to the outlet boundaries Γ2
out

and Γ3
out respectively, but also separates and exits to the outlet boundary Γ1

out. From the

Table. 2.2, it is confirmed that the prescribed outflow rate can be obtained in the optimal

channel configuration with sufficiently small residual Rn between every outflow rates Qn
out

and the prescribed outflow rates on each outlet boundaries.

Consequently, the validity of our proposed outflow rate constraint can be confirmed for

the multi-terminal flow problem.
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Fig. 2.11 Optimized flow channel layout
(r1 = r2 = r3 = 1/3) (blue, fluid domain;
white, solid domain)

1.15

0

0.8

0.4

Fig. 2.12 Velocity contour distribution and
velocity vector in optimized flow channel
(r1 = r2 = r3 = 1/3)

Fig. 2.13 Optimized flow channel layout
(r1 = 0.6, r2 = 0.2, r3 = 0.2) (blue, fluid
domain; white, solid domain)

2.81

0

2.0

1.0

Fig. 2.14 Velocity contour distribution and
velocity vector in optimized flow channel
(r1 = 0.6, r2 = 0.2, r3 = 0.2)
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Table 2.2 Residual of outflow rate on each outlet boundaries in optimal configuration

R1 R2 R3
2.21×10−3 9.32×10−7 2.02×10−2

2.6 Summary

This Chapter proposed a level set-based topology optimization method considering the out

flow rate inequality constraints for the design of the MEMS scale multi-terminal fluidic

devices. The following results were obtained.

• Topology optimization method to an optimal design problem for a steady state in-

compressible viscous flow was conducted and the channel layout design optimization

problem was formulated to minimize the total potential energy of fluids considering

the out flow rate inequality constraint.

• A numerically stable and simple way to determine the Lagrange multiplier concerning

the out flow rate inequality constraint was proposed. Following this method, the

appropriate value of the Lagrange multiplier can be obtained depending on the residual

between prescribed and actual out flow rate in outlets.

• Based on the adjoint variable method, sensitivity analysis for the proposed optimization

problem was conducted considering the outflow rate inequality constraint.

• The validity of our proposed method was revealed in two numerical examples. Desig-

nated outflow rate in each outlets of the multi-terminal channel flows can be obtained

using our proposed optimization method.



Chapter 3

Optimal manifold designs with flow

uniformity in plate-type microchannel

reactors

3.1 Introduction

Flow properties crucially influence the efficiency of reactions and heat exchange in most

microscale and nanoscale devices incorporating microchannels, such as microreactors, mi-

crochannel heat sinks, and micromixers. In these devices, the overall flow passage is

composed of a distributed array of microchannel passages whose combined flow is mani-

fested as the throughput of the microfluidic device. In contrast to a single serpentine channel,

the small volumes within such an array achieve a higher surface-to-volume ratio that provides

improved reaction efficiency and heat exchange, with high heat and mass transfer rates

occurring on the microchannel wall surfaces. During the past few decades, owing to progress

in microfabrication techniques, this concept of flow passage design is actively utilized in the

design of micro chemical plants for applications such as polymer processing and artificial

biological systems.
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Although several types of microfluidic devices have been proposed to realize high

throughput, in principle, the flow through an array of microchannels may result in higher

velocity flow in particular microchannels, which causes a large drop in pressure over the

entire microfluidic device. This undesirable pressure drop, and the associated uneven flow

distribution between the individual microchannels, negatively affects chemical conversion

rates or the selection functions of the device. Additionally, an uneven flow distribution in a

microchannel array may cause unacceptable pressure loss for the device, compared with flow

distributions that are more even, although not perfectly even. Furthermore, a catalyst is often

applied to the interior surface of the microchannels in microreactors, to accelerate chemical

reactions that occur as liquids flow through the microchannels. In this scenario, the efficiency

of the reaction rate is highly dependent on the residence time of the flow in the microchannels,

and the amount of catalyst employed is determined based on this residence time, under the

assumption of an equal flow rate distribution in the microchannels. Consequently, an uneven

flow distribution in the microchannels reduces the efficiency of the reaction rate. Therefore,

optimal designs of distributed microchannels that achieve an even flow distribution with

minimal pressure losses are generally important for microchannel reactors, as a foundation

for additional design objectives that aim to maximize actual reaction rates.

Flow distributions in microchannels have been studied using a variety of approaches.

Concerning an analytical approach, Bajura [8] first proposed a general theoretical model for

investigating the performance of single-phase flow distribution for both an intake and exhaust

manifold, and extended this to include flow rates and pressure changes in Z-type and U-type

manifold configurations [9]. Bassiouny and Martin [10, 11] developed an analytical method

for predicting the flow and pressure distribution in U-type and Z-type heat exchangers,

although the effect of wall friction in the flow headers was ignored.

On the other hand, a numerical approach can be used to examine the performance

of different manifold or microchannel array geometries, to improve flow uniformity and
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minimize the pressure drop in devices. Mohammadi et al. [49] investigated the flow

uniformity and pressure distribution of a microchannel reactor with triangular manifolds,

using computational fluid dynamics (CFD) in low Reynolds number regimes (5 ≤ Re ≤ 25).

They found that the structural parameters of a given manifold shape greatly influence the

velocity distribution in the microchannel array. That is, there is an optimum shape that

results in the most uniform flow distribution among the microchannels. They clarified that

the designer must allow for some degree of nonuniformity in the flow in the manifold design,

based on the intended application of the device, because there is no universal threshold value

for velocity deviations within the microchannel array.

For the design of highly efficient configurations of fluidic devices, a numerical approach

using structural optimization is considered most useful for exploring the most promising

designs among a number of design candidates. Tonomura et al. [74] used size optimization

to achieve flow uniformity among microchannels in a plate-fin microdevice. They opti-

mized the outlet manifold shape to minimize its area and the variances of flow rate in a

five-microchannel array for Re = 50, 250, and 500. In their approach, a multi-objective

functional was defined using the weighted sum method. Consequently, because an appropri-

ate weighting parameter value could not be defined beforehand, it had to be determined by

comparing several optimization results obtained using different parameter values, to achieve

an optimal design that had an acceptable degree of nonuniformity in the flow rate among

the microchannels. A different approach for shape optimization of a microchannel mani-

fold was presented by Pan et al. [55]. Their analytical model, and an equivalent electrical

resistance model, were applied to analytically estimate the pressure drop, flow rate, and flow

resistance in a microchannel manifold. Moreover, the variables in their shape optimization

were expressed with two monotonic equations that defined the outline shapes of the inlet

and outlet manifolds. Their results led them to conclude that the width of the individual

microchannels is the dominant factor affecting the geometry of the outlet manifold. In any
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case, the studies based on the optimization methods by Tonomura et al. [74] and Pan et al.

[55] can be categorized as size and shape optimizations, respectively. These methods used

in the above research may not always provide high performance configurations, due to the

relatively small number of design variables and parameter settings employed.

In this Chapter, we propose an optimal design method for plate-type microchannel

reactor manifolds. Based on the out flow rate inequality constraints constructed in Chapter 2,

furthermore, we implement a flow rate inequality constraint, which constrains the flow rate

deviation in each target microchannel to achieve an acceptable degree of flow uniformity.

Firstly, we introduce the basic geometry of the plate-type microchannel reactor and

presents the representative Z-type and U-type manifolds that are the design objects in this

thesis. Next, we formulate the topology optimization problem for minimizing the total

potential energy under a flow rate inequality constraint, using a level set boundary expression,

for a steady-state incompressible viscous flow field. Based on this formulation, the design

sensitivity is derived using the adjoint variable method. Furthermore, the simple way to

determine the Lagrange multiplier for the flow rate inequality constraint is presented. We

then construct an optimization algorithm for the manifold design problems. Finally, we

present design problems for Z-type and U-type manifolds for a five-microchannel reactor

device, and verify the utility of the proposed optimization method through these numerical

examples.

3.2 Microchannel manifold geometry

3.2.1 Plate-type manifolds

Here, we present an optimal design method applied to the inlet and outlet manifolds of a

plate-type microchannel reactor that achieves specified design requirements. A representative

plate-type microchannel array with inlet and outlet manifolds is shown in Fig. 3.1.
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Inlet port
Outlet port

Parallel microchannelsInlet manifold

Outlet manifold

Fig. 3.1 Schematic view of microchannel array with plate-type manifolds.

The manifolds include an inlet or outlet port, the manifold area, and the connection to the

array of parallel microchannels that constitute the main part of the reactor. The use of an array

of parallel microchannels helps to satisfy reaction requirements that could not be achieved

with a single microchannel. The basic microchannel reactor device is usually stacked in a

group of 50 or more units, to maximize production throughput. To minimize the volume

of grouped microchannel reactors, each reactor and its plate-type manifolds must be very

thin. The reactors under investigation are thin enough that a laminar flow can be assumed,

and two-dimensional numerical analysis of the flow in these manifolds is assumed to be

valid. The validity of these assumptions is supported in past research concerning laminar

flow regimes (0.006 ≤ Re ≤ 300) [49]. In our study, we focus on the laminar flow regime

in the numerical simulation of fluid flow, and the numerical study uses a two-dimensional

model.

3.2.2 Classification of manifold geometry

The manifolds here can be categorized into two geometrical types, based on the directions of

the inlet and outlet flows [49, 32]. As shown in Fig. 3.2(a), in the Z-type manifold, the inlet

and outlet flows proceed in the same direction, whereas in the U-type manifold illustrated in
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(a) Z-type (b) U-type

Fig. 3.2 Schematic flow configuration of the two manifold types.

Fig. 3.2(b), the flow is bidirectional, with the direction of the outlet flow opposite that of the

inlet flow. In this study, the optimization approach is applied to both manifold types.

3.3 Formulation

3.3.1 Governing equations

We consider the two representative types of manifold described in Chap. 3.2.2, the Z- and

U-type. Because the degree of uniformity in the flow of liquid within the microchannels

significantly influences the reaction efficiency, we aim to ensure a sufficient degree of

uniformity, i.e., to minimize deviation in the flow among the individual microchannels. The

chemical reaction in the microchannels is a time-dependent phenomenon, since catalyst

applied to the surface walls of the parallel microchannels is consumed during the reaction.

Since the fluid that reacts with the catalyst flows steadily through the microchannels when

the microreactor is operating, no flow control is applied. Therefore, we consider that flow

uniformity is to be achieved with the fluid in a steady-state condition, and we assume that the

fluid behavior is time-independent during the optimizations in the manifold design problems.

Additionally, for simplification, reaction phenomena are not considered, since the degree

of uniformity in the microchannels ensures sufficiently high reaction efficiency. Based on

the above considerations, we assume a laminar flow and steady-state for the fluid, which is
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described by the steady-state incompressible Navier-Stokes and continuity equations in Eqs

(2.9) and (2.10). Corresponding to the boundary conditions for the microchannel reactor,

generally, the flow rate through the reactor is specified so that the residence time in the

microchannels can be adjusted to a designated time that achieves the desired high throughput.

In the optimization problem, we define the prescribed flow velocity at inlet boundary Γin in

Eq. (2.13), without loss of generality, and impose the Neumann boundary condition at outlet

boundary Γout in Eq. (2.14). The boundary condition for the microchannel walls, Γwall, is

defined as a no-slip condition in Eq. (2.15).

3.3.2 Definition of the objective functional

The topology optimization is considered within the fixed design domain D, in which the

manifold shapes can be deformed freely, and which also includes the fluid domain Ω and the

solid domain D\Ω. A schematic diagram of the design domain settings is shown in Fig. 3.3.

As shown in Fig. 3.3, the design domain is defined as the area of the inlet and outlet manifolds,

while the areas of the parallel microchannels are set as non-design domains. To obtain high

reaction efficiency, the residence time of the fluid in the microchannels is estimated in

advance so that the catalyst will be fully consumed during the reaction. The residence time is

greatly affected by the geometry of the microchannels, but the geometrical complexity of

a parallel microchannel design is constrained by requirements for easy manufacturability.

Typical microchannel arrays incorporate a number of straight microchannels that have a

square cross-section because this simple geometry is particularly economical for mass

manufacturing [73]. This preference for geometrical simplicity, and the prevalence of parallel

microchannel designs employing square cross-section microchannels, is why we set the areas

of the microchannels as non-design domains in this study.

The throughput of a microchannel reactor is affected by the pressure drop between the

inlet and the outlet, and by the uniformity of flow among the microchannels. Our proposed
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Fig. 3.3 Fixed design domain settings for the optimization problem of the manifold. The two
large rectangular areas represent design domains, and the microchannels themselves are set
as non-design domains. The fixed design domain D is composed of the sum of the design
domains Ωn

d and non-design domains Ωn
non, while the evaluation domains Ωn

e are dominated
in Ωnon ((Ωd∪Ωnon) ⊆ D, and Ωe ⊂Ωnon).

topology optimization method aims to obtain manifold designs that achieve both a minimal

pressure drop and a high degree of flow uniformity. These requirements can be accomplished

using a multi-objective optimization method such as the weighted sum method, but the value

of the weighting parameter that will achieve sufficient flow uniformity cannot be determined

in advance. Therefore, a number of optimization calculations are typically carried out, using

different values of the weighting parameter, to determine the most appropriate value. To

overcome this time-consuming approach, we define the pressure drop between the inlet and

outlet of a microchannel reactor as an objective functional, and obtain good flow uniformity

by implementing a constraint functional in the optimization problem, details of which are

provided in Sec. 3.3.3.

Objective functional J in this study represents the total potential energy of the fluid in the

device, defined as the sum of the dissipated power and the work done by an external force in

Eq. (2.18).
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3.3.3 Introduction of flow rate inequality constraint

For both the Z-type and U-type manifolds in this research, a flow rate that is evenly distributed

among the microchannels is a design priority. To achieve an even flow rate distribution among

the five microchannels that are integrated with the Z-type or U-type manifold, constraint

functional Pn (n = 1,2,3,4,5) is defined as follows, using the ratio rn (0 ≤ rn ≤ 1) between

the inflow rate Qin and the flow rate at each of the microchannels, under flow at a prescribed

Reynolds number:

Pn (uuu) =


∫
Ωn

e
iii ·uuudD

rnQin
−1


2

≤ R , (3.1)

where iii = (1,0) is the x-directional unit vector in an evaluation domain in each of the Ωn
e

domains shown in Fig. 3.3, and R is the prescribed error tolerance. We note that, although

the number of microchannels, n, is set as five in this study, an arbitrary value of n is valid in

the following discussion.

In this study, an evaluation domain is used to ascertain the flow rate in the interior of

each microchannel, defined as a square domain located at the center of each microchannel

(Fig. 3.3). The error tolerance R in (3.1) denotes the deviation in flow rate among the

microchannels. Generally, an acceptable value for flow rate deviation depends on the type of

catalyst used, since, ideally, the catalyst should be completely consumed in the catalyzed

reaction that occurs in the microchannels during the designated residence time. In this

research, the error tolerance is set with R = 1.0×10−4.
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3.3.4 Manifold design optimization problem

The optimization problem for a manifold under the flow rate inequality constraint is now

formulated as

inf
ϕ

J
(
uuu,χϕ

)
(3.2)

subject to G
(
χϕ

)
≤ 0 (3.3)

Pn (uuu) ≤ R , (3.4)

where the fluid velocity uuu satisfies the Navier-Stokes equation (2.9) and continuity equation

(2.10), operating under the boundary conditions formulated in Eqs. (2.13)–(2.15). G is the

fluid volume constraint functional, with G =
∫
Ωd
χϕ dD−Vmax, Vmax representing the upper

limit of the fluid region in the design domain, and Pn is the flow rate constraint functional

defined in (3.1). Based on the Lagrange multiplier method, the Lagrangian L can be defined

as

L = J
(
uuu,χϕ

)
+λ1G

(
χϕ

)
+

n∑
i=1

λi
2Pi (uuu) , (3.5)

where λ1 and λi
2 (i = 1, · · · ,n) are the Lagrange multipliers. We now assume that the level

set function is sufficiently smooth. An optimal configuration candidate then satisfies the
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following Karush-Kuhn-Tucker (KKT) conditions:

L ′ ≥ 0, if ϕ = −1, (3.6)

L ′ = 0, if −1 < ϕ < 1, (3.7)

L ′ ≤ 0, if ϕ = 1, (3.8)

λ1G = 0, (3.9)

λ1 ≥ 0, (3.10)

G ≤ 0, (3.11)

λi
2Pi = 0, (3.12)

λi
2 ≥ 0, (3.13)

Pi ≤ 0, (3.14)

where L ′ represents the gradient of L with respect to the design variable.

3.3.5 Sensitivity analysis based on the adjoint variable method

A key component of topology optimization is the use of the adjoint variable method for deriva-

tion of the design sensitivity. To do this, we introduce an augmented objective functional J̄,

with

J̄ = J
(
uuu,χϕ

)
+A

(
uuu, ũuu, p,χϕ

)
+B (uuu, p̃)+λ1G

(
χϕ

)
+

n∑
i=1

λi
2Pi (uuu) , (3.15)

where ũuu and p̃ are arbitrary functions and the terms A and B represent the weak form of the

Navier-Stokes equation (2.9) and continuity equation (2.10), respectively.

Next, the global variation of the state variables for the augmented objective functional

is derived. A detailed development of the continuous response using the adjoint variable

method can be found in Zhou and Li [83] and Duan et al. [24]. In our present study, from
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a mathematical point of view, the development is practically identical, the only difference

being our inclusion of the derivatives of the flow rate inequality constraint. Consequently,

the strong form of the adjoint equations and boundary conditions can be derived including

the terms resulting from the derivatives of the flow rate inequality constraint, as follows:

−
1

Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+∇q+αvvv

=
2

Re
∇2uuu−2αuuu−

n∑
i=1

ξλi
2

2
riQin

(
Qi

e

riQin
−1

)
· iii (3.16)

−∇ · vvv = 0 (3.17)

vvv = 000 on ΓD (3.18)(
−qIII+

1
Re
∇vvv

)
·nnn+ (uuu ·nnn) · vvv = −

2
Re
∇uuu ·nnn on ΓN, (3.19)

where the adjoint variables are denoted as vvv and q and the flow rate at Ωi
e, namely

∫
Ωi

e
iii ·uuudD,

is denoted by Qi
e. The parameter constant ξ is equal to 0 in D \Ωi

e and 1 in Ωi
e, while

ΓN = Γout and ΓD = Γin∪Γwall. λi
2 denotes the Lagrange multiplier that applies in Ωi

e. The

adjoint equations of the optimization problem under steady-state incompressible viscous flow

are expressed in (3.16) and (3.17), and they satisfy the adjoint boundary conditions expressed

in (3.18) and (3.19) that impose Dirichlet and Neumann boundary conditions on ΓD and ΓN,

respectively. Consequently, the design sensitivity of the augmented objective functional J̄′ is

given by

J̄′ = (αmin−αmax)
(
|uuu|2+ vvv ·uuu

)
+λ1. (3.20)

We note that, although the term corresponding to a flow rate inequality constraint is

not explicitly included in (3.20), the design sensitivity distribution will vary depending on

whether or not a flow rate inequality constraint is applied. That is, the adjoint velocity vvv

affects the design sensitivity distribution, which differs depending on whether or not the flow
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rate inequality constraint is applied in the optimization problem. This is because adjoint

velocity vvv is obtained by solving the adjoint equations in the fixed design domain D, which is

the sum of design domains Ωn
d and non-design domains Ωn

non. Therefore, the obtained value

of vvv implicitly includes the effect of the flow rate inequality constraint, which is applied at

Ωn
e ⊂Ω

n
non (Eq. (3.16), with ξ = 1).

3.4 Determination of the Lagrange multiplier correspond-

ing to the flow rate inequality constraint

We note that the Lagrange multiplier, λn
2 in (3.16), which is present due to the introduction of

the flow rate inequality constraint, must be obtained beforehand in order to solve the adjoint

equations.

To impose the flow rate inequality constraint, Liu et al. [44] employed an augmented

Lagrangian method [34, 62] with a penalty function, but their approach requires an additional

calculation to determine the Lagrange multiplier. Furthermore, in conventional augmented

Lagrangian methods, the arbitrary coefficient setting of the penalty function may lead to

numerical oscillations when the constraint functional value approaches the threshold between

active or inactive conditions. In this study, we propose a simple method for determining

the value of the Lagrange multiplier with respect to the flow rate inequality constraint, as

described below.

As shown in Fig.2.2, when the flow rate constraint (3.1) is inactive, λn
2 = 0. On the other

hand, when this constraint is active, λn
2 is defined so that it assumes a value that depends on

the relative error between the prescribed flow rate and the actual flow rate at each optimization

iteration, by introducing a coefficient, C1, in the following exponential function:

λn
2 =C1λ̄

n
2, (3.21)
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where C1 and λ̄n
2 are defined, respectively, as

C1 = exp


(

Qn
e

rnQin
−1

)2

+an


bn

> 0, (3.22)

λ̄n
2 =

∫
Ωn

e

∣∣∣∣∣∂Pn

∂uuu

∣∣∣∣∣ dD∫
Ωn

e
dD

≥ 0, (3.23)

Furthermore, because the obtained values of λn
2 in (3.21) are always positive, our proposed

method for determining λn
2 is consistent with one of the KKT conditions in (3.13). Here,

the values of arbitrary parameters a and b are set so that the order of the last term of the

right-hand side in (3.16) is the same as that of the other terms, by estimating its approximate

order using the initial result obtained by calculating the Navier-Stokes equations without the

imposition of the flow rate inequality constraint. Therefore, when the flow rate inequality

constraint is active, the last term of the right-hand side in (3.16) assumes a large absolute

value in the evaluation domains Ωn
e located at the centers of the microchannels. Consequently,

a manifold shape can be created by fostering or inhibiting flow at the interior domains Ωn
e ,

depending on the relative error from the prescribed flow rate at these domains.

From the standpoint of numerical stability, the introduction of the exponential function

(Fig. 2.3) suppresses numerical oscillations, so that fluctuations in the value of lambda

are sufficiently reduced, depending on the set values of a and b. When the relative error

approaches a sufficiently small value, the value of coefficient C1 becomes small, which

provides numerical stability near the activity threshold of the flow rate inequality constraint.
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3.5 Numerical implementation

3.5.1 Optimization algorithm

The optimization algorithm applied in this study follows the optimization procedure described

below.

(1) The initial distribution of the level set function is defined with ϕ = 1 in the fixed

design domain D, so that it is filled with fluid.

(2) The governing equations of the fluid problem are solved using FEM analysis and

the distributions of velocity uuu and pressure p are obtained, as are the values of the objective

functional J and constraint functionals G and P.

(3) If the criteria of the objective and constraint functionals are satisfied, the optimization

is finished and an optimal configuration is obtained; otherwise, the adjoint problem is solved.

(4) The design sensitivity is calculated using the solution of the governing equations and

adjoint equations. The level set function is then updated by calculating the reaction diffusion

equation, using FEM analysis, after calculating the design sensitivity.

In this study, the volume constraint and flow rate inequality constraints are checked at

every iteration using (2.19), and if they are sufficiently converged, the following stopping

criterion is evaluated. The optimization procedure is repeated until the value of objective

functional satisfies this stopping criterion.

∣∣∣∣∣ Jt+1− Jt

Jt

∣∣∣∣∣ < ϵ, (3.24)

where index t represents the time interval for iteration of the optimization procedure. We

implement this criterion with ϵ = 1×10−4.
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3.6 Numerical examples

In this section, we present numerical examples of the topology optimization problems for

Z-type and U-type manifolds. To verify that the proposed optimization method functions

appropriately, we examine two-dimensional total potential energy minimization problems for

steady-state incompressible viscous flow. Throughout the following numerical examples, the

flow distribution uuuin at Γin is assumed to be a developed flow distribution in a channel within

Cartesian coordinates s ∈ [−L/2,L/2], as represented below.

uuuin ·nnn = −ḡ

1−
(
2s
L

)2
 , (3.25)

where ḡ is the maximum magnitude of the velocity at the center of the flow inlet Γin, whose

length is symbolically represented as L.

The fixed design domain D is discretized with quadrilateral quadratic elements for uuu and

vvv, and quadrilateral linear elements for p and q. The initial distribution of ϕ is set as 1 for

the entire fixed design domain in all numerical examples, so that the fixed design domain is

filled with fluid for the initial configuration in the optimization problems.

3.6.1 Topology optimization of Z-type manifold

The design settings for the Z-type manifold optimization problem are shown in Fig. 3.4.

The design domain Ωd includes the areas of the inlet and outlet manifolds. The area of

the microchannel array is treated as a non-design domain Ωnon because the shape of the

microchannel array is specified and must remain constant, to preserve the accuracy of the

estimated residence time of the fluid undergoing the catalyzed reaction in the microchannels.

The five microchannels are numbered in order from No. 1, which is farthest from the inlet,

to No. 5, which is nearest the inlet (Fig. 3.4). In the fixed design domain, the inlet and

outlet boundaries are denoted Γin and Γout, respectively. The following parameters are set:
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Fig. 3.4 Design settings for Z-type manifold optimization problem.

regularization parameter τ = 1.0×10−4, and transition width of the approximate Heaviside

function w = 1.0×10−3. The number of elements of the design domain is 10000.

Optimization without a flow rate inequality constraint

First, only the fluid volume constraint functional G is considered in the optimization. The

Reynolds number Re is set to four different values: 10, 100, 250, and 500.

Figure 3.5 illustrates the flow rate distribution among the five microchannels of the

initial Z-type manifold for the four cases using different Reynolds numbers, and we see that

the unevenness of the flow distribution across the array of microchannels increases as the

Reynolds number is increased. In particular, when Re = 10, the lowest setting, the deviation

in flow rate between the first and fifth microchannels is relatively small compared with that

between the other microchannels. On the other hand, when Re ≥ 100, the flow rate of the

third microchannel, located at the center of the array, generally has the smallest deviation, but

the flow rate deviation for the other microchannels becomes larger for microchannels located
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further away from the center, and this tendency is exacerbated as the Reynolds number is

increased. This tendency, in which the nonuniformity of the flow among the microchannels

is affected by the Reynolds number, is in agreement with previous observations [74, 49]

Figure 3.6 shows optimal configurations obtained for the four cases using different Re

values, with the flow passage domains illustrated in dark blue. The upper limit of the fluid

region in all cases is set so that Vmax/Vd = 0.9, while Vd :=
∫
Ωd

dD represents the volume

of the design domain. The objective functional values for the results shown in (a), (b), (c),

and (d) of Fig. 3.6 are provided in Table 3.1. The value of the objective functional decreases

as the Reynolds number is increased. We note that, in general, the total potential energy

becomes higher as the Reynolds number is increased. The opposite tendency seen in the

optimization results, in which the value of the objective functional decreases as the Reynolds

number is increased, is caused by the formulation of the objective functional in (2.18), where

the Reynolds number is expressed as a reciprocal. These optimal configurations indicate

that the different Re values applied in the optimizations affect the profiles of the inlet and

outlet manifolds. As Re is increased, the inlet manifold shape becomes narrower toward the

bottom, near the microchannels farthest from the inlet, and the shape of the outlet manifold

becomes correspondingly wider in this area.

The flow rate distributions for the five microchannels operating with the different Z-

shape manifold optimal configurations are illustrated in Fig. 3.7. In the contrast to the

initial design in which the fluid is fulfilled, the tendency of the deviation of the flow rate in

each microchannels is different in the optimal design. For the different Reynolds numbers

applied, the deviation in flow at the outer microchannel of the optimal design becomes

smaller than that of the initial design, with the growth of the deviation at the second to fourth

microchannels near by the central in array.
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Fig. 3.5 Flow rate distribution among microchannels for initial design of Z-type manifold un-
der four different Reynolds numbers. Normalized channel flow rate is defined as Qn

e/ (rnQin),
where Qn

e and rnQin are the actual and target flow rates in microchannel No. n, respectively.

(a) (b) (c) (d)

Fig. 3.6 Optimal flow configurations of Z-type manifold without flow rate inequality con-
straint (volume constraint: Vmax/Vd = 0.9 in all cases: (a) Re= 10; (b) Re= 100; (c) Re= 250;
(d) Re = 500).

Table 3.1 Objective functional values of the Z-type manifold optimal configurations for four
different Reynolds numbers.

Re 10 100 250 500

J 17.9 2.3 1.1 0.7

Optimization with a flow rate inequality constraint

Next, we consider an optimization problem that includes flow rate inequality constraint P

in addition to the fluid volume constraint G. Figure 3.8 shows a comparison of the optimal
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Fig. 3.7 Flow rate distribution among microchannels for four different Reynolds numbers
using optimal designs of Z-type manifold obtained without a flow rate inequality constraint.
Normalized channel flow rate is defined as Qn

e/ (rnQin), where Qn
e and rnQin are the actual

and target flow rates in microchannel No. n, respectively.

configurations obtained for Re = 10 and Re = 100 with the flow rate inequality constraint

applied, and not applied. In both optimizations with the flow rate inequality constraint applied,

the ratio of the flow rate Qn
e with respect to the inflow rate Qin was fixed, with rn = 0.2 in

Ωn
e (which means that the fluid must be uniformly distributed to each microchannel). The

parameters were set as follows for two cases: (an,bn) = (7.0×10−4,1.0×104); the prescribed

error tolerance R = 1.0×10−4, and Vmax/Vd = 0.9.

As Fig. 3.8 illustrates, at first glance, the basic outlines of the inlet and outlet manifolds

appear quite similar, regardless of whether or not the flow rate inequality constraint is applied.

However, the detailed shapes where the inlet and outlet manifolds join each microchannel,

shown in the magnified portions of Fig. 3.8, show notable corresponding differences, with

and without the use of the flow rate inequality constraint. Specifically, the shapes where the

inlet and outlet manifolds meet each microchannel are essentially symmetrical and round in

the optimal configurations obtained without a flow rate inequality constraint, but when a flow

rate inequality constraint is included in the optimization, these shapes become asymmetric

between the inlet and outlet manifolds, and reveal individual features depending on which
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Table 3.2 Tolerance values for the flow rate inequality constraint in Ωe in Z-type manifold
optimal configurations.

Tolerance R1 R2 R3 R4 R5

Re = 10 2.3×10−5 1.3×10−5 1.4×10−5 1.1×10−5 3.4×10−5

Re = 100 7.5×10−6 1.5×10−5 3.0×10−6 1.7×10−6 9.3×10−5

microchannel they are joined to. We surmise that the asymmetry in these shapes beneficially

affects the pressure distribution in the inlet and outlet manifold areas so that an even flow

rate distribution among the microchannels is favored.

Figures 3.9 and 3.10 provide graphical comparisons of the flow rate distributions among

the five microchannels for the initial configuration and the results obtained with and without

a flow rate inequality constraint, for Re = 10 and Re = 100, respectively. The use of the flow

rate inequality constraint in the optimization dramatically reduces the flow rate deviation

among the microchannels for both Re values. Moreover, the error tolerance values set for

the flow rate inequality constraint in inner domain Ωn
e , denoted Rn in Table 3.2 and applied

in the optimizations with Re = 10 and Re = 100, remain within the prescribed tolerances in

these two cases.

Furthermore, as shown in Fig. 3.11, while the actual error tolerance of the flow rate

inequality constraint P oscillates during the initial 100 iterations, sufficient convergence,

below P < 1.0× 10−4, is obtained later on. As shown in the convergence history of the

objective functional for the case where Re = 10 (Fig. 3.12), the value of the objective

functional changes greatly during the early optimization steps, due to rapid alterations in

the level set function distribution, but the objective functional is sufficiently converged after

approximately 600 iterations. This allows us to confirm that the proposed flow rate inequality

constraint works as intended.
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Fig. 3.8 Optimal flow configurations of Z-type manifold with and without flow rate inequality
constraint and Re = 10 and 100.
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Fig. 3.9 Flow rate distributions among microchannels for Z-type manifold optimal configura-
tions with Re = 10. Normalized channel flow rate is defined as Qn

e/ (rnQin), where Qn
e and

rnQin are the actual and target flow rates in microchannel No. n, respectively.

As described in [49], the design engineer must define an acceptable degree of nonuni-

formity among the microchannels depending on the device’s design priority, for example,

minimization of the pressure drop, or maximization of the flow uniformity among the mi-

crochannels. Based on the dissipated power values we obtained, which can be regarded as the
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Fig. 3.10 Flow rate distributions among microchannels for Z-type manifold optimal config-
urations with Re = 100. Normalized channel flow rate is defined as Qn

e/ (rnQin), where Qn
e

and rnQin are the actual and target flow rates in microchannel No. n, respectively.
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Fig. 3.11 Actual error tolerance in flow rate inequality constraint for Z-type manifold mi-
crochannels when Re = 10.

pressure drop in these optimization problems, we also find that some degree of pressure drop

must be accepted to achieve the desired degree of flow uniformity. This can be appreciated

by comparing the results of optimizations with and without a flow rate inequality constraint

applied (Table. 3.3). Our results indicate that there is a trade-off relationship between

pressure drop and flow uniformity. In previous optimization methods using a multi-objective
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Fig. 3.12 Convergence history of objective functional for Z-type manifold when Re = 10.

Table 3.3 The dissipated power values for Z-type manifold optimizations. P represents the
flow rate inequality constraint.

Re Initial design
Optimal design

without P
Optimal design

with P

10 10.9 17.9 28.3
100 1.5 2.3 4.1

functional, this trade-off relationship inhibits obtaining inlet and outlet manifold designs

that have acceptable flow uniformity unless a number of optimization results are compared

([74]). The optimization method proposed here, however, can obtain optimal designs that

have minimal pressure drop and excellent uniformity of flow across the microchannel array,

without using trial and error calculations.

3.6.2 Topology optimization of U-type manifold

In this section, we apply the proposed method to the U-type manifold optimization problem

diagrammed in Fig. 3.13. The design domain Ωd again only includes the areas of the inlet

and outlet manifolds; the area occupied by the microchannel array is treated as a non-design
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Fig. 3.13 Design settings for U-type manifold optimization problem.

domain, just as for the optimization problem described in Sec. 3.6.1. The five microchannels

are numbered from No. 1, the farthest from the inlet, to No. 5 nearest the inlet (Fig. 3.13). In

the fixed design domain, the inlet and outlet boundaries are denoted Γin and Γout, respectively.

The flow rate is prescribed as rn = 0.2 in Ωn
e to ensure an equal flow distribution among all

microchannels and the parameters are set as follows: τ = 1.0× 10−4; w = 1.0× 10−3; and

Vmax/Vd = 0.9. The number of elements of the design domain is 6060.

Figure 3.14 shows the two optimal configurations obtained without applying a flow rate

inequality constraint; optimal configurations that reflect the use of a flow rate inequality

constraint are shown in Fig. 3.15 and Fig. 3.16 for Re = 10 and Re = 100, respectively. In

this optimization problem, the parameters are set so that (an,bn) = (8.0×10−3,8.0×102) for

Re = 10 and (an,bn) = (6.0×10−3,8.0×102) for Re = 100. Based on the results shown in

Figs. 3.14, 3.15, and 3.16, the outlines of the inlet and outlet manifold appear essentially the

same regardless of whether a flow rate inequality constraint is applied in the optimization or

not. On the other hand, these optimal configurations reveal distinct differences in the shape

of the inlet and outlet areas adjoining the microchannels. In the U-type manifold design

problem, these differences are especially noticeable in the outlet manifolds when a flow rate
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(a) (b)

Fig. 3.14 Optimal flow configurations of U-type manifolds without a flow rate inequality
constraint (volume constraint Vmax/Vd = 0.9 in both cases: (a) Re = 10; (b) Re = 100).

inequality constraint is active, where the areas closest to the microchannel outlets appear

steeply inclined and horn-shaped, in contrast to the same areas in the optimization results

without a flow rate inequality constraint, which are uniform and unremarkable.

Figures 3.17 and 3.18 illustrate flow rate distributions among the microchannels for the

initial configuration and results with and without the flow rate inequality constraint, for

Re = 10 and Re = 100, respectively. The results here mirror those for the Z-type manifold

discussed in Sec. 3.6.1, in that flow rate deviations among the microchannels in the U-type

manifold under Re = 10 and Re = 100 are reduced in both optimal configurations when the

flow rate inequality constraint is applied. The data provided in Table 3.4 indicate that the

error tolerance values for the flow rate inequality constraint are sufficiently small in both

the Re = 10 and Re = 100 cases. Moreover, the dissipated power values obtained in the

optimization problems and listed in Table 3.5 indicate that there is also a trade-off relationship

between pressure drop and flow uniformity for the U-type manifold, the same as for the

Z-type manifold discussed in Sec. 3.6.1. However, the proposed optimization method obtains

appropriate designs for the U-type inlet and outlet manifolds of the microchannel reactor,

so that excellent flow uniformity among the microchannels and minimal pressure drop are

achieved.
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Inlet manifold Outlet manifold

Fig. 3.15 Optimal flow configuration of U-type manifold with a flow rate inequality constraint
and Re = 10.

Inlet manifold Outlet manifold

Fig. 3.16 Optimal flow configuration of U-type manifold with a flow rate inequality constraint
and Re = 100.

Table 3.4 Tolerance values for the flow rate inequality constraint in Ωe in U-type manifold
optimal configurations.

Rn(×10−4) R1 R2 R3 R4 R5

Re = 10 2.6×10−4 1.8×10−5 2.1×10−5 3.2×10−5 1.0×10−4

Re = 100 1.2×10−4 3.5×10−7 6.0×10−6 1.4×10−5 2.9×10−5
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Fig. 3.17 Flow rate distributions among microchannels for U-type manifold optimal configu-
rations with Re = 10. Normalized channel flow rate is defined as Qn

e/ (rnQin), where Qn
e and

rnQin are the actual and target flow rates in microchannel No. n, respectively.
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Fig. 3.18 Flow rate distributions among microchannels for U-type manifold optimal config-
urations with Re = 100. Normalized channel flow rate is defined as Qn

e/ (rnQin), where Qn
e

and rnQin are the actual and target flow rates in microchannel No. n, respectively.

3.7 Summary

In this Chapter, we applied our proposed topology optimization method with flow rate

inequality constraint to a design for plate-type microchannel reactor manifolds, using a level
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Table 3.5 The dissipated power values for U-type manifold optimizations. P represents the
flow rate inequality constraint.

Re Initial design
Optimal design

without P
Optimal design

with P

10 11.5 17.6 36.1
100 1.5 2.3 4.9

set-based topology optimization method, targeting flow uniformity. The method provides

representative designs for Z-type and U-type manifolds that ensure sufficient flow uniformity

among a five-microchannel array while minimizing pressure drop in the device. We obtained

the following results.

• Optimization problems were formulated for Z-type and U-type manifold designs.

Governing equations and boundary conditions for the adjoint field under a flow rate

inequality constraint were formulated. The objective functional was defined as the

total potential energy, which is equivalent to the pressure drop in the device.

• The topology optimization algorithm was constructed using a simplified method for

determining the Lagrange multipliers, which were introduced to the adjoint equation

due to the use of the flow rate inequality constraint. The values of the Lagrange

multipliers were determined according to the relative errors between the prescribed flow

rate and the actual flow rate for each of the five microchannels, using an exponential

function. This implementation enables the creation of flow channel shapes in the

manifolds that foster or inhibit flow at designated microchannels.

• Two numerical examples were examined for the Z-type and U-type manifold designs

and the utility of the proposed optimization method was confirmed in both sets of prob-

lems. The proposed method successfully obtained appropriate optimal configurations
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for manifold designs that achieve a prescribed flow rate equally distributed among a

group of microchannels, and is applicable for different Reynolds number flows.



Chapter 4

Topology optimization for turbulent flow

using an immersed boundary method

4.1 Introduction

The aim of this Chapter is to suggest the new topology optimization method for fluid problems

especially focused on turbulent flow regime.

In conventional topology optimization approaches for fluid problems, employing the

so-called Brinkman penalization method, the fixed design domain is assumed to be a porous

medium by introducing the Darcy force term as an external source term in the Navier-Stokes

equation, where the local porosities are considered as design variables.

When considering turbulent flow using CFD, several approaches are available for solving

the equation for the eddy viscosity using so-called turbulence models, i.e., direct numerical

simulation (DNS), large-eddy simulation (LES) [67], detached eddy simulation (DES) [69]

and RANS simulation. The S-A turbulence model applied in previous studies concerning

topology optimization problems [57, 38, 82] is an example of a one-equation RANS turbu-

lence model typically used in external flow analyses, such as for aerodynamic problems. A

particular turbulence model is selected for the numerical objective based on the trade-off
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relationship between numerical accuracy and the computation time required for the numerical

analysis.

Under turbulent flow, the flow velocity profile in the region near the wall can be cate-

gorized into three separate regions in increasing order of distance from the wall: a viscous

sublayer, a logarithmic layer, and a defect layer. Within the boundary layer, the flow profile

changes drastically, especially under turbulent flow as compared with laminar flow. For

numerical simulation of turbulent flow, where the flow velocity changes radically in the

vicinity of the wall, a precise solution of the flow in the boundary layer depends on the

generation of a very small and dense numerical mesh. In general, Re1.8 cell counts are

needed to provide sufficient resolution in the boundary layer. LES or RANS turbulence

models with low-Reynolds-number treatment are generally used to simulate turbulent flow

when using a dense boundary layer mesh, but the time required for solving the governing

equations becomes a critical issue in optimization processes. In particular, when combining

CFD analysis with the topology optimization in a fluid problem, this usage leads to a drastic

increase in the overall number of cells, since the numerical mesh in the fixed design domain

basically consists of a fixed Cartesian grid, especially when using a topology optimization

approach. Additionally, the numerical simulation of the turbulent flow must be iteratively

calculated until the objective functional converges.

As an alternative to LES or RANS with low-Reynolds-number treatment, numerical

cell counts near the wall can be reduced in RANS models based on a high-Reynolds-

number treatment by introducing the wall function, which is based on empirical laws, to

express and interpolate the velocity profile near the wall. To calculate the interpolation

function, the distance from the wall, which is expressed as a fluid-solid interface in the

topology optimization approach, must be obtained. Consequently, if the wall function can be

introduced in the calculation of the governing equation, a coarser grid can be used near the
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wall, which decreases the numerical cell counts in the topology optimization for turbulent

flow.

Papoutsis-Kiachagias et al. [57] addressed a topology optimization problem under

incompressible laminar and turbulent ducted flows, especially for manifold designs, and

also extended their proposed method to a heat transfer problem. In their approach, based on

the Brinkman penalization method, new porosity-dependent terms were added to the main

governing equations of the heat transfer and turbulence models. Kontoleontos et al. [38]

extended a heat transfer problem and imposed constraints on the outlet flow direction, rates

and mean outlet temperatures. In their design sensitivity analysis, the adjoint to the Spalart-

Allmaras (S-A) turbulence model equation is taken into account for a continuous adjoint

approach, and the local porosities as design variables are updated depending on the design

sensitivity, using the steepest descent method. Yoon [82] explored topology optimization for

turbulent flow using the S-A model and revealed the importance of eddy viscosity effects

upon the optimal designs of several ducted flows. In this approach, the wall equation

represented by the Eikonal equation was considered to calculate the distance value from the

closet wall. Dilgen et al. [23] proposed the topology optimization method for turbulent flow

considering one- and two-equation turbulence models without any simplifying assumptions

in the sensitivity analysis. They revealed that the frozen turbulence assumption was lack

of accuracy compared with their exact difference of the sensitivity. All of these previous

topology optimization approaches for turbulent flows used the Brinkman penalization method,

so the effect of the no-slip boundary condition at the fluid-solid interface was implicitly

considered.

When calculating the turbulent flows accurately, the imposition of the wall function is

often introduce to interpolate the velocity and pressure profile near the wall with moderate

grid size. However, as long as using the Brinkman penalization method, the fluid-solid

interface lacks clear boundaries so that the wall function can not be introduced in the
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optimization process. Also, the no-slip boundary condition can not be explicitly applied to

the fluid-solid interface because the porous medium by nature has an indistinct interface.

Consequently, the fluid velocity and pressure distribution near the fluid-solid interface of

the obtained optimized design is passively determined depending on the initial settings of

an artificial numerical coefficient of the Darcy force term, where larger inverse permeability

coefficient values can cause precipitous changes in flow velocity and pressure near the fluid-

solid interface. This passive determination of the velocity and pressure distribution may

cause unrealistic profiles of the velocity and pressure. The inaccuracy of fluid behavior

treatments near the wall may therefore lead to unrealistic optimal designs, especially when

dealing with topology optimization problems under turbulent flow.

In this Chapter, we introduce the IBM proposed in [59, 58] to enforces the no-slip

boundary condition by adding a body force to the Navier-Stokes equation as a reaction force

from an object. In particular, the IBM in a discrete forcing approach proposed in [28] is

widely used, and several extensions of this method have been proposed [29, 76, 64, 25, 78].

In this method, the body force is introduced after the governing equations are discretized,

which allows the no-slip boundary condition to be imposed more directly than in a continuous

forcing approach in which the body force is incorporated into the governing equations before

discretization. Several other IBM approaches are clearly reviewed and categorized in [48].

Furthermore, to express the clear fluid-solid interface during the topology optimization, we

apply the level-set based boundary expressions for precise evaluation of the fluid behavior

near the wall under turbulent flow.

In pioneering research in topology optimization for turbulent flow using the IBM, Sarstedt

et al. [63] proposed a topology optimization method based on local optimality criteria using

k-ϵ and k-ω SST turbulence models. In their optimization approach, local optimality criteria

are used to deal with the minimization of the pressure loss under a specific volume constraint.

They also used the IBM in a discrete forcing approach with direct imposition of boundary
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conditions for the representation of the fluid-solid interface and showed that arbitrary velocity

profiles in the fixed design domain obtained with the IBM were in better agreement with

profiles obtained when using a body-fitted mesh than when the IBM is not used, although the

Brinkman penalization method is used. Agreement was ensured even in Re = 2500 turbulent

flow, whereas differences increase with higher Re values unless the IBM is used.

In this Chapter, we propose a level set-based topology optimization method for fluid

flows under the turbulent regimes without using the Brinkman penalization approach. We

apply a RANS model based on the high-Reynolds-number treatment and include the wall

function in the optimization problem, and introduce two-equation turbulence models, k-ϵ

and k-ω, in this thesis. We note that, among various turbulence models, the RANS-based

numerical simulation is one of the most commonly used approaches in different kinds of fluid

optimization problems, because it provides reasonable numerical simulation accuracy with a

relatively low computational requirement, compared with other approaches such as LES and

DES. We implement the no-slip boundary condition explicitly, using the IBM, on the fluid-

solid interface of newly created holes during the topology optimization process and introduce

the IBM of the discrete forcing approach, with direct imposition of boundary conditions

[46, 35, 75, 48]. Furthermore, owing to the introduction of a LSF for the expression of the

fluid-solid interface, the calculation of distances from the wall required for wall function

calculations is thereby facilitated.

4.2 Governing equation

4.2.1 Reynolds-averaged Navier-Stokes equations

For incompressible turbulent flow, all state variables have two components: a time-averaged

component, and a fluctuating component. In case of the velocity vector, ui has ūi as the

time-averaged component and u′i as the fluctuating component, with ui = ūi + u′i . The
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Reynolds-averaged Navier-Stokes (RANS) and continuity equations can now be written as

Fu
i := u j

∂ui

∂x j
+
∂p
∂xi
−

∂

∂x j

{
(ν+ νt)

(
∂ui

∂x j
+
∂u j

∂xi

)}
= 0, i = 1,2, (3, ) (4.1)

F p :=
∂ui

∂xi
= 0 , (4.2)

where ui is the velocity vector component of the fluid, p is the static pressure, ν is the constant

bulk kinematic viscosity, and νt is the turbulent kinematic viscosity. Note that the mean flow

is assumed to obey a steady state condition in this study.

4.2.2 Turbulence model

In this study, widely used two-equation RANS turbulence models for the eddy-viscosity

model, k-ϵ and k-ω, are introduced in the topology optimization problem to express the

turbulent viscosity. The characteristics of the two turbulence models are as follows. In

general, the k-ϵ turbulence model most popular due to its numerical stability and relatively low

computational requirements, although analysis accuracy tends to decrease when considering

separation or swirl flow. The k-ω turbulence model provides better analysis accuracy of

separation flow than does the k-ϵ turbulence model, and flow near the wall can be solved

with better numerical stability.

k-ϵ turbulence model

For the k-ϵ turbulence model [42], the turbulence state variables k and ϵ, the turbulent kinetic

energy and energy dissipation, respectively, are defined in the following governing equations:

Fk|ϵ := u j
∂k
∂x j
−

∂

∂x j

{(
ν+

νt

Prk

)
∂k
∂x j

}
−Pk + ϵ = 0 (4.3)

Fϵ := u j
∂ϵ

∂x j
−

∂

∂x j

{(
ν+

νt

Prϵ

)
∂ϵ

∂x j

}
−C1Pk

ϵ

k
+C2

ϵ2

k
= 0, (4.4)



4.2 Governing equation 69

where the production term Pk, meaning the production of k, is defined as

Pk = τi j
∂ui

∂x j
= νt

(
∂ui

∂x j
+
∂u j

∂xi

)
∂ui

∂x j
. (4.5)

Here, the turbulent kinematic viscosity coefficient νt and the empirical constants are

νt =Cµ
k2

ϵ
, Cµ = 0.09, C1 = 1.44, C2 = 1.92, Prk = 1.0, Prϵ = 1.3, (4.6)

where Prk and Prϵ are turbulent Prandtl numbers.

k-ω turbulence model

For the standard k-ω turbulence model [79], the turbulent kinetic energy k and the specific

dissipation rate ω can be obtained by solving the following PDEs:

Fk|ω := u j
∂k
∂x j
−

∂

∂x j

{
(ν+σkνt)

∂k
∂x j

}
−Pk +β

∗kω = 0 (4.7)

Fω := u j
∂ω

∂x j
−

∂

∂x j

{
(ν+σωνt)

∂ω

∂x j

}
−αPk

ω

k
+βω2 = 0. (4.8)

Here, the turbulent kinematic viscosity coefficient νt and the empirical constants are

νt =
k
ω
, α =

13
25
, β = β0 fβ, β∗ = β∗0 fβ∗ , σk = 0.5, σω = 0.5,

β0 =
9

125
, β∗0 = 0.09, fβ =

1+70χω
1+80χω

, χω =

∣∣∣∣∣∣Ωi jΩ jkS ki

(β∗0ω)3

∣∣∣∣∣∣ ,
fβ∗ =


1 (χk ≤ 0)

1+680χ2
k

1+80χ2
k

(χk > 0)
, χk =

1
ω3

∂k
∂x j

∂ω

∂x j
, (4.9)
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where the mean rate-of-rotation tensorΩi j and the mean rate-of-strain tensor S i j are expressed

as

Ωi j =
1
2

(
∂ui

∂x j
−
∂u j

∂xi

)
, S i j =

1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (4.10)

Note that the relation between the energy dissipation ϵ and the specific dissipation ω is

defined such that

ϵ = β∗ωk. (4.11)

4.2.3 Wall function

In the numerical simulation of the turbulent flow, precise solutions of the boundary layer

flow where the flow velocity changes drastically near the wall depend on the generation of a

dense numerical mesh. To prevent an increase in the overall cell counts, a wall function is

introduced [36], as typically used in the CFD field. In the standard wall function, the fluid

velocity profile is determined using a specific interpolation function based on the distance

of points from the wall, within the viscous sublayer and the logarithmic layer, the so-called

High-Reynolds-Number treatment, which reduces the cell counts near the wall.

In our study, Spalding’s law of the wall [70] is applied using one of the well-known wall

functions as a unified wall function:

y+ = u++
1
E

{
eκu
+

−1− κu+−
1
2

(
κu+

)2
−

1
6

(
κu+

)3
}
, (4.12)

where the Karman constant κ= 0.42, another constant E = 9.1, and y+ = y0uτ/ν and u+ = ū0/uτ

represent the non-dimensional distance from the wall and the non-dimensional velocity,

respectively. uτ =
√
τw/ρ represents the friction velocity, τw the wall shear stress, y0 denotes

the distance from the wall, and ū0 denotes the mean flow velocity.
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Additionally, by calculating the friction velocity uτ using Spalding’s law of the wall, the

turbulent viscosity near the wall, νtwall , can be calculated as follows:

νtwall =
u2
τ∣∣∣∣∣∂uuu
∂nnn

∣∣∣∣∣ − ν. (4.13)

Note that the friction velocity uτ is obtained using an iterative calculation based on the

Newton-Raphson method.

4.3 Sensitivity analysis based on the adjoint method

In this section, we formulate the topology optimization problem for incompressible turbulent

flow. Additionally, corresponding to the sensitivity analysis, we introduce the topological

derivative of the Navier-Stokes equations as proposed in [4].

4.3.1 Topology optimization problem for incompressible turbulent flow

In this study, we focus on the total pressure drop of a fluid in internal flow as an objective

functional. The total pressure drop is formulated as

J :=−
∫
∂D

{(
p+

1
2

uuu ·uuu
)
uuu ·nnn

}
dD. (4.14)

Consequently, when governing equations Eqs. (4.1)–(4.4) and Eqs. (4.7) and (4.8) are

satisfied under specific boundary conditions, the topology optimization problem to minimize

the total pressure drop under incompressible turbulent flow can be formulated as follows:

inf
ϕ

J
(
uuu,χϕ

)
(4.15)

subject to V
(
χϕ

)
≤ 0, (4.16)
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where V is the fluid volume constraint functional, with V =
∫

Dχϕ dD− Vmax, and Vmax

represents the upper limit of the fluid region in the design domain.

Next, based on Lagrange’s method of undetermined multipliers, the above constrained

optimization problem is replaced with an unconstrained problem, with Lagrangian J̄ defined

as

J̄ =J
(
uuu,χϕ

)
+λV

(
χϕ

)
, (4.17)

where λ is the Lagrange multiplier.

In our study, the “frozen turbulence” hypothesis [26] is assumed for the state variables

in the employed turbulence models k, ϵ and ω. This means that the turbulent state variables

are independent of the design variable χϕ and can be regarded as constants, which allows

the derivation with respect to the turbulent variables to be ignored in the design sensitivity

analysis [53].

4.3.2 Topological derivatives

Here, we propose an explicit method for imposing the no-slip boundary condition on the

fluid-solid interface in the topology optimization for the fluid problem. To impose this

condition during the topology optimization, we use the topological derivative as the design

sensitivity, as explained below. The topological derivative is defined as the change in a cost

function given an infinitesimally small perturbation. The topological derivative is expressed

as the following limit:

dτ J̄(Ω)(xxx) := lim
r→0

J̄(Ω\B(xxx,r))− J̄(Ω)
meas(Ω\B(xxx,r))−meas(Ω)

, (4.18)

where B(xxx,r) indicates a small obstacle of radius r located at some certain point xxx. The

concept of the topological derivative is illustrated in Fig.4.1, where the fluid inlet, outlet
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Fig. 4.1 Schematic representation of the topological derivative concept

and wall boundaries are represented as Γu, Γp and Γ0 respectively. The boundary of a newly

created small obstacle B(xxx,r) with radius r is represented as Γr.

For topology optimization of fluid problems, a small perturbation implies that a small

obstacle is created in the fluid domain within the fixed design domain. Based on a previous

study [5], the effect of imposing a no-slip boundary condition along boundary Γr of a newly

created obstacle B can be taken into account by using the topological derivative. Having

introduced the topological derivative, a method for explicitly imposing the no-slip boundary

condition can be implemented. To accomplish this, we present a method for using the IBM

with the LSF, as will be explained in Sec.4.4.

Based on the asymptotic analysis presented in a previous study [4], the topological

derivative in two-dimensional problems can be developed as [19]:

dτ J̄(Ω)(xxx) = 4πηuuu · vvv+dτJ(Ω)(xxx)−λdτV(Ω)(xxx), (4.19)
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where vvv is the adjoint variable of uuu, obtained by solving the adjoint equation as follows:

Fv
i := −u j

∂vi

∂x j
+ v j

∂u j

∂x j
+
∂q
∂xi
−

∂

∂x j

{
(ν+ νt)

(
∂vi

∂x j
+
∂v j

∂xi

)}
= 0 (4.20)

Fq :=
∂vi

∂xi
= 0 (4.21)

viu jn j+ (ν+ νt)
(
∂vi

∂x j
+
∂v j

∂xi

)
n j−qni+

∂ jΓ,k
∂ui

nk = 0 on Γout (4.22)

v jn j = −
∂ jΓ,i
∂p

ni on Γin∪Γwall, (4.23)

where q is the adjoint variable of p. The development of the above adjoint equation is

presented in detail in [53].

Based on the asymptotic expansion, dτJ(Ω)(xxx), which is the derivative of the objective

functional J with respect to the design variable, is expressed as

J(ϕ+ψ(xxx,r))− J(ϕ) = f (r)dτJ(Ω)(xxx)+o( f (r)), (4.24)

where f (r) is a positive function whose value approaches zero as r approaches zero:

lim
r→0

f (r) = 0 . (4.25)

According to [4], f (r) can be formulated as

f (r) = −
1

lnr
. (4.26)

Consequently, dτJ(Ω)(xxx) can be obtained as

dτJ(Ω)(xxx) = 0. (4.27)
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The derivative of the volume constraint functional V can be also expressed as

dτV(Ω)(xxx) = −π. (4.28)

Finally, we obtain the topological derivative for the optimization problem as follows:

dτ J̄(Ω)(xxx) = J̄ ′ = 4πρηuuu · vvv+πλ, (4.29)

where the value of λ is set as zero when the volume constraint V is inactive. When V is

active, the value of λ is decided based on Eq.(2.8) [41], as follows:

λ = −

∫
D

(
J̄′+τ∇2ϕ

)
dD∫

D dD
, (4.30)

where the Lagrange multiplier λ is updated using the following exponential function,

λ̄ = λexp(V). (4.31)

The relative error of the fluid volume constraint approaches a sufficiently small value, the

value of λ̄ gradually becomes small.

4.4 Immersed boundary method for near wall treatment

We now develop the level set-based topology optimization method to enable the precise

evaluation of the fluid behavior near the wall, especially focusing on steady state incompress-

ible turbulent flow. Under turbulent flow, the flow treatment near the wall becomes critical,

compared with the treatment under a laminar flow condition, because the two flow profiles

are radically different, as shown in Fig.4.2. The difference between the profiles indicates that

accurate estimations of the shear stress are increasingly difficult as the wall is approached in
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Fig. 4.2 Schematic representation of velocity profiles under laminar and turbulent ducted
flows.

turbulent flow. The low accuracy of shear stress estimations eventually causes unavoidable

mis-evaluations to appear in the optimal configuration resulting from an optimization.

4.4.1 Conventional IBM approaches for imposition of solid-fluid inter-

face boundary conditions

To implement the no-slip boundary condition along the fluid-solid interface, almost all

previous studies of topology optimization for fluid problems use the Brinkman penalization

method, an IBM, where the fixed design domain is assumed to be a porous medium and

is expressed by introducing the Darcy force term as the source term in the Navier-Stokes

equation, as follows:

Fu
i := u j

∂ui

∂x j
+
∂p
∂xi
−

∂

∂x j

{
(ν+ νt)

(
∂ui

∂x j
+
∂u j

∂xi

)}
+αui = 0 . (4.32)

Here, the last term of left-hand side in Eq.(4.32) is the Darcy force term, and α represents the

impermeability coefficient.

In the fluid domain, the Darcy force term αui becomes zero when α = 0, at which point

the Darcy force term can be eliminated and the Navier-Stokes equation returns to its original

form. On the other hand, the value set for α in the solid domain must be carefully considered.

For numerical reasons, α cannot be set to an infinite value in the solid domain, so a reasonable
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value needs to be preassigned. However, the most effective value of α in the solid domain

will depend on the particular design problem. Another factor is that if the value of α is

set too high, numerical errors will occur as calculation output oscillates wildly during the

optimization procedure [43]. On the other hand, if the value of α is set too low in the solid

domain, the flow may penetrate into the solid domain [39, 7, 40]. We therefore note that the

above approaches, based on the Brinkman penalization method, do not strictly ensure that a

no-slip boundary condition will be imposed on the solid-fluid interface, due to the use of an

arbitrary value of α.

In contrast to the above approaches, Challis and Guest presented a topology optimization

method for Stokes flow that includes an explicitly enforced no-slip boundary condition

during the optimization process [18]. They introduced the topological derivative as the

design sensitivity and solved the Hamilton-Jacobi equation every five iterations, to evolve the

level set function during the topology optimization. In a topology optimization problem for

Navier-Stokes flow, Deng et al. [19] showed that the topological derivative can be considered

as a weighted sum in the Hamilton-Jacobi equation for the evolution of the level set function.

In their method, a reasonable weighting value for the topological derivative was determined

after numerical examination prior to the optimization. This problematic need to set the values

of certain parameters by hand also appears in [17, 33, 6]

4.4.2 Ghost-cell-based IBM incorporated with the level set function

As mentioned in Sec. 4.3.2, in our approach, the ghost-cell-based IBM (GCIBM) is applied

during the optimization process to introduce the no-slip boundary condition explicitly along

the fluid-solid interface expressed by the zero iso-surface of the LSF.

In the GCIBM, the boundary condition on the immersed boundary (IB) is enforced using

ghost cells. For the computational cells along the IB, ghost cells are defined as being located

in the solid domain, while cells in the fluid domain are defined as IB cells. This means that
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Fig. 4.3 Schematic representation of ghost cells and immersed boundary (IB) cells in compu-
tational domain.

the cell center of a ghost cell is considered to lie in the solid domain, while that of an IB cell

lies in the fluid domain. A schematic representation of the cell locations and relationships is

illustrated in Fig.4.3.

We now address the explicit imposition of the no-slip boundary condition with respect to

the flow velocity ui and pressure p using the GCIBM. The basic concept of the GCIBM is

that the state variables of ui and p for an IB cell whose center is located at xxxib adjacent to

the IB line, regarded as the zero iso-contour of the LSF, are interpolated depending on the

no-slip boundary condition applied to the zero iso-contour of the LSF, based on the distance

between xxxib and the zero iso-contour of the LSF.

Now, due to the use of the LSF, an arbitrary point xxxzlsf on the zero iso-contour of the LSF

located orthogonally in relation to an IB cell with center xxxib can be easily determined using

the following relation:

xxxzlsf = xxxib−
∇ϕ (xxxib)

|∇ϕ (xxxib)|2
ϕ (xxxib) . (4.33)
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Point on zero iso-surface of LSF 

located in the vertical direction from 

Cell center of IB cell

Cell center of solid cell
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�	 �ib

�ib

Fig. 4.4 Schematic representation of an arbitrary point on the zero iso-surface of the LSF
located orthogonally from an IB cell.

A schematic representation showing this relationship in the region near the solid-fluid

interface is given in Fig.4.4.

Finally, the velocity and pressure can be interpolated by the second order differentiable

function, so that the state variables Ψ of an IB cell with center xxxib assuming the imposition

of Dirichlet and Neumann boundary conditions can be determined as follows, using an

interpolation second-order polynomial based on the distance between xxxzlsf and xxxib.

• Dirichlet boundary condition

Ψ (xxxib) = Ψ (xxxzlsf)+E0+EEE1XXX+XXXT EEE2XXX (4.34)

• Neumann boundary condition

Ψ (xxxib) = F0+FFF1xxx
′

zlsf+
(
xxx
′

zlsf

)T
FFF2xxx

′

zlsf (4.35)
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Where scalars E0, F0, vectors EEE1, FFF1 and tensors EEE2, FFF2 are determined by the least square

method. XXX = xxxib− xxxzlsf, and xxx
′

zlsf denotes the point lying on the zero iso-contour of the LSF

in the coordinate system in which the orthogonal vector is considered as the basis vector

(yellow square in Fig.4.4).

Here, the velocity and pressure of an IB cell with center xxxib assuming the imposition

of Dirichlet boundary condition for the velocity and Neumann boundary condition for the

pressure can be determined as follows.

• Dirichlet boundary condition for the velocity

uuu (XXXib) = EEE1XXXib+XXXT
ibEEE2XXXib (4.36)

• Neumann boundary condition for the pressure

p (xxxib) = F0+FFF1xxx
′

zlsf+
(
xxx
′

zlsf

)T
FFF2xxx

′

zlsf (4.37)

A schematic representation of the imposition of both Dirichlet and Neumann boundary

conditions are illustrated in Fig.4.5.

4.5 Numerical implementation

4.5.1 Optimization algorithm

Fig.4.6 shows the optimization algorithm applied in this study. The procedure is as follows.

(1) The initial distribution of the LSF is defined with ϕ = 1 in the fixed design domain D,

so that it is filled with fluid.
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Fig. 4.5 The schematic of the imposition of Dirichlet and Neumann boundary conditions on
IB cell.

(2) The governing equations of the fluid problem are solved using FVM analysis with the

SIMPLE algorithm, and the distributions of velocity ui and pressure p are obtained, as are

the values of the objective functional J and constraint functional V .

(3) If the criteria of the objective and constraint functionals are satisfied, the optimization

is finished and an optimal configuration is obtained; otherwise, the adjoint problem is solved.

(4) The design sensitivity is calculated using the solution of the governing equations and

adjoint equations. The LSF is then updated by calculating the reaction diffusion equation,

using FVM analysis.

In this paper, the optimization procedure is repeated until the value of the objective

functional satisfies the following criterion:

∣∣∣∣∣ Jt+1− Jt

Jt

∣∣∣∣∣ < ϵ, (4.38)

where index t represents the time interval for iteration of the optimization procedure. We

implement this criterion with ϵ = 1×10−4.
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Convergence ?

Solve governing equations using the FVM

Calculate objective and constraint functions

Solve adjoint problem using the FVM

Calculate sensitivity

Update level set function using the FVM

Yes

No

Set initial level set function

End

Fig. 4.6 Flowchart of the optimization procedure.

4.5.2 Numerical method for the time evolution equation

In this paper, the FVM is used for the discretization of the time evolution equation of the

LSF (2.8).

First, the time evolution equation (2.8) is integrated for both sides, as follows:

∫
V

∂ϕ

∂t
dV = −

∫
V

K (ϕ)
(
J̄ ′−τ∇2ϕ

)
dV. (4.39)

Next, the following equation can be obtained by applying Gauss’s divergence theorem.

∫
V

∂ϕ

∂t
dV = −

∫
V

K (ϕ) J̄ ′ dV −
∫

S
(τ∇ϕ) ·nnndS . (4.40)
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Consequently, the level set function can be updated by solving the following equation using

the implicit Euler method.

(
ϕn+1−ϕn

∆t

)
Vc+τ

∑
f

∇ϕn+1SSS f = −K (ϕ) J̄ ′Vc, (4.41)

where Vc and ∆t represent the control volume of the FVM and the time increment, respectively.

ϕn and ϕn+1 represent the level set function at the current and next time step. Finally,
∑

f (·)

represents the summation of element surface component values, and SSS f represents the area

vector of element surfaces.

4.6 Numerical examples

In this section, we present numerical examples of topology optimization problems for

turbulent flows, ducted flows in particular. To verify that the proposed optimization method

functions appropriately, we examine two-dimensional total pressure drop minimization

problems for steady-state incompressible turbulent flow. Throughout the following numerical

examples, the flow distribution at the flow inlet boundary Γin is assumed to be a developed

flow distribution in a channel within Cartesian coordinates s ∈ [−L0/2,L0/2], as represented

below.

uuu = uuumax

(
1−

2 s
L0

)(1/n)

, (4.42)

where uuumax is the maximum magnitude of the velocity at the center of the flow inlet Γin,

whose length is symbolically represented as L0. n is a Re parameter set so that n := 2log10
Re
10

.

The Reynolds number is represented as Re = U0L0/ν, where the characteristic velocity U0

and characteristic length L0 are defined as the averaged value of the inlet velocity and the

width of the inlet, respectively.
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Fig. 4.7 Computational domain settings for channel flow.

The initial distribution of ϕ is set as 1 for the entire fixed design domain in all numerical

examples so that the fixed design domain is filled with fluid for the initial configuration in

the optimization problems.

4.6.1 Two-dimensional channel flow

To verify the operation of the proposed GCIBM before proceeding to the numerical example

of the topology optimization problem, we first conduct a two-dimensional channel flow

analysis (Fig.4.7) under a turbulent flow condition, using both k-ϵ and k-ω turbulence models.

The Reynolds number is set as Re = 10000. The maximum magnitude of the velocity is set

as uuumax = 1. The turbulence intensity and mixing length are specified as 5% and 0.07 at the

inlet boundary, respectively. The wall is modeled as a fluid-solid interface using GCIBM and

LSF. We compare flow profiles near the fluid-solid interface with those at the actual wall.

Additionally, the channel flow is calculated for two types of computational mesh distribu-

tion (structured meshes are inclined with respect to flow direction at 0 deg. and 45 deg. as

shown in Fig.4.8). We aim to examine the dependency of the flow profile according to the

location of the fluid-solid interface, because this interface can be located anywhere within

the design domain during the topology optimization process.
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(a) 0 deg.

(b) 45 deg.

Fig. 4.8 Computational mesh distributions for channel flow. The gray and white regions
mean solid and fluid regions, respectively.

Flow profile comparisons based on different computational mesh resolutions

The velocity profiles calculated for three different mesh resolutions, namely, 6000 total cells

(coarse), 24000 cells (moderate) and 96000 cells (fine), are evaluated at A-A′ , B-B′ and

C-C′ sections illustrated in Fig.4.7 that are the inlet and outlet boundaries, and a vertical line

midway between the inlet and outlet boundaries of the total channel length, respectively.

Velocity profiles for the fluid-solid interface regions with k-ϵ and k-ω turbulence models

are shown in Figs.4.9 and 4.10 for the A-A′, B-B′ and C-C′ sections, respectively. As shown

in Figs.4.9 and 4.10, the inlet velocity profile (A-A′) is practically identical to the result that

includes the actual wall, whereas the velocity profiles are slightly different in the downstream

areas (B-B′ and C-C′) in both turbulence models for all considered computational mesh

distributions. Although there are minor discrepancies near the wall region depicted in Figs.4.9

and 4.10, these become small for higher mesh resolutions.
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Comparison of flow profiles for different computational mesh orientations

In this section, we examine flow profiles for two different grid orientations, shown in Fig.4.8,

to validate the GCIBM for an inclined grid using k-ϵ turbulence model.

Figure 4.11 illustrates that the flow velocity profile under turbulent flow conditions using

a mesh inclined at 45 deg. is practically identical to that for a non-inclined mesh, for all

evaluation sections. These results allow us to conclude that the proposed GCIBM provides a

valid representation of the fluid-solid interface.

4.6.2 Diffuser problem

Here, the first numerical example of a topology optimization for turbulent flow is the well-

known diffuser problem for a two-dimensional case. As shown in Fig.4.12, fluid flows from

an inlet at the left side and exits at an outlet at the right side, after moving through a square

design domain with L = L0. The inlet and outlet domains are set as non-design domains. The

transition Reynolds number in ducted flow is roughly between Re = 2300 and 4000, so the

Reynolds number is set as Re = 5000 and 10000 to elicit a fully turbulent flow condition

in ducted flow. In this numerical example, the k-ϵ turbulence model is used. The volume

constraint is set as Vmax = 0.7. We evaluated this problem using two different meshes, one

consisting of a 90×90 mesh (x and y direction divisions), the other a 120×120 mesh, both

providing a square design domain. The following parameters are set: maximum magnitude of

the velocity uuumax = 1, and the regularization parameter τ = 1×10−2. The turbulence intensity

and mixing length are specified as 1% and 0.0175 at the inlet boundary, respectively.

Dependency of optimal configurations on mesh resolution

To examine the dependency of optimal configurations on mesh resolution, we use 90×90

and 120×120 meshes (x and y direction divisions) with the Reynolds number set as 10000

for both cases. The convergence history of the objective functional and volume constraint
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especially for a 120× 120 meshes are shown in Fig.4.13. The results (Fig.4.14) indicate

that practically identical configurations were obtained, hence the dependency of the optimal

configurations on the mesh resolution is quite low.

The physically reasonable optimal configuration, which has a gradually convergent shape

from inlet to outlet, was obtained with sufficient convergence of the objective functional

and the volume constraint was satisfied. The flow velocity distribution in the design domain

of a 120× 120 meshes case is shown in Fig.4.15, where it can be seen that the velocity

vector distributions near the wall approach zero, an accurate representation of the fluid-solid

interface behavior.

Dependency of optimal configurations on Reynolds number

To test the dependency of optimal configurations on Reynolds numbers set as 5000 and

10000, we use a mesh resolution of 120×120 for both cases. Figure 4.16 indicates that the

Reynolds number settings do not significantly affect the optimal configurations for these two

Reynolds numbers.

Diffuser problem under developed turbulent flow condition

For the diffuser problem shown in Fig.4.12, the flow channel length is too short to develop

the flow in a turbulent condition. In this section, we solve the diffuser problem by assuming

a flow channel length of a design domain with L = 4L0 in Fig.4.12, and discuss the turbulent

kinetic energy of the obtained optimal configuration.

The velocity, static pressure and turbulent kinetic energy contours are shown for the

optimal configuration in Fig.4.17. The convergence history of the objective functional

and volume constraint are sufficient to obtain the results shown in Fig.4.18. The optimal

configuration has a characteristic shape near the outlet such that the fluid channel shape

suddenly converges at the exit. Because of this drastic change in shape near the outlet, the
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turbulent kinetic energy becomes high in the area just upstream of the outlet, although the

flow velocity and static pressure distribution change gradually there. This means that the

flow turbulence that causes energy loss in the flow field becomes high around the outlet,

whereas the pressure drop is sufficiently minimized. Therefore, we can conclude that using

the total pressure drop as an objective functional will not adequately optimize the turbulence

condition.

4.6.3 U-bend pipe

As described below, the flow penetration through the solid domain occurs as long as using

the Brinkman penalization method [39, 7, 40]. To determine whether or not flow penetration

occurs through a thin wall, we use a two-dimensional U-bend pipe problem, with the

design settings shown in Fig.4.19. The flow velocity and pressure are specified as boundary

conditions at the inlet and outlet boundaries, respectively, and the inlet and outlet boundaries

are distinguished by a thin wall set as a non-design domain. We compare with optimal

designs as getting from the topology optimization applying the GCIBM or not. In this

numerical example, because the flow separation may occur on the corner of a thin wall, we

apply the k-ω turbulence model which has the better accuracy in the prediction of the flow

field including the flow separation. The Reynolds number is set as Re = 10000 for a turbulent

flow regime. The volume constraint is set as V = 0.5, and 14080 hexahedral mesh is used

in the fixed design domain. The following parameters are set: maximum magnitude of the

velocity uuumax = 1, and the regularization parameter τ = 1×10−1. The turbulence intensity

and mixing length are specified as 5% and 0.007 at the inlet boundary, respectively.

The optimization results shown in Fig.4.20 illustrate the different optimal configurations

for the proposed GCIBM which is considered or not. In particular, the optimal channel

configuration obtained with the GCIBM consists of almost shortest flow path from the inlet

to the outlet so as to minimize the pressure loss, while the channel shape outwardly curve
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through after the thin wall edge due to the inertia effect under the turbulent condition. On

the other hand, the optimal flow channel given by the optimization result without GCIBM is

quite different from the optimization result with GCIBM, and the fluid flows along the outer

circumference of the design domain with a narrow flow channel. In addition, the objective

functional value of the optimal design with the GCIBM is about 0.040, which is quite smaller

than the objective functional value, 0.274, without GCIBM.

The velocity vectors and streamlines for these results are shown in Fig.4.20 and Fig.4.21,

and indicate that no flow penetrations occurred across the thin wall in the optimal configura-

tion with the GCIBM, although the flow penetration from the inlet to the outlet occurs in the

optimization result without the GCIBM.

From this result, we can conclude that the proposed GCIBM is useful method for solving

the topology optimization problem with the thin wall.

4.7 Summary

This Chapter presented a level set-based topology optimization method for turbulent flow

using the IBM. The presented method was applied to the numerical examples to verify the

utility of our proposed optimization method.

The obtained conclusion of this Chapter is as follows.

• In order to deal with the inner wall boundary conditions accurately during the topology

optimization of fluid, we constructed the level-set based topology optimization method

with GCIBM. In our proposed method, the inner wall boundary conditions could be

imposed explicitly on the iso-contour of the LSF.

• The topological derivative was introduced as the sensitivity in the topology optimiza-

tion, so that the topological change was allowed during the optimization.
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• Optimization problems were formulated especially for the pressure drop minimization

problem of the channel flows. Governing equations and boundary conditions under

the turbulent flow with both k-ϵ and k-ω turbulence models with the wall function

were formulated, and the adjoint field was constructed under the frozen turbulence

assumption.

• Two numerical examples were examined in this study. The well-known diffuser prob-

lem as a numerical example was examined and the utility of the proposed optimization

method was confirmed. From the other numerical example with a thin wall, we could

obtain the optimal configuration without flow penetration through the thin wall for

turbulent regimes. From both results, we could confirmed the utility of our proposed

topology optimization method, successfully.
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Fig. 4.9 Flow velocity profile at A-A′, B-B′ and C-C′ sections for channel flow under k-ϵ
turbulence model.
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Fig. 4.10 Flow velocity profile at A-A′, B-B′ and C-C′ sections for channel flow under k-ω
turbulence model.
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Fig. 4.11 Flow velocity profile at A-A′, B-B′ and C-C′ sections compared with inclined
meshes for channel flow.
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Fig. 4.13 Convergence history of objective and volume constraint functional.
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(a) 120x120

(b) 90x90

Fig. 4.14 Grid size dependency of optimal configurations.

Fig. 4.15 Velocity vector distributions of optimal configuration focusing on the design
domain.
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(a) Re=10000

(b) Re=5000

Fig. 4.16 Optimal configurations in different two Reynolds numbers (Re = 5000 and Re =
10000.
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(a) Optimal configuration

(b) Velocity magnitude

(c) Static pressure

(d) Turbulent kinetic energy

Fig. 4.17 Optimization results in diffuser problem with L = 4D in Re = 10000.
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Fig. 4.19 Design settings for U-bend pipe optimization problem.
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(a) GCIBM (b) Without IBM

Fig. 4.20 Optimal configuration with and without GCIBM.

(a) GCIBM (b) Without IBM

Fig. 4.21 Stream lines in the optimal configuration with and without GCIBM.





Chapter 5

General conclusions

The objective of this thesis is to construct the fluid channel design method especially for the

multi-terminal laminar flow, and also construct the channel design method for the turbulent

flow fields. In Chapter 2, we construct a topology optimization method to minimize the total

potential energy of fluids considering the outflow rate constraints. In Chapter 3, we apply

our constructed method in Chapter 2 to the manifold design of the plate-type microchannel

reactors. In Chapter 4, we focus on a turbulent flow fields, and construct the level set-based

topology optimization method using the IBM. The following is a summary of achievements.

In Chapter 2, we proposed a level set-based topology optimization method considering the

out flow rate inequality constraints for the design of the MEMS scale multi-terminal fluidic

devices. Moreover, to ensure the intended design outflow rate at a designated outlet, the

optimization problem includes an outflow rate inequality constraint. In our approach to satisfy

the prescribed outflow rate at the designated outlets, we developed the numerical stable way

to determine the value of the Lagrange multiplier corresponding to the outflow rate inequality

constraints. When the outflow rate inequality constraint is active, the absolute value of the

Lagrange multiplier is determined using the introduced exponential function depending on

the relative error between the prescribed and actual outflow rate at the designated outlets. In
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this way, the determined Lagrange multiplier satisfies the KKT conditions, and the numerical

stability is validated successfully from multi-terminal flow problem as a numerical example.

In Chapter 3, we propose an optimal design method for plate-type microchannel reactor

manifolds, based on the topology optimization method constructed in Chapter 2. Firstly,

we introduced the basic geometry of the plate-type microchannel reactor and presented the

representative Z-type and U-type manifolds that are the design objects of this thesis. As for

the formulations, we redefined the flow rate inequality constraints for the flow thorough each

microchannel, while the outflow rate inequality constraints constructed in Chapter 2 is defined

at the designated outlet boundaries. Furthermore, we implemented a flow rate inequality

constraint, which constrains the flow rate deviation in each target microchannel to achieve an

acceptable degree of flow uniformity. After derivation of the primal and adjoint formulation

considering a flow rate inequality constraints, we presented the design problems for Z-type

and U-type manifolds for a five-microchannel reactor device, and verified the utility of our

proposed optimization method through these numerical examples. Note that although the

topological change is not generally occurred in the pressure drop minimization problems, our

proposed approach can be simply expanded into complex fluid flow optimization problems,

which need to be allowed the topological changes to obtain a promising optimal result.

In Chapter 4, we succeeded in developing a level set-based topology optimization method

using the IBM for duct flow problem considering turbulent flow without using the Brinkman

penalization approach. The optimization problem to minimize the total potential energy was

formulated for the governing equation, which is a RANS with k-ϵ and k-ω turbulence models.

And the governing equations are discretized using the finite volume method (FVM), which is

normally used in CFD analyses rather than the FEM. In our proposed topology optimization

method, a no-slip boundary condition along the fluid-solid interface can be precisely and

explicitly imposed, using the GCIBM, a much different approach than the previous Brinkman

penalization method in which the fluid-solid interface is expressed as a porosity. To deal
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with the topological change in the optimization process, we used the topological derivative

as a design sensitivity, so that the no-slip boundary condition is guaranteed to the fluid -solid

interface of a newly created obstacles during the evaluation of the topological derivative in

an infinitesimally small perturbation. Finally, we presented numerical examples to verify

the utility of our proposed optimization method. We could obtain the optimal configurations

under the turbulent flow regime up to Re = 10000 for duct flow problems. Furthermore,

the feasible optimal configurations which has no flow penetration through the thin wall as

the non design domain within the fixed design domain could be obtained from the other

numerical example. From these results, we could present the validity of our proposed

topology optimization method for turbulent flow.

For summary of this thesis, we succeeded in the construction of the duct flow problem

in laminar and turbulent flow regimes. It can be expected that the our proposed topology

optimization method considering the outflow rate inequality constraints actually applies to the

multi-terminal complicated design of the micro fluidic devices. Moreover, the design method

of the microchannel reactor manifolds can be utilized to maximize the throughput of the

actual microchannel reactors. In the future work, we would like to extend our proposed design

method of the microchannel reactors to the situation considering the actual reaction and heat

generation from the chemical reaction. For the duct flow problem in turbulent flow condition,

we succeeded in developing the topology optimization method using the IBM, and it should

be useful for the energy efficient channel design. Regarding the topology optimization in

turbulent flow, the concrete adjoint formulation without the frozen turbulence assumption

is need to increase the accuracy of dealing with the turbulent flow characteristics, but if

it is considered in the topology optimization process, it should be derived the topological

derivative with the turbulence models. It should be my future work to be done.





Appendix A

Adjoint formulation of steady

incompressible Navier-Stokes flow

In this Appendix A, we provide the details of the sensitivity analysis for the topology

optimization for thermoelectric actuator designs. First, we note that the design sensitivity, F̄′,

is obtained as The topology optimization problem based on level set method for steady state

incompressible Navier-Stokes flow can be expressed as follows,

inf
ϕ

J (uuu,∇uuu, p,ϕ) (A.1)

subject to Fi (uuu, p,ϕ) = 0 (A.2)

uuu = uuuin on Γu (A.3)(
−p · III+

1
Re
∇uuu

)
nnn = pout on Γp (A.4)

G ≥ 0 (A.5)

for uuu ∈ U p ∈ Q (A.6)
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where Fi(i = 1,2) mean Navier-Stokes equation and continuity equation, which are described

as

F1 ≡ (uuu · ∇)uuu+∇p−
1

Re
∇2uuu− fff = 0 (A.7)

F2 ≡ −∇ ·uuu = 0 (A.8)

, and

fff = −αuuu (A.9)

α = (αmin−αmax) H(ϕ)+αmax (A.10)

is introduced as the external force source term of Navier-Stokes equation based on the Darcy

law.

The objective functional J is defined as follow,

J =
∫
Ω

jΩdΩ+
∫
Γ

jΓdΓ (A.11)

where jΩ and jΓ are the functional defined in the domain Ω and on the implicit boundary Γ,

respectively.

The volume constraint functional G is defined as follows,

G (ϕ) =
∫

D
H (ϕ)dΩ−Vmax (A.12)

while, Vmax means the maximum volume of the fluid domain.
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From the transformation,

∇ · (ABBB) = A (∇ ·BBB)+∇A ·BBB (A.13)

∇ ·
(
C̃BBB

)
=

(
∇ · C̃T

)
·BBB+

(
C̃T : ∇BBB

)
(A.14)

where A, BBB and C̃ mean scalar, vector and tensor value, respectively, the Lagrangian L can

be expressed as follows by using the Lagrange undefined multipliers vvv, q and λ.

L = J+
∫

D
vvv ·F1dΩ+

∫
D

qF2dΩ+λ jG j

= J+
∫

D
(uuu · ∇)uuu · vvvdΩ+

∫
D
∇p · vvvdΩ−

1
Re

∫
D
∇2uuu · vvvdΩ+

∫
D
αuuu · vvvdΩ

−

∫
D

(∇ ·uuu)qdΩ+λG (ϕ) (A.15)

= J+
∫

D
(uuu · ∇)uuu · vvvdΩ+

∫
D
∇ · (pvvv)dΩ−

∫
D

p (∇ · vvv)dΩ

−
1

Re

∫
D
∇ · (∇uuu · vvv)dΩ+

1
Re

∫
D
∇uuu∇vvvdΩ+

∫
D
αuuu · vvvdΩ

−

∫
D
∇ · (quuu)dΩ+

∫
D
∇q ·uuudΩ+λG (ϕ) (A.16)

Based on the Gauss’ divergence theorem, the following transformation is obtained.

L = J+
∫

D
(uuu · ∇)uuu · vvvdΩ+

∫
Γ

pvvv ·nnndΓ−
∫

D
p (∇ · vvv)dΩ

−
1

Re

∫
Γ

(∇uuu · vvv)nnndΓ+
1

Re

∫
D
∇uuu∇vvvdΩ+

∫
D
αuuu · vvvdΩ

−

∫
Γ

quuu ·nnndΓ+
∫

D
∇q ·uuudΩ+λG (ϕ) (A.17)



108 Adjoint formulation of steady incompressible Navier-Stokes flow

According to the variational of L, L+δL is expressed as follows.

L+δL = J+
∂J
∂ϕ
·δϕ+

∂J
∂uuu
·δuuu+

∂J
∂∇uuu

: ∇ (δuuu)+
∂J
∂p
·δp

+

∫
D

((uuu · ∇)uuu+ (δuuu · ∇)uuu+ (uuu · ∇)δuuu) · vvvdΩ

+

∫
Γ

(p+δp)vvv ·nnndΓ−
∫

D
(p+δp) (∇ · vvv)dΩ

−
1

Re

∫
Γ

(∇ (δuuu) · vvv+∇uuu · vvv)nnndΓ+
1

Re

∫
D

(∇ (δuuu)+∇uuu)∇vvvdΩ

+

∫
D

(
α+

∂α

∂ϕ
·δϕ

)
(uuu+δuuu) · vvvdΩ

−

∫
Γ

q (uuu+δuuu) ·nnndΓ+
∫

D
∇q · (uuu+δuuu)dΩ+λ

(
G (ϕ)+

∂G
∂ϕ
·δϕ

)
(A.18)

Thus, the following derivative of L subject to the levelset functional ϕ can be obtained.

δL =
∂J
∂ϕ
·δϕ+

∂J
∂uuu
·δuuu+

∂J
∂∇uuu

: ∇ (δuuu)+
∂J
∂p
·δp

+

∫
D

((δuuu · ∇)uuu+ (uuu · ∇)δuuu) · vvvdΩ+
∫
Γ

δpvvv ·nnndΓ−
∫

D
δp (∇ · vvv)dΩ

−
1

Re

∫
Γ

(∇ (δuuu) · vvv)nnndΓ+
1

Re

∫
D

(∇ (δuuu))∇vvvdΩ

+

∫
D

(
αδuuu+

∂α

∂ϕ
·δϕuuu

)
· vvvdΩ−

∫
Γ

qδuuu ·nnndΓ+
∫

D
∇q ·δuuudΩ+λ

(
∂G
∂ϕ
·δϕ

)
(A.19)

And the convection term can be transformed as below.

∫
D

((δuuu · ∇)uuu+ (uuu · ∇)δuuu) · vvvdΩ

=

∫
D

(∇uuu)vvv ·δuuudΩ+
∫

D
∇ · (uuu · (vvv ·δuuu))dΩ−

∫
D

(uuu · ∇)vvv ·δuuudΩ (A.20)



109

Additionally, because p can be expressed by ∇uuu on Γ, the derivation of J subject to ∇uuu can

be transformed as below (using Eq.(A.14)).

∂J
∂∇uuu

: ∇ (δuuu) =
∫
Ω

(
∂ jΩ
∂∇uuu

: ∇ (δuuu)
)
dΩ

=

∫
Ω

∇ ·

(
∂ jΩ
∂∇uuu
·δuuu

)
dΩ−

∫
Ω

(
∇ ·

∂ jΩ
∂∇uuu

)
·δuuudΩ (A.21)

Then, based on the partial integration approach and the Gauss’ divergence theorem, the

following transformation is obtained.

δL =
∂J
∂ϕ
·δϕ+

∂J
∂uuu
·δuuu+

∂J
∂p
·δp+

∫
Γ

(
∂ jΩ
∂∇uuu
·nnn

)
·δuuudΓ−

∫
Ω

(
∇ ·

∂ jΩ
∂∇uuu

)
·δuuudΩ

+

∫
D

(∇uuu)vvv ·δuuudΩ+
∫
Γ

(uuu ·nnn)vvv ·δuuudΓ−
∫

D
(uuu · ∇)vvv ·δuuudΩ

+

∫
Γ

δpvvv ·nnndΓ−
∫

D
δp (∇ · vvv)dΩ

−
1

Re

∫
Γ

(∇ (δuuu) · vvv)nnndΓ+
1

Re

∫
Γ

δuuu∇vvv ·nnndΓ−
1

Re

∫
D
δuuu

(
∇2vvv

)
dΩ

+

∫
D

(
αδuuu+

∂α

∂ϕ
·δϕuuu

)
· vvvdΩ−

∫
Γ

qδuuu ·nnndΓ+
∫

D
∇q ·δuuudΩ+λ

(
∂G
∂ϕ
·δϕ

)
(A.22)

Because uuu and p are known on Γu and Γp, respectively, th following conditions can be

expressed on the boundary.

Γ = Γu∪Γp


δuuu = 0 on Γu

δp = 0 on Γp

(A.23)
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Therefore, by inserting the above conditions, the following transformation can be obtained.

δL =
∂J
∂ϕ
·δϕ+

∫
Ω

(
∂ jΩ
∂uuu
·δuuu−

(
∇ ·

∂ jΩ
∂∇uuu

)
·δuuu+

∂ jΩ
∂p
·δp

)
dΩ

+

∫
Γu

∂ jΓ
∂p
·δpdΓ+

∫
Γp

(
∂ jΓ
∂uuu
+
∂ jΩ
∂∇uuu
·nnn

)
·δuuudΓ

+

∫
D

(∇uuu)vvv ·δuuudΩ+
∫
Γp

(uuu ·nnn)vvv ·δuuudΓ−
∫

D
(uuu · ∇)vvv ·δuuudΩ

+

∫
Γu

δpvvv ·nnndΓ−
∫

D
δp (∇ · vvv)dΩ+

1
Re

∫
Γp

δuuu∇vvv ·nnndΓ−
1

Re

∫
D
δuuu

(
∇2vvv

)
dΩ

+

∫
D

(
αδuuu+

∂α

∂ϕ
·δϕuuu

)
· vvvdΩ−

∫
Γp

qδuuu ·nnndΓ+
∫

D
∇q ·δuuudΩ+λ

(
∂G
∂ϕ
·δϕ

)∣∣∣∣∣∣
Ω

(A.24)

=

∫
Ω

(
∂ jΩ
∂uuu
−∇ ·

∂ jΩ
∂∇uuu
−

1
Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+αvvv+∇q

)
δuuudΩ

+

∫
Ω

(
−∇ · vvv+

∂ jΩ
∂p

)
δpdΩ+

∫
Γp

(
∂ jΩ
∂∇uuu
·nnn+

∂ jΓ
∂uuu
−q ·nnn+

1
Re
∇vvv ·nnn+ (uuu ·nnn) · vvv

)
δuuudΓ

+

∫
Γu

(
∂ jΓ
∂p
+ vvv ·nnn

)
δpdΓ+

∫
D

(
∂α

∂ϕ
·δϕuuu

)
· vvvdΩ+

∂J
∂ϕ
·δϕ+λ

(
∂G
∂ϕ
·δϕ

)
(A.25)

Thus, adjoint equation and boundary condition can be written as,

−
1

Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+∇q = −αvvv−

(
∂ jΩ
∂uuu
−∇ ·

∂ jΩ
∂∇uuu

)
(A.26)

−∇ · vvv = −
∂ jΩ
∂p

(A.27)(
−q · III+

1
Re
∇vvv

)
·nnn = − (uuu ·nnn) · vvv−

∂ jΓ
∂uuu
−
∂ jΩ
∂∇uuu

nnn on Γp (A.28)

vvv ·nnn = −
∂ jΓ
∂p

on Γu (A.29)

Finally, the shape sensitivity for topology optimization problem can be obtained as,

δL =
{∫

D

∂ jΩ
∂ϕ

dΩ+
∫
Γ

∂ jΓ
∂ϕ

dΓ+
∫

D

(
∂α

∂ϕ
uuu · vvv

)
dΩ+λ

∂G
∂ϕ

}
δϕ (A.30)
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Sensitivity analysis for variety of

objective functionals

B.1 Objective functionals

B.1.1 Viscous dissipation rate

Here, we discuss the details concerning the derivation of the adjoint equations of nanoscale

heat conduction problems. The adjoint equations, boundary and initial conditions can be

obtained through computing the optimality condition, Eq. (??). First, using integration by

parts with respect to time t and spatial vector xxx, the stationary points related to the global

variables f̃A(t, xxx, ξξξ) and f̃B(t, xxx, ξξξ) are obtained as follows:

jΩ =
1

2Re

{
∇uuu+ (∇uuu)T

}
:
{
∇uuu+ (∇uuu)T

}
+αuuu ·uuu (B.1)

jΓ = 0 (B.2)

In the following, concern between viscous dissipation rate and the total pressure loss is

discussed.
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The total kinetic energy of an incompressible fluid is

E =
1
2

∫
Ω

uuu2dΩ (B.3)

B.1.2 Swirl number

jΩ = 0 (B.4)

jΓ = S w =
T

rW
(B.5)

Swirl number S w can be defined using T , W and r, which are the rotational moment of kinetic

momentum, axial kinetic momentum and characteristic length, respectively. Generally, the

hydraulic diameter is used as r.

r =
4A
L

(B.6)

with the evaluation surface area A and the sectional length L, which is defined as sum of

all-sides composed of the rectangle. T and W are defined as below.

T = uuuax
(
rrr×uuutg

)
(B.7)

W = uuuax
2 (B.8)

while uuuax and uuutg means the axial and tangential velocity, and rrr := (xxx− xxx0) is the swirl

distance vector to the defined origin xxx0 then

rrr×uuu =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
iii jjj kkk

x− x0 y− y0 z− z0

u v w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=


(y− y0)w− (z− z0)v

(z− z0)u− (x− x0)w

(x− x0)v− (y− y0)u

 (B.9)
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The rotational moment of kinetic momentum of uuuax
(
rrr×uuutg

)
can be described as below.

uuuax
(
rrr×uuutg

)
=


u

v

w

 ·


(y− y0)w− (z− z0)v

(z− z0)u− (x− x0)w

(x− x0)v− (y− y0)u


= u {(y− y0)w− (z− z0)v}+ v {(z− z0)u− (x− x0)w}+w {(x− x0)v− (y− y0)u}

(B.10)

If the x-y plane is the specific outlet plane and the z direction is the rotational axis for the

defined objective functional jΓ, then the axial velocity uuuax becomes

uuuax =


0

0

w

 (B.11)

Then, the objective functional can be transformed into simpler formulation as below for the

origin xxx0 := (0,0,0),

jΓ =
xv− yu

w
(B.12)

in which the characteristic length r = 1 is used.
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B.2 The adjoint problem and topological sensitivity

B.2.1 Viscous dissipation rate minimization problem

The objective functional is as follows,

jΩ =
1

2Re

{
∇uuu+ (∇uuu)T

}
:
{
∇uuu+ (∇uuu)T

}
+αuuu ·uuu (B.13)

jΓ = 0 (B.14)

each derivative of jΩ and jΓ for adjoint equation and boundary condition are described below,



∂ jΩ
∂uuu
=

1
Re
∇2uuu+2αuuu

∂ jΩ
∂∇uuu

=
2

Re
∇uuu

∂ jΩ
∂p
= 0

∂ jΓ
∂p
= 0

∂ jΓ
∂uuu
= 0

(B.15)

Then, by substituting each derivative, the adjoint equation and boundary condition for

the flow rate constraint problem can be obtained as,

−
1

Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+∇q = −αvvv−

(
1

Re
∇2uuu+2αuuu−∇ ·

2
Re
∇uuu

)
(B.16)

−∇ · vvv = 0 (B.17)(
−q · III+

1
Re
∇vvv

)
·nnn = − (uuu ·nnn) · vvv−

2
Re
∇uuu ·nnn on Γp (B.18)

vvv ·nnn = 0 on Γu (B.19)
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Consequently, as the each derivative with respect to the level set functional ϕ are



∂ jΩ
∂ϕ
= (αmin−αmax)uuu ·uuu

∂ jΓ
∂ϕ
= 0

∂α

∂ϕ
= αmin−αmax

∂G
∂ϕ
= 1

(B.20)

the shape sensitivity for topology optimization problem can be obtained as,

δL =
{∫

D

∂ jΩ
∂ϕ

dΩ+
∫
Γ

∂ jΓ
∂ϕ

dΓ+
∫

D

(
∂α

∂ϕ
uuu · vvv

)
dΩ+λ

∂G
∂ϕ

}
δϕ

=

∫
D

{
(αmin−αmax)

(
uuu2+uuuvvv

)
+λ

}
δϕdΩ (B.21)

B.2.2 Viscous dissipation rate minimization problem considering flow

rate constraint

The flow rate constraint functional G is defined as follows,

G (uuu) =


∫
Γout

nnn ·uuudΓ

rQin
−1


2

− tol (B.22)

while, r and tol mean the outflow rate fraction towards the inlet flow rate Qin and the

tolerance between the target outflow rate and actual outflow rate on the outlet boundary Γout,

respectively.

The Lagrangian L can be expressed as follows by using the Lagrange undefined multi-

pliers vvv, q and λi with considering G j ( j = 1,2)( the volume constraint functional G1 and
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outflow rate constraint functional G2.

L = J+
∫

D
vvv ·F1dΩ+

∫
D

qF2dΩ+λ1G1+λ2G2 (B.23)

According to the variational of G2, δG2 is expressed as follows.

δG2 = λ2
∂G2

∂uuu
·δuuu (B.24)

And derivative of G2 for adjoint equation and boundary condition are described below,


∂G2

∂uuu
=

2
rQin

(
Qout

rQin
−1

)∫
Γout

nnndΓ

∂G2

∂p
= 0

(B.25)

while, Qout =
∫
Γout

nnn ·uuudΓ means actual outflow rate.

Therefore, by inserting the above conditions, the following Lagrangian variation δL

transformation can be obtained.

δL =
∫
Ω

(
∂ jΩ
∂uuu
−∇ ·

∂ jΩ
∂∇uuu
−

1
Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+αvvv+∇q

)
δuuudΩ

+

∫
Ω

(
−∇ · vvv+

∂ jΩ
∂p

)
δpdΩ

+


∫
Γp

(
∂ jΩ
∂∇uuu
·nnn+

∂ jΓ
∂uuu
−q ·nnn+

1
Re
∇vvv ·nnn+ (uuu ·nnn) · vvv

)
dΓ+λ2

∂G2

∂uuu

δuuu
+

∫
Γu

(
∂ jΓ
∂p
+ vvv ·nnn

)
δpdΓ+

∫
D

(
∂α

∂ϕ
·δϕuuu

)
· vvvdΩ+

∂J
∂ϕ
·δϕ+λ1

(
∂G1

∂ϕ
·δϕ

)
(B.26)
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Thus, adjoint equation and boundary condition can be written as,

−
1

Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+∇q = −αvvv−

(
1

Re
∇2uuu+2αuuu−∇ ·

2
Re
∇uuu

)
(B.27)

−∇ · vvv = 0 (B.28)(
−q · III+

1
Re
∇vvv

)
·nnn = − (uuu ·nnn) · vvv−

2
Re
∇uuu ·nnn−λ2

2
rQin

(
Qout

rQin
−1

)
·nnn on Γp (B.29)

vvv ·nnn = 0 on Γu (B.30)

Finally, the shape sensitivity for topology optimization problem can be obtained as,

δL =
{∫

D

∂ jΩ
∂ϕ

dΩ+
∫
Γ

∂ jΓ
∂ϕ

dΓ+
∫

D

(
∂α

∂ϕ
uuu · vvv

)
dΩ+λ1

∂G1

∂ϕ

}
δϕ (B.31)

Determination of the Lagrange undetermined multiplier λ for the flow rate constraint

In this topology optimization problem, the adjoint equation and adjoint boundary conditions

are given by the expression (B.27)–(B.30). When the inequality condition is active, in order

to determine the undefined lagrange multiplier λ2, we introduce the concept of the augmented

lagrange method as below,

λ2 =Cλ⋆2 (B.32)

where the arbitrary coefficient C and λ⋆2 are expressed as

C = exp

(Qout

Qin

)2

+a

b

(B.33)

λ⋆2 =

∫
Γout

∣∣∣∣∣∂G2

∂uuu

∣∣∣∣∣dΓ∫
Γout

dΓ
(B.34)
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respectively, while a and b are the constant parameters, which the shape of exponential

functional is defined by. Note that both C ≥ 0 and λ⋆2 ≥ 0 satisfy KKT condition. In the actual

optimization problem dealing with in this note, when the inequality condition is inactive,

λ2 = 0 (B.35)

This indicates that the optimization problem with the inequality condition can be deal with as

the optimization problem with the equality condition, if we can judge the inactive or active

of the inequality condition.

Viscous dissipation rate minimization problem considering swirl constraint

The flow rate constraint functional G is defined as follows,

G (uuu) =
∫
Γout

(
S w−S w

t
)2

dΓ− tol (B.36)

while, S w
t means the initial Swirl number.

The Lagrangian L can be expressed as follows by using the Lagrange undefined multipli-

ers vvv, q and λi with considering G j ( j = 1,2)( the volume constraint functional G1 and swirl

constraint functional G2.

L = J+
∫

D
vvv ·F1dΩ+

∫
D

qF2dΩ+λ1G1+λ2G2 (B.37)

According to the variational of G2, δG2 is expressed as follows.

δG2 = λ2
∂G2

∂uuu
·δuuu (B.38)
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And derivative of G2 for adjoint equation and boundary condition are described below,



∂G2

∂uuu
=

∫
Γout



xv− y
w

x− yu
w

−
xv− yu

w2


dΓ

∂G2

∂p
= 0

(B.39)

Therefore, by inserting the above conditions, the following Lagrangian variation δL

transformation can be obtained.

δL =
∫
Ω

(
∂ jΩ
∂uuu
−∇ ·

∂ jΩ
∂∇uuu
−

1
Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+αvvv+∇q

)
δuuudΩ

+

∫
Ω

(
−∇ · vvv+

∂ jΩ
∂p

)
δpdΩ

+


∫
Γp

(
∂ jΩ
∂∇uuu
·nnn+

∂ jΓ
∂uuu
−q ·nnn+

1
Re
∇vvv ·nnn+ (uuu ·nnn) · vvv

)
dΓ+λ2

∂G2

∂uuu

δuuu
+

∫
Γu

(
∂ jΓ
∂p
+ vvv ·nnn

)
δpdΓ+

∫
D

(
∂α

∂ϕ
·δϕuuu

)
· vvvdΩ+

∂J
∂ϕ
·δϕ+λ1

(
∂G1

∂ϕ
·δϕ

)
(B.40)

Thus, adjoint equation and boundary condition can be written as,

−
1

Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+∇q = −αvvv−

(
1

Re
∇2uuu+2αuuu−∇ ·

2
Re
∇uuu

)
(B.41)

−∇ · vvv = 0 (B.42)

(
−q · III+

1
Re
∇vvv

)
·nnn = − (uuu ·nnn) · vvv−

2
Re
∇uuu ·nnn−λ2


xv− y

w
x− yu

w
−

xv− yu
w2


on Γp (B.43)

vvv ·nnn = 0 on Γu (B.44)
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Finally, the shape sensitivity for topology optimization problem can be obtained as,

δL =
{∫

D

∂ jΩ
∂ϕ

dΩ+
∫
Γ

∂ jΓ
∂ϕ

dΓ+
∫

D

(
∂α

∂ϕ
uuu · vvv

)
dΩ+λ1

∂G1

∂ϕ

}
δϕ (B.45)

Determination of the Lagrange undetermined multiplier λ for the swirl constraint

In this topology optimization problem, the adjoint equation and adjoint boundary conditions

are given by the expression (B.41)–(B.44). When the inequality condition is active, in order

to determine the undefined lagrange multiplier λ2, we introduce the concept of the augmented

lagrange method as below,

λ2 =Cλ⋆2 (B.46)

where the arbitrary coefficient C and λ⋆2 are expressed as

C = exp

(Qout

Qin

)2

+a

b

(B.47)

λ⋆2 =

∫
Γout

∣∣∣∣∣∂G2

∂uuu

∣∣∣∣∣dΓ∫
Γout

dΓ
(B.48)

respectively, while a and b are the constant parameters, which the shape of exponential

functional is defined by. Note that both C ≥ 0 and λ⋆2 ≥ 0 satisfy KKT condition. In the actual

optimization problem dealing with in this note, when the inequality condition is inactive,

λ2 = 0 (B.49)

This indicates that the optimization problem with the inequality condition can be deal with as

the optimization problem with the equality condition, if we can judge the inactive or active

of the inequality condition.
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B.2.3 Swirl maximization problem

In case the x-y plane is the specific outlet plane and the z direction is the rotational axis for

the objective functional jΓ, the objective functional is as follows,

jΩ = 0 (B.50)

jΓ = S w =
xv− yu

w
(B.51)

in which the characteristic length r = 1 is used.

Therefore, each derivative of jΩ and jΓ for adjoint equation and boundary condition are

described below, 

∂ jΩ
∂uuu
= 0

∂ jΩ
∂∇uuu

= 0

∂ jΩ
∂p
= 0

∂ jΓ
∂p
= 0

∂ jΓ
∂uuu
=



xv− y
w

x− yu
w

−
xv− yu

w2



(B.52)
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Then, by substituting each derivartive, the adjoint equation and boundary condition for the

swirl maximization problem can be obtained as,

−
1

Re
∇2vvv− (uuu · ∇)vvv+ (∇uuu) · vvv+∇q = −αvvv (B.53)

−∇ · vvv = 0 (B.54)

(
−q · III+

1
Re
∇vvv

)
·nnn = − (uuu ·nnn) · vvv−


(xv− y)/w

(x− yu)/w

− (xv− yu)/w2

 on Γp (B.55)

vvv ·nnn = 0 on Γu (B.56)

Consequently, as the each derivative with respect to the level set functional ϕ are



∂ jΩ
∂ϕ
= 0

∂ jΓ
∂ϕ
= 0

∂α

∂ϕ
= αmin−αmax

∂G
∂ϕ
= 1

(B.57)

the shape sensitivity for topology optimization problem can be obtained as,

δL =
{∫

D

∂ jΩ
∂ϕ

dΩ+
∫
Γ

∂ jΓ
∂ϕ

dΓ+
∫

D

(
∂α

∂ϕ
uuu · vvv

)
dΩ+λ

∂G
∂ϕ

}
δϕ

=

∫
D
{(αmin−αmax)uuuvvv+λ}δϕdΩ (B.58)
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