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The aim of this paper is to provide a construction of symplectic field the-
ory (SFT). SFT is a theory of contact manifolds and symplectic manifolds with
cylindrical ends proposed by Eliashberg, Givental and Hofer in [3]. It is a gen-
eralization of contact homology and Gromov-Witten invariant, and it is con-
structed by counting the number of appropriate pseudo-holomorphic curves in
the symplectization of a contact manifold or a symplectic manifold with cylin-
drical ends. In general, we need perturbation to obtain transversality of moduli
spaces of pseudo-holomorphic curves, and it was a difficult problem to carry out
perturbation with compatibility conditions required for the construction of the
algebras. There were various attempts to overcome this difficulty. For exam-
ple, Hofer, Wysocki and Zehnder developed the theory of polyfold ([6]-[10]) for
a systematic construction. However, they have not yet published a complete
proof of the construction of SFT. Recently, contact homology (this is a part of
SFT) was constructed by Pardon [11] and Bao and Honda [1] independently.
However, the general SFT has not yet been fully constructed.

The main result of this paper is construction of SFT in full generality.

Theorem 1. For each closed contact manifold (Y, ξ) and each finite subset

K
0 ⊂ H∗(Y,Q), we can define SFT cohomology H∗

SFT(Y, ξ,K
0
), rational SFT

cohomology H∗
RSFT(Y, ξ,K

0
) and contact homology H∗

CH(Y, ξ,K
0
) as invariants

of (Y, ξ,K
0
).

In fact, we construct generating functions defined in [3] for contact manifolds
and symplectic manifolds with cylindrical ends and prove all of their properties
explained in [3].

For the construction, we use Kuranishi theory, a theory developed by Fukaya
and Ono. This is one of the general techniques to overcome the transversality
problem and it was first used in [4] for the construction of Gromov-Witten
invariant and Hamiltonian Floer Homology of symplectic manifolds. We mainly
follow the argument of [4].

The compactification of the space of pseudoholomorphic curves consists of
holomorphic buildings. For the construction of the Kuranishi neighborhood of
a holomorphic building (especially the case of genus > 0), we need to treat the
deformation of the target space as well as the deformation of the domain curve.
Hence we introduce a new space which parametrizes the deformations of both
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of the domain curve and the target space.
We also improve the theory of Kuranishi structure and introduce the new

notion of pre-Kuranishi structure and its weakly good coordinate system. In [4],
they used the notion of good coordinate system for the construction of compati-
ble perturbed multisection. It was a nice notion for their construction, but it has
a disadvantage for our construction. The product of good coordinate systems
is not a good coordinate system. This makes the argument highly complicated
for our case. Hence we introduce the notion of weakly good coordinate system.
Weakly good coordinate system is defined for a pre-Kuranishi structure, it is
closed with respect to product, and we can use their product directly for the
product of pre-Kuranishi spaces. We also alter the definition of multisection,
and explain about the compatibility condition of multisections in details.

We also explain a new way to prove the smoothness of pre-Kuranishi struc-
ture by using the estimates of the differentials of implicit functions. In the
theory of Kuranishi structure, the smoothness of the Kuranishi structre was
one of its difficult part. One proof was given by Fukaya, Oh, Ohta and Ono
in [5], but our way is easier than theirs. It is enough to estimate the implicit
functions by direct calculations using appropriate coordinates.

We also deal with Bott-Morse case. Some easy cases of Bott-Morse case was
studied by Bourgeois in [2]. We use the chain complex of triangulation of the
space of periodic orbits instead of Morse chain complex used in [2].

We treat symplectic field theory of Bott-Morse case by using a triangulation
of the space of periodic orbits. Using the chain complex of this simplicial com-
plex, we treat the most general case where bad orbits appear as a subcomplex of
the space of periodic orbits. To construct the algebras by counting intersection
numbers with simplices, we need to use correction terms which correspond to
cascades in [2]. Since the algebra of SFT is more complicated than that of con-
tact homology, the correction terms are also complicated. Hence we also solve
algebraic equations to define appropriate correction terms.

Using this Bott-Morse case, we can calculate the SFT cohomology of a con-
tact manifold with S1-action generated by the Reeb vector field. Then we can
prove the following.

Theorem 2. Assume that (Y, ξ) admits a contact form λ whose Reeb flow

defines a locally free S1-action on Y . We also assume that all cycles in K
0

are S1-invariant. Let P be the space of non-parametrized periodic orbits. Then

H∗
SFT(Y, ξ,K

0
) is the algebra generated by H∗(P ;R), H∗

c (P ;R) and the variables

tx (x ∈ K0
), ~ with the product defined by the following commutative relations:

all variables are super-commutative except

[pc, qα] = 〈c, α〉~

for all c ∈ H∗(P ;R) and α ∈ H∗
c (P ;R), where we denote the elements corre-

sponding to c or α by pc or qα.
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