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This is a summary of the authors thesis [18], entitled “Random walks on random trees and
hyperbolic groups: trace processes on boundaries at infinity and the speed of biased random
walks”.

Consider a transient random walk (Zn) on an infinite graph. As the time n tends to ∞, Zn
escapes to infinity due to its transience. It is the aim of this thesis to study several problems
which arise from the transience and investigate its deeper aspects.

The first object we will study is trace processes at infinity. We begin with introducing a
classical example called the Douglas integral which gives an intuition for the construction of
trace processes on the boundary. Consider the reflected Brownian motion on the unit disc
D := {(x, y) ∈ R2 ; x2 + y2 < 1} starting at the origin. The corresponding Dirichlet form
(E,F ) is given by

E(u, v) :=

∫
D

∫
D

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dm(x)dm(y),

F :=

{
u ∈ L2(D,m) ;

∂u

∂x
,
∂u

∂y
∈ L2(D,m)

}
,

where m is the Lebesgue measure on D. Let H ′ be a map which sends a function ϕ on ∂D to
a function H ′ϕ on D defined by

H ′ϕ(reiθ) :=

∫ 2π

0

1− r2

1− 2r cos(θ − θ′) + r2
ϕ(θ′)dκ(θ′),

where κ is the first hitting distribution of the reflecting Brownian motion to ∂D, which coincides
with the normalized uniform measure on ∂D due to its rotation invariance. This integral is
called the Poisson integral, and it is known that H ′ϕ gives a solution to the Dirichlet problem
on D. Now we define a quadratic form (E∂D, F∂D) on ∂D by

E∂D(ϕ, ψ) := E(H ′ϕ,H ′ψ),

F∂D := {ϕ ∈ L2(∂D, κ) ; Hϕ ∈ F}.
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It is known that (E∂D, F∂D) is a regular Dirichlet form on L2(∂D, κ) which corresponds to the
trace process of the reflecting Brownian motion on ∂D, and E∂D has the following explicit
expression:

E∂D(ϕ, ψ) =
π

4

∫ 2π

0

∫ 2π

0

(ϕ(θ)− ϕ(θ′))(ψ(θ)− ψ(θ′))

sin2( θ−θ
′

2
)

dκ(θ)dκ(θ′).

We can consider the discrete version of the above construction on general graphs. Let G =
(V,E) be an infinite connected graph with vertex set V and edge set E and c : E → R be a
weight function on E. We now define a random walk (Zn) on G whose transition probabilities
{p(x, y)}x,y∈V are given by

p(x, y) :=
c([x, y])∑

y′∈V ;[x,y′]∈E c([x, y
′])
,

where [x, y] denotes the edge connecting x and y. Let (E ,F) be a quadratic form on G defined
by

E(f, g) :=
1

2

∑
x,y∈V

c([x, y])(f(x)− f(y))(g(x)− g(y)),

F := {f : V → R ; E(f, f) <∞}.

When (Zn) is transient, (Zn) converges to a random point Z∞ of the Martin boundary M of the
weighted graph (G, c). We denote by ν the distribution of Z∞, which is called the harmonic
measure of (Zn). It is a well-known fact in the theory of the Martin boundary that there exists
a map H which sends a function u on M to a harmonic function Hu on G which has the
boundary value u on M . We now introduce a bilinear form (EM ,FM) on M defined by

EM(u, v) := E(Hu,Hv),

FM := {u ∈ L2(M, ν) ; Hu ∈ F}.

The function Hu gives a solution to the Dirichlet problem at infinity, and (EM ,FM) is called
the trace of (E ,F) on M . In order to construct a stochastic process associated to (EM ,FM), we
need to prove the regularity of (EM ,FM), which roughly means that the domain FM contains
sufficiently many continuous functions on M . The proof requires a good understanding of the
topology of M . When the graph G has some special structure, we sometimes have a concrete
description of M by using the structure of G. In this thesis, we will focus on the following
graphs;

(1) infinite trees,

(2) non-elementary hyperbolic groups.

We first explain the background of (1). It is shown in [5] that the Martin boundary of
an infinite transient weighted tree (T, c) is homeomorphic to the set of geodesic rays of T .
By utilizing this concrete geometric description of the Martin boundary, Kigami [11] proved
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the regularity of (EM ,FM). Therefore, there exists a Hunt process on M corresponding to
(EM ,FM). Moreover, he obtained the two-sided estimates of the heat kernel associated to
(EM ,FM) under the assumption that the harmonic measure ν satisfies the volume doubling
property with respect to a certain metric on M . It is one of the aims of this thesis to extend this
result to Galton-Watson trees, which are randomly generated trees by the branching mechanism.
We will choose λ-biased random walks on Galton Watson trees as a transient random walk on
them. The proof of the regularity of (EM ,FM) in [11] also applies to Galton- Watson trees,
but we cannot use the heat kernel estimates shown in [11] because in general we do not have
the volume doubling property of the harmonic measure for Galton-Watson trees.

We now define Galton-Watson trees and λ-biased random walks. Let {pk}k≥0 be a proba-
bility measure on Z+, namely, pk ≥ 0 for any k ∈ Z+ and

∑∞
k=0 pk = 1. The Galton-Watson

tree with offspring distribution {pk}k≥0 is a random tree constructed in the following manner:
we start with one distinguished individual o called the root, and the root gives birth to children
whose number is determined by the offspring distribution, namely, it has k children with prob-
ability pk. Each of those children gives birth to its children again independently with the same
distribution. We let this procedure continue and the family tree T constructed in this manner
is called the Galton-Watson tree with offspring distribution {pk}. We denote the distribution
of a Galton-Watson tree by P. Throughout this thesis, we will assume p0 = 0 and p1 < 1 so
that T is an infinite tree with probability 1 and m :=

∑∞
k=0 kpk > 1.

We introduce the definition of λ-biased random walks. Choose an infinite rooted tree (T, o)
without leaves. We define the λ-biased random walk on T under the probability measure P T

λ

in the following manner: for λ > 0, let {Zλ
n}n≥0 be a random walk on T such that if v 6= o, v

has k children v1, ..., vk and the parent π(v), then

P T
λ (Zλ

n+1 = π(v) | Zλ
n = v) =

λ

λ+ k
,

P T
λ (Zλ

n+1 = vi | Zλ
n = v) =

1

λ+ k
, for 1 ≤ i ≤ k,

and if v = o, the random walk moves to its children equally likely. It is proved in [12] that the
λ-biased random walk on a Galton-Watson tree T is transient for almost every T if and only
if 0 < λ < m.

We next explain the background of (2). A geodesic metric space (X, d) is said to be
hyperbolic in the sense of Gromov if there exist a point o ∈ X and a constant δ > 0 such that
for any x, y, z ∈ X we have

(x, z)o ≥ min{(x, y)o, (y, z)o} − δ,

where

(x, y)o :=
d(o, x) + d(o, y)− d(x, y)

2
.

The quantity (x, y)o is called the Gromov product of x and y with respect to the base point o. A
finitely generated group Γ is said to be hyperbolic if the Cayley graph of Γ endowed with a word
metric is hyperbolic in the sense of Gromov. A hyperbolic groups is called non-elementary if it
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is non-amenable. One important feature of a non-elementary hyperbolic group is the existence
of the Gromov boundary ∂Γ, which is a kind of the boundary at infinity canonically defined by
using the hyperbolicity of Γ. We next quickly explain the definition of random walks on Γ. Let
µ be a probability measure on Γ whose support generates Γ. We now define a random walk
(Zn) on Γ in such a way that

P (Zn+1 = y | Zn = x) = µ(x−1y).

Thus, the distribution of Zn is identical to µ∗n, which is the n-th fold convolution power of µ.
All random walks on Γ defined in this way are known to be transient due to the non-amenability
of Γ. It is a natural question to study relations between the Gromov boundary ∂Γ and the
Martin boundary of (Γ, µ). Actually, it is proved in [2] that ∂Γ is homeomorphic to the Martin
boundary of (Γ, µ) when µ has a finite support. Later, this result is extended in [9], and it
is shown that the same result holds when µ satisfies the following moment estimate: for any
a > 0, it holds that ∑

x∈Γ

ea|x|µ(x) <∞,

where |x| denotes the word metric between the identity of Γ and x. The results explained
above gives the relation between ∂Γ and the Martin boundary from the topological point of
view. On the other hand, it is proved in [10] that under the assumption that µ has a finite first
moment, (∂Γ, ν) is isomorphic to the Martin boundary endowed with ν as measurable spaces.
However, to our best knowledge, there have not been any results which study the trace form
on the boundary for non-elementary hyperbolic groups in general.

The second problem arising from the transience which we will address in this thesis is the
analysis of the speed of transient random walks. Here we are interested in random walks with
very strong transience in a sense that the distance between the starting point and the position
of a random walk at time n grows linearly in n. The speed of λ-biased random walks on Galton-
Watson trees is an interesting example of this topic. It is shown in [14] that when p0 = 0 and
0 < λ < m, the sequence n−1d(Zλ

n) converges to a deterministic strictly positive constant,
denoted by vλ, Pλ-almost surely and in L1(Pλ), where d(Zλ

n) is the distance between the root
o and the vertex Zλ

n , and Pλ is the annealed measure defined by

Pλ(·) :=

∫
P(dT)PT

λ (·).

The constant vλ is called the speed of (Zλ
n), and the following conjecture about its behavior is

posed in [14].

Conjecture 0.1. The function λ 7→ vλ is monotonically decreasing on λ ∈ (0,m).

This conjecture is called the monotonicity conjecture and has been unsolved for more than
twenty years though there are several partial results. In [3], the authors proved the monotonicity
of the speed for λ ∈ (0, 1/1160). Later, in the unpublished note [1], this results was extended
to λ ∈ (0, 1/2).

4



We conclude this section with explaining regeneration times, introduced in [14] for Galton-
Watson trees, which will play an important role in this thesis. Regeneration times enable us to
decompose paths of random walks into i.i.d. components. We introduce below the definition
and basic properties of regeneration times.

Definition 0.2. A time n is called a regeneration time of the λ-biased random walk (Zλ
n) if

Zλ
n 6= Zλ

k for any 0 ≤ k < n and Zλ
n−1 6= Zλ

l for any l ≥ n.

Proposition 0.3. [14]

• For any 0 < λ < m, there exist infinitely many regeneration times 0 =: τ0 < τ1 < τ2 <
... < τn < .... Pλ almost surely.

• For any 0 < λ < m, under the annealed measure Pλ, the sequences {τi+1 − τi}i≥1 and
{d(Zλ

τi+1
)− d(Zλ

τi
)}i≥1 are i.i.d. random variables.

1 Main results of this thesis

This thesis consists of the following three papers:

(1) Chapter 2: Y. Tokushige. Jump processes on the boundaries of random trees, arXiv:1708.08075.

(2) Chapter 3: P. Mathieu and Y. Tokushige. An approach to traces on the boundary of
random walks on a hyperbolic group via reflected Dirichlet spaces, preprint.

(3) Chapter 4: Y. Tokushige. Regularity results of the speed of biased random walks on
Galton-Watson trees, arXiv:1811.04849.

The rest of this chapter is devoted to the summary of the main results of this thesis.

1.1 Results in Chapter 2

In Chapter 2, we study the asymptotics of the heat kernels associated to the trace forms
for λ-biased random walks on Galton-Watson trees. As explained in Section 1.1, the λ-biased
random walk on a Galton-Watson tree T is P-almost surely transient when 0 < λ < m. Thus,
for 0 < λ < m, we have the harmonic measure HARMλ

T, the heat kernel pλt (·, ·) and the Markov
process (Xλ

t ) on the Martin boundary M associated to the trace form (EM ,FM). In [13, 14],
the authors proved that βλ := dim HARMλ

T is a positive deterministic constant satisfying
0 < βλ < logm. In Chapter 2, we will prove the following estimates of βλ and pλt (·, ·). Note
that d(·, ·) is the natural metric on M .

Theorem 1.1. (Theorem 2.1.1, Theorem 2.1.2 and Corollary 2.3.7 in Chapter 2.)

• For 0 < λ < m, we have βλ > log λ ∨ 0.
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• For 0 < λ < m, the following holds P-a.s.

− lim
t→0

log pλt (ω, ω)

log t
=

βλ
βλ − log λ

, HARMλ
T a.e.-ω,

and for any γ > 0

lim
t→0

logEω[d(ω,Xλ
t )γ]

log t
=

(
γ

βλ − log λ

)
∧ 1, HARMλ

T a.e.-ω.

In the proof, we utilize an explicit expression of pλt (·, ·) obtained in [11] which involves
the harmonic measure and the effective resistance of the electric network on an infinite tree
corresponding to the transient random walk on it. Therefore, in order to prove the above
theorem, it is important to obtain controls of the harmonic measure HARMT and the effective
resistance. As for the control of the harmonic measure, we employ results in [13, 14] which
study the speed of the decay of HARMλ

T(An) when (An) is a decreasing sequence of balls of
the Martin boundary M . As for the control of the effective resistance, we will determine the
asymptotic of the values of the effective resistance along geodesic rays of a Galton-Watson tree
in Proposition 2.3.5 in Chapter 4. In the proof of Proposition 2.3.5, we will use the ergodic
theory on the space of trees developed in [13, 14].

1.2 Results in Chapter 3

In Chapter 3, we will study the trace forms on the Gromov boundaries of non-elementary
hyperbolic groups Γ. Let (EM ,FM) be the trace of the random walk driven by a probability
measure µ and ν be the corresponding harmonic measure. We first prove the following expres-
sion of (EM ,FM) which uses the Näım kernel Θµ(·, ·) introduced in [16] in the Euclidean setting
and extended in [17] to the discrete setting.

Proposition 1.2. (Proposition 3.4.5 in Chapter 3.) When a probability measure µ admits a
finite first moment, we have

EM(u, u) =

∫
Z×Z

(u(ξ)− u(η))2Θµ(ξ, η)dν(ξ)dν(η) ,

FM = {u ∈ L2(M, ν) ; EM(u, u) <∞}.

We next prove the regularity of (EM ,FM) under the assumption that a probability measure
µ satisfies the finite second moment condition and the Ahlfors-regular conformal dimension of
the Gromov boundary ∂Γ is strictly less than 2.

Theorem 1.3. (Theorem 3.5.1 in Chapter 3.) Assume the Ahlfors-regular conformal dimension
of ∂Γ is strictly less than 2. When a probability measure µ admits a finite second moment,
(EM ,FM) is a regular Dirichlet form on L2(M, ν).
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To prove the above theorem, we will compare (EM ,FM) with the Besov spaces on ∂Γ
introduced in [4]. In [4], the authors constructed the Besov space on ∂Γ for each metric in the
Ahlfors-regular conformal gauge of ∂Γ, and proved that those Besov spaces are all isomorphic
as Banach spaces. Denote by C(∂Γ) the set of continuous functions on ∂Γ. In Chapter 3,
we will show that the intersection of the domain of a Besov space in [4] and C(∂Γ) does not
depend on the choice of metrics in the Ahlfors-regular conformal gauge. We will denote by C
the common set. Moreover, we will prove that the intersection C(∂Γ)∩FM also coincides with
C whenever µ admits a finite second moment. By using these observations, we also prove that
the Besov spaces in [4] give rise to regular Dirichlet forms.

The next results in Chapter 3 is about a potential theoretic property of the harmonic
measure ν. A positive Radon measure m is said to be smooth with respect to (E ,F) if m
charges no sets of zero capacity and satisfies an additional technical condition. (See Subsection
3.5.2 for the precise definition.) We present below one of the main results in Chapter 3.

Theorem 1.4. (Theorem 3.5.16 in Chapter 3.) Assume that the Ahlfors-regular conformal
dimension of ∂Γ is strictly less than 2 and a probability measure µ admits a finite first moment.
Then, any harmonic measure ν of a random walk driven by a probability measure µ is smooth
with respect to (EM ,FM).

We prove the above theorem in a somewhat indirect way. For a given regular Dirichlet form
(E ,F), we consider the set of all smooth measures with respect to (E ,F). We first show that
all the sets of smooth measures with respect to the Besov spaces in [4] coincide. Let S(∂Γ) be
this common set of smooth measures. We next prove that whenever µ admits a finite second
moment, the set of all smooth measures with respect to (EM ,FM) coincides with S(∂Γ). By
using the above claims, we can easily prove Theorem 1.4 when µ admits a finite second moment.
We finally extend this result to probability measures with a finite first moment by employing the
heat kernel estimates for non-local Dirichlet forms obtained in [7] and the deviation inequality
in [15] which controls the deviation of paths of random walks on Γ from geodesics.

At the end of Chapter 3, we will give a concrete probabilistic interpretation of the Markov
process (Xt) on ∂Γ associated to (EM ,FM). We first construct the reflecting random walk (Wt)
on Γ, which is an extension of the transient random walk on Γ, by using the theory of reflected
Dirichelt spaces introduced in [6]. See Theorem 3.7.1 for the precise statement. We then prove
that (Xt) coincides with a certain time-change process of (Wt) in Theorem 3.7.3.

1.3 Results in Chapter 4

In Chapter 4, we study the speed of λ-biased random walks on Galton-Watson trees. Specif-
ically, we will prove the differentiablity of the function λ 7→ vλ on λ ∈ (0, 1), and an expression
of the derivative using a two dimensional Gaussian random variable (X, Y ).

Let us explain why the two dimensional Gaussian random variable (X, Y ) arises in this
context. The Gaussian random variables X and Y are both related to the distance function
d(Zλ

n). We first explain the definition of X in the first coordinate. Recall that {d(Zλ
τi+1

) −
d(Zλ

τ1
)}i≥1 are i.i.d. random variables, where τi is the i-th regeneration time. Thus, when τi

satisfies a finite (2 + ε)-th moment for some ε > 0, (d(Zλ
τn)− τnvλ)/

√
n converges to a Gaussian

random variable as n tends to ∞ under the annealed measure Pλ due to the CLT. It is not
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difficult to show the CLT for (d(Zλ
n)− nvλ)/

√
n by using the above fact, and X is given by its

limit.
We next explain the definition of Y in the second coordinate. Define Pn by

Pn =
d(Zn)−

∑n−1
k=1 E

T
λ,Zk

[d(Z1)− d(Z0)]

2λ
.

It is clear from the definition that Pn is a martingale under the quenched measure PT
λ . By using

regeneration times again, we can show the CLT for Pn/
√
n, and Y is given by its limit. Since the

proofs of the CLT for (d(Zλ
n) − nvλ)/

√
n and Pn/

√
n both rely on the regeneration structure

of Galton-Watson trees, we actually have the joint CLT for the random vector ((d(Zλ
n) −

nvλ)/
√
n, Pn/

√
n). We now state the main result in Chapter 4.

Theorem 1.5. (Theorem 4.3.5 in Chapter 4.) The function λ 7→ vλ is differentiable on (0, 1).
Moreover, the derivative of the speed v′λ can be expressed as the covariance of a 2-dimensional
Gaussian random variable, namely, there exists a centered 2-dimensional Gaussian random
vector (X, Y ) with the covariance matrix Σλ such that v′λ = Eλ[XY ].

The differentiability of the speed vλ on λ ∈ (0, 1) is already proved in [1], but the expression
of the derivative in [1] is completely different from ours.

We conclude this section by explaining why we need to assume λ ∈ (0, 1). In the proof of
Theorem 1.2.5, we need a finite exponential moment of regeneration times τi. To obtain the
finite exponential moment of τi, we utilize the estimate of slow-down probabilities of d(Zλ

n)/n
obtained in [8]. However, it is also shown in [8] that the slow-down probabilities do not decay
exponentially fast in general when λ ≥ 1.
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