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Abstract

Dissipation - coupling to the environment - is ubiquitous in nature and plays an essential
role in quantum systems. It can cause decoherence of quantum states; thus, it limits the
coherent dynamics. Therefore, protection of the quantum states from the coupling to
the environment has been a crucial issue in quantum engineering. On the other hand,
dissipation can be used as an efficient tool for the preparation and manipulation of desired
quantum states. Therefore, understanding and controlling open quantum many-body
systems have become increasingly important.

Thanks to their exquisite controllability, cold-atom quantum simulations have been
successfully used to engineer various Hamiltonians of intensive theoretical interest. For
these well-isolated and closed quantum many-body systems, various quantum phases are
realized, and the transitions among those phases have been successfully observed. In
addition, several recent experiments have extended the applicability of quantum simu-
lators to Liouvillian dynamics of open quantum systems by introducing coupling to the
environment, namely, dissipation.

In this thesis, we present a series of experimental studies of a Bose-Hubbard system
with the dissipation of particle losses using ultracold ytterbium (Yb) atoms in a three-
dimensional optical lattice. First, we report the investigation of the dissipative Bose-
Hubbard system with two-body inelastic atom loss with controllable strength, which is
implemented by introducing a single-photon photo-association (PA) process. The inelas-
tic collision rate, which characterizes the strength of the dissipation, can be controlled by
varying the intensity of the PA beam. In the dynamics subjected to a slow ramp-down
of the optical lattice, we find that strong on-site dissipation favors the Mott insulating
state: the melting of the Mott insulator is delayed, and the growth of the phase coherence
is suppressed by the strong dissipation. This can be understood as the quantum Zeno
effect, that is, the strong dissipation suppresses the unitary dynamics of the system. The
highly controllable dissipation allows us to study the quench dynamics for investigating
non-equilibrium quantum dynamics. The experimental results are compared with theoret-
ical analysis and numerical calculation, which quantitatively capture the novel behavior
presented in the experiments.

Second, we report the realization of a dissipative Bose-Hubbard system with Yb atoms
in the metastable 3P2 state. Because the collision between two metastable atoms induces
a change of the internal degrees of freedom, the Yb atoms in the 3P2 state have an
intrinsically large inelastic collision rate, which induces dissipation. We fully characterize
the system by measuring the scattering length between two 3P2 atoms by developing a
new scheme called the double excitation method. In a three-dimensional optical lattice,
we investigate the atom loss behavior with the unit-filling Mott insulator as the initial
state and find that the atom loss is suppressed by the strong correlation between atoms.
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Also, as we decrease the potential depth of the lattice, we observe the growth of the phase
coherence and find that the formation of a sizable phase coherence is suppressed by the
dissipation.
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Chapter 1

Introduction

1.1 Background of dissipative quantum systems

Dissipative processes are always present in nature. Any realistic system is subjected
to a coupling to the environment, which influences the system in a non-negligible way.
On the one hand, dissipation causes decoherence of quantum states; thus, it limits the
coherent dynamics. Along with the recent growth of artificial quantum systems, especially
quantum technologies for storing and manipulating quantum information [1, 2, 3, 4],
protection of the quantum states from coupling to the environment has been a crucial
issue. On the other hand, the dissipation can be used as an efficient tool for preparation
and manipulation of particular quantum states of interest [5, 6]. One of the most primitive
examples is optical pumping in atomic physics [7, 8], in which atoms are driven into a
desired state with high fidelity using laser driving and spontaneous emission processes.
This has led to techniques for high-precision state control for quantum computing with
trapped ions [9], which utilize the driving and emission processes for sideband cooling and
high-fidelity detection. Such driving processes have been extended to algorithmic cooling
in nuclear magnetic resonance (NMR) systems [10, 11], which reduces the entropy of the
spins via interaction with the environment to obtain a large number of highly polarized
spins.

In recent years, various kinds of quantum systems, including atomic, molecular, and
optical (AMO) systems, have been applied to the study of many-body physics, and it
has become important to extend previous understanding of open system dynamics in
single- and few-body systems to many-body systems. In particular, understanding and
controlling non-equilibrium dynamics of correlated quantum many-body systems with
dissipation are indeed an imperative issue shared in common among experimental sys-
tems in diverse areas of physics. The coherent dynamics competes with various types of
dissipative processes, such as particle losses and photon scattering, in many-body sys-
tems with ultracold gases [5, 6, 12] and trapped ions [13, 14]. Cavity QED systems are
strongly influenced by dissipative coupling to the vacuum modes of the electromagnetic
field environment [12, 15]. In the system of an exciton-polariton BEC, the dynamics of
a driven-dissipative polariton condensate under an incoherent pumping has been stud-
ied [12, 16]. Superconducting circuits offer open quantum systems due to photon leakage
and qubit dissipation [17]. In Ref. [18], observation of a dissipative phase transition in
microcavity arrays coupled with superconducting qubits was reported.
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CHAPTER 1 INTRODUCTION

System

Environment

Dissipation
(Coupling to the environment)

Particle losses
Photon scattering
Radiation
Quantum measurement
Thermal noise

Figure 1.1.1: Schematic of a dissipative (open quantum) system. A quantum system
couples to the environment, which leads to the non-unitary dynamics of the system. The
quantum state of the system can be controlled by appropriate design of the coupling
between the system and the environment.

Along with the development of the experimental study of quantum systems, theoretical
treatment for describing the dynamics of open quantum systems has been investigated.
The most common approach to describe open quantum systems is the Lindblad master
equation [19], which is widely used for the treatment of irreversible and non-unitary
processes from the dissipative process and decoherence to the measurement process. As
a means of numerically simulating the dynamics of open quantum systems, quantum
trajectory techniques have been developed in the field of quantum optics [20, 21, 22,
23, 24, 25] and can be applied to any system where the dynamics is described via the
Lindblad master equation. In these techniques, the dynamics is written as a stochastic
average over individual trajectories, which can evolve numerically as pure states. The
assumptions in the derivation of the master equation, the Born-Markov approximation
and the rotating wave approximation, restrict the use of the Lindblad master equation
to quantum systems weakly coupled to large reservoirs. While the dynamics of open
quantum systems can be described with the Markov approximation in many cases, there
are some cases where a large separation between the system and environment timescales
can no longer be assumed, leading to non-Markovian behavior. Thus, various techniques
have been developed for non-Markovian open quantum systems [26].

The non-unitary dynamics of open quantum systems can be treated by an effective
description based on non-Hermitian Hamiltonians under appropriate conditions [22, 5, 27].
For example, a system continuously monitored and conditioned on a null-measurement
outcome obeys the dynamics described by a non-Hermitian Hamiltonian [28]. Recently,
quantum many-body dynamics in a non-Hermitian Hamiltonian interacting system has
been explored [28, 29, 30]. In particular, a system with parity-time (PT ) symmetry,
which emerges PT -symmetry breaking associated with an exceptional point, has been
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SECTION 1.2 QUANTUM SIMULATION WITH ULTRACOLD ATOMS IN AN
OPTICAL LATTICE

Lattice const. d = λ/2          

Laser LaserAtoms

Laser
Tunneling J On-site interaction U

Laser

Wavelength λ

Figure 1.2.1: Schematic of an optical lattice. A periodic potential is generated by counter-
propagating laser beams. Because of the interference between two beams with a wave-
length of λ, an optical standing wave with a period of λ/2 is formed, in which atoms are
trapped. The dynamics of the ultracold atoms in the optical lattice is well described by
the Hubbard model, which consists of the tunneling of atoms between sites with amplitude
J and the on-site interaction between atoms at the same site U .

intensively studied [27, 29, 31].

1.2 Quantum simulation with ultracold atoms in an

optical lattice

Since the first experimental realization of a Bose-Einstein condensate (BEC) in 1995 [32,
33, 34] and the Fermi degeneracy in 1999 [35], extensive studies have been carried out
on ultracold atomic gases. In particular, ultracold quantum gases in an optical lattice
provide a unique platform for quantum simulation of strongly correlated quantum many-
body systems. In 1998, it was pointed out that the ultracold atoms in an optical lat-
tice accurately implement the Hubbard model [36] (Fig. 1.2.1). The superfluid-to-Mott
insulator quantum phase transition was observed [37] for the Bose-Hubbard model in
2002, which demonstrated the ability of a cold-atom quantum simulator with optical lat-
tices. This experiment promoted a series of further experimental studies with interacting
bosons [38, 39, 40, 41].

While quantum degeneracy of neutral atoms was first realized with alkali atoms, many
other elements have now been brought to quantum degeneracy. Among others, much at-
tention has been paid to alkaline-earth-like (AEL) atoms, such as calcium (Ca), strontium
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CHAPTER 1 INTRODUCTION

(Sr), and ytterbium (Yb), which have two valence electrons. Two-electron atoms have
emerged as a promising tool in the quantum simulation framework because of their rich
internal structure, which can be used to expand the range of possibilities offered by al-
kali atoms. One of the most important properties of AEL atoms is the presence of the
long-lived, electronically excited metastable states 3P0 and 3P2. The transitions connect-
ing these states from the ground 1S0 state is extremely narrow, associated with lifetimes
on the order of tens of seconds. Such ultranarrow transitions allow us to realize an op-
tical lattice clock [42] and occupancy-sensitive high-precision spectroscopy [43]. In the
field of quantum information processing, various kinds of quantum computing platforms
using the metastable states for storing and controlling the quantum state have been pro-
posed [44, 45, 46, 47, 48, 49, 50]. With the interaction between the 1S0 state and the
3P0 state, a two-orbital system is a promising candidate for quantum simulation of the
Kondo effect [51, 52, 53, 54, 30] and the scattering properties between the 1S0− 3P0 states
have been intensively investigated [55, 56, 57, 58, 59, 60]. Between the 1S0 state and the
3P2 state, Feshbach resonances have been observed [61, 62] and a spin-orbit coupling was
implemented [63], which are key ingredients for novel quantum simulations.

1.3 Quantum simulation for open quantum many-

body systems

The wide variety of achievements of quantum simulation with ultracold atoms are based on
the unique feature that the system is well isolated from the environment. However, several
recent experiments have extended the applicability of quantum simulators to Liouvillian
dynamics of open quantum systems by introducing coupling to the environment, namely,
dissipation. So far, various kinds of theoretical works on the effect of dissipation have
predicted novel quantum states engineered by dissipation resulting from photon scattering
and particle loss [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 28].

Pioneering experimental work was reported in Ref. [74], in which a two-body inelastic
collision was realized using the intrinsic nature of molecules of 87Rb. In this study, it
was revealed that strong inelastic collisions inhibit particle losses because of the quantum
Zeno effect [75]. While this study did not approach control of the dissipation strength,
suppression of loss was observed in Ref. [76] by controlling the inelastic collision rate
via varying the confinement, namely, the lattice depth. One-body dissipation has been
introduced in a controlled manner with several methods. The utility of an electron beam
has been demonstrated in Ref. [77, 78, 79]. With a well-designed photon scattering pro-
cess, measurement backaction on the many-body state [80] has been invesitgated. In the
case of the three-body loss process, controlling the strength of three-body recombination
by Feshbach resonance and realization of a novel metastable many-body state have been
demonstrated [81]. While these experiments are basically described by few-body physics,
investigations of the effect of dissipation on many-body physics have been recently re-
ported in the context of the study of many-body localization (MBL). In Ref. [82], the
thermalization dynamics in the presence of controlled dissipation was explored in a MBL
system. Also, the robustness of MBL in the presence of a quantum bath was inves-
tigated [83]. These experiments show the potential of the ultracold-atom system for
studying open quantum many-body systems with controlled coupling to the environment.
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SECTION 1.3 QUANTUM SIMULATION FOR OPEN QUANTUM MANY-BODY
SYSTEMS
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(a) (b)

(c) (d)

Figure 1.3.1: Dissipation implemented in quantum many-body systems with ultracold
gases. (a) Localized electron beam applied to a BEC. Figure adapted from Ref. [77]. (b)
Two-body inelastic collision between polar molecules in an optical lattice. Figure adapted
from Ref. [76]. (c) Three-body recombination in an optical lattice. Figure adapted from
Ref. [87]. (d) Position measurement via photon scattering. Figure adapted from Ref. [80].

Different from these rather artificial ways of introducing dissipation, a system of two-
electron atoms naturally realizes a dissipative system because of the intrinsic strong inelas-
tic collisions in the metastable 3P2 state [88, 89, 90, 91] and the 3P0 state [89, 92, 93, 94]
of AEL atoms. Because the collision between two metastable atoms induces a change in
the internal degrees of freedom, the atoms in the metastable state have an intrinsic large
inelastic collision rate, which induces dissipation. In the case of the 3P0 state of 173Yb, a
novel quantum state was observed in the atom loss behavior, which is consistent with the
generation of a highly entangled Dicke state [86].

1.4 This thesis

In this thesis, we present a series of experiments with a Bose-Hubbard system with ar-
tificial and intrinsic two-body dissipation (Fig. 1.4.1). Because the two-body interaction
is fundamental and crucial for the emergence of novel quantum states and many-body
physics such as quantum phase transitions, it is important to investigate the effect of two-
body dissipation on quantum many-body systems such that the strength of dissipation
can be widely controlled.

First, we report an investigation of a Bose-Hubbard system using ultracold atoms in a
three-dimensional (3D) optical lattice, in which we introduce engineered dissipation of the
two-body particle losses. By exploiting the highly controllable nature of the dissipation

6



SECTION 1.4 THIS THESIS

174Yb atoms in the 1S0 state

174Yb atoms in the 1S0 state
with artificial dissipation 

174Yb atoms in the metastable 3P2 state 
with intrinsic dissipation

Bose-Hubbard system 

Dissipative 
Bose-Hubbard system

Photo-association

Coherent transfer

Figure 1.4.1: Schematic of our work. We realize a dissipative Bose-Hubbard system in
two different manners: introducing artificial dissipation via the photo-association tech-
nique (upper right) and coherently transferring the internal state of the atoms into the
metastable 3P2 state (lower right).

that we introduce, we successfully reveal the effect of the dissipation on the quantum
phase transition from a Mott insulator to a superfluid state in a systematic manner. In
particular, in the ramp-down dynamics across the crossover from the Mott insulator to
the superfluid states, we observe that the melting of the Mott state is delayed and the
growth of the phase coherence is suppressed because of the strong dissipation. The highly
controllable on-site dissipation allows us to study the quench dynamics as a novel method
of initial state preparation, providing a new way to investigate non-equilibrium quantum
dynamics.

Second, we report an experimental study of the dynamics of the dissipative 3P2 state
of bosonic ytterbium atoms 174Yb in an optical lattice. We fully characterize the system
by measuring the scattering length between two 3P2 atoms by developing the double-
excitation method. To overcome the difficulty of forming a BEC in the dissipative
metastable state, we first create a BEC in the ground state 1S0 and form a unit-filling
Mott insulator in the 3D optical lattice. Then, we coherently transfer the Mott insula-
tor in the 1S0 state into the 3P2 state, resulting in the successful formation of the Mott
insulator in the dissipative 3P2 state. With this Mott insulator as an initial state, we
investigate the stability of the system and find that the atom loss is suppressed by the

7



CHAPTER 1 INTRODUCTION

strong correlation, which is attributed to both the on-site interaction and the inelastic
loss. Also, this novel scheme for initial state preparation enables us to observe the growth
of the phase coherence as we decrease the lattice depth, otherwise impossible to create,
and we quantitatively reveal that the formation of a sizable phase coherence is suppressed
by the dissipation.

Outline

This thesis is organized as follows.

• Chapter 2 introduces theoretical background for the dissipative Bose-Hubbard sys-
tem.

• Chapter 3 gives the details of our experimental apparatus and procedures used for
dissipative Bose-Hubbard experiments with ytterbium atoms.

• Chapter 4 reports a series of experiments with the dissipative Bose-Hubbard system
with artificial dissipation induced by photo-association. We present the result of
the investigation of the effect of the dissipation on the quantum phase transition of
the Bose-Hubbard system.

• Chapter 5 describes the dissipative Bose-Hubbard system with intrinsic dissipation
with the metastable state of the ytterbium atoms.

• Chapter 6 briefly summarizes the works presented in this thesis and provides some
directions for future studies.
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Chapter 2

Theoretical background

In this chapter, we introduce the theoretical background for a dissipative Bose-Hubbard
system. First, we briefly summarize a band structure in an optical lattice. Then, we in-
troduce the Bose-Hubbard model and describe the quantum phase transition between the
superfluid state and the Mott insulating state. In Section 2.3, we present the theoretical
treatment of dissipative systems. Finally, we describe the theory of photo-association.

2.1 Ultracold atoms in an optical lattice

An optical lattice offers a unique platform for quantum simulation of quantum many-
body physics. It is generated by interfering counter-propagating laser beams, which form
a standing wave of light. Using a laser far-detuned from atomic resonances, atoms feel
an optical dipole force proportional to the intensity of the laser. Therefore, the standing
wave of light creates the perfect periodic potential.

A three-dimensional (3D) cubic lattice is constructed using the three one-dimensional
lattices orthogonal to each other. When the wavelength of the lattice beam is λ, the
lattice potential is expressed as:

VL(x) = −(V0x cos
2 (kLx) + V0y cos

2 (kLy) + V0z cos
2 (kLz)) (2.1.1)

where kL = 2π/λ is the wavevector of the lattice and V0α (α = x, y, z) is the potential
depth of each axis. The lattice spacing d is half of the lattice wavelength d = λ/2. The
lattice depth is often expressed with units of recoil energy ER = �

2k2
L/2m, where m is

the atomic mass. It is convenient to describe the lattice depth V0 by the reduced lattice
depth parameter s = V0/ER.

2.1.1 Bloch bands

For simplicity, we first consider the one-dimensional system. The state of a single particle
in the optical lattice is given by the Schrödinger equation:

Ĥψ(n)
q (x) = E(n)

q ψ(n)
q (x), (2.1.2)

where Ĥ is the Hamiltonian

Ĥ =
p̂2

2m
+ V (x), (2.1.3)

9
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Figure 2.1.1: Band structure for one-dimensional lattice at lattice depths of V0 =
0, 5, 10, 20ER.

where V (x) is a periodic potential V (x) = V (x+ d) with lattice spacing d.
The solutions of this equation are the so-called Bloch function, which, according to

Bloch’s theorem, can be written as the product of a plane wave and a function with the
same periodicity as the potential

ψ(n)
q (x) = eiqxu(n)

q (x), (2.1.4)

where
u(n)
q (x+ d) = u(n)

q (x). (2.1.5)

Introducing Eq. (2.1.4) into Eq. (2.1.3) leads to the Schrödinger equation for u
(n)
q (x):[

(p+ �q)2

2m
+ V (x)

]
u(n)
q (x) = E(n)

q u(n)
q (x) (2.1.6)

where q is the quasi-momentum of the state and n is the band index.
The band structure can be obtained by expressing the periodic functions V (x) and

u
(n)
q in the form of a Fourier sum

V (x) =
∑
l

Vle
i2kLlx, (2.1.7)

10



SECTION 2.2 BOSE-HUBBARD MODEL

u(n)
q (x) =

∑
l

c
(n,q)
l ei2kLlx. (2.1.8)

The potential of the optical lattice can be written as

V (x) = −V0x cos
2 (kLx) = −V0x

4
(ei2kLlx + e−i2kLlx + 2). (2.1.9)

Thus, we obtain ∑
l′

H
(q)
i,i′ c

(n,q)
l′ = E(n)

q c
(n,q)
l , (2.1.10)

where

H
(q)
ll′ = ER ×

⎧⎨
⎩

(2l + q/kL)
2 + s/2 l = l′,

s/4 |l − l′| = 1,
0 otherwise.

(2.1.11)

The eigenenergies and eigenstates can be obtained by diagonalizing each submatrix
H(q). Figure 2.1.1 shows the band structure for a one-dimensional lattice with various
lattice depths.

2.1.2 Wannier state

We express the state localized at each lattice site by transforming the Bloch state.

|i, n〉 = 1√
Nsite

∑
q

e−iqxi |q, n〉, (2.1.12)

where xi is the position of the lattice site i.
The Wannier function is represented by

wn(x− xi) = 〈x|i, n〉 = 1√
Nsite

∑
q

e−iqxiψ(n)
q (x). (2.1.13)

Wannier functions obey the orthonormality relation for all bands n and sites i. In a
deep lattice, the lattice potential can be approximated by a harmonic potential with
the frequency �ωlat = 2

√
sER. Also, the Wannier function for the lowest band can be

approximated to the following Gaussian function:

w0(x− xi) �
(mωlat

π�

)1/4

exp
[
−mωlat

2�
(r − ri)

2
]
. (2.1.14)

However, the harmonic oscillator approximation is not suited for typical experimental
parameters, as shown in Fig. 2.1.2. The true Wannier function decays exponentially rather
than in a Gaussian manner and always has nodes to guarantee the orthogonality relation.
Thus, the harmonic oscillator approximation should not be used for the calculation of
Hubbard parameters, especially inter-site quantities such as the tunneling amplitude.

In a 3D lattice system, the Wannier function is simply extended to

wnx,ny ,nz(r − ri) = wn(x− xi)wn(y − yi)wn(z − zi). (2.1.15)

11
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Figure 2.1.2: Wannier function for the lowest band at a lattice depth of V0 = 10ER. The
dashed line represents the result of harmonic approximation Eq. (2.1.14).

2.2 Bose-Hubbard model

Here, we consider the many-body physics of bosonic atoms in an optical lattice VL(r). We
start from the many-body Hamiltonian for bosons interacting via an interacting potential
Vint(r − r′)

Ĥ =

∫
drΨ̂†(r)

(
−�

2∇2

2m
+ VL(r)

)
Ψ̂(r) +

1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)Vint(r − r′)Ψ̂(r)Ψ̂(r′)

(2.2.1)
where Ψ̂†(r) and Ψ̂(r) are creation and annihilation operators, respectively, of bosonic
atoms at position r and satisfy the commutation relation[

Ψ̂(r), Ψ̂†(r′)
]
= δ(r − r′). (2.2.2)

At sufficiently low temperature, the interaction between atoms are dominated by s-wave
collision. In such a situation, the asymptotic scattering wavefunction resulting from the
true interaction potential can be reproduced by the following delta-function contact po-
tential:

Vint(r − r′) =
4π�2a

m
δ(r − r′), (2.2.3)

where a is the s-wave scattering length.
Below, we consider the lowest band n = 0 and use the Wannier function for the lowest

band: w(r − ri) = w0(r − ri). Because the Wannier function for all sites ri forms a
complete basis, the annihilation operator Ψ̂(r) can be expanded in the form

Ψ̂(r) =
∑
n,i

w(r − ri)âi. (2.2.4)

Here, âi is the annihilation operator for particles at the lattice site i, which satisfies the
commutation relation [

âi, â
†
j

]
= δi,j. (2.2.5)

12



SECTION 2.2 BOSE-HUBBARD MODEL

For a deep lattice, the dominant terms are given by the nearest neighbor tunneling
process and the on-site interaction. Finally, we obtain the Hamiltonian [95, 96, 36]

Ĥ = −J
∑
〈i,j〉

(â†i âj + h.c.) +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

(εi − μ)n̂i. (2.2.6)

Here, we add the confining potential εi and the chemical potential μ.
The on-site interaction U is given by

U =
4π�2a

m

∫
dr|w(r − ri)|4 (2.2.7)

The tunneling amplitude between nearest neighboring sites i and j is given by

J = −
∫

drw∗(r − ri)

(
−�

2∇2

2m
+ VL(r)

)
w(r − rj). (2.2.8)

For a deep optical lattice, these parameters have the approximate expression

U �
√

8

π
kaER

(
V0xV0yV0z

E3
R

)3/4

, (2.2.9)

Jα � 4√
π

(
V0α

ER

)3/4

exp

[
−2

(
V0α

ER

)1/2
]
, (2.2.10)

where Jα (α = x, y, z) is the tunneling amplitude along the α axis. We note that these
expressions should not be used in the experimental regime such as V0 < 30ER. Instead,
we use numerically calculated U and J for the analysis.

2.2.1 Quantum phase transition of the Bose-Hubbard system

The important property of the Bose-Hubbard model is the existence of a quantum phase
transition between a superfluid phase and a Mott insulator phase [96] at the critical point
(J/U)c. We discuss the limiting cases, which describe the two possible phases in the
ground state of the Bose-Hubbard model.

Superfluid state

In the non-interacting limit U/J = 0, the ground state is a Bose-Einstein condensate
(BEC) where all N atoms are in the q = 0 in the lowest Bloch band

|Ψ〉U/J=0 =
1√
N !

(
1√
NL

∑
i

â†i

)N

|0〉, (2.2.11)

whereNL is the number of lattice sites. In particular, in a large system and a large particle-
number limit, the ground state cannot be distinguished from a product of coherent states

|Ψ〉U/J=0 ∝
∏
i

[
exp

(√
N

NL

â†i

)
|0〉i

]
. (2.2.12)

As a result, the on-site number probability distribution follows a Poisson distribution.
In the three-dimensional system, the ground state has long-range phase coherence,

namely, the condensate has the same phase everywhere and the first-order correlator
〈â†i âj〉 remains finite as |i− j| → ∞.
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Mott insulating state

In the limit of zero tunneling J/U = 0, the tunneling term can be neglected and the
ground state is given by

|Ψ〉J/U=0 =

[∏
i

1√
m!

(â†i )
m

]
|0〉, (2.2.13)

where m is the occupation number. For a given chemical potential μ, the occupation
number m is determined by minimizing the energy. As a result, mi(μ) has a step-wise
dependence on μ, where mi(μ) increases by one at integer values of μ/U , resulting in the
imcompressibility ∂n/∂μ = 0 in the region, where μ takes non-integer values. Low-energy
excitation consists of a particle-hole pair, and this leads to the excitation gap of U , which
is called the Mott gap.

In an experimental situation, the harmonic trap potential modifies the chemical poten-
tial. Thus, the Mott insulating state forms a wedding-cake-shaped number distribution
(Fig. 2.2.1 (b)).

Mean field analysis

Between these two situations, there is a quantum phase transition at J/U = (J/U)c, where
the excitation gap closes. Here, we describe the phase boundary between the superfluid
state and the Mott insulating state within a mean field approximation [96, 97, 98]. We
expand the bosonic operator as âi = ψ + (âi − ψ) and neglect the higher-order terms of
(âi − ψ). Here, ψ = 〈âi〉 is called the superfluid order parameter. We assume that ψ is
real and the system is homogeneous. Under these approximations, the Hamiltonian Eq.
(2.2.6) becomes

HMF � JzNLψ
2 +

U

2

∑
i

n̂i(n̂i − 1)− μ
∑
i

n̂i − Jzψ
∑
i

(âi + â†i ), (2.2.14)

where NL is the number of lattice sites and z is the coordination number.
For sufficiently small J , we can apply a perturbation expansion to the second order.

The ground state energy E0 is given by

E0/NL = Jzψ2 +
U

2
m(m− 1)− μm− (Jzψ)2

[
m

U(m− 1)− μ
− m+ 1

Um− μ

]
, (2.2.15)

where m is the occupation number. If the second-order coefficient of J is positive, the
energy E0 is minimized for ψ = 0, which corresponds to the Mott insulating state. Con-
versely, if the second-order coefficient is negative, the energy is minimized for ψ 
= 0,
corresponding to the superfluid state. Thus, the phase transition occurs at the point
where

Jz + (Jz)2
[

m

U(m− 1)− μ
− m+ 1

Um− μ

]
= 0 (2.2.16)

Figure 2.2.1 shows the phase diagram for the superfluid - Mott insulator transition ob-
tained by mean field analysis.
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SECTION 2.2 BOSE-HUBBARD MODEL

Figure 2.2.1: (a) Phase diagram for the superfluid - Mott insulator (MI) transition ob-
tained by mean field analysis. (b) Mott shell structure of the atoms in the optical lattice
with the harmonic trap potential. In a real experiment in which the external harmonic
trap is superimposed on an optical lattice, the local chemical potential takes a spatially
dependent value, with the result that a series of Mott insulator and superfluid regions
appears on going toward the edge of the cloud, as indicated by the red arrow.

The experimentally observed critical point corresponds to the tip of the Mott lobe,
that is, the point at which the following conditions are satisfied:

∂

∂μ

(
Jz

U

)
c

= 0. (2.2.17)

From this condition, we obtain the critical point:(
zJ

U

)
c

= 1 + 2m− 2
√
m2 +m. (2.2.18)

For the singly occupied state m = 1, (zJ/U)c = 3− 2
√
2 � 0.1716, which is first obtained

in Ref. [96]. Conversely, for a quantum Monte-Carlo calculation of the phase diagram yield
for the m = 1 state and a 3D cubic lattice (z = 6),r the result (zJ/U)c = 0.2045 [99],
which means that the mean field analysis underestimates the critical point.

Experimental observation of the superfluid-Mott insulator transition

The superfluid - Mott insulator transition in an optical lattice was first experimentally
observed in Ref. [37] by detecting the sudden disappearance of the long-range phase co-
herence in a three-dimensional optical lattice. This is done by observing multiple matter-
wave interference pattern of atoms after free expansion of the atoms, which is the so-called
Time-of-Flight (TOF) method, and the vanishing of the interference when increasing the
interaction. The transition can also be observed by adiabatically ramping down the lattice
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Figure 2.2.2: Absorption images of the multiple matter-wave interference patterns of 174Yb
atoms after a TOF of 8 ms. We ramp down the lattice adiabatically from 20 ER.

after preparing the Mott insulting state, with the result that the Mott insulator is melted
and the phase coherence grows, as shown in Fig. 2.2.2.

When the lattice depth is deep and the interaction can be neglected, the density
distribution n(r, t) after the TOF can be expressed as [100, 101]

n(r, t) =
(m
�t

)3 ∣∣∣w̃ (mr

�t

)∣∣∣2 S (
k =

mr

�t

)
, (2.2.19)

where w̃(k) is the Fourier transform of the Wannier function, which determines the enve-
lope of the density distribution and

S(k) =
∑
i,j

exp [ik · (ri − rj)]〈â†i âj〉 (2.2.20)

describes the quasimomentum distribution characterizing the phase coherence, that is,
the interference pattern of the TOF absorption image.

More detailed properties, such as critical exponents [41] and a non-local order in a 1D
lattice [102], have been investigated previously.

2.3 Description of the dissipative system

The unitary dynamics of a quantum system is given by the von Neumann equation in the
Schrödinger picture

dρ̂

dt
= − i

�

[
Ĥ, ρ̂

]
, (2.3.1)

where Ĥ is a Hamiltonian of the system and ρ̂ is a density matrix. However, it does
not include irreversible processes such as spontaneous emission, particle losses, and the
measurement process, all of which are described by non-unitary processes. This generally
occurs in the treatment of open quantum systems: systems coupled to the environment
that we do not track. Here, we discuss the theoretical treatment of open quantum systems.
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SECTION 2.3 DESCRIPTION OF THE DISSIPATIVE SYSTEM

2.3.1 Master equation in Lindblad form

To derive an equation of motion for the behavior of a system in the presence of dissi-
pation resulting from the coupling to the environment, we make three approximations.
By considering the total system including the interaction between the system and the
environment and then eliminating the degrees of freedom of the environment under the
approximations, we obtain a master equation.

The first approximation is that the frequency scale associated with the dynamics
induced by the system-environment coupling is small compared with the relevant system
and environment dynamical frequency scale. In other words, the coupling between the
system and the environment is so weak that the influence of the system on the environment
is small. This assumption is called the Born approximation.

We also assume that the environment returns rapidly to equilibrium in a manner
essentially unaffected by its coupling to the system, so that the environment is unchanged
in time, and the dynamics of the system is not affected by its coupling to the environment
at earlier times, which means that the time evolution of the system does not depend on
the history of the system. This assumption is called the Markov approximation.

Finally, we assume that the terms that are oscillating much faster than the system
frequency scale are neglected. This assumption is called the Rotating wave approximation.

With these assumptions, the dynamics of the system in the presence of dissipation
resulting from the coupling to the environment is described by the master equation in
Lindblad form [19]:

dρ̂

dt
= − i

�
[Ĥ, ρ̂] +

1

2

∑
j

γj(−L̂†
jL̂j ρ̂− ρ̂L̂†

jL̂j + 2L̂j ρ̂L̂
†
j). (2.3.2)

Here, operators L̂j are called Lindblad operators and describe the dissipative dynamics
that occur at the rates γj.

The approximations for the derivation of the Eq. (2.3.2) are justified in our experiment
because the environment consists of a continuum of modes that quickly dephase. As a
result, the environment returns to the vacuum state on a time scale that is much faster
than all time scales in the system of interest.

Strictly speaking, the system Hamiltonian Ĥ is in general modified compared with
the unperturbed system Hamiltonian resulting from the coupling between the system and
the environment [103]. In our study, which focuses on the two-body inelastic collision,
calculation of the value of the shift is difficult because of the complexity of the collision
channels [104]. This modification of the Hamiltonian is beyond the scope of our work.

We can rewrite Eq. (2.3.2) as follows:

dρ̂

dt
= − i

�
(Ĥeff ρ̂− ρ̂Ĥ†

eff) +
∑
j

γjL̂j ρ̂L̂
†
j, (2.3.3)

where

Ĥeff = H − i

2

∑
j

γjL̂
†
jL̂j (2.3.4)

is the non-Hermitian effective Hamiltonian. The last term of Eq. (2.3.3) is often called the
quantum jump term or recycling term, as it represents stochastic quantum jumps and re-
cycles the population that is lost from certain states caused by the non-Hermitian effective
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Figure 2.4.1: Schematic of the PA process. Two potential energy curves are shown as a
function of the interatomic distance. εr is the relative kinetic energy. Eatom is the energy
required to excite one atom (here, atom A), and Eb is the binding energy of the molecular
vibrational level.

Hamiltonian, placing it in other states. The quantum jump term can be neglected under
an appropriate condition [22, 5, 27], and the dynamics of the system can be described by
the non-Hermitian Hamiltonian. For example, the system continuously monitored and
conditioned on a null-measurement outcome obeys the dynamics described by the non-
Hermitian Hamiltonian [28]. In the description of the Kondo effect in an ultracold-atom
system considering the loss of impurities, the dynamics around a surviving impurity is
described by the non-Hermitian Kondo Hamiltonian [30].

2.4 Photo-association

To implement the two-body inelastic atom loss with controllable strength, we introduce
a single-photon photo-association process for ultracold Yb atoms in a 3D optical lattice.
Here we describe the general theory of photo-association.

Photo-association (PA) [105, 106, 107, 108, 109] is the process in which two colliding
atoms absorb a photon to form an electronically excited molecule [110]:

A+B + γ → (AB)∗. (2.4.1)

The molecules formed by the PA process immediately dissociate into the electronically
ground molecular state or two ground-state atoms.
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SECTION 2.4 PHOTO-ASSOCIATION

2.4.1 Photo-association rate

Here, we describe the rate of the PA process, which is a key parameter for engineering
the dissipation in our experiment.

The PA rate coefficient has the following form [111, 112, 113, 110]:

KPA =
π�

μkr

∑
l

(2l + 1)
�(Γnat + Γo)�Γb(εr, l)

[εr + hν − hν0 − Sb(εr)]2 + (�Γtot/2)2
. (2.4.2)

Here, μ is the reduced mass, kr is the wave number of the relative motion, εr = (�kr)
2/2μ

is the relative kinetic energy, and l is the total angular momentum of the two-atom system.
The bound state has a finite linewidth

Γtot = Γnat + Γb(εr, l) + Γo. (2.4.3)

Γnat is the natural linewidth of the excited state. Γb(εr, l) represents the stimulated decay
into the entrance channel, which is given in the two-state approximation by

Γb(εr, l) = 2π|Vb(εr, l)|2. (2.4.4)

Vb(εr, l) is the optical coupling strength between the bound state |b〉 and the collisional
state |εr, l〉:

Vb(εr, l) =

√
2πI

c
〈b|d · e |εr, l〉 , (2.4.5)

where e is the polarization vector of the PA light with intensity I, c is the speed of
light, and d is the molecular electric dipole moment. Γo is the decay rate caused by any
other processes that lead to decay of the bound state. ν is the PA laser frequency, and
ν0 = (Eatom − Eb)/h (see Fig. 2.4.1) is the energy difference between the excited bound
state and the ground collisional state. Sb(εr) is the light shift of the resonance position
given by

Sb(εr) =
∑
l′

P
∫ |Vb(ε

′
r, l

′)|2
εr − ε′r

dε′r, (2.4.6)

where P is a partial part integral over the continuum ε′r > 0 and a summation over the
discrete bound state for ε′r < 0. In the experiment, the effect of the intensity-dependent
shift is kept small by tuning the laser frequency to the peak of the line:

εr + hν − hν0 − Sb(εr) = 0. (2.4.7)

When we consider only the s-wave scattering under sufficiently low temperature and
assume that Γnat � Γo, Eq. (2.4.2) can be written as

KPA =
4π�

μ
lopt(I, εr)

1

2

(�Γnat)
2

[εr + hν − hν0 − Sb(εr)]2 + (�Γnat/2)2
, (2.4.8)

where

lopt(I, εr) ≡
Γb(εr, l = 0)

2krΓnat

(2.4.9)

is the optical length [114, 110], which is independent of the collisional energy in the
regime εr → 0 and varies linearly with the intensity I. The optical length characterizes
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the strength of an optical Feshbach resonance, namely, the ability of light to change the
scattering length of ground state atoms as follows [114, 110]:

a = abg + lopt(I, εr)
[εr + hν − hν0 − Sb(εr)](�Γnat)

[εr + hν − hν0 − Sb(εr)]2 + (�Γnat/2)2
, (2.4.10)

where a and abg are the scattering length in the presence of light and the background
scattering length, respectively.

From Eq. (2.4.8), KPA in the resonance condition εr + hν − hν0 − Sb(εr) = 0 is
represented as

KPA =
8π�

μ
lopt(I, εr). (2.4.11)

Specifically, when two atoms have the same mass (μ = m/2), KPA is written as

KPA =
16π�

m
lopt(I, εr). (2.4.12)

For the 1S0 − 3P1 PA lines between the homonuclear bosonic isotopes of Yb, which
are used in our experiment, the optical lengths can be systematically calculated [115,
116]. Thus we can estimate the PA rate via Eq. (2.4.12). The details are described in
Section 3.5.1.
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Chapter 3

Experimental setup

In this chapter, we describe the experimental setup and procedure for producing quantum
degenerate gases of ytterbium in optical lattices. First, the general properties of Yb atoms
are introduced, followed by cooling processes. The excitation to the metastable state is
described in Section 3.4. As for probing, we use absorption imaging and fluorescence
imaging, as described in Section 3.6.

3.1 Properties of Ytterbium (Yb)

3.1.1 Isotopes and scattering lengths

Ytterbium (Yb) is a rare-earth metal in the Lanthanide series. There are seven stable
isotopes of Yb: five bosons (168Yb, 170Yb, 172Yb, 174Yb, 176Yb), and two fermions (171Yb,
173Yb). The natural abundance and nuclear spin of the stable isotopes are shown in Table
3.1.1. After the first realization of a BEC of 174Yb in 2003 [117], BECs of 170Yb, 176Yb,
and 168Yb and Fermi degeneracies of 173Yb and 171Yb have been realized [118, 119, 120,
121]. Because 172Yb has a large negative scattering length, a BEC of 172Yb cannot be
stable. In addition, various kinds of quantum gas mixtures of Yb isotopes have been
realized [119, 122], which open up new quantum phases.

Table 3.1.1: Natural abundance and nuclear spin of Yb atom [123]

Isotope Natural abundance [%] Nuclear spin [�]
168Yb 0.13 0
170Yb 3.05 0
171Yb 14.3 1/2
172Yb 21.9 0
173Yb 16.1 5/2
174Yb 31.8 0
176Yb 12.7 0
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Table 3.1.2: s-wave scattering lengths for combinations of Yb isotopes in [nm] unit [127]

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 13.33 6.19 4.72 3.44 2.04 0.13 -19.0
170Yb 3.38 1.93 -0.11 -4.30 -27.4 11.08
171Yb −0.15 -4.46 -30.6 22.7 7.49
172Yb −31.7 22.1 10.61 5.62
173Yb 10.55 7.34 4.22
174Yb 5.55 2.88
176Yb −1.28

Because of the differences in the reduced mass, each isotopic combination of Yb has
a different s-wave scattering length. The scattering length between two ground 1S0 state
atoms has been precisely measured via photo-association (PA) spectroscopy [124, 125,
126] and estimated for all pairs of isotopes using the mass scaling law [127], as shown in
Table 3.1.2.

3.1.2 Energy level

The ground-state electronic configuration 1 is [Xe] 4f 146s2. The electronic structure is
determined by the two valence electrons in the 6s-shell; thus, it is similar to that of
alkaline-earth metals. These two electrons arrange a spin singlet with total spin S = 0 or
a spin triplet with total spin S = 1, which forms two manifolds and a transition. Figure
3.1.1 is a diagram of the low-lying energy levels of Yb used for experiments in this thesis.

3.1.3 Transition properties

We describe the properties of important transitions used in our experiments.

1S0 ↔ 1P1 (399 nm)

The 1S0 ↔ 1P1 is a strong electric dipole (E1) transition whose natural linewidth is 29
MHz. The wavelength of the transition is 398.9 nm. This transition is used for Zeeman
slowing, absorption imaging, fluorescence imaging, and atom blast. This transition is
essentially cyclic, with a very small branching ratio of roughly 10−7 to the 3D1 and 3D2

states [128].

1S0 ↔ 3P1 (556 nm)

The 1S0 ↔ 3P1 is an intercombination transition whose natural linewidth is 182 kHz,
and the wavelength of the transition is 555.8 nm. The transitions between two separate

11s22s22p63s23p63d104s24p64d105s25p64f146s2
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Table 3.1.3: Basic properties of the 1S0 ↔ 1P1 and 1S0 ↔ 3P1 transitions [129, 130, 131].

Parameter 1S0 ↔ 1P1
1S0 ↔ 3P1 Unit

wavelength λ 398.9 555.8 nm

Lifetime τ 5.5 873 ns

Linewidth
Γ

2π
=

1

2πτ
29 0.182 MHz

Saturation intensity Is =
πhcΓ

3λ3
59 0.139 mW/cm2

Recoil energy ER/kB 344 178 nK

Recoil velocity vR =
�k

m
5.73 4.13 μm/ms

Doppler cooling limit TD =
�Γ

2kB
690 4.37 μK

spin manifolds are forbidden as electric dipole (E1) transitions in the pure LS-coupling
scheme because of the spin selection rule ΔS = 0. However, the heavy atom is not
accurately described by the LS-coupling scheme, and the spin-orbit interaction mixes
some 1P1 wavefunction into the wavefunction for the term that has been labelled 3P1.
This transition is used for the magneto-optical trap (MOT) and the PA.

The basic properties of the 1S0 ↔ 1P1 and 1S0 ↔ 3P1 transitions are described in
Table 3.1.3.

1S0 ↔ 3P2 (507 nm)

The 1S0 ↔ 3P2 is an ultranarrow transition whose wavelength is 507.4 nm. In the bosonic
isotopes, this line is a magnetic quadrupole (M2) transition whose natural linewidth is
10.6 mHz [132], i.e., the lifetime of the 3P2 state is 15 s. We note that in the case
of fermionic isotopes, the linewidth of this transition is expected to be slightly broader
than that of bosonic isotopes because of the hyperfine mixing effect (Table 3.1.4). The
ultranarrow transition enables occupancy-sensitive high-resolution spectroscopy [43]. The
Yb atoms in the 3P2 state have a magnetic field sensitivity with a magnetic moment of
3μB, which enables site-resolved addressing of atoms in an optical lattice with a magnetic
gradient [45, 47].
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�

�

�

�

�

�

Figure 3.1.1: Low-lying energy levels of Yb and their major applications.

Table 3.1.4: Basic properties of the 1S0 ↔ 3P2 transition [132, 133].

Parameter 1S0 ↔ 3P2 Unit

Boson Fermion

wavelength λ 507.35 nm

Lifetime τ 15 6.3 (171Yb) s

7.2 (173Yb) s

Linewidth
Γ

2π
=

1

2πτ
10.6 25 (171Yb) mHz
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SECTION 3.1 PROPERTIES OF YTTERBIUM (YB)

Table 3.1.5: Basic properties of the 3P0 ↔ 3S1,
3P1 ↔ 3S1 and

3P2 ↔ 3S1 transitions. The
radiative decay rate Γ(s) is calculated from the reduced matrix elements 〈3S1| |d| |3PJ〉
given in Ref. [132] with the relation Γ(s) = ω3

J/(9πε0�c
3)| 〈3S1| |d| |3PJ〉 |2 [134], where

ωJ/(2π) is the transition frequency.

Parameter 3P0 ↔ 3S1
3P1 ↔ 3S1

3P2 ↔ 3S1 Unit

wavelength λ 649.1 680.1 770.2 nm

Radiative decay rate Γ(s) 9.7 27 38 MHz

Branching ratio 0.13 0.36 0.51

Saturation intensity Is =
πhcΓ(s)

3λ3
0.74 1.8 1.7 mW/cm2

Recoil energy ER/kB 131 119 92.8 nK

Recoil velocity vR =
�k

m
3.53 3.37 2.98 μm/ms

3P2 ↔ 3S1 (770 nm) and 3P0 ↔ 3S1 (649 nm)

For detection of the atoms in the excited 3P2 state, we apply a repumping laser. The atoms
in the 3P2 are repumped back to the 1S0 state using repumping lasers of 770 nm and 649
nm, which are resonant to the 3P2 − 3S1 and 3P0 − 3S1 transitions, respectively. The 3P2

atoms absorbing a 770-nm photon are excited to the 3S1 state. Then, the
3S1 atoms that

decay into the 3PJ states (J = 0, 1, 2). The atoms which decay to the 3P1 state return to
the 1S0 state by emitting 556-nm photon. The atoms that decay to the 3P0 and

3P2 state
are again excited to the 3S1 state absorbing 649-nm and 770-nm photons, respectively
(see Fig. 3.1.1). The basic properties of these transition are shown in Table 3.1.5.

3.1.4 Inelastic collisions between metastable atoms

Because collisions between two metastable atoms induces a change in the internal degrees
of freedom, atoms in the metastable state have an intrinsically large inelastic collision
rate. The inelastic collision rate between 174Yb atoms in the 3P2 state is measured in
Ref. [91] with a thermal gas. In the measurement of the 3P2 − 3P2 inelastic collision
rate at low magnetic field and low temperature, no spin dependence is observed, which
is consistent with fine structure changing processes (J-changing collisions) or principal
quantum number changing (PQNC) processes, rather than the m-changing collision. The
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average of the inelastic collision coefficients is βee = 4× 10−17m3/s. We note that the loss
rate for a BEC is reduced by a factor of 2 compared with a thermal gas because of the
difference in the value of the pair correlation function.

3.2 Cooling processes

At room temperature, Yb is a solid with a low vapor pressure. To vaporize Yb, we heat
the Yb oven up to approximately 400 ◦C. To achieve quantum degeneracy of atom gases,
Yb atoms are cooled down to a few tens of nK. This is achieved by the all-optical method
explained below.

3.2.1 Zeeman slower

The atoms emitted from the oven at approximately 400 ◦C go through a Zeeman slower,
where they are decelerated by a counter-propagating laser beam. We use the 1S0 ↔ 1P1

transition with a wavelength of 399 nm. Basically, the resonance frequency of atoms in an
atomic beam is shifted because of the Doppler effect, depending on the atomic velocity.
In a Zeeman slower system, such frequency shifts are compensated by a gradually varied
external magnetic field. We adopted a so-called “increasing field type” Zeeman slower, in
which the magnetic field becomes stronger as the deceleration proceeds. The slowing laser
is obtained by frequency doubling of a Ti:sapphire laser of 798 nm (MBR-110, Coherent
Inc). A ring cavity with a Ba2B2O4 (BBO) crystal is used for the second harmonic
generation with an output power of 100 ∼ 150 mW. The laser frequency is locked to
a transfer cavity (RG-91T, Burleigh Instruments Inc) stabilized by 556-nm light that is
locked to a stable ultra-low expansion (ULE) cavity.

3.2.2 Magneto-Optical Trap (MOT)

Atoms slowed by the Zeeman slower are trapped in a magneto-optical trap (MOT). The
MOT consists of three pairs of two counter-propagating lasers with circular polarization
and a quadrupole magnetic field. We use the narrow 1S0 ↔ 3P1 intercombination transi-
tion with a wavelength of 556 nm, whose Doppler cooling limit is TD = 4.4μK. The laser
system consists of a fiber laser at 1111 nm (Boostik Y10-PM, Koheras), a ULE cavity for
frequency stabilization, and a wave-guide second harmonic generator (SHG, NTT Elec-
tronics). To load atoms into a far-off resonant trap, the atomic density is increased by a
compressed MOT scheme, where the magnetic field gradient is ramped up. Subsequently,
the intensity and the detuning of the MOT laser are decreased for cooling. Typically,
4× 106 174Yb atoms are captured at a loading time of 8 s, for example.

3.2.3 Far-Off Resonance Trap (FORT)

Atoms in the MOT are transferred to a far-off resonant trap (FORT) for further cooling
to quantum degeneracy. This is formed by crossing two laser beams with wavelengths of
532 nm (Verdi-V10/V-18, Coherent Inc.) at their focusing points. The polarization of
the two beams is the same. Evaporative cooling is performed by gradually decreasing the
intensity of the two laser beams. This enables us to selectively evaporate high-velocity
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Figure 3.3.1: Schematic view of the laser configuration for the experiments. Thin arrows
represent the polarization of the lasers. The magnetic field is applied along the y-axis for
the PA experiment and the z-axis for excitation to the 3P2 state.

atoms, which results in achieving a lower temperature for the remaining atoms. Using
thees processes, we obtain quantum degenerate gases of Yb.

3.3 Optical lattice

3.3.1 532 nm lattice

Our 3D optical lattice is formed by three mutually orthogonal laser beams with wave-
lengths of 532 nm. The light transmitted through the acousto-optic modulator (AOM)
for intensity control of the horizontal FORT is divided into three beams and used for the
optical lattices. Each beam is diffracted by AOMs for intensity stabilization, and + or
− 1st-order beams are coupled to the optical fibers. The laser intensity is stabilized by
monitoring the laser power using photo diodes after the fibers and sending the feedback
signal to the AOMs.
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CHAPTER 3 EXPERIMENTAL SETUP

3.3.2 1064 nm lattice

In our experiment, a 1064-nm lattice in the x axis is used for forming an optical superlat-
tice. Our 1064-nm lattice exists in the x, z-axis. Output from a fiber amplifier (NuAMP,
Nufern) with a seed light (Mephisto S, Innolight) is divided to two beams and used for
1064-nm lattices. Each beam is diffracted by AOMs for intensity stabilization, and + or
− 1st-order beams are coupled to the optical fibers. The laser intensity is stabilized by
monitoring the laser power using photo diodes after the fibers and sending the feedback
signal to the AOMs.

By superimposing the 1064-nm lattice onto the 532-nm lattice, we construct an optical
superlattice along the x-axis, the potential of which is written as

V (x) = V1064 cos
2 (k1064x) + V532 cos

2 (2k532x+ φ) (3.3.1)

where φ is the relative phase between the 1064-nm lattice and the 532-nm lattice. The
details of the lock and control of the relative phase φ are described in Ref. [135].

3.4 Excitation

3.4.1 507-nm excitation laser

We perform the excitation from the 1S0 state to the 3P2 state with a laser whose wave-
length is 507 nm. We generate the 507-nm light by frequency-doubling of the 1014-nm
light from an external cavity laser diode (ECLD). The frequency of the 1014-nm light is
first locked to a pre-stabilizer cavity and locked to a ULE cavity with a high finesse. The
1014-nm light is amplified by a tapered amplifier and 507-nm light is generated through
a waveguide SHG module.

3.4.2 Adiabatic rapid passage (ARP)

To coherently transfer the atoms in the 1S0 state to the 3P2 state, we use adiabatic rapid
passage (ARP) with a frequency-swept pulse [136]. This scheme is more robust than the
π-pulse excitation with respect to the fluctuation of the frequency and the intensity of the
excitation laser. Here, we briefly describe the fundamental principle of the ARP based on
a two-level system.

Under the rotating wave approximation, the Hamiltonian of a two-level system coupled
to a field is written as

Ĥ(t) =
�

2

(
−Δ(t) Ω

Ω Δ(t)

)
. (3.4.1)

where Δ(t) = ω(t) − ω0 is the detuning and Ω is the Rabi frequency. Diagonalizing the
Hamiltonian Eq. 3.4.1, we obtain the eigenvalues

E+ =
�

2

√
Δ(t)2 + Ω2 (3.4.2)

E− = −�

2

√
Δ(t)2 + Ω2 (3.4.3)
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SECTION 3.4 EXCITATION

Figure 3.4.1: Energy levels as a function of detuning Δ. The solid and dashed lines
represent energy levels with and without coupling Ω, respectively. By mixing the two
states, the atom adiabatically passes from |g〉 to |e〉 (black arrow).

and the corresponding eigenstates

|+〉 = sin θ(t)|g〉+ cos θ(t)|e〉 (3.4.4)

|−〉 = cos θ(t)|g〉 − sin θ(t)|e〉, (3.4.5)

where

θ ≡ arctan

(
− Ω

Δ(t)

)
(3.4.6)

and |g(e)〉 is a bare atomic ground (excited) state.
The frequency is first tuned well below the resonance (Δ � −Ω) and swept through

the resonance. If the process is performed adiabatically, the state is transferred into the
excited state (Fig. 3.4.1). Using the Landau-Zener formula, the excited state population
is given by [134]

Pe(t → ∞) = 1− exp

(
− πΩ2

2
∣∣dΔ
dt

∣∣
)

(3.4.7)

in the limit t → ∞. Here, we see that the entire population adiabatically follows the
dressed state and makes the transition in the limit of a strong field and slow sweep
(Ω2 � |dΔ/dt|).

The frequency of the excitation laser is swept by controlling the RF signal for the
switching AOM via the original oscillator with a voltage-controlled crystal oscillator
(VCXO, NV7050SA-74.1758M, Nihon Dempa Kogyo).
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3.4.3 Repumping laser

We use the 3P2 ↔ 3S1 transition with a wavelength of 770 nm and the 3P0 ↔ 3S1

transition with a wavelength of 649 nm to repump atoms in the 3P2 state to the 1S0 state.
The 770-nm light is generated by an ECLD and locked to an ULE. The 649-nm light is
generated by an ECLD and locked to the same ULE as that for the 770-nm light.

3.5 Photo-association

Photo-association (PA) is performed with the 1S0 ↔ 3P1 transition with a wavelength of
556 nm. We select the PA transition line with the binding energy of -3683.2 MHz. The
laser system consists of a fiber laser at 1111 nm (Orange one, Menlo systems), a ULE
cavity for frequency stabilization, and a wave guide SHG (NTT Electronics). To avoid
splitting of the resonance, we use circularly polarized light (Fig. 3.3.1).

3.5.1 Optical lengths for the 1S0 − 3P1 PA lines

In Chapter 2, we introduced the optical length, which characterizes the strength of an
optical Feshbach resonance and the PA rate. In our experiment, we use the 1S0 − 3P1 PA
line to implement the dissipation.

The optical lengths for the 1S0−3P1 PA lines between the homonuclear bosonic isotopes
of Yb are calculated by Ref. [115, 116], as shown in Table 3.5.1.

3.5.2 Selection of the PA transition line for artificial dissipation

To systematically investigate the effect of the dissipation on the quantum many-body
physics, it is necessary to apply a wide range of dissipation strengths. Because the inten-
sity of the PA laser that can be applied is limited, we choose the appropriate PA transition
line that introduces larger inelastic collision rate.

We calculate the PA rate from the optical lengths of the molecular states [115, 116]
based on Eq. 2.4.12. Figure 3.5.1 is the PA rate KPA, which shows that KPA is larger
for smaller detuning Δ, i.e., the binding energy. However, if we choose a molecular state
with a small detuning, the atoms suffer from severe photon scattering by the PA laser.
We evaluate the effect of the photon scattering by dividing KPA by the photon scattering
rate Rph, which reveals that the molecular state of the vibrational quantum number of
v′ = 16 with the detuning Δ/h = −3683.2 MHz of 174Yb is the most appropriate except
for the states of 168Yb and 172Yb. 168Yb and 172Yb are not appropriate for our experiment
because of the small abundance and the negative scattering length, respectively.

In the calculation from the optical length, KPA of the molecular state of the vibrational
quantum number of v′ = 16 with the detuning Δ/h = −3683.2 MHz of 174Yb is 2.12×10−11

cm3s−1 for the intensity of 1 W/cm2. We note that the one-body loss caused by photon
scattering can be neglected with respect to this transition because the detuning is much
larger than the natural linewidth of the atomic transition.
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Figure 3.5.1: (a) PA rates KPA and (b) KPA/Rph as a function of the detuning Δ of the
resonance from the atomic transition for the several bosonic isotopes of Yb with the laser
intensity of 1 W/cm2. The PA rate is calculated from the optical lengths [115, 116].

3.6 Imaging system

3.6.1 Absorption image

Absorption imaging is performed with the 1S0 ↔ 1P1 transition with a wavelength of
λprobe = 399 nm, which consists of an ECLD with a wavelength of 798 nm, a tapered
amplifier, and a waveguide SHG.

The intensity distribution of the probe light after passing through the atomic cloud
with density distribution n(r) is given by

I(x, y) = I0(x, y) exp

(
−σres

∫
n(r)dz

)
, (3.6.1)

where I0 is the intensity distribution without the atomic cloud and

σres =
3λ2

probe

2π
(3.6.2)

is the absorption cross section for a resonant light. This intensity distribution is projected
on the CCD surface with a magnification ratio A:

Ĩ(x, y) =
1

A2
I0

( x

A
,
y

A

)
exp

[
−σresn

( x

A
,
y

A

)]
(3.6.3)

By measuring the intensity Ĩ0 = A−2I0(x/A, y/A) without atoms, the effect of I0 can be
removed. Therefore the density distribution is given by

n
( x

A
,
y

A

)
= − 1

σres

ln

(
Ĩ(x, y)

Ĩ0(x, y)

)
. (3.6.4)

In actual images, the obtained position (x, y) is discretized by CCD pixels as (xi, yj),
where (i, j) is the index used to label a CCD pixel. To eliminate noise such as stray light,
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SECTION 3.6 IMAGING SYSTEM

Figure 3.6.1: (a) Absorption image of the BEC of 174Yb. The atom number is 1.4× 104,
and the TOF time is 14 ms. (b) Integrated optical density. The black curve is the fitting
of the bimodal distribution.

dark current from a CCD pixel, and thermal noise, we take an image of the dark frame
Dxi,yj in addition to the image Txi,yj with an atomic cloud and a probe light and a flat
image Fxi,yj with the probe light but the atomic cloud. For each CCD pixel, n(xi/A, yj/A)
is given by

n
(xi

A
,
yj
A

)
= − 1

σres

ln

(
Txi,yj −Dxi,yj

Fxi,yj −Dxi,yj

)
. (3.6.5)

The total atom number N can be calculated by accumulating n(xi/A, yj/A) over all
the CCD pixels:

N =
Δs

A2

m∑
i=1

n∑
j=1

n
(xi

A
,
yj
A

)
, (3.6.6)

where (m,n) is the number of CCD pixels in the horizontal and vertical direction, respec-
tively, and Δs is the CCD pixel size.

Bose-Einstein condensation

The density distribution of a BEC released from a harmonic trap can be derived from the
Gross-Pitaevskii [

− �
2

2m
∇2 + V (r) + g|φ(r)|2

]
ψ(r) = μψ(r), (3.6.7)

where g = 4π�2/m is the effective interaction between two particles with the scattering
length a and ψ(r) is an order parameter. For sufficiently large clouds, an accurate ex-
pression for the ground-state energy is obtained by neglecting the kinetic energy term in
Eq. 3.6.7 (Thomas-Fermi approximation); therefore, the density |ψ(r)|2 is given by

n(r) = max

[
μ− V (r)

g
, 0

]
. (3.6.8)
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For an anisotropic 3D harmonic trap

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (3.6.9)

the density is written as

n(r) =
μm

4π�2a
max

[
1−

(
x2

R2
x

+
y2

R2
y

+
z2

R2
z

)
, 0

]
, (3.6.10)

where

Rα,0 =

√
2μ

mω2
α

(α = x, y, z). (3.6.11)

and μ becomes

μ =
�ω̄

2

(
15Na

√
mω̄

�

)2/5

, (3.6.12)

where N =
∫
drn(r) is the total number of atoms and ω̄ ≡ (ωxωyωz)

1/3.
The density distribution of a BEC after ballistic expansion for a duration t can be

represented as

n(r, t) =
15NBEC

8πRx(t)Ry(t)Rz(t)
max

[
1−

(
x2

R2
x(t)

+
y2

R2
y(t)

+
z2

R2
z(t)

)
, 0

]
(3.6.13)

Here,
Rα(t) = Rα,0

√
1 + ω2

αt
2 (α = x, y, z). (3.6.14)

Integrating Eq. 3.6.13 one- and two-dimensionally gives the following 2D and 1D density
distributions

nTF(x, y, t) =
5NBEC

2πRx(t)Ry(t)

[
max

[
1−

(
x2

R2
x(t)

+
y2

R2
y(t)

)
, 0

]]3/2
, (3.6.15)

nTF(x, t) =
15NBEC

16Rx(t)

[
max

[
1− x2

R2
x(t)

, 0

]]2
. (3.6.16)

For fitting of the density distribution of the atomic cloud, we often use the bimodal
function, which is a sum of the Thomas-Fermi distribution and the thermal Gaussian
distribution. Figure 3.6.1 (a) is a typical absorption image of a BEC of 174Yb, and
Fig. 3.6.1 (b) is the result of the bimodal fitting to the 1D optical density.

3.6.2 Fluorescence imaging

For detection of a small number of atoms, we perform fluorescence imaging. We construct
a MOT system with the 1S0 ↔ 1P1 transition. The fluorescence from the atoms in the
MOT is detected by an EMCCD camera (iXon, Andor). We integrate the fluorescence
counts during the MOT, which is proportional to the number of atoms (Figure 3.6.2). To
suppress counts from stray light, we use an interference filter.
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Figure 3.6.2: (a) Typical fluorescence image of the atomic cloud. (b) Atom number -
Fluorescence count correspondence. We obtain the atom number with the absorption
image and the corresponding fluorescence count by varying the atom loading time from
1.5 to 8 s. The linear fitting (black line) shows the linear correspondence between the
atom number and the fluorescence count. We note that this correspondence depends on
the intensity of the MOT light, quantum efficiency, and exposure time of the EMCCD
camera.
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Chapter 4

Observation of the Mott insulator to
superfluid crossover of a
driven-dissipative Bose-Hubbard
system

In this chapter, we report a systematic investigation of a Bose-Hubbard system with
artificial on-site two-body loss via the photo-association process dissipation. Especially,
we reveal the effect of the dissipation on the Mott insulator - superfluid quantum phase
transition. First, we describe the engineering of the dissipation in Section 4.1. After
explaining the theoretical model in Section 4.2, we report the stability of atoms with the
dissipation in Section 4.3. In Section 4.4, we describe the effect of the dissipation on the
quantum phase transition both on theoretical and experimental sides. The theoretical
calculations were carried out by Dr. Ippei Danshita.

4.1 Engineering two-body dissipation

To implement two-body inelastic atom loss with controllable strength, we introduce a
single-photon photo-association (PA) process for ultracold Yb atoms in a 3D optical
lattice. The PA beam drives the intercombination transition of 1S0 ↔ 3P1, by which two
atoms in doubly-occupied sites are photoassociated into the 1S0+

3P1 molecular state and
immediately dissociated into the two ground-state atoms (see Fig. 4.1.1). This process
gives high kinetic energy to the dissociated atoms, which thus results in the escape from
the lattice. In this way, the PA laser induces the two-body inelastic collision loss between
the two atoms occupying the same site.

4.1.1 Measurement of the inelastic collision rate

We measure the inelastic collision coefficient by applying the PA laser to the atoms in the
3D optical lattice. Based on the calculation, we chose the molecular state of v′ = 16 with
Δ/h = −3683.2 MHz (see Section 3.5.2). The resonance frequency of the PA transition is
shifted with varying the intensity of the PA laser due to the light shift. Thus, we adjust
the laser frequency to the resonance for each intensity.
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SECTION 4.1 ENGINEERING TWO-BODY DISSIPATION

Figure 4.1.1: Schematic of the introduced inelastic two-body collision. When there are
singly- and doubly-occupied sites in the lattice (top), the atoms in the doubly-occupied
sites are converted into molecules by applying the PA laser (middle), and then escape
from the lattice due to the high kinetic energy given by the dissociation (bottom).

The lattice depth is V0 = 14 ER, which is deep enough to suppress the tunneling in the
timescale of this measurement. We adjust the total atom number so that there are singly-
and doubly- occupied sites. The atoms in the doubly-occupied sites are converted into
the molecules by applying the PA laser and then escape from the lattice due to the high
kinetic energy given by the dissociation. When the molecular loss rate ΓM is much larger
than the strength of atom-molecular coupling g (�ΓM � g), the number of the atoms in
the doubly-occupied sites exponentially decays (see Appendix B). By measurement, we
confirm that this condition is satisfied (Fig. 4.2.1). The decay rate corresponds to the
inelastic collision rate induced by the PA process ΓPA. Thus, the remaining atom number
N(t) decreases as

N(t) = N1 +N2 exp (−ΓPAt). (4.1.1)

We measure the atom number with the fluorescence detection and observe the exponential
decay of the atom number (Fig. 4.1.2 (a)) and extract the inelastic collision rate ΓPA with
varying the intensity of the PA rate (Fig. 4.1.2 (b)). The inelastic collision coefficient βPA

is determined through the relation

ΓPA = βPA

∫
|w(r)|4dr, (4.1.2)

where w(r) is the Wannier function of the lowest band. The dashed line in Fig 4.1.2 indi-
cates the linear fit to the low intensity data with a slope of 2.10(7)×10−11 cm3s−1/(Wcm−2),
which well agrees with the theoretical calculation of the PA rate of KPA = 2.12 × 10−11

cm3s−1/(Wcm−2) [116]; this means that the kinetic energy given by the single PA process
is large enough for the escape of the atoms from the lattice potential.
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Figure 4.1.2: (a) Time evolution of remaining atom number in a 3D optical lattice for
the measurement of the inelastic collision rate ΓPA. The lattice depth is set to V0 =
14 ER. The offset corresponds to the remaining atoms in the singly-occupied sites N1.
This data is taken with the intensity of the PA laser of 2.92 W/cm2. (b) The inelastic
collision coefficient βPA as a function of the intensity of the PA laser. The dashed line in
Fig 4.1.2 indicates the linear fit to the low intensity data with a slope of 2.10(7)× 10−11

cm3s−1/(Wcm−2), which well agrees with the theoretical calculation of the PA rate of
KPA = 2.12× 10−11 cm3s−1/(Wcm−2) [116]. Note that a saturating behavior is observed
at the highest intensity, the behavior of which is reported in other experiments performed
in a harmonic trap [137, 138, 139, 140]. The scale on the right in (b) indicates the
dimensionless dissipation strength γ.

In this way, we can realize controllable strength of inelastic collision up to βPA ∼
1.2 × 10−10 cm3/s corresponding to ΓPA ∼70 kHz in the lattice depth of V0 = 14 ER.
In order to characterize the strength of the dissipation, we introduce the dimensionless
dissipation strength

γ = �ΓPA/U, (4.1.3)

which does not depend on the lattice depth. We can control the dissipation strength up
to γ ∼ 5.

4.2 Theoretical model

In this section, we describe the theoretical model of this system. The system of bosonic
atoms in a sufficiently deep optical lattice coupled coherently to the 1S0 +

3P1 molecular
state via the PA laser is well described by the Markovian master equation for the coupled
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atom-molecule mixture model [141] with a one-body molecular loss term. By adiabatically
eliminating the molecular degrees of freedom on the basis of a second-order perturbation
theory for the master equation [142, 143], we derive the effective master equation (see
Appendix A for details),

�
d

dt
ρ̂eff = −i

[
Ĥeff , ρ̂eff

]
+ L2(ρ̂eff), (4.2.1)

where

Ĥeff =
∑
j

U

2
n̂A,j(n̂A,j − 1)−

∑
〈j,k〉

J
(
â†j âk + h.c.

)
, (4.2.2)

L2(ρ̂eff) =
�ΓPA

4

∑
j

(
−â†j â

†
j âj âj ρ̂eff − ρ̂eff â

†
j â

†
j âj âj + 2âj âj ρ̂eff â

†
j â

†
j

)
, (4.2.3)

and

ΓPA =
8g2

�2ΓM

. (4.2.4)

âj denotes the annihilation operator of atoms at site j and n̂A,j = â†j âj. 〈j, k〉 represents
nearest-neighboring pairs of lattice sites. This model is nothing but the single-component
Bose-Hubbard model with a two-body loss term [143], where J , and ΓPA denote the
tunneling amplitude, and the strength of the two-body inelastic collision induced by the
PA. In Eq. (4.2.4), g and ΓM denote the strengths of the atom-molecule coupling and the
one-body molecular loss, respectively. While g is controllable by varying the intensity of
the PA laser, ΓM is fixed for a specific molecular state.

The effective master equation (4.2.1) is valid only when �ΓM � max(|g|, |D|, |W |, |U |, J),
where D and W denote the detuning of the PA coupling and the on-site interaction be-
tween an atom and a molecule, respectively. ΓM can be determined by measuring the PA
rate as a function of (D − U), which is theoretically described as

Γ̃PA =
8g2

�2ΓM

[
1 + 4

(
D − U

�ΓM

)2
]−1

. (4.2.5)

In Fig. 4.2.1, we show measured Γ̃PA as a function of (D − U). Fitting the data
to Eq. (B.0.10), we determine ΓM = 2π×185(13) kHz = 1.16(8) MHz. On the other
hand, g can be estimated from the experimentally determined ΓM and ΓPA, resulting
in g/� ∼ 100 kHz at most. Therefore, we can confirm that the condition �ΓM � g is
satisfied, as well as the condition �ΓM � max(|D|, |U |, |W |) because D/�, U/� and W/�
are at most a few 10 kHz in our experiment.

4.3 Stability of the atoms with a unit-filling initial

state

First, we investigate the stability of the atoms with a unit-filling initial state at a fixed
lattice depth. Here, the strength of the dissipation is varied in a wide range from the
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Figure 4.2.1: Measurement of the one-body molecular loss Γ̃PA. The black points represent
the loss rate while the red curve is the fit of Eq. (B.0.10).

weak region, in which the dissipation acts as perturbation, to the strong region, in which
it exceeds any other energy scale. In contrast to the previous works, in which the exper-
iments were done only in the limited range of the dissipation strength [74, 76], the wide
range of our engineered dissipation enables us to observe a crossover between qualitatively
different roles of the dissipation.

4.3.1 Measurement of the two-body loss rate

In contrast to the measurement of βPA shown in Fig. 4.1.2, this measurement is done
at a shallow lattice depth of V0 = 8 ER, in which the tunneling rate 6J/� is 4.7 kHz.
Thus, in the absence of dissipation, atoms can tunnel to neighboring sites in a timescale
of this measurement, so that we can investigate how the atom tunneling, which is the
only mechanism causing doubly-occupied sites, is modified by the dissipation. In our
experiment, we first adiabatically load a BEC of 1.0× 104 atoms into a 3D optical lattice
with V0 = 15 ER, in which the state is a singly-occupied Mott insulator. Subsequently,
we ramp down the lattice to V0 = 8 ER in 0.2 ms, and apply the PA laser at the same
time. The initial atom number at each site is at most unity, confirmed by the absence
of the atom loss using the PA laser and also the occupancy-sensitive high-resolution laser
spectroscopy [43].

The measured two-body loss rate κ is shown in Fig. 4.3.1. The values of κ are
determined by fitting of the two-body loss function

N(t) =
N(0)

1 + κt
(4.3.1)

to the data [74].
For weak dissipation, the two-body loss rate κ grows as ΓPA increases, which reflects the

increase of the detection rate of tunneling. For strong dissipation, however, the two-body
loss rate decreases when ΓPA increases. Namely, atom loss is suppressed by the strong
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Figure 4.3.1: Inelastic collision rate ΓPA dependence of the two-body loss rate κ for atoms
initially prepared in a Mott insulating state with singly occupied sites. The scale in the
top of the figure indicates the dimensionless dissipation strength γ.

on-site dissipation. This counter-intuitive behavior is a manifestation of the continuous
quantum Zeno effect [75], that is, the strong two-body inelastic collision plays a role of
the strong measurement and suppresses the coherent process of tunneling.

4.3.2 Numerical simulation of the loss dynamics

We numerically simulate the loss dynamics with the unit-filling initial state with the
Gutzwiller variational approach [144, 145, 36], the detail of which is described in Appendix
C. After preparing the superfluid state at V0 = 5ER, we ramp up the lattice to create the
Mott insulating state at V0 = 15ER. Right after the preparation of the Mott insulating
state, we ramp down the lattice depth to V0 = 8ER in 0.2ms. The time evolution of the
atom number after this sudden ramp down is fitted to Eq. 4.3.1.

We see from Fig. 4.3.2 that when γ increases, κ initially increases but starts to decrease
around γ = 1. A similar behavior is also seen in the experiment as shown in Fig. 4.3.1.

From the comparison between the theory and experiment in a wide range of dissipation
strength, we confirm that the measured loss behavior correctly captures the theoretical
prediction.
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Figure 4.3.2: Numerical calculation of κ as a function of the dissipation strength γ. κ is
extracted by the fitting to the time evolution of the atom density starting from the Mott
insulating state with unit filling.

4.3.3 Unexpectedly large atom loss for strong intensity of PA
laser

We note that we observe unexpectedly large atom loss for much higher intensity of PA
laser, which prevents the suppression of the two-body loss rate for the strong dissipation
region over γ ∼ 5 from clear observation. Therefore, in our experiment, we restrict the
region of the dissipation strength under γ ∼ 5.

Here, we discuss the possible origin of the unexpectedly large atom loss rate κ observed
for much higher intensity of PA laser corresponding to γ > 5. This additional atom loss
which is not taken into account in the present theory prevents the suppression of two-
body loss rate from clear observation, and is also observed in the ramp-down dynamics
in the deep lattice region. For V0 = 20 ER, the measured loss rate is about 30 Hz, while
the loss rate expected from the theory is about 3 Hz. We confirm that this loss is not
attributed to the photon scattering: the photon scattering rate we measure is about 3 Hz
for intensity I ∼ 30 W/cm2.

The observed additional loss can be explained by the Raman-assisted tunneling [146]
due to the PA laser. Because of the difference of the polarizability between the 1S0 state
and the 3P1 state, there is a finite overlap of the Wannier functions of the two atoms
placed at the neighboring sites in which one atom is 1S0 state and the another atom is
3P1 state. Therefore, the neighboring sites can be coupled though the 3P1 state as the
intermediate state.

The overlap between the 1S0 atom and 3P1 state atom placed at the neighboring sites
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fN is described as

fN =

∣∣∣∣
∫

w∗
g(r)we(r − d)dr

∣∣∣∣ (4.3.2)

=

∣∣∣∣
∫

w∗
g,x(x)we,x(x− d)dx

∫
w∗

g,y(y)we,y(y)dy

∫
w∗

g,z(z)we,z(z)dz

∣∣∣∣ , (4.3.3)

where g and e indicate the internal state 1S0 and 3P1, respectively, and d is the lattice
constant. The overlap between the 1S0 atom and 3P1 state atom placed at the same site
f0 is described as

f0 =

∣∣∣∣
∫

w∗
g(r)we(r)dr

∣∣∣∣ (4.3.4)

=

∣∣∣∣
∫

w∗
g,x(x)we,x(x)dx

∫
w∗

g,y(y)we,y(y)dy

∫
w∗

g,z(z)we,z(z)dz

∣∣∣∣ . (4.3.5)

As shown in Fig. 4.3.3, when the PA laser is applied, two transitions Ω1 = Ω0f0, Ω2 =
Ω0fN and the detuning from the atom transition Δ = 2π × 3.6832 GHz lead to Raman
coupling between two neighboring sites, which has the Rabi frequency

ΩR =
Ω1Ω2

2Δ
=

(Ω0f0)(Ω0fN)

2Δ
=

Ω2
0

2Δ
f0fN. (4.3.6)

From the calculation, for γ ∼ 5 in the lattice depth of V0 = 20 ER, the effective
tunneling amplitude Jeff = J +ΩR is 3.8 times larger than J . This enhancement amounts
to the two-body loss rate κ ∼ 50 Hz, which is consistent with the observation. To avoid
the effect of this additional loss, we restrict the region of the dissipation strength under
γ ∼ 5 in this work.

4.4 Effect of the dissipation on the quantum phase

transition

We next investigate the effect of the on-site dissipation on the quantum phase transition
from the Mott insulator to the superfluid [37], which is the main topic of the present
work. Specifically, starting with a singly-occupied Mott insulating state, we analyze the
dynamics of the atoms subjected to the PA laser during a ramp-down of the lattice depth.
The ramp-down speed is −2ER/ms, which is much slower than the case of the two-body
loss measurement discussed above.

Before presenting the experimental observation, we show the theoretically analyze of
the dynamics by assuming a homogeneous system and solving the effective master equation
(4.2.1) within the Gutzwiller mean-field approximation [69, 70] in order to obtain some
insights on the problem.

4.4.1 Theoretical analysis

An important effect of the dissipation on the quantum phase transition is that it explicitly
breaks the conservation of the particle number of the system. Since the superfluid-Mott
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Figure 4.3.3: Raman assisted tunneling. (a) Schematic of the Raman process. Δ =
2π × 3.6832 GHz is the detuning from the atomic 1S0 ↔ 3P1 transition. (b) Overlap
of the Wannier functions f0 and fN. The red and blue squares indicate f0 and fN ,
respectively. (c) Rabi frequency of the Raman coupling as a function of the lattice depth
and the intensity of the PA laser.
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insulator transition without the dissipation (γ = 0) is originated from the U(1) symmetry
associated with the particle-number conservation, the introduction of finite γ changes the
transition to a crossover. Notice, however, that the two-body loss term does not explicitly
break the U(1) symmetry. Indeed, the master equation (4.2.1) is invariant under the U(1)
transformation, âj → âje

iϕ, where ϕ is an arbitrary constant.
Another important effect is that the two-body loss term makes the “superfluid” state

at unit filling so dissipative that it cannot carry dissipationless superflow. In this sense,
even a small loss term immediately breaks the superfluidity. However, one can distinguish
such a lossy gas with delocalized atoms and long-range coherence from the Mott insulating
state and study the crossover from the latter state to the former in the dynamics subjected
to a slow ramp-down of the lattice depth. Hereafter, for convenience we use the term
“superfluid” to describe the former state.

In order to theoretically characterize this crossover, we present some important prop-
erties of the crossover phenomenon that are independent of either the preparation pro-
cedure the initial Mott insulating state or the ramp-down speed with in the Gutzwiller
approximation.

Crossover from the Mott insulator to the superfluid

Specifically, we focus on the growth rate of the superfluid order parameter amplitude
during a slow increase of the tunneling amplitude. The time sequence of the tunneling
amplitude is given by

J(t) =
Jfin − Jini

τ
t+ Jini, (4.4.1)

while the other parameters are fixed to be time-independent, where τ denotes the total
evolution time.

We set the initial and final values of the tunneling amplitude as zJini/U = 0 and
zJfin/U = 0.5. At zJ/U = zJini/U at unit filling, the ground state is the Mott insulating
state, i.e., ρgsl,m = δl,2δm,2 in the local density matrix description (see Appendix C). As an
initial state of the dynamics, we add small random noise terms to the ground state ρgsl,m
as

ρl,m(t = 0) = ρgsl,m + εrel,m + iεiml,m, (4.4.2)

where εrel,m and εiml,m are assumed to be independent random variables with zero average
and a box distribution from −ε to ε. In the absence of the noise terms (ε = 0), the system
remains in the initial state and the evolution towards the “superfluid” state can not be
captured because ρgsl,m is a time-independent solution of the effective master equation Eq.
4.2.1 within the Gutzwiller approximation.

In Fig. 4.4.1 (a), we show the time evolution of the amplitude of the superfluid order
parameter |ψ|2 for several values of the noise strength ε. We see that |ψ|2 significantly
depends on ε. In contrast, as shown in Fig. 4.4.1 (b), we find that there is a time region
where the rate of the exponential growth in |ψ|2

G ≡ d

dt
ln |ψ|2 (4.4.3)
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Figure 4.4.1: Time evolution of the amplitude of the superfluid order parameter and its
growth rate. (a) Time evolution of |ψ|2. (b), (c) Growth rate G = d

dt
ln |ψ|2 during the

linear ramp-up of the tunneling J , where τU/� = 2000, zJini/U = 0.0, zJfin/U = 0.5, and
γ = 1. The red dashed line and the blue dotted line in (c) represent �G/U = 0.1 and
0.05, respectively.
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Figure 4.4.2: Contour plot of G = d
dt
ln |ψ|2 in the (γ, zJ/U)-plane. While we take

zJini/U = 0.0, zJfin/U = 0.5, and τU/� = 10000, the contour plot is independent of these
parameters as long as τ is sufficiently large.

increases and is independent of ε. Notice that G in such a time region is also independent
of τ as long as τ is sufficiently large. We use the values of G in the time region to
characterize the time scales of the crossover from the Mott insulator to the “superfluid”
that are independent of either ε or τ . As indicated in Fig. 4.4.1 (c), for given γ we
determine the value of zJ/U at which G in the universal time region takes a certain
value, e.g., �G/U = 0.1 (red dashed line) or 0.05 (blue dotted line).

In Fig. 4.4.2, we show a contour plot of �G/U in the (γ, zJ/U)-plane. There we see
that when γ increases from zero, the contour lines become more distant from one another,
i.e., the transition is changed to a crossover. We also see that zJ/U on each contour
line exhibits a non-monotonic behavior as a function of γ; when γ increases, it initially
decreases but starts to increase above a certain γ. This result indicates that the strong
two-body loss term, i.e., γ � 1, favors the Mott insulating state over the “superfluid”.

Numerical simulation of the dynamics with the experimental parameters

In the calculation discussed above, the tunneling amplitude is linearly increased. Here we
simulate the realistic experimental situation: we ramp down the lattice depth linearly in
time

V0(t) =

{
vup(t− t0) + V0,ini, when t0 ≤ t < t1,

vdown(t− t1) + V0,max, when t1 ≤ t < t2.
(4.4.4)

We start with the superfluid ground state at V0,ini = 5ER and t0 = −100ms while
setting γ = 0. We slowly ramp up the optical lattice in 100ms to V0,max = 20ER,
implying that t1 = 0ms and vup = 0.15ER/ms, in order to prepare a Mott insulating
state. Right after preparing the Mott insulating state, we turn on γ to be a finite value
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Figure 4.4.3: Atom density 〈n̂A〉 as a function of the instantaneous value of the lattice
depth V0/ER. We take the time region t1 ≤ t < t2.

and ramp down the optical lattice to V0,fin = 5ER in 7.5ms, implying that t2 = 7.5ms and
vdown = −2ER/ms. Notice that in contrast to the dynamics subjected to the tunneling
amplitude ramp-up analyzed above, we do not explicitly include small random noise terms
in the initial condition. Instead, the finite-time ramp-up process creates small excitations
in the prepared Mott insulating state at t = t1, which practically take a role of small initial
noise terms needed for dynamically melting the initial Mott state into the “superfluid”
state.

In Fig. 4.4.3, we show the atom number per site 〈n̂A〉 during the ramp-down of the
lattice depth, where t1 ≤ t < t2, as a function of the instantaneous value of V0/ER. In
Fig. 4.4.3 (a), we see that the onset of the atom loss shifts to the side of large V0/ER when
γ increases up to γ = 0.5. In contrast, as shown in Fig. 4.4.3 (b), the onset significantly
shifts to the side of small V0/ER when γ increases further from γ = 0.5. This means that
the melting of the initial Mott insulating state is delayed due to the effect of the strong
two-body loss term.

As shown in Fig. 4.4.4, a similar tendency is also seen in the dynamics of the condensate
fraction |ψ|2/〈n̂A〉, which qualitatively corresponds to the strength of the coherence peak
in the momentum distribution. When γ increases from γ = 0.5, the onset of the growth
of |ψ|2/〈n̂A〉 shifts significantly to the side of small V0/ER. Note that the oscillation of
the condensate fraction originates from non-adiabaticity of the ramp down of the lattice
depth. Because the gap of the amplitude mode is small in the crossover region [147], a
relatively fast ramp-down across the crossover excites the amplitude mode. In contrast,
such an oscillation is not observed in the experiment likely because of the combined
effect of quantum and thermal fluctuations, and the spatial inhomogeneity due to the
trap potential. Specifically for the inhomogeneity, the frequency of the amplitude mode
significantly depends on the chemical potential, which varies in space in the presence of
a trap potential, and this leads to the dephasing of the oscillation.

Finally, we summarize the numerical calculation of the atom number per site and the
condensation fraction in Fig. 4.4.5. Each curve of Fig. 4.4.3 and Fig. 4.4.4 represent a
cross-section view of Fig. 4.4.5.

48



SECTION 4.4 EFFECT OF THE DISSIPATION ON THE QUANTUM PHASE
TRANSITION

Figure 4.4.4: Condensate fraction |ψ|2/〈n̂A〉 as a function of the instantaneous value of
the lattice depth V0/ER. We take the time region t1 ≤ t < t2.

In the summary of the numerical simulation, we characterize the crossover by the
growth rate of the superfluid order-parameter amplitude; when the growth rate is smaller,
the system is deeper in the Mott insulator region. According to this characterization, we
find that in the strong on-site dissipation region, where γ � 1, the Mott insulating state
is more favored for larger γ (Fig. 4.4.2 ). This effect originates from the quantum Zeno
suppression of the tunneling, which is observed in the two-body loss rate measurement
(Section 4.3).

This interesting effect of the on-site dissipation on the crossover manifests as the delay
in the melting of the singly-occupied Mott insulator in the ramp-down dynamics. In
Figs. 4.4.5, we show the atom number per site 〈n̂A〉 and the condensate fraction |ψ|2/〈n̂A〉
as functions of the instantaneous lattice depth during the ramp-down dynamics. We
clearly see that in the strong dissipation region the onset of the atom loss or the order
parameter growth shifts to the side of small lattice depth as γ increases. This result
suggests that one may experimentally observe the delay in the Mott-insulator melting by
measuring the time evolution of the atom number and the momentum distribution during
the ramp-down dynamics.

4.4.2 Experimental observation

We perform the experiment for measuring ramp-down dynamics across the crossover from
the Mott insulator to the superfluid. The atom number and the momentum distribution
during ramp-down dynamics are obtained from the fluorescence detection and the density
distribution of the time-of-flight (TOF) absorption image, respectively. Our experiment
starts with ramping up the lattice to V0 = 20 ER for preparation of the singly-occupied
Mott insulator state. The atom number is tuned to be small enough that no doubly-
occupied site exists. Subsequently we ramp down the lattice with applying the PA laser.
The lattice ramp-down speed is −2ER/ms. After ramping down the lattice to the final
lattice depth, we perform the fluorescence detection for measuring the atom number, or we
suddenly turn off all the trap and take the absorption image after 8 ms ballistic expansion
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Figure 4.4.5: Numerical calculation of the atom number per site 〈n̂A〉 (a) and the con-
densate fraction |ψ|2/〈n̂A〉 (b) based on the dissipative Bose-Hubbard model with the
Gutzwiller approximation. The time sequence of the lattice depth and the strength of the
dissipation are set to be almost identical to those in the experiments.
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Time [ms] 100 100 8 60μs

Lattice
(532nm)

PA
(556 nm)

V-FORT
(532 nm)

H-FORT
(532 nm)

Probe
(399 nm)

1.3 V

0.290 V

s ER
5 ER

20 ER

tRamp

Figure 4.4.6: Experimental sequence for the observation of the effect of the dissipation
on the quantum phase transition. The lattice ramp-down speed is −2ER/ms and the
ramp-down time is tramp = (20− s)/2 ms.

for obtaining the density distribution.

Atom number

We first focus on the atom loss measurement during ramp-down dynamics. Figure 4.4.7
shows the atom number measured with various dissipation strengths. The experimental
result well reproduces the overall features of the calculation shown in Fig. 4.4.5 (a).
Specifically, the significant atom loss starts around V0 = 10 ER in the presence of weak
dissipation ( 2©), while the atom number is conserved during ramping down the lattice
without dissipation ( 1©). This onset shifts to the deep lattice side as γ increases ( 3©) for
weak dissipation (γ < 2). However, when γ increases further from γ ∼ 2, the onset shifts
to the shallow lattice side ( 4©). In order to identify the onset, we fit the double linear
function to the data (Fig. 4.4.7 (b)). In the presence of on-site dissipation, the atom loss
is correlated with the melting of the Mott insulator in ramp-down dynamics because the
melting creates the double occupation which is blasted out by the PA laser. Our result
suggests that the melting of the Mott insulator is delayed for strong on-site dissipation.

Quantitatively, the onset changes from V0 = 11.7(4) ER to V0 = 9.2(4) ER at the
maximum as γ increases. This corresponds to the increase of zJ/U by a factor of 2.2.
These behaviors capture the essence of the theoretical predictions mentioned in the above.

TOF abosorption images

Figure 4.4.8 shows a series of TOF absorption images obtained by changing the final lat-
tice depth from Mott insulator regime to superfluid regime with various strength of the
dissipation. Without dissipation, we clearly observe the transition from a Mott insulator
state to a superfluid state as shown in Fig. 4.4.8 of γ = 0: in the deep lattice such as
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Figure 4.4.7: (a) Atom number diagram. The experimental data of the atom number
are shown as the gray dots as a function of the final lattice depth for various strengths of
dissipation, and are interpolated. The white triangles show the lattice depths at which the
atom loss sets in, determined from the analysis in (b). The numbers 1© to 4© correspond
to the dissipation strengths for which the atom number changes are plotted in (b). (b)
Temporal change of the atom number during a ramp-down sequence for four representative
strengths of the dissipation. The atom number is normalized by the initial atom number
at the lattice depth of V0 = 20 ER. Blue lines are double linear fits to extract the onset
of the atom loss, which are shown as dotted lines.
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Figure 4.4.8: TOF absorption images. The images are taken with different final lattice
depths and strengths of the dissipation, and averaged over 20 shots at each parameter.

V0 = 20 ER, we obtain a broad distribution with no pattern, which indicates that the
atoms have no phase coherence corresponding to the Mott insulator state. As ramping
down the lattice across the critical depth of V0 = 11.3 ER, which is calculated from
the scattering length of 1S0 state of 174Yb [127], we obtain a clear interference pattern
characterizing the presence of the phase coherence of the superfluid state. In the pres-
ence of dissipation, the observed transition is significantly modified. As the strength of
the dissipation increases, the interference pattern becomes unclear in the shallow lattice
regime. For strong dissipation such as γ ∼ 5, any pattern cannot be observed. This result
indicates that the growth of the phase coherence is suppressed by the strong dissipation.

Visibility of the interference pattern and width of the atom distribution

In order to evaluate the phase coherence quantitatively, we introduce the visibility of the
interference peaks [101] as

v =
Nmax −Nmin

Nmax +Nmin

. (4.4.5)

Here, Nmax is the sum of the number of atoms in the regions of first-order interference
peaks and Nmin is the sum of the number of atoms in the regions at the same distance from
the central peak along the diagonals. While the visibility increases with the ramp-down
of the lattice, this increase becomes more moderate in the stronger dissipation, as shown
in Fig. 4.4.9. Especially, clear dependence on the strength of the dissipation is observed
below the depth of V0 = 11 ER, which is around the calculated critical depth at γ = 0.
As shown in Fig. 4.4.9, the effect of the dissipation on the width of the crossover region is
observed as more moderate growing of the visibility below the depth of 11 ER associated
with the increase of γ.

In addition, as shown in Fig. 4.4.10, the dissipation moderates the narrowing of
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Figure 4.4.9: (a) Visibility of the interference peak of images. (b) Visibility as a function
of the dissipation strength γ in the fixed lattice depth of 8 ER.

Figure 4.4.10: (a) Width of the density distribution, which is the full width at half
maximum obtained by the Gaussian fitting. (b) Width as a function of the dissipation
strength γ in the fixed lattice depth of 8 ER.
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the width (in μm) of the density distribution and the slope of the width (in μm) with
respect to the lattice depth becomes less steep as γ increases. Narrowing the width of the
distribution indicates the localization of the state in the momentum space.

All of these measurements support the delay in the melting of the singly-occupied Mott
insulator in the ramp-down dynamics as an effect of the on-site dissipation as we see in
the calculation of the condensate fraction shown in Fig. 4.4.5. Note that the observation
of the excitation gap, which is the direct evidence of the formation of the Mott insulator,
is difficult in this dissipative system because the excitation spectrum should have a broad
linewidth determined by the inelastic collision rate ΓPA of a few tens of kHz.

4.5 Quenching the dissipation

It is important to experimentally check whether this behavior is attributed to some heating
effect by the PA laser. For this purpose, we measure the phase coherence after turning
off the PA laser. If the absence of the interference pattern is attributed to the heating,
the phase coherence is no longer restored after the PA laser is turned off. In contrast, if
the state after the ramp-down of the lattice is still a Mott insulator, the phase coherence
can be restored.

Similarly to the measurement of Fig. 4.4.8, we ramp down the lattice to a final lattice
depth in −2ER/ms with the maximum strength of dissipation γ = 4.6(4). Then, we
suddenly turn off the PA laser and investigate the subsequent time evolution of the atoms
in the lattice by observing the phase coherence through a TOF absorption image at some
hold time (Fig. 4.5.1 (a)).

The result for the case of the final lattice of V0 = 8 ER is shown in Fig. 4.5.1 (b) for
the observed TOF images. After some hold time, an interference pattern grows. It serves
as a direct signature of the restoration of the phase coherence, indicating that the absence
of the interference pattern in Fig. 4.4.8 is not completely attributed to the heating.

We confirm that the total atom number is conserved in this dynamics as shown in Fig.
4.5.2. This means that the evaporative cooling which could possibly explain the observed
behavior does not occur during the dynamics.

We consider the tunneling time as a relevant time scale because the superfluid state
is realized through the process of delocalization of the particles by the tunneling. As
shown in Figs. 4.5.3 (a) and (b), the time constant of the increase of the visibility and
the decrease of the width is comparable to the tunneling time (6J/�)−1 = 0.21 ms.

Figure 4.5.4 shows the visibility and the width of the density distribution, 0 ms and 4
ms after the ramp-down for various final lattice depths, similarly indicating the restoration
of the coherence.

Importantly, the atoms after turning off the dissipation can be considered as an isolated
(closed) system. Therefore, the observed dynamics in our experiment should not be
considered as the usual thermal relaxation with the environment, but the relaxation in
the isolated quantum system, which is a hot topic actively studied in recent experiments
and theories [148, 149, 150, 151].
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�

Figure 4.5.1: (a) Experimental sequence for the observation of the dynamics after turning
off the dissipation. After ramping up the lattice to V0 = 20 ER for preparing the Mott
insulator state, we ramp down the lattice to the final lattice depth V0 = s ER with
applying the PA laser. The ramp-down speed is −2ER/ms and the ramp-down time is
tramp = (20− s)/2 ms. After ramping down the lattice, we turn off the PA laser and hold
the lattice for thold. (b) Time evolution of TOF image after turning off the dissipation.
The final lattice depth is V0 = 8 ER. The hold time after turning off the PA laser is shown
at the bottom right of each image.

Figure 4.5.2: Atom number during after turning off the dissipation. The atom number is
normalized by the initial atom number at thold = 0 ms.
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Figure 4.5.3: Time evolution of the visibility (a) and the width (b) after turning off the
dissipation.

Figure 4.5.4: Lattice depth dependence of the visibility (a) and the width (b) with 0 ms
and 4 ms hold time.
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4.6 Conclusion and outlook

We have realized the engineered dissipative Bose-Hubbard system by introducing a controllable-
strength two-body inelastic collision with use of a PA laser. By exploiting the highly
controllable nature of the dissipation, we have investigated the effect of the dissipation
on the quantum phase transition from the Mott insulator state to the superfluid state in
the lattice ramp-down dynamics. We have observed that the melting of the Mott state
is delayed and the growth of the phase coherence is suppressed for the strong on-site
dissipation. The favored state depends on the type of the dissipation. For example, the
stabilization of the superfulid state with use of a well-designed off-site dissipation is pro-
posed [64]. Thanks to the dramatic change in the onset of the Mott-insulator melting, as
shown in the fact of increase of zJ/U , we can access the interesting problem of quenching
the dissipation across the crossover from the Mott insulator to the superfluid, where turn-
ing off the dissipation corresponds to a sudden parameter change of the Bose-Hubbard
system [147]. In this method, the required time for turning off the dissipation could be
very short while the sudden change of the depth of optical lattice needs a certain time
in order to stabilize the power of the lattice laser as well as to prevent non-adiabatic
inter-band transition. Moreover, while we have used 174Yb, which is a bosonic isotope
of an alkali-earth-like species, to demonstrate our method for controlling the dissipation,
it is applicable generally to other atomic species that can be coupled to a state of lossy
PA molecule. The crossover properties can also be caused by varying the on-site interac-
tion. Controlling the on-site interaction with Feshbach resonance, for example using alkali
atoms, enables us to investigate wider range of strength of dissipation including infinitely
strong, since weakening the on-site interaction corresponds to strengthen the dissipation
γ.
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Chapter 5

Dissipative Bose-Hubbard system
with intrinsic two-body loss

In this chapter, we report an experimental study of dynamics of the metastable 3P2 state
of 174Yb in a 3D optical lattice. The intrinsic strong inelastic collision of the 3P2 atoms
realizes a dissipative Bose-Hubbard system with on-site two-body atom loss. First, we
describe the measurement of the scattering length between two 3P2 atoms aee. Because of
the on-site interaction and the dissipation, the 3P2 atoms are strongly correlated, which is
revealed by the loss rate measurement described in Section 5.3. We observe the growth of
the phase coherence and find its suppression owing to the dissipation, which is described
in Section 5.4.

5.1 Bose-Hubbard system with intrinsic dissipation

The bosonic 174Yb atoms in the 3P2 state in the optical lattice can be regarded as the
dissipative Bose-Hubbard system described by a master equation in Lindblad form [19]:

�
dρ̂

dt
= −i[Ĥ, ρ̂] + L(ρ̂), (5.1.1)

where Ĥ is the Bose-Hubbard Hamiltonian

Ĥ =
Uee

2

∑
j

n̂j(n̂j − 1)− J
∑
〈j,k〉

(â†j âk + h.c.) +
∑
j

(εj − μ)n̂j, (5.1.2)

and L(ρ̂) represents the dissipation due to the inelastic collision between two atoms in
the 3P2 state

L(ρ̂) = �Γee

4

∑
j

(−â†j â
†
j âj âj ρ̂− ρ̂â†j â

†
j âj âj + 2âj âj ρ̂â

†
j â

†
j). (5.1.3)

Uee, J, and Γee represent the on-site interaction, the tunneling amplitude, and the inelastic
collision rate, respectively. Index e (g) denotes 3P2 (1S0) state. âj is the annihilation

operator of the 3P2 state atoms at a site j and n̂j = â†j âj. We note that there exists the
one-body loss process due to the photon scattering and the spontaneous emission, the loss
rate of which is 1 ∼ 2 order of magnitude smaller than the two-body loss rate (The detail
is described in Section 5.3).
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5.2 Measurement of the scattering length aee

For the full characterization of the system, it is necessary to measure the strength of the
on-site interaction between the 3P2 state atoms. This has never been done because of the
difficulty associated with the rapid loss of atoms in the 3P2 state due to the large inelastic
collision. We determine the scattering length between the 3P2 state by establishing a
new spectroscopic technique with double-excitation process by utilizing the inelastic loss
property.

We start with a preparation of the Mott insulating state of the 1S0 atoms with singly-
and doubly-occupied sites at the lattice depth of V0 = 18 ER for the 1S0 state. Because
the polarizability of the 3P2 state for the 532 nm lattice beam is different from that of
the 1S0 state, the lattice depth depends on the atomic state, which is taken into account
in the determination of the lattice depth and the calculation of the interaction.

The polarizability of the 3P2 state for the 532 nm lattice beam depends on the magnetic
sublevelmJ and the angle between the quantization axis and the polarization of the lattice
beam θx,y,z. In our experiment, the polarizability of the 3P2 state is (αe,x, αe,y, αe,z)/αg =
(1.43(5), 1.43(5), 1.132(8)) (see Appendix D). Here, αg is the polarizability of the 1S0

state and (θx, θy, θz) = (0◦, 0◦, 90◦). For example, in the spectroscopy, the lattice depth of
V0 = 18 ER for the 1S0 state corresponds to (V0x, V0y, V0z) = (25.7, 25.7, 20.4) ER for the
3P2 state.

We then excite a single 1S0 state atom in the doubly-occupied sites into the 3P2 state
by adiabatic rapid passage (ARP) with a frequency-swept pulse with a 507 nm laser
under a bias magnetic field of 200 mG along z axis, which is more robust than the π-pulse
excitation against the fluctuation of the frequency and the intensity of the excitation laser.
We perform the experiment with the atoms in the magnetic sublevel of mJ = −2. The
atoms in the singly-occupied sites are not excited because of the well-separated resonance
frequencies between the singly- and doubly-occupied sites due to the interaction (see Fig.
5.2.1 (c)). Subsequently, we apply the second excitation pulse with a variable frequency.
If the second pulse successfully excites a remaining 1S0 state atom in the doubly-occupied
sites, two 3P2 state atoms occupy the same site, resulting in the strong atom loss due
to the inelastic collision with the rate Γee (Fig. 5.2.1 (a)). In the optical lattice, Γee

is determined by the inelastic collision coefficient βee and the confinement of the lattice
potential through the relation Γee = βee

∫
|w(r)|4dr, where w(r) is the Wannier function

of the lowest band. βee is expected to a half of the inelastic collision coefficient with a
thermal gas βthermal

ee = 5.1(6)× 10−11cm3/s [91, 152].

For the detection, atoms in the excited 3P2 state are repumped back to the 1S0 state
using repump laser of 649 nm and 770 nm. Finally, the number of the repumped 1S0

atoms are measured by the fluorescence imaging using the 1S0 − 1P1 transition.

Figure 5.2.1 (b) shows the spectrum of the above-mentioned double-excitation spec-
troscopy. We observe a large dip around +10 kHz detuning from the 1S0 − 3P2 transition
of the singly-occupied atoms, which does not have the counterpart in the spectrum of
the low-intensity single pulse spectroscopy (Fig. 5.2.1 (c)). For precise determination of
the on-site interaction, we take four data. Because the first ARP excitation is sensitive
to the laser frequency, we evaluate the excitation efficiency and its fluctuation, which are
represented as the offset (dashed line) and the errorbars of the data points, respectively.
For each result of the spectroscopy, we fit the data to multiple Lorentzian functions with
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Figure 5.2.1: (a) Schematic of the double-excitation spectroscopy. The on-site interaction
strength manifests itself in the shift of the excitation frequency at the doubly-occupied
sites, which differs from the excitation frequency of the atoms at the singly-occupied site.
(b) The spectrum of the double-excitation spectroscopy. We subtract the fluorescence
count measured after the first excitation, which corresponds to the atoms excited by the
first pulse. The horizontal axis represents the detuning of the second-excitation pulse
frequency from the transition of the atoms in the singly-occupied sites. The resonance
observed in the negative detuning corresponds the de-excitation from the 1S0 +

3P2 state
to the 1S0 +

1S0 state and peak around +35 kHz represents the excitation for the blue-
sideband. (c) The spectrum of the single-excitation spectroscopy for comparison.

the error, from which we obtain the center positions of the peaks and the errors with
4-5%. Finally, by calculating the weighted average of the four results, we determine the
value of on-site interaction with the error of ∼ 1%. From these data, we determine the
interaction shifts as follows:

Uee − Ueg

h
= +10.7(3) kHz, (5.2.1)

Ueg − Ugg

h
= −9.70(5) kHz. (5.2.2)

From these results and the known scattering length agg = +104.9(1.5)a0 [127], we
obtain the scattering lengths

aeg = −201.5(1.5)a0 (5.2.3)

and

aee = +110(8)a0, (5.2.4)
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where a0 is the Bohr radius. Here we calculate the scattering lengths using the relations

Uee =
4π�2aee

m

∫
|we(r)|4dr, (5.2.5)

Ueg =
4π�2aeg

m

∫
|we(r)|2|wg(r)|2dr (5.2.6)

and

Ugg =
4π�2agg

m

∫
|wg(r)|4dr, (5.2.7)

where wg(r) and we(r) represent the Wannier function of the 1S0 state and the 3P2 state,
respectively.

The obtained scattering length aee shows that the on-site interaction between the
3P2 atoms is repulsive and comparable to the dissipation strength: the dimensionless
dissipation strength is �Γee/Uee = 0.94(13), which does not depend on the lattice depth.

5.3 Strong correlation between the 3P2 atoms

5.3.1 Measurement of the two-body loss rate

As the basic property of the dissipative quantum many-body system, we first study the
stability of the unit-filling Mott insulating state in the presence of the two-body dissi-
pation. Here, we measure the loss rate, which varies as a function of the lattice depth
because J , Uee, and Γee depend on the lattice depth.

We first prepare the unit-filling Mott insulating state of the 3P2 state in almost the
same manner as in the double-excitation spectroscopy, except that the lower atom number
is loaded so that the doubly-occupied sites are not created, which is confirmed by the
occupancy-sensitive spectroscopy [43]. After ramping up the lattice, we excite the atoms
to the 3P2 state by the ARP. The remaining 1S0 atoms are blasted by applying 399-nm
resonant light. The atom number in the 3P2 state N(t) decreases as

dN(t)

dt
= − n0κ

N(0)
N(t)2 − ξN(t), (5.3.1)

where κ is two-body loss rate and ξ is one-body loss rate. n0 is initial filling factor
estimated by the ARP excitation efficiency, which is typically 90 %. The one-body loss is
mainly induced by the photon scattering with the 3P2 − 3S1 transition at 770 nm caused
by the 532-nm lattice beam, the rate γsc of which depends on the intensity of the lattice
beam I as follows:

γsc =
3πc2Γ2

nat

2�ω3
0

(
ω

ω0

)3 (
1

ω − ω0

− 1

ω + ω0

)2

I, (5.3.2)

where Γnat is the natural linewidth, ω is the oscillation frequency of the lattice beam and
ω0 is the oscillation frequency of the transition line. The spontaneous emission rate is
γsp = 67(7) mHz [132]. The one-body loss rate is given by ξ = γsc+γsp, which is calculated
up to ∼0.3 Hz.
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Figure 5.3.1: (a) Time dependence of the remaining 3P2 atoms at V = 19ER. The solid
line shows a fit of Eq. (5.3.1) to the experimental data. (b) Two-body loss rate as a
function of the lattice depth. The solid line shows a fit of Eq. (5.3.4) to the experimental
data and the dashed line is the tunneling rate 6J/� for comparison. The lattice depths
are adjusted for the 3P2 state.

The analytical solution to the Eq. 5.3.1 is

N(t) = N(0)

[(
1 +

n0κ

ξ

)
eξt − n0κ

ξ

]−1

(5.3.3)

which is used for the fitting to the experimental data.
Figure 5.3.1 (a) shows the typical decay of the atom number of the 3P2 state. By

fitting Eq. (5.3.2) to the data with the calculated one-body loss rate ξ, we extract the
two-body loss rate κ (see Fig. 5.3.1 (b)). The loss rate κ is suppressed compared with
the tunneling rate 6J/� (see Fig. 5.3.1 (b)), which näıvely characterizes the time scale of
the creation of the double occupancy. In the sufficiently deep lattice, κ can be suppressed
to the order of Hz.

This suppression is attributed to the formation of strong correlation. When the tun-
neling is much smaller than the other energy scales (J � �Γee, Uee), κ is given by [74, 143]

κ =
16z(J/�)2

Γee

[
1 +

(
2Uee

�Γee

)2
]−1

. (5.3.4)

Here, z = 6 is the coordination number. We fit Eq. (5.3.4) to the data with the fitting
parameter of βee. The best-fit value is βee = 2.5(6) × 10−11 cm3/s, which is well agree
with half of βthermal

ee = 5.1(6)× 10−11cm3/s [91, 152].
We note that the strength of the inelastic collision does not achieve the quantum Zeno

region as the previous experiments [74, 76] and our experiment with the PA (see Chapter
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Figure 5.3.2: Loss rate κ (Eq. 5.3.4) normalized by the maximum loss rate κmax as a
function of the dissipation strength �Γee/Uee. The point plotted on the curve indicates
our experimental parameter of �Γee/Uee = 0.94(13) in this experiment.

4), in which κ decrease as the strength of the dissipation increases. Figure 5.3.2 shows
the loss rate κ (Eq. 5.3.4) normalized by the maximum loss rate κmax as a function of
the dissipation strength. In the region of �Γee/Uee ≥ 2, which we call the quantum Zeno
region, κ decreases as �Γee/Uee increases, which is the manifestation of the quantum Zeno
effect. On the other hand, this suppression does not occur as �Γee/Uee increases in the
region around our experimental parameter of �Γee/Uee = 0.94(13).

5.3.2 Pair correlation function g(2)(0)

In order to evaluate the correlation quantitatively, we introduce the pair correlation func-
tion between two particles placed at site i and j

g(2)(i, j) ≡
〈â†i â†j âj âi〉
〈â†i âi〉〈â†j âj〉

. (5.3.5)

In this analysis, we use the pair correlation function of the two particle at the same site
g(2)(0) ≡ g(2)(i, i) to characterize the reduction of the double occupation arising from the
interaction between the atoms. g(2)(0) can be written as follows:

g(2)(0) ≡ 〈n̂i(n̂i − 1)〉
〈n̂i〉2

. (5.3.6)

This value can be estimated from the experimental result according to the relation [74,
143]

g(2)(0) =
κ

Γee

. (5.3.7)
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Figure 5.3.3: Pair correlation function g(2)(0) calculated from the data in the loss rate
measurement. The solid line represents the theoretical calculation with βee obtained from
the data in Fig. 5.3.1.

Figure 5.3.3 shows that g(2)(0) is much smaller than 1, which means that the creation
of the double occupation is strongly suppressed. From Eq. (5.3.4) we can derive the
following representation

g(2)(0) =
4zJ2(

�Γee

2

)2
+ U2

ee

, (5.3.8)

which shows that the reduction of the g(2)(0) is attributed to both of the on-site elastic
interaction Uee and the inelastic loss �Γee. In our experimental parameter of �Γee/Uee =
0.94(13), the inelastic interaction contributes to the formation of the correlation in addi-
tion to the elastic interaction.

5.3.3 Dependence of the tunneling on the neighboring site oc-
cupation

In order to confirm that the suppression of the doubly-occupied sites is not due to the
reduction of the tunneling amplitude itself but due to the correlation effect as a result
of the occupation of the atoms in the nearest neighboring site, we observe the tunneling
dynamics from the initial state in which there is no atom in the nearest neighboring sites
along one direction.

After preparing the Mott insulating state with the 1S0 atoms, we form the optical
superlattice by adding the long lattice with 1064 nm laser along the x axis with the
relative phase between two lattice beam adjusted to make potential difference between A
and B layers. The polarizability of the 1S0 state for 1070 nm is α1070

g = 6.3Hz/(W/cm2)
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Figure 5.3.4: (a) Schematic of the selective excitation using a superlattice. The potential
difference between the A and B layers created by the long lattice allows us to excite the
atoms only in the A layer. (b) Time dependence of the atom number in the A layer
(white circle) and B layer (gray circle) at V0 = (19.0, 19.0, 19.9)ER for the 3P2 state. We
note that the difference of the transfer efficiency between the A and B layers causes the
remaining imbalance for longer times. (c) The initial 0.1 sec data of the atom number in
the B layer and the fitting of the exponential function. Note that we also observe the slow
decrease of the atom number due to the two-body loss at later time that the population
imbalance is already reduced.

while that of 3P2 is α1070
e = 0.0(4)Hz/(W/cm2) with the angle between the quantization

axis and the polarization of the lattice beam of 0◦ in our condition [153]. Since 1064 nm
is close to the 1070 nm without any resonance line around these frequencies, the 1064
nm lattice forms the deep optical lattice mainly for the 1S0 state only, which separates
the excitation frequency (Fig. 5.3.4 (a)). We can selectively excite the atoms to the 3P2

state only in the A layer with ARP and blast the remaining 1S0 atoms. Then, we remove
the additional lattice and monitor the atom number. The detection is also selectively
performed with the coherent transfer to the 1S0 state using the ARP.

We observe fast decrease of the atom number in the A layer and increase of the atom
number in the B layer (Fig. 5.3.4 (b)), which indicate the tunneling of the atoms along
the x axis. In general, it is difficult to calculate the behavior of the relaxation dynamics
from the imbalanced initial state. In our experiments, we allow the tunneling along the y
and z axes, thus the dynamics is rather complex. In this analysis, we simply describe the
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tunneling behavior as follows:

dNA(t)

dt
= −RNA(t) +RNB(t),

dNA(t)

dt
= RNA(t)−RNB(t). (5.3.9)

Here, NA (B) is the atom number in the A (B) layer, and R represents the tunneling rate
between the A and B layers. With the initial condition that all atoms are placed in the
A layer, Eq. (5.3.9) yields

NA(t) =
N0

2
[1 + exp (−2Rt)] (5.3.10)

and

NB(t) =
N0

2
[1− exp (−2Rt)], (5.3.11)

where N0 is the initial atom number. We fit this function to the initial 0.1 s data of the
atom number in the B layer, as shown in the inset of Fig. 5.3.4 (b). From the fitting, we
obtain the tunneling rate of R = 42(6) Hz, which is much larger than the observed κ in
the case of the unit-filling Mott insulator (see Fig. 5.3.1 (b)) and is consistent with the
relaxation time scale 4J/h = 50 Hz discussed in Ref [154].

5.4 Effect of the intrinsic dissipation on the Mott in-

sulator - superfluid transition

5.4.1 Time-of-Flight images

We also investigate the effect of the dissipation on the quantum phase transition from
the Mott insulator to the superfluid state. We first prepare the unit-filling Mott insulator
of the 3P2 state in the same manner as the preparation of the initial state of the loss
rate measurement. The lattice depth is V0 = 20 ER for the 3P2 state. Then we ramp
down the lattice, in which the lattice ramp-down speed is −2 ER/ms. The atom number
and the momentum distribution during the ramp-down dynamics are obtained from the
density distribution of the time-of-flight (TOF) absorption image. After ramping down
the lattice to the final lattice depth, we suddenly turn off all the trap and take the image
after 6-ms expansion of the atom cloud (Fig. 5.4.2 (a)). The atoms in the 3P2 state are
repumped back to the 1S0 state 1 ms before taking the absorption image. For comparison,
we observe the atoms in the dissipationless 1S0 state. We compare the two results as a
function of the lattice depths because the scattering lengths aee and agg are almost the
same within the error: aee/agg = 1.05(7). The lattice depth is adjusted for each state.

Without dissipation (the 1S0 state), around V0 ∼ 10 ER we observe the transition from
a MI with a broad distribution to the SF with a clear interference pattern characterizing
the presence of the phase coherence, which is consistent with the theoretical value of the
critical lattice depth of V0 = 11.29(16) ER. On the other hand, the atom distribution of
the dissipative 3P2 state is modified. Although we still observe the anisotropic interference
pattern in the shallow lattice region, the interference pattern is unclear.
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Time [ms] 100 100 1 6 0.3 6 60μs

Lattice X,Y
(532 nm)

Lattice Z
(532 nm)

Excitation
(507 nm)

Blast
(399 nm)

Repump
(649,770 nm)

V-FORT
(532 nm)

H-FORT
(532 nm)

Probe
(399 nm)

5 ER

(20 × / )ER

(20 × / )ER

2.5 V

0.295 V

ARP

(20 × / )ER

1

( × / )ER

( × / )ER
5 ER

tRamp

Figure 5.4.1: Experimental sequence for the observation of the effect of the intrinsic
dissipation on the quantum phase transition. The lattice ramp-down speed is −2 ER/ms
and the ramp-down time is tramp = (20 − s)/2 ms. First, we ramp up the lattice whose
depths are isotropic for the 1S0 state. Because of the difference of the polarizability
between the 1S0 state and the 3P2 state, we adjust the lattice depth immediately before
the excitation in order to create isotropic lattice for the 3P2 state. The lattice depths shown
in the figure represent the value for the 1S0 state. αg, αexy and αez are the polarizability
of the 1S0 state, that of the

3P2 state for x, y-lattice, and that of the 3P2 state for z-lattice,
respectively.

5.4.2 Quantitative analysis

For the quantitative analysis, we evaluate the atom number, the visibility of the interfer-
ence peaks, and the width of the atom distribution obtained by the TOF images (Fig. 5.4.3
(a-c)). For the 3P2 system, the number of atoms starts to decrease around V0 = 10 ER.
This significant atom loss reflects the start point of the melting of the Mott insulator,
which creates the double occupation. The definition of the visibility is given in Eq. 4.4.5.
In both cases, the visibility increases with the ramp-down of the lattice. This increase
in the 3P2 state is more moderate compared to that in the 1S0 state (Fig. 5.4.2 (b)). In
addition, the narrowing of the width of the density distribution is also more moderate
in the case of the 3P2 state (Fig. 5.4.2 (c)). These results suggest that the growth of
the phase coherence is suppressed by the intrinsic on-site two-body dissipation. Similar
behavior is observed in the dissipative Bose-Hubbard system with the artificial dissipation
(Chapter 4), where the two-body loss is artificially introduced using the photo-association
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Figure 5.4.2: Absorption images of the atoms. The images are taken with different final
lattice depths. The images are averaged over 5 and 20 shots for the 1S0 state and the 3P2

state, respectively.

technique.
We note that, in the case of the 3P2 state, the formation of the interference pattern

is still observed, which suggests the the growth of the phase coherence in the metastable
state. Because of the strong inelastic collision, it is difficult to create the BEC in the
metastable state and load it into the optical lattice. On the other hand, in our method
with the slow ramp-down of the lattice, we can load the metastable atoms into the shallow
optical lattice with suppressing the inelastic collision between atoms.

Effect of the momentum kick in the repumping process

We estimate the effect of the momentum kick in the repumping process by the deconvo-
lution analysis of the atom distribution. Because the repumping laser is irradiated along
the imaging axis, the effect of the recoil due to the photon absorption of the repumping
laser is not observed. On the other hand, the expansion of the distribution of the atoms
due to the recoil of the photon emission is observed because the direction of the pho-
ton emission is random and isotropic. After repumping process, the repumped 1S0 state
atoms expand in the accordance with the sum of the original momentum and the recoil
momentum obtained by the photon emission.

We estimate the width of the expansion of the atom cloud with calculating the average
number of the emitted photons Nph through the repumping process (Table 5.4.1) with
the assumption that the repumping process is instantaneously finished. In the numerical
calculation, we obtain the momentum distribution due to the recoil in the repumping
process, which is well approximated by the gaussian function with a half width at half
maximum of 1.2 �kL. Here, kL = 2π/λL is the wave number of the lattice beam and �kL
represents the recoil momentum of the lattice beam.

After turning off all the trap, the 3P2 atoms expands in 5 ms. Then the atoms get
the recoil momenta through the repumping process and expand in 1 ms. In the numerical
calculation, all atoms are repumped into the 1S0 state within 10 μs, while the actual
repumping time is much larger than the estimated value. We reconstruct the original
atom distribution by deconvoluting the recoil momentum distribution from the atom
distribution obtained from the TOF image, and estimate original visibility and width,
which are shown in the yellow triangles in the Fig. 5.4.3 (b) and (c). This shows that
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Figure 5.4.3: (a) Temporal change of the atom number during the ramp-down sequence,
which is normalized by the initial atom number at the lattice depth of V0 = 20 ER. (b)
Visibility of the interference peak of the images and (c) width of the density distribution.
The width is the full width half maximum obtained by the Gaussian fitting. In these
plots, the blue square and the red circle correspond to the data for the 1S0 state and
the 3P2 state, respectively. The yellow triangle indicates the data for the 3P2 state after
eliminating the effect of the momentum kick.

the effect on the TOF image is limited and does not change the whole behavior of these
values qualitatively.

5.5 Summary and Outlook

In conclusion, we have realized the dissipative Bose-Hubbard system with the metastable
3P2 state of 174Yb by first creating a Mott insulating state in the ground state and the
subsequent coherent transfer of the atoms into the 3P2 state, evading the large inelastic
loss process in the state preparation. We fully characterize the system by measuring the
scattering length between two 3P2 atoms by developing the double-excitation method. In
the 3D optical lattice, we investigate the atom loss behavior with the unit-filling Mott
insulator as the initial state and find that the atom loss is suppressed by the strong
correlation between atoms. Also, as we decrease the potential depth of the lattice, we
observe the growth of the phase coherence and find that the formation of a sizable phase
coherence is suppressed by the dissipation.

It is expected that similar behaviors will be observed with the 3P0 state of Yb [94, 93]
and other two-electron atomic species [89, 88, 92]. The strong suppression of the inelastic
collision between atoms in the metastable state allows us to investigate the two-component
many-body physics [30] and the manipulation of the 3P2 atoms exploiting the magnetic
dipole moment [47], avoiding the atom loss in the practical time scale of the experiment.

Another interesting prospect with this system is the control of the on-site interaction.
It is expected that the anisotropic interactions between the 3P2 atoms leads to anisotropy-
induced Feshbach resonances [155]. In the case of the Yb, the anisotropy-induced Feshbach
resonances between the 1S0 − 3P2 was observed [61], which makes us expect the existence
of the resonances between the 3P2 atoms. Our new spectroscopic method for measuring
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Table 5.4.1: Information of the repump transitions [132]. λ is the wavelength of the
transition, Γ(s) is the decay rate and Nph is the average number of the photon emission
though the repumping process. The numerical simulation is performed based on these
parameters.

3S1 → 3P0
3S1 → 3P1

3S1 → 3P2

λ [nm] 649 680 770

Γ(s) [Hz] 9.6 ×106 2.7 ×107 3.7 ×107

Branching ratio 0.13 0.37 0.50

Nph 1.4 1.0 0.36

the on-site interaction enables us to search Feshbach resonances between the 3P2 atoms,
while there has been no experimental study of Feshbach resonance because of the absence
of the measuring scheme for the dissipative metastable states so far. If we can control the
on-site interaction with the Feshbach resonance and change the ratio �Γee/Uee, we can
systematically investigate the dissipative Bose-Hubbard in a wide range of the parameters.
Unlike the previous researches with molecules [74, 76] or photo-association (Chapter 4),
the Feshbach resonance allows one to create attractive on-site interaction, which possibly
provide a novel many-body state with the competence between the attractive on-site
interaction and the dissipation-induced ”repulsive” interaction, for example.
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Chapter 6

Conclusion & Outlook

In this thesis, quantum many-body dynamics of a Bose-Hubbard system with artificial
and intrinsic dissipation was studied. We briefly review the achievement of the work in
this thesis.

• Observation of the Mott insulator to superfluid crossover of a driven-dissipative
Bose-Hubbard system (Chapter 4).

We succeeded in the realization of an engineered dissipative Bose-Hubbard system by
introducing a controllable-strength two-body inelastic collision with the use of a PA
laser. By exploiting the highly controllable nature of the dissipation, we investigated
the effect of the dissipation on the quantum phase transition from the Mott insulator
state to the superfluid state in the lattice ramp-down dynamics. We observed that
the melting of the Mott state is delayed and the growth of phase coherence is
suppressed for the strong on-site dissipation. Thanks to the dramatic change in the
onset of the Mott-insulator melting, as shown by the increase in zJ/U , we accessed
the interesting problem of quenching the dissipation across the crossover from the
Mott insulator to the superfluid, where turning off the dissipation corresponds to
a sudden parameter change in the Bose-Hubbard system [147]. The experimental
results were compared with theoretical analysis and numerical calculation, which
qualitatively capture the novel behavior presented in the experiments.

• Dissipative Bose-Hubbard system with intrinsic two-body atom loss (Chapter 5).

We realized a dissipative Bose-Hubbard system with the metastable 3P2 state of
174Yb by first creating a Mott insulating state in the ground state and the subsequent
coherent transfer of atoms into the 3P2 state, avoiding large inelastic loss in the state
preparation. We fully characterized the system by measuring the scattering length
between two 3P2 atoms by developing the double-excitation method. In a 3D optical
lattice, we investigated the atom loss behavior with the unit-filling Mott insulator as
the initial state and found that the atom loss is suppressed by the strong correlation
between atoms. Also, as we decreased the potential depth of the lattice, we observed
the growth of the phase coherence and found that the formation of a sizable phase
coherence is suppressed by the dissipation.
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Outlook

Below, we present possible directions for future experiments with the dissipative Bose-
Hubbard system.

Localized dissipation In our experiments, the dissipation is applied homogeneously to
the whole system. On the other hand, the effect of localized dissipation on the quantum
many-body state has been theoretically investigated. For example, the dynamics of the
extended Bose-Hubbard system induced by localized dissipation is analyzed in Ref. [72]. In
Ref. [156], different dissipative dynamics in the strongly and weakly correlated superfluid
regimes is found. The local addressing technique of a quantum gas microscope enables
one to apply the localized dissipation and explore these physics.

Non-Hermitian Bose-Hubbard system One intriguing direction is the investigation
of non-Hermitian quantum many-body systems. In our setup, a non-Hermitian Bose-
Hubbard system could be realized by post-selecting the dynamics with a quantum gas
microscope. In Ref. [28], simulation of the non-Hermitian dynamics and the experimental
implementation are proposed with ultracold atoms and a quantum gas microscope and
the feasibility of the proposal with inelastic two-body loss is discussed. The realization of
the non-Hermitian system leads to the investigation of PT symmetric systems.

Dissipative Fermi-Hubbard system In Ref. [86], dynamics in a one-dimensional
dissipative Fermi-Hubbard system with two- and six-component 173Yb is investigated, and
in the experiment, a highly entangled Dicke state is observed. In this setup, the photo-
association scheme presented in our thesis could be employed to tune the dissipation
strength and study loss dynamics across the phase diagram from the Mott insulator to
the quantum Zeno regime, while the inelastic two-body collision between the 3P0 state
atoms is used in this experiment.

Anisotropy-induced Feshbach resonance Related to the experiment with the 3P2

state, one interesting prospect is the control of on-site interaction. It is expected that
the anisotropic interactions between the 3P2 atoms leads to anisotropy-induced Feshbach
resonances, as in the case of Er [157] and Dy [155, 158]. In the case of Yb, the anisotropy-
induced Feshbach resonances between 1S0−3P2 were observed [61], which lead us to expect
the existence of resonances between the 3P2 atoms. Our new spectroscopic method for
measuring the on-site interaction enables us to search for Feshbach resonances between
the 3P2 atoms, while there has been no experimental study of Feshbach resonance because
of the absence of a measuring scheme for dissipative metastable states. If we can control
the on-site interaction with the Feshbach resonance and change the ratio �Γee/Uee, we
can systematically investigate the dissipative Bose-Hubbard system over a wide range of
parameters. Unlike previous studies with molecules [74, 76] or photo-association (Chap-
ter 4), the Feshbach resonance allows one to create attractive on-site interaction and may
provide a novel many-body state with competence between the attractive on-site inter-
action and the dissipation-induced “repulsive” interaction, for example. Also, quantum
chaos could be observed in the systematic search for Feshbach resonances, as is observed
in the case of Er [159].
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Development of more sophisticated tools for numerical calculation In addi-
tion to the experimental investigation, we mention the possibility of numerical simulation
in the future. In our investigation, numerical analysis under the Gutswiller approxima-
tion is presented, which qualitatively agrees with the experimental results. For further
investigation, it would be desirable to verify the experimental results with more sophisti-
cated tools such as truncated Winger approximations [160], and the quantum trajectories
method [5]. Our experimental results would be useful as a benchmark for developing tools
for numerical calculation.
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Appendix A

Derivation of the dissipative
Bose-Hubbard model

In this appendix, we present a detailed derivation of the dissipative Bose-Hubbard model
with a two-body loss term from the coupled atom-molecule mixture model with a one-
body molecular loss term. The derivation is based on a kind of perturbative approach
developed in Ref. [143].

A.1 Model

We start with the Markovian master equation for the coupled atom-molecule mixture
model with a one-body molecular loss term,

�
d

dt
ρ̂ = −i

[
Ĥ, ρ̂

]
+ LM(ρ̂). (A.1.1)

The Hamiltonian is given by

Ĥ = Ĥ0 + Ĥam + Ĥhop, (A.1.2)

where

Ĥ0 =
∑
j

(
Dn̂M,j +

U

2
n̂A,j(n̂A,j − 1) +Wn̂A,jn̂M,j

)
, (A.1.3)

Ĥam =
∑
j

g
(
m̂†

j âj âj + h.c.
)
, (A.1.4)

Ĥhop = −
∑
〈j,k〉

J
(
â†j âk + h.c.

)
. (A.1.5)

The quantum phases of this atom-molecular Hamiltonian have been theoretically studied
in Ref. [141]. We anticipate that the molecule consists of a 1S0 atom and a 3P1 atom as in
the experiment such that its linewidth is on the order of 1 MHz due to the short lifetime
of the latter state of atom. Hence, we have to include the one-body loss term of molecules
in the master equation,

LM(ρ̂) =
�ΓM

2

∑
j

(
−n̂M,j ρ̂− ρ̂n̂M,j + 2m̂j ρ̂m̂

†
j

)
. (A.1.6)
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Equation (A.1.1) describes the dynamics of ultracold bosonic atoms in an optical lattice
coupled with a molecular state via PA laser. âj and m̂j annihilate an atom and a molecule

on site j while n̂A,j = â†j âj and n̂M,j = m̂†
jm̂j are the density operators of atoms and

molecules. ΓM, D, U , W , g, and J denote the one-body loss of molecules, the detuning
of the PA coupling from the molecular state, the on-site interaction between two atoms,
the on-site interaction between an atom and a molecule, the atom-molecule coupling, and
the tunneling amplitude of atoms. 〈j, k〉 represents nearest-neighboring pairs of lattice
sites. Since �ΓM � max(|D|, |g|, |J |), a molecule created on a lattice site via the PA
laser decays much earlier than the creation of another molecule on the same site. In
this sense, we can safely assume the hardcore constraint on the molecules, which forbids
more than one molecules to occupy a single site. We aim to show that when �ΓM �
max (|D|, |U |, |W |, |g|, |J |), the molecular degrees of freedom can be properly projected
out by means of a perturbation theory [143] such that the system is well approximated
by the following effective master equation,

�
d

dt
ρ̂eff = −i

[
Ĥeff , ρ̂eff

]
+ L2(ρ̂eff), (A.1.7)

where

Ĥeff =
∑
j

U

2
n̂A,j(n̂A,j − 1)−

∑
〈j,k〉

J
(
â†j âk + h.c.

)
, (A.1.8)

L2(ρ̂eff) =
�ΓPA

4

∑
j

(
−â†j â

†
j âj âj ρ̂eff − ρ̂eff â

†
j â

†
j âj âj + 2âj âj ρ̂eff â

†
j â

†
j

)
, (A.1.9)

and

ΓPA =
8g2

�2ΓM

. (A.1.10)

In order to express the density matrix of the system more explicitly, we define the
local Fock state on site j,

|na, nm〉j =
1√

na!nm!
(â†j)

na(m̂†
j)

nm |vac〉j (A.1.11)

We set the maximum number of atoms per site to be d− 1. Hence, the dimension of the
local Hilbert space is 2d. While the maximum number of bosonic atoms per site is in
principle the total number of atoms, at a finite filling factor the occupation probability
of large-na states decays exponentially. This means that setting the cutoff of the local
Hilbert space at na = d− 1 does not affect results of numerical calculations in practice as
long as U > 0 and d is sufficiently large [161].

For convenience, we introduce a simpler notation for the local state,

|l〉j =
{

|na = l − 1, nm = 0〉j, when 1 ≤ l ≤ d,
|na = l − 1− d, nm = 1〉j, when d+ 1 ≤ l ≤ 2d.

(A.1.12)

Using the local states defined above, we express a general form of the density matrix as

ρ̂ =
∑
l1,l2,...

∑
m1,m2,...

ρm1,m2,...
l1,l2,...

∏
j

|lj〉〈mj|j. (A.1.13)
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Regarding the density matrix ρ̂, which is a (2d)M × (2d)M matrix, as a (2d)2M -
dimensional vector ρ, we can rewrite the master equation in the following form,

�
d

dt
ρ =

(
M̂0 + V̂am + V̂hop

)
ρ, (A.1.14)

where the superoperators M̂0, V̂am, and V̂hop are (2d)
2M×(2d)2M matrices originated from

Ĥ0 and LM(ρ̂), Ĥam, and Ĥhop, respectively. Associated with the change of the notation
from ρ̂ to ρ, we also express the local matrix as the following vector,

|lj,mj)j = |lj〉〈mj|j. (A.1.15)

This vector satisfies the orthonormality condition,

(l′j,m
′
j|lj,mj) = δl′j ,ljδm′

j ,mj
. (A.1.16)

A.2 Local projection

In order to derive the effective master equation (A.1.7), we need to express some of the su-
peroperators explicitly and introduce the projection superoperator. The non-perturbative
superoperator M̂0 can be expressed as a sum of commuting local superoperators M̂loc

0,j ,

M̂0 =
∑
j

M̂loc
0,j , (A.2.1)

where

M̂loc
0 =

2d∑
l=1

2d∑
m=1

|l,m)(l,m| i
((

E
(0)
l

)∗
− E(0)

m

)
+

d∑
l=1

d∑
m=1

|l,m)(d+ l, d+m|�ΓM,

(A.2.2)

and

E
(0)
l =

{
U
2
(l − 1)(l − 2), when 1 ≤ l ≤ d,

D + U
2
(l − d− 1)(l − d− 2) +W (l − d− 1)− i�ΓM

2
, when d+ 1 ≤ l ≤ 2d.

(A.2.3)

The perturbative superoperator V̂am originated from the atom-molecule coupling Ĥam can
be also expressed as a sum of commuting local superoperators,

V̂am =
∑
j

V̂ loc
am,j (A.2.4)

where

V̂ loc
am =

2d∑
l=1

d∑
m=1

(|l,m)(l, d+m− 2|+ |l, d+m− 2)(l,m|) g̃m

−
d∑

l=1

2d∑
m=1

(|l,m)(d+ l − 2,m|+ |d+ l − 2,m)(l,m|) g̃l (A.2.5)
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and

g̃l = g
√
(l − 1)(l − 2). (A.2.6)

We omitted the site index j of M̂loc
0,j and V̂ loc

am,j in Eqs. (A.2.2) and (A.2.5) because they
do not depend on j.

We do not write an explicit expression of the superoperator V̂hop because it is unnec-

essary for our purpose. Nevertheless, it is worth noting that V̂hop changes neither the
number of atoms nor the number of molecules. This means that this superoperator does
not have matrix elements connecting the effective Hilbert space with the truncated one.

In order to construct the projection superoperator, we need to solve the following
eigenvalue problem,

M̂loc
0 |vα) = λα|vα), (A.2.7)

(wα|M̂loc
0 = (wα|λα. (A.2.8)

Notice that the left eigenvector (wα| in general is not equal to the conjugate of the right
eigenvector |vα) because M̂loc

0 is not Hermitian. The eigenvectors satisfy the following
orthonormality condition,

(wα′ |vα) = δα,α′ . (A.2.9)

When we derive the effective model, we utilize the fact that d2 eigenvalues have the
property |λα| = O(max(|D|, |U |, |W |)) and the other eigenvalues have |λα| = O(�ΓM).
The local subspaces that include states with the former and latter properties are denoted
by Dloc

eff and Dloc
trc , respectively.

We define the local projection superoperators as

P̂ loc
α = |vα)(wα|. (A.2.10)

This superoperator projects a state or a superoperator on state α. From these projectors,
we construct the projection superoperator on the effective Hilbert space,

P̂ loc
eff =

∑
α∈Dloc

eff

P̂ loc
α

=
d∑

l=1

d∑
m=1

(|l,m)(l,m|+ |l,m)(d+ l, d+m|) . (A.2.11)

Notice that from the first line to the second line of Eq. (A.2.11), we neglected the terms
on the order of max(|D|, |U |, |W |)/(�ΓM) on the basis of the assumption that �ΓM �
max(|D|, |U |, |W |).

A.3 Second-order perturbation

From the local projection operator of Eq. (A.2.11), we construct the projection operators
for the entire system as

P̂eff =
M∏
j=1

P̂ loc
eff,j, (A.3.1)

P̂trc = Î − P̂eff , (A.3.2)
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where Î is the global identity matrix. Multiplying P̂eff on Eq. (A.1.14) from the left and
using the facts that P̂eff V̂amP̂eff = 0 and P̂eff V̂hopP̂trc = 0, we obtain

�
d

dt
ρeff = P̂eff

(
M̂0 + V̂hop

)
P̂effρeff + P̂eff V̂amP̂trcρtrc, (A.3.3)

where

ρeff = P̂effρ, (A.3.4)

ρtrc = P̂trcρ. (A.3.5)

In Eq. (A.3.3), it is obvious that the first and second terms in the right hand side already

agree with the term −i
[
Ĥeff , ρ̂eff

]
in Eq. (A.1.7).

We will next derive L2(ρ̂eff) in Eq. (A.1.7) from the last term in the right hand side
of Eq. (A.3.3). The components in P̂trc that can give finite contributions to P̂eff V̂amP̂trc

are the ones written as

P̂β =
∑
k

P̂ (k)
β , (A.3.6)

where

P̂ (k)
β = P̂ loc

β,k

∏
j �=k

P̂ loc
eff,j, (A.3.7)

and β ∈ Dloc
trc . Hence, Eq. (A.3.3) can be rewritten as

�
d

dt
ρeff = P̂eff

(
M̂0 + V̂hop

)
P̂effρeff + P̂eff V̂am

∑
β

P̂βρβ. (A.3.8)

In order for Eq. (A.3.8) to be closed within the effective Hilbert space, we need to
express ρβ in terms of ρeff . For this purpose, we look into the equation for ρβ given by

�
d

dt
ρβ =

(
R̂+ λβ

)
ρβ + P̂βV̂amP̂effρeff + P̂βV̂P̂trcρtrc, (A.3.9)

where

R̂ =
∑
k

P̂ ′(k)
eff M̂′(k)

0 , (A.3.10)

M̂′(k)
0 =

∑
j �=k

M̂loc
0,j , (A.3.11)

P̂ ′(k)
eff = Î loc

k

∏
j �=k

P̂ loc
eff,j. (A.3.12)

We neglect the last term in the right hand side of Eq. (A.3.9) because it gives higher-order
contributions with respect to V̂ . Making a variable transformation,

ρβ(t) = eR̂t/�ρ̃β(t), (A.3.13)

ρeff(t) = eR̂t/�ρ̃eff(t), (A.3.14)
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Eq. (A.3.9) is simplified a little,

�
d

dt
ρ̃β = λβρ̃β + P̂βV̂amP̂eff ρ̃eff . (A.3.15)

Formally solving Eq. (A.3.15), we obtain

ρ̃β(t) =
1

�
eλβt/�

∫ t

0

dτe−λβτ/�P̂βV̂amP̂eff ρ̃eff(τ). (A.3.16)

Performing a partial integral, this solution becomes

ρ̃β(t) = − 1

λβ

P̂βV̂P̂eff

(
ρ̃eff(t)− eλβt/�ρ̃eff(0)

)
+

eλβt/�

λβ

∫ t

0

dτe−λβτ/�P̂βV̂P̂eff
d

dτ
ρ̃eff(τ).

(A.3.17)

The remaining integral can be neglected because it is of higher order in
max(|D|, |U |, |W |, |g|, |J |)/(�ΓM). The second term in Eq. (A.3.17), which includes
eλβt/�ρ̃eff(0), decays very quickly on the order of 1/ΓM so that it can be also neglected as
long as we are interested in much longer time scale than 1/ΓM. Moreover, λβ = −�ΓM/2
in its leading order. Hence, ρβ is well approximated as

ρβ(t) =
2

�ΓM

P̂βV̂P̂effρeff(t). (A.3.18)

Substituting Eq. (A.3.18) into Eq. (A.3.8), we obtain

�
d

dt
ρeff = P̂eff(M̂0 + V̂hop)P̂effρeff +

2

�ΓM

∑
β∈Dloc

trc

P̂eff V̂amP̂βV̂amP̂effρeff , (A.3.19)

where ∑
β

P̂eff V̂amP̂βV̂amP̂eff =
∑
k

∑
β

P̂ loc
eff,kV̂ loc

am,kP̂ loc
β,kV̂ loc

am,kP̂ loc
eff,k (A.3.20)

and

P̂ loc
eff V̂ loc

amP̂ loc
β V̂ loc

amP̂ loc
eff

=
d∑

l=1

d∑
m=1

(
|l,m)(l,m|(g̃2m + g̃2l )− |l,m)(l + 2,m+ 2|2g̃l+2g̃m+2

+|l,m)(d+ l, d+m|(g̃2m + g̃2l )− |l,m)(d+ l + 2, d+m+ 2|2g̃l+2g̃m+2

)
.

(A.3.21)

Rewriting Eq. (A.1.7) with use of superoperators and the vector form of the density
matrix, and setting ΓPA = 8g2/(�2ΓM), we recognize that the derived effective master
equation, which is Eq. (A.3.19), is equivalent to that for the dissipative Bose-Hubbard
model with the two-body loss term. Thus, we have successfully derived the dissipative
Bose-Hubbard model from the coupled atom-molecule mixture model with the one-body
molecular loss term.
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Appendix B

Theoretical analysis of loss dynamics
from the Mott insulating state with
double filling

In this appendix, we analyze the dynamics of the Mott insulator with two bosonic atoms
per site in an optical lattice subjected to a sudden increase of the atom-molecule coupling
g from zero.

As an initial condition, we assume that the system is deep in a Mott insulating state
of atoms with double filling and that the atom-molecule coupling g is zero. In such a
situation we can safely neglect the hopping term of atoms as long as we are interested in
the atom-loss dynamics and its timescale 1/ΓPA is much shorter than that of the hopping,
which is on the order of �U/J2 in the Mott insulator. Thus, the system can be described
by the following single-site master equation,

�
d

dt
ρ̂loc = −i

[
Ĥ loc, ρ̂loc

]
+ Lloc

M (ρ̂loc). (B.0.1)

The Hamiltonian is given by

Ĥ loc = Ĥ loc
0 + Ĥ loc

am, (B.0.2)

where

Ĥ loc
0 =

(
Dn̂M +

U

2
n̂A(n̂A − 1) +Wn̂An̂M

)
, (B.0.3)

Ĥ loc
am = g

(
m̂†ââ+ h.c.

)
. (B.0.4)

The one-body molecular loss term is given by

Lloc
M (ρ̂loc) =

�ΓM

2

(
−n̂Mρ̂

loc − ρ̂locn̂M + 2m̂ρ̂m̂†) . (B.0.5)

Since the initial state is |nA = 2, nM = 0〉, the Hilbert space necessary for describing
the dynamics of Eq. (B.0.1) is spanned by only three states, namely⎧⎪⎨

⎪⎩
|nA = 0, nM = 0〉
|nA = 2, nM = 0〉
|nA = 0, nM = 1〉.

(B.0.6)
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Figure B.0.1: Time evolution of the normalized atom density 〈n̂A〉(t) for 〈n̂A〉(0) = 2. We
take �ΓM/U = 100 and D/U = 1. The red solid lines represent the numerical solution
of Eq. (B.0.1) while the blue dashed line represent the analytical solution (B.0.11) of the
effective model (B.0.7).

When �ΓM � |g|, we can properly eliminate the state |nA = 0, nM = 1〉 by means of the
perturbation theory used in the previous section, to derive the effective master equation,

�
d

dt
ρ̂loceff = −i

[
Ĥ loc

eff , ρ̂
loc
eff

]
+ Lloc

2 (ρ̂loceff ), (B.0.7)

where

Ĥ loc
eff =

U

2
n̂A(n̂A − 1), (B.0.8)

Lloc
2 (ρ̂loceff ) =

�Γ̃PA

4

(
−â†â†ââρ̂loceff − ρ̂loceff â

†â†ââ+ 2ââρ̂loceff â
†â†

)
, (B.0.9)

and

Γ̃PA =
8g2

�2ΓM

[
1 + 4

(
D − U

�ΓM

)2
]−1

. (B.0.10)

In contrast to the case in the previous section, the effective model is valid without the
condition that �ΓM � max(|D|, |U |, |W |) and we could obtain the analytical expression
of Γ̃PA, which includes the explicit dependence on U and D. It is obvious that when
�ΓM � max(|D|, |U |, |W |), Γ̃PA coincides with ΓPA.

The dynamics of the effective master equation (B.0.7) involves only the two states
such that we can easily obtain its analytical solution,

〈n̂A〉(t) = 2e−Γ̃PAt. (B.0.11)

In order to check the validity of the effective master equation (B.0.7), in Fig. B.0.1 we
compare Eq. (B.0.11) with the numerical solution of the original master equation (B.0.1)
including the molecular degree of freedom. We see that the analytical and numerical
results agree when �ΓM � g.
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Appendix C

Gutzwiller mean-field approximation

In this appendix, we explain the Gutzwiller mean-field theory [144, 145, 36] which is used
for the numerical calculation shown in Chapter 4. While the Gutzwiller approximation is
a simple mean-field theory, it has been extensively used to study various phenomena and
properties of Bose gases in optical lattices, including the quantum phase transitions [144,
97, 162], the elementary excitations [163, 164], the superfluid critical momentum [165,
166], and the non-equilibrium dynamics [167, 168, 169]. Recently, it has been applied for
solving the master equation of the Bose-Hubbard system with dissipation terms [69, 70,
71, 72]. This approximation is more accurate in higher dimensions, where there are more
mean fields to interact with. In the case of the Bose-Hubbard model on a cubic lattice,
for instance, the Gutzwiller approximation gives the critical point for the superfluid-Mott
insulator quantum phase transition at unit filling as zJ/U = 0.1716 while that by the
quantum Monte Carlo method is zJ/U = 0.2045 [99], where z is the coordination number.
Since the experimental system considered in our study is three dimensional, the Gutzwiller
approximation can give reliable results at least qualitatively.

Here we explicitly explain the Gutzwiller mean-field theory applied to the atom-
molecule mixture model of Eq. A.1.1. One can easily apply the same prescription to
the effective Bose-Hubbard model of Eq. A.1.7 in a very similar manner.

In the Gutzwiller mean-field approximation, the many-body density matrix is assumed
to be a single product of local density matrices,

ρ̂ =
∏
j

ρ̂GW
j , (C.0.1)

where

ρ̂GW
j =

2d∑
lj=1

2d∑
mj=1

ρ
(j)
lj ,mj

|lj〉〈mj|j. (C.0.2)

From the Gutzwiller density matrix, we define the local superfluid order parameter as

ψj = 〈âj〉 = Tr[ρ̂GW
j âj]. (C.0.3)

In the Gutzwiller mean-field approximation, we ignore the second order terms with respect
to the fluctuation of âj from its mean value ψj. In this way, the Hamiltonian is simplified
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as

Ĥ �
∑
j

ĤGW
j , (C.0.4)

where

ĤGW
j = Ĥ loc

0,j + Ĥ loc
am,j + ĤGW

hop,j, (C.0.5)

ĤGW
hop,j = −J

∑
〈k〉j

(
ψ∗
kâj + â†jψk

)
. (C.0.6)

In Eq. (C.0.6), 〈k〉j means sites nearest-neighboring to j. It is worth noting that ĤGW
j

includes only local operators at site j because one of field operators in the tunneling term
is replaced with its mean value. Thanks to this property, the master equation under the
Gutzwiller mean-field approximation is closed within local site j,

�
d

dt
ρ̂GW
j = −i

[
ĤGW

j , ρ̂GW
j

]
+ Lloc

M (ρ̂GW
j ), (C.0.7)

such that we can solve the master equation at a very low numerical cost.
Assuming that the system is homogeneous, we further simplify the master equation,

i.e., we drop the dependence on the site index j. This assumption means that we neglect
fluctuations other than the zero-momentum one and the effect of the trapping potential.
Since the trapping potential is present in the actual experiment, our theoretical analyses
within this simplification do not correspond to the experiment at a quantitative level.
We emphasize that the main purpose of our theoretical analyses is to provide qualita-
tive explanations for the interesting effects of the engineered dissipation observed in the
experiment.
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Appendix D

Measurement of the polarizability of
the 3P2 state of 174Yb for the 532-nm
light

In this appendix, we describe measurement of the polarizability of the 3P2 state of 174Yb
for the 532-nm light. Here, we measure the ratio of the polarizability between the 3P2

state and the 1S0 state by spectroscopically determining the band gap in the 3D optical
lattice with a 507-nm excitation laser. We can determine the polarizability of the 3P2 state
by precisely evaluating the lattice depth for the 3P2 state from the excitation frequency
and the known lattice depth for the 1S0.

D.1 Band gap in the deep optical lattice

When the lattice beam forms the potential Vg = sgER for the 1S0 state, it creates the
potential Ve = (αe/αg)sgER for the 3P2 state, where αe and αg represent the polarizability
of the 3P2 state and the 1S0 state, respectively. Therefore, we can determine the ratio
αe/αg by measuring the lattice depth se and comparing with the known lattice depth sg.
Here, we define the polarizability αg(e) as follows:

Vg(e) [Hz] = −1

4
αg(e) [Hz/(W/cm2)]I [W/cm2], (D.1.1)

where I is the intensity of the laser.

To measure the lattice depth se, we spectroscopically determine the band gap, which
is a function of the lattice depth. In the excitation from the 1S0 state to the 3P2 state,
we can observe the blue-sideband in addition to the carrier transition. In the blue-
sideband transition, the excited state is the 1st vibrational level of the optical lattice
for the 3P2 state, which means that we can measure the band gap of the lattice for the
3P2 state by measuring the difference between the excitation frequency to the carrier
and the blue-sideband transitions. When the lattice depth is deep enough, the band gap
can be described as Δ = �ω = 2

√
seER under the harmonic oscillator approximation.

However, when the lattice depth is in the region below ∼ 30ER, which is the typical
value for measurement, the harmonic oscillator approximation is not valid. Therefore, we
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Figure D.1.1: (a) Band structure in the lattice depth of 20 ER. The horizontal axis
is the quasi momentum q. The red and green lines represent the 0th and the 1st band,
respectively. (b) Band gap between the 0th and 1st band in the lattice depth of 20 ER.
Band width is defined as in the figure. (c) Band gap as a function of the lattice depth.
The shaded area represents the band width, which shows that the band width decreases
for deeper lattice depth compared with the mean value of the band gap. For comparison,
the band gap calculated under the harmonic oscillator (HO) approximation is shown.

numerically calculate the band gap. Figure D.1.1 shows the band gap and the band width
as a function of the lattice depth of the 3P2 state.

In this calculation, we define the mean value of the band gap as the average over the
quasi-momentum q in the 1st Brillouin zone. In the deep optical lattice, the 0th and 1st
bands are flat enough to ignore the effect of the finite band width in the evaluation of the se
from the result of the spectroscopy. For the 3P2 state, the polarizability αe depends on the
magnetic sublevels mJ and the angle between the quantization axis and the polarization
of the lattice beam θ. Thus, in the measurement, we perform the spectroscopy with five
different conditions, varying mJ and θ.

D.2 Spectroscopy

Figure D.2.1 is the typical spectrum of the carrier and the blue-sideband transitions. The
lattice depth is fixed at 20 ER for the 1S0 state, which is calibrated with the pulsed
lattice method [170]. To precisely determine the band gap, we obtain four spectra in each
condition. We fit the data to the multiple Gaussian functions and obtain the interval
of the two peaks. The band gap is evaluated by calculating the weighted average of the
four results. By comparing the measured band gap with the numerical calculation (Fig.
D.1.1), we determine the lattice depth se for the 3P2 state. Because the lattice depth
is fixed at the 20 ER for the 1S0 state, the ratio of the polarizability can be derived as
αe/αg = se/20.

Table D.2.1 shows the obtained ratio of the polarizability. We use these values in the
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OF 174YB FOR THE 532-NM LIGHT

Figure D.2.1: Spectrum of the carrier and blue-sideband transitions. The lattice depth
is 20ER for the 1S0 state. The magnetic sublevel is mJ = −2, and the angle between
the magnetization axis and the polarization is θ = 0◦. We obtain four data sets in each
condition.

measurement of the on-site interaction between the 3P2 atoms.
We convert these values of the ratio into the polarizability of the 3P2 state (Tab. D.2.2)

with the known value of αg = 37.9Hz/(W/cm2) [171].
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Table D.2.1: Ratio of the polarizability α
(mJ )
e /αg. mJ is the magnetic sublevel and θ is

the angle between the quantization axis and the polarization of the lattice beam θ.

θ = 90◦ θ = 0◦

α
(0)
e /αg 1.32(4) 1.023(10)

α
(−1)
e /αg 1.22(8) -

α
(−2)
e /αg 1.132(8) 1.43(5)

Table D.2.2: Polarizability of the 3P2 state α
(mJ )
e .

θ = 90◦ θ = 0◦ Unit

α
(0)
e 49.8(1.4) 38.8(4) Hz/(W/cm2)

α
(−1)
e 46(3) - Hz/(W/cm2)

α
(−2)
e 42.9(3) 54.1(1.7) Hz/(W/cm2)
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sented at the Université Libre de Bruxelles, October 28 to November 4, 1991, vol-
ume 18. Springer Science & Business Media, 2009.

[21] M. B. Plenio and P. L. Knight. The quantum-jump approach to dissipative dynamics
in quantum optics. Rev. Mod. Phys., 70:101–144, Jan 1998.

[22] Jean Dalibard, Yvan Castin, and Klaus Mølmer. Wave-function approach to dissi-
pative processes in quantum optics. Phys. Rev. Lett., 68:580–583, Feb 1992.

[23] Klaus Mølmer, Yvan Castin, and Jean Dalibard. Monte Carlo wave-function method
in quantum optics. JOSA B, 10(3):524–538, 1993.

[24] R. Dum, P. Zoller, and H. Ritsch. Monte Carlo simulation of the atomic master
equation for spontaneous emission. Phys. Rev. A, 45:4879–4887, Apr 1992.

[25] R. Dum, A. S. Parkins, P. Zoller, and C. W. Gardiner. Monte Carlo simulation of
master equations in quantum optics for vacuum, thermal, and squeezed reservoirs.
Phys. Rev. A, 46:4382–4396, Oct 1992.

[26] Inés de Vega and Daniel Alonso. Dynamics of non-markovian open quantum sys-
tems. Rev. Mod. Phys., 89:015001, Jan 2017.

[27] Ramy El-Ganainy, Konstantinos G. Makris, Mercedeh Khajavikhan, Ziad H. Mus-
slimani, Stefan Rotter, and Demetrios N. Christodoulides. Non-Hermitian physics
and PT symmetry. Nature Physics, 14(1):11, 2018.

91



BIBLIOGRAPHY

[28] Yuto Ashida, Shunsuke Furukawa, and Masahito Ueda. Quantum critical behavior
influenced by measurement backaction in ultracold gases. Phys. Rev. A, 94:053615,
Nov 2016.

[29] Yuto Ashida, Shunsuke Furukawa, and Masahito Ueda. Parity-time-symmetric
quantum critical phenomena. Nature communications, 8:15791, 2017.

[30] Masaya Nakagawa, Norio Kawakami, and Masahito Ueda. Non-Hermitian Kondo
effect in ultracold alkaline-earth atoms. Phys. Rev. Lett., 121:203001, Nov 2018.

[31] Zongping Gong, Yuto Ashida, Kohei Kawabata, Kazuaki Takasan, Sho Higashikawa,
and Masahito Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X,
8:031079, Sep 2018.

[32] Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman, and
Eric A Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor.
science, 269(5221):198–201, 1995.

[33] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-
Einstein condensation in an atomic gas with attractive interactions. Phys. Rev.
Lett., 75:1687–1690, Aug 1995.

[34] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Phys.
Rev. Lett., 75:3969–3973, Nov 1995.

[35] Brian DeMarco and Deborah S Jin. Onset of Fermi degeneracy in a trapped atomic
gas. Science, 285(5434):1703–1706, 1999.

[36] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic
atoms in optical lattices. Phys. Rev. Lett., 81:3108–3111, Oct 1998.

[37] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W Hänsch, and Immanuel
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J. Levinsen, I. Bloch, and S. Fölling. Observation of an orbital interaction-induced
Feshbach resonance in 173Yb. Phys. Rev. Lett., 115:265302, Dec 2015.

[58] Xiaohang Zhang, Michael Bishof, Sarah L Bromley, Christina V Kraus, Marianna S
Safronova, Peter Zoller, Ana Maria Rey, and J Ye. Spectroscopic observation of SU
(N)-symmetric interactions in Sr orbital magnetism. science, 345(6203):1467–1473,
2014.
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