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Abstract

Fluid flows are ubiquitous in our daily life. We already know the governing
law of fluid flow in the scale of our daily life, Navier-Stokes equations, but
prediction and control of turbulent flow and turbulence transition is still
difficult.

In this thesis, understandings of dynamics and turbulence transition for
the subcritical regime are developed where spatially-localized turbulence
plays a key role. For the subcritical regime, where no unstable mode ex-
ists around the laminar solution, spatially-localized turbulence, such as a
spot in channel flow and puff in pipe flow, are widely observed for laboratory
and numerical experiment. Dominant modes are unknown for this case while
unstable modes of the linear theory are generally dominant for the subcritical
regime. Localization in spatial direction should lead scale separation of length
scale comparing to system size and that scale separation makes theoretical
and numerical approach difficult. The basic finding of this thesis is that
the uniform flow perpendicular to forcing direction makes the laminar solu-
tion stable. Kolmogorov flow is simple and more uniform than wall-bounded
flow. We are able to investigate subcritical flow at low cost. In main parts
of the thesis, two different cases with time scale separation are discussed.
At the first part, intermittent direction reversal of spatially-localized tur-
bulence is found. Spatially-localized turbulence moves with constant speed
on average, and it changes its own moving direction suddenly and intermit-
tently. We discuss the relationship between the chaotic dynamics of inner
freedoms and direction reversals. The second topic is subcritical turbulence
transition. A new example of subcritical turbulence transition governed by
two-dimensional Navier-Stokes equation without material walls. Theoretical
estimation yields that critical Reynolds number of linear theory blows up to
infinity at a finite flow rate perpendicular to forcing. Confirmed by numerical
integration, the number of spatially-localized turbulences changes randomly
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introducing a large drag forcing. The results also suggest subcritical transi-
tion belongs to the directed percolation universality class.
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Chapter 1

General introduction

1.1 Nonuniform turbulence

Fluid flows are ubiquitous not only in our daily life but also in phenomena
from quantum to cosmic scales. In macroscopic scale that is typically larger
than the size of molecules, flows are described by the following hydrodynamic
equations[Lam45, LL59]:

∂tρ+ ∂j(ujρ) = 0, (1.1)

∂tρui + ∂j(ujρui) = ∂jσji + fi. (1.2)

The former is the conservation law of mass and the latter is Newton’s equa-
tion of motion. Here, ρ and u are the density and the velocity field of
fluid, and σ and f denote the stress tensor and the external body force,
respectively. In this macroscopic description, fluid is regarded as continu-
ous media, and each spatial point of the hydrodynamic equations contains a
huge number of molecules. These equations are partial differential equations
and solutions of the equations describe the behavior of fluid under appropri-
ate boundary conditions. However, it is difficult to obtain general solutions
and further to elucidate their character because of its nonlinearity. For the
motion of fluids in our daily scale, it is often sufficient to impose incom-
pressibility (∂tρ + uj∂jρ = 0) and to regard the fluid as Newtonian fluid
(σij = −ρPδij + ρν(∂jui + ∂iuj)). Then, the Navier-Stokes equations with
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constant ρ

∂tu + (u ·∇)u = −∇P + ν∇2u + f , (1.3)

∇ · u = 0, (1.4)

are sufficient for describing fluid phenomena. Here, P is the pressure function,
and its behavior is not affected by thermodynamic quantities but determined
by the velocity field. The pressure function is considered as an undetermined
function corresponding to the constraint of incompressibility (1.4). Then,
Eqs. (1.3) and (1.4) determine the time evolution of the dependent variables,
u. The kinematic viscosity, ν which reflects the microscopic structure of the
fluid is the only parameter of the Navier-Stokes equations.

It is generally difficult to fully understand fluid phenomena despite the
superficial simplicity of the equations (1.3) and (1.4). For example, when
Reynolds number which is non-dimensionalized momentum of the fluid and
denoted by Re is large enough, a highly complex solution called ”turbulence”
is realized[Fri95]; Turbulence is spatiotemporally nonuniform and its kinetic
energy is distributed among the wide range of scales. This tendency is also
seen in laboratory experiments.

One of the ultimate goals of fluid physics is to elucidate turbulence based
on the governing equations. Turbulence theories on statistically isotropic and
homogeneous turbulence have achieved a certain measure of success in recent
years based on the universality of small scale behavior. However, fluid flows
in scientific interest and practical use of engineering are often anisotropic. In
fact, recent precise numerical experiments on turbulence at high Reynolds
number reveal even symmetry breaking transient flows sustained for a long
time. Although practical theories such as turbulence modelings, which are
usually based on the ideas that smaller scales are universal and thus seemed
to be slaved by larger scales, have been developed, they do not necessarily
work in elucidating more realistic turbulence so far, to our knowledge. In this
situation, therefore, a novel approach is required to deal with nonuniform
turbulence.

1.1.1 Turbulence Transition

As mention above, turbulence is realized at relatively high Reynolds num-
ber. In contrast, at sufficiently low Reynolds number we obtain a laminar
solution, which is a stationary linear solution of the Navier-Stokes equations
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for parallel flows[Fri95, DG95]. Since turbulence has high energy dissipation,
efficient diffusion and anomalous mixing, the estimation of Reynolds num-
ber at which the transition from the laminar state to turbulence occurs, is
important for practical use of fluid; if it does, the value is called the critical
Reynolds number, Rec[Rey83]. Recent years approaches based on statistical
physics become effectively available as well as bifurcation theory of dynamical
system.

View from dynamical system

An important indicator of turbulence transition is linear stability of the lam-
inar state as dynamical systems. From the viewpoint of dynamical systems,
the time evolution of the velocity, u, is considered as the motion of a point
in phase space or state space. Especially for time-independent external force
and boundary conditions, it is an autonomous dynamical system. Let X be
an element of the phase space and evolve by the following equation

dx

dt
= F (X). (1.5)

In this case, a laminar solution is a fixed point, X0, that satisfies F (X0) = 0
while turbulence states are complex motion in phase space. Around X0, an
infinitesimal disturbance δX = X −X0 follows

dδx

dt
= DF (X0)δX +O(|δX|2), (1.6)

where DF (X0) is the linearized operator around X0. The fixed point is
linearly unstable when the spectrum of DF (X0) contains eigenvalues with
positive real parts. If the laminar solution is linearly unstable, such the state
is broken by even an infinitely small perturbation in the phase space and the
laminar solution is no longer stably observed in the physical space. We set
the lower bound of linearly unstable Reynolds number as Rel. Supercriti-
cal scenario for turbulence transition has introduced in the middle of twenty
century. In this scenario, the cascade of bifurcation adds the degree of free-
dom step by step along with the complexity of attracting sets. This critical
Reynolds number denoted by Rel is the upper bound of Rec. In general, the
parameter region above this critical value (Re≥Rel) is called supercritical
while the parameter region below the critical (Re≤Rel) is called subcritical.
Moreover, one can prove that there exists another upper bound denoted by
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Reg below which any perturbations decay exponentially for large class of
Navier-Stokes equations (1.3) and (1.4). Thus, the relation

Reg ≤ Rec ≤ Rel (1.7)

holds. For the supercritical region, the first unstable mode is crucial to de-
scribe phenomena. Weakly nonlinear stability theory or the method of am-
plitude equation is based on this idea. However, dynamics for the subcritical
region has only a few clues which can select dominant modes. Especially
for wall-bounded flows such as pipe and channel flows, Rel is very large or
infinite so that laminar-turbulence transition occurs subcritically. Unknown
important modes prevent us from understanding subcritical transition unlike
the supercritical case.

View from statistical physics

From laboratory and numerical observations, the spatial structure of tur-
bulence at the onset subcritical transition tends to be spatially localized
and embedded in the laminar state. This spatially localized turbulent state
(SLT) is called turbulent puffin pipe flow and a turbulent spot in channel
flow. Oblique turbulence patterns are also observed in Couette flow both in
concentric cylinder and parallel plates[Col65, DSH10, TB11]. The spot and
stripe patterns are composed of so-called streak structures which are identi-
fied as the dynamics of ”minimal flow” in the modern sense: The details will
be explained later. From the locality of dynamics, the following viewpoints
arise in comparison with globally occupied turbulence.

(a) (probabilistic) ”expansion” of turbulent region or ”splitting” of turbu-
lent state

(b) (probabilistic) ”shrinking” of turbulent region or ”decay” of turbulent
state

(c) Moving of the center of SLT

(d) Interaction among other turbulent states

Considering the cases (a) and (b), the area occupied by an SLT can change in
time as if they are stochastic though the governing equations are determin-
istic. For pipe flow, turbulence puffs split or decay. The basic idea for this
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type subcritical transition is that turbulence is sustained when the splitting
probability, p, is larger than the decaying probability, q, (p > q) while the
laminar state is realized when p < q. We can expect p becomes larger and
q becomes smaller for larger Reynolds number, and Reynolds number sat-
isfying p(Re) ∼ q(Re) should be critical Reynolds number Rec[AMdL+11].
This type of transition is caused by not dynamic but essentially statistical
nature in contrast with the case of supercritical transition which is triggered
by an exchange of the stability of the corresponding fixed point. Important
characteristics of the subcritical transition of this type are

(i) Once the laminar state is spatially-globally realized, laminar state sus-
tains after that.

(ii) New spatially-localized turbulent states arise around a turbulent state.

The former corresponds to linear stability. The latter means that an elemen-
tary process is spatially localized. Here, one can expect that the transition
belongs to directed percolation (DP) universality class[Hin00]. DP universal-
ity class is a representative class of an absorbing state phase transition which
is the phase transition between absorbing state and active state such that a
whole state does not change once all of the states become the absorbing state.
Contact process directed percolation and other models in various fields belong
to DP universality class. In this context, each of an absorbing state and an
active state corresponds laminar state and SLT, respectively. Recent experi-
ments showed that the critical exponents of laminar-turbulence transition of
wall-bounded flow match those of DP universality class. Essentially reaction-
diffusion models resemble the dynamics of wall-bounded flow and coupled
map lattice (CML) models also show DP class transition[CM88, Bar11].

Expectation of Directed Percolation universality class

Around the critical point of statistical phase transition, one can expect that
macroscopic properties are independent of microscopic properties but depend
on the spatial dimension, symmetry, and conserved quantities. Considering
that physical quantity A is observed in length scale x and time scale t,d
the system is parametrized by c, and the critical value of c is set 0 without
loss of generality. The following scaling relations based on self-similarity are
supposed in that the phenomenon is invariant under the following transfor-
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mation,

c→ bc, (1.8)

x→ byxx, (1.9)

t→ bytt, (1.10)

A→ byAA, (1.11)

where b is a constant and y∗ denotes the scaling exponent for each vari-
able. Then, the function form of the physical quantity A should satisfy the
following one parameter relation with respect to b:

A(x, t, c) = byAA(byxx, bytt, bc). (1.12)

This relation can be utilized to predict the parameter dependence of various
quantities around the critical point. For example, the spatiotemporal average
of the quantity A denoted by Ā which depends only on c is written as follows:

Ā = c−yAC ∝ c−yA . (1.13)

Here, b = 1/c and C = Ā(c = 1). The actual value of y is generally unknown
but can be deduced with relations such as symmetry as mentioned above.

For critical phenomena belonging to DP universality class, the order pa-
rameter ρ which takes zero for the absorbing state is a fundamental observ-
able. The spatiotemporal average of ρ, ρ̄, and ρ’s correlation lengths both
for temporal and spatial directions, ξ‖ and ξ⊥, are the fundamental set of
physical quantities characterizing the critical phenomena. They should have
the following parameter dependence:

ρ̄ ∝ cβ, (1.14)

ξ‖ ∝ cν‖ , (1.15)

ξ⊥ ∝ cν⊥ . (1.16)

These independent critical exponents also depend on spatial dimension. For
higher spatial dimensions larger than d = 4, the critical exponents will agree
with those obtained by mean field theory, (β, ν‖, ν⊥) = (1, 1/2, 1), while the
critical exponents will not be simple rational numbers, e.g. (β, ν‖, ν⊥) ∼
(0.276, 1.10, 1.73) for d = 1[Jen96]. For turbulence case, one can expect that
ρ corresponds to turbulence fraction or occupation area of SLT.
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1.1.2 Dynamics

Dynamics based on nonlinear modes

Since recent development of computer performance and numerical techniques
enable us to directly observe the dynamics of turbulent motion, the idea or
conjecture that the dynamics of turbulence confirmed for small systems is
locally embedded even in a huge system has developed and become popular.

For example, the dynamics of so-called low-speed streak structure, self-
sustaining process (SSP), which is widely identified as the near-wall dynamics
in wall-bounded flows such as channel flow and boundary layer corresponds
to or is similar to that of ”minimal flow” turbulence. Here, the minimal flow
is defined as the smallest system in which turbulent motion can be sustained.
The dynamics in both of near-wall layer and minimal flow share the same
characteristics, i.e., SSP that is the cyclic motion played by streaks, stream-
wise vortices and three-dimensional modes[Wal97]. Historically speaking,
the importance of numerical invariant solutions was recognized through the
studies of SSP[Nag90, IT01, KK01].

Using numerical exact solutions

One of the modern tools for estimating the characteristics of non-trivial
modes which are expected to govern the turbulent motion and also sub-
critical transitions is the usage of numerical exact solutions. Here, this tool
is based on the conjecture that in phase space ”unstable” nonlinear invari-
ant solutions should exist nearby turbulent state[KUvV12]. Actual turbulent
motion is considered as an orbit wandering among these invariant solutions.
In the following discussion, we assume that X is the element of Hilbert space
of a finite dimension, N , corresponding to the size of numerical discretization.
Since F in the governing equation (1.5) is continuous, one can expect that
the dynamics and the statistical law of the turbulent motion can be described
by the approximations obtained with some known solution X0. Usually, X0

is one of the invariant solutions such as stationary or periodic solutions to
meet reproducibility. In other words, X0 satisfies the following relation:

F ′(X0) ≡ F (X0)− c · dX0

dx
= 0, (1.17)

for a traveling solution with the phase velocity c and for a stationary solution,
c = 0. Here, x denotes the spatial coordinate.
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Let G(X;T ) ≡X(t0) +
∫ t0+T
t0

dtF (X(t)) be the map to the time evolu-

tion in T. Then, a certain snapshot X0 of a (relative) periodic solution of
the period T is the solution of the following relation:

G′(X0, T,x0) ≡ G(X0, T )−H(X0,x0) = 0. (1.18)

Here, H(X,x) denotes the spatial translation: x → x + x0. Since invari-
ant solutions used for understanding of turbulence motion are unstable, we
should directly solve F ′ = 0 or G′ = 0 generally using the following Newton
iteration:

Xn+1 = Xn − (DF ′(Xn))−1F ′(Xn). (1.19)

Here, (DF ′(X))−1 is the inverse matrix of Jacobian of F ′ obtained by lin-
earization around X0. This procedure is still heavy computing tasks, because
the dimension of X is too high to calculate the inverse matrix which has N2

components and needs O(N3) operations to be solved by the direct method.
Thus, an efficient way to get an unstable invariant solution is still an open
problem. The details of the numerical methods used in this thesis are ex-
plained in Appendix A.

Another way to use numerical invariant solutions is to reproduce an edge
state, which is the basin boundary between the laminar state and the turbu-
lent attractor. For subcritical Reynolds number, the flow starting from the
laminar state with a small perturbation returns to the laminar state while it
goes to turbulence if the amplitude of the perturbation exceeds some thresh-
old. By this method the flow can keep staying on the hypersurface between
the laminar state and turbulence: this hypersurface should be identified as
the basin boundary in dynamical system’s point of view. The previous stud-
ies of minimal flow turbulence showed that a simple invariant solution called
edge state here, is embedded in the basin boundary and that both stable
and unstable manifolds of the edge state give some suggestions about the
dynamics of transient behaviors and intermittent bursts[IT01, KKS+16].

Dynamics of localized modes

We now touch on the characteristics of spatially-localized turbulence men-
tioned above subsection, ”(c) Moving of the center of turbulence”, in the
rest of this subsubsection. As the case of (c), spatially-localized turbulence
can be regarded as a moving element with a large internal degree of free-
dom. The position of spatially-localized turbulence can be important for the
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description of its motion when it occupies the approximately constant area.
Examples are turbulent puff in pipe flow and typhoon on the earth. When
SLTs such as turbulent slugs in pipe flow and turbulent spots in channel flow
change their sizes, the velocity of their boundaries, i.e., fronts invading the
laminar region is focused on.

The definition of the center of SLT is essentially ambiguous from its tur-
bulent dynamics. However, the prediction and control of the center of SLT
is crucial especially for practical reasons. For example, the prediction of the
path of a typhoon is one of the main problems on disaster prevention. A
detailed discussion on this topic is provided in Chapter 2.

1.1.3 Kolmogorov flow

Solutions of Navier-Stokes equations strongly depend on the way to drive
them and also on boundary conditions. However, a precise investigation of
models simpler than NS equations plays an important and suggestive role on
the understanding of turbulence phenomena. Here, we should adopt a two-
dimensional (2D) flow in a periodic box since the 2D system is easy to be
treated theoretically and numerically. In incompressible 2D flow, the velocity
field denoted by u = (ux, uy) can be expressed locally by the stream function
denoted by ψ as follows:

ux = ∂yψ, (1.20)

uy = −∂xψ. (1.21)

Note that by using periodic boundary conditions, strong explicit and implicit
non-uniformities induced by material walls can be omitted. Navier-Stokes
system with the monochromatic force f = sin(ny)x̂ is called Kolmogorov
flow.

∂tu + (u ·∇)u = −∇P + ν∇2u + χ sin(2πny/Ly)x̂, (1.22)

∇ · u = 0, (1.23)

when χ is the amplitude of the forcing. This system is defined on a periodic
domain, (x, y) ∈ [0, Lx]× [0, Ly]. One must additionally specify the unit flow
rate U defined as follows:

U = (Ux, Uy) ≡
1

LxLy

∫ Lx

0

dx

∫ Ly

0

dyu. (1.24)

16



Considering Galilean transformation u(x, t) → u(xct) + c for an arbitrary
constant c, one can set Ux = 0 without loss of generality, and can “NOT”
set Uy = 0 since the forcing term sin(2πny/Ly)x̂ has the explicit coordinate
dependence in y. It is convenient to nondimensionalize and to redefine these
governing equations as follows:

∂tu + (u ·∇)u = −∇P +
1

Re
∇2u + sin(ny)x̂, (1.25)

∇ · u = 0, (1.26)

U ≡ α

4π2

∫ 2π/α

0

dx

∫ 2π

0

dyu, (1.27)

(x, y) ∈ [0, 2π/α]× [0, 2π], (1.28)

where (x, y) ∈ [0, 2π/α]× [0, 2π]. Here, Re is Reynolds number and α is the
aspect ratio of the rectangle domain. Thus, the independent control param-
eters of this model are (Re, α, n, Uy). This model is originally introduced for
studies of instability. In the original setting, n and Uy are set 1 and 0, respec-
tively. From its simplicity, there exist many rigorous theorems for instability
such as the existence of bifurcation[AM60, MS61, Iud65, Arn91].

Kolmogorov flow with finite Uy

2D Kolmogorov flow with a finite Uy has plentiful turbulent states[HT15].
Most of the previous studies of Kolmogorov flow deal with a zero unit flow
rate system: U = 0. They clarified that localized dynamics including turbu-
lence can be observed in the wide (α� 1) system. Note that such localized
solutions can be isolated in |Uy| 6= 0 system. In this case, several localized
solutions can also coexist and interact with each other. Moreover, when |Uy|
gets large enough, the flow should decay to the laminar state quickly.

1.1.4 Construction of this thesis

In this thesis, Dynamics and transition in the subcritical regime is considered
focusing on spatially-localized turbulence. The subcritical regime is guaran-
teed by large |Uy| in 2D Kolmogorov flow. The title of Chapter 2 is Inter-
mittent direction reversals and application of dynamical systems’ approach
. In this chapter, we find that there exists a novel localized turbulent state
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moving with a constant speed on average and its moving direction changes in-
termittently. We try to describe its dynamics and the direction change event
using dynamical systems’ approach. The title of Chapter 3 is Construction
of Navier-Stokes model without material wall to exhibit laminar-turbulence
transition as nonequilibrium phase transition. In this chapter, we construct
a simple 2D Kolmogorov flow model to observe subcritical transition belong-
ing to DP universality class.
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Chapter 2

Intermittent direction reversals
and application of dynamical
systems’ approach

2.1 Introduction

Spatially-localized turbulent (SLT) states embedded in laminar flows such as
puff and stripe, are observed mainly in subcritical transient flows around non-
linear critical Reynolds number both experimentally and numerically[AMdL+11,
SMDK14, WPKM08, KKS+16, DSH10, IDT16]. These SLTs play a funda-
mental role in elucidation of generation, evolution and sustenance of turbu-
lence as well as transition to turbulence.

When considering not globally-occupied but spatially-localized states,
motion of turbulent regions should be taken into account. Since turbulence
states are localized, the position and velocity of a turbulent state can be
defined. Furthermore, these facts may stimulate researchers in more general
contexts such as dissipative soliton and self-propelled particles: the former is
a moving solitary state in a dissipative system[MD93, CH93, AF00, MD15]
and the latter is a simple model of animate lives such as microorganism, bird,
fish and their collective motion[VZ12, TIMO14].

In these contexts, a spatially-localized turbulent state can be regarded as
a moving element coupled with complex internal freedoms. These moving
turbulent regions also are connected with phenomena interfering with our
daily life. For example, typhoons, which cause severe disasters, are fully

19



developed complex turbulence and needless to say, prediction of their paths
is still not easy.

The collective behavior of SLTs plays also an essential role in subcritical
transitions. In such transient flows, SLTs create their copies and annihilate
randomly[AMdL+11]. Recently, experimental and numerical researches in
terms of direct numerical simulations (DNSs) and models have uncovered
that subcritical transitions in shear flows can be regarded as an absorb-
ing phase transition and its scaling exponents accord with those of directed
percolation[ST16, LSA+16a, CTB17a] 1.

To describe the dynamics of complex turbulent states, dynamical sys-
tems approach has been widely applied nowadays. In this approach, sim-
ple invariant solutions of governing equations such as periodic solutions are
adopted as landmarks embedded in a phase space, and a certain realiza-
tion is identified as a single trajectory visiting these unstable invariant so-
lutions [Nag90, AMRH13, WCA13, KE12, KZE14, ME12, KUvV12, KK01,
IT01, CK13, LK14]. Since it is not easy to find unstable solutions based
on Newton method for complex flows, several numerical methods have been
developed to obtain an initial condition by which Newton iteration converges
easily even at relatively higher Reynolds number [TT14, Far16]. These dy-
namical systems’ approach has been extended to the results of laboratory
experiments [STGS17]. However, it is a hard task to investigate dynamical
properties of spatially-localized states because we must treat a wide range of
spatial modes from small ones representing turbulence to large ones isolating
turbulence from laminar regions.

While dynamical and statistical properties of flows in relatively small
systems at low or moderate Reynolds numbers have been well understood,
those of turbulent flows in extended domains at higher Reynolds numbers
are not still clarified. This is partially because inhomogeneity induced by
walls plays a crucial role in developed wall-bounded flows. In fact, many
ingredients of turbulent flows including near-wall dynamics and large scale
structures in bulk spontaneously coexist and interact with each other [TI05].
In addition, dynamical description of systems with translational symmetries
has been studied for a long time[BBEC15, BCDS15, WCA13]. However,
its extension to dynamical systems with huge degrees of freedom such as
turbulent flows has just come to be considered recently and is still one of
challenging issues[KZE14].

1Y.Hiruta, S. Toh, in preparation
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As a tractable and simple model representing localized turbulence, we
deal with a two-dimensional flow in a doubly-periodic box forced by a single
monochromatic external force called Kolmogorov flow. Kolmogorov flow has
been widely examined for a longtime to understand mainly mathematical
aspects of Navier-Stokes flow such as cascades of supercritical bifurcations
to turbulence [GY13, CK13, LK14, LK15, Siv85, Mar87, MS61]. Recently,
spatially-localized dynamical states and their dynamical properties have been
reported[LK14, LK15]. Solitary spatially-localized turbulent states can exist
and even be isolated by introducing the flow rate as a control parameter in
the direction in which the Galilean invariance is broken by the forcing[HT15].

In this paper, we investigate novel translational motion of an SLT. In two-
dimensional Kolmogorov flow at moderate values of Reynolds number and
the flow rate, an SLT shown in FIG.2.1 moves with a nearly constant speed
sustaining its direction for a long time and suddenly and intermittently turns
around as shown in FIGs.2.2(b) and 2.3(b). Our motivation is to clarify the
relationship between this translational motion and the internal dynamics of
a single SLT.

The rest of the paper is organized as follows: Sec.2.2 is devoted to the
definition and characterization of the flow system. We introduce a co-moving
frame to decompose an SLT into its spatial translation and internal dynam-
ics. In sec.2.3, the coarse-grained motion of the center of an SLT is examined.
In sec.2.4, we try to describe the motion of the center with representative
variables of the internal dynamics of the SLT in the co-moving frame. Con-
cluding remarks are presented in the final section.

2.2 Governing Equation and setting

We focus on two-dimensional (2D) Kolmogorov flow sustained by a steady
sinusoidal force. The velocity field u = (ux, uy), where the subscripts x and
y denote the directions parallel and perpendicular to the force, is governed
by the following non-dimensionalised 2D Navier-Stokes equation in doubly
periodic domain (x, y) ∈ [0, 2π/α]× [0, 2π]:

∂tu + (u ·∇)u = −∇p+
1

Re
∇2u + sin(ny)x̂, (2.1)

∇ · u = 0. (2.2)
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Figure 2.1: Snapshots of vorticity field ω(x, t) of a moving SLT for n = 4
and α = 0.25: (a) Re=26.75 and Uy=0.933, (b) Re=50 and Uy=1.46.
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Figure 2.2: Time evolution of vorticity averaged in y-direction Ω(x, t) for
Re=26.75 and Uy = 0.933 (a) in the co-moving frame and (b) the laboratory
frame.
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Figure 2.3: The same as FIG.2.2 except for Re=50 and Uy = 14.6.

Here, the pressure p is doubly periodic and α, Re, n and x̂ denote the aspect
ratio of the rectangular domain, Reynolds number, the wave number of the
external sinusoidal force and the unit vector in the x-direction, respectively.
The average flow rate in y-direction denoted by Uy is a conserved quantity
and controls the nature of the flow [HT15]:

Uy =
α

4π2

∫ 2π/α

0

dx

∫ 2π

0

dyuy = 〈uy〉xy. (2.3)

We should note that y-dependence of the forcing breaks Galilean invariance
in y-direction. The formulation in Eq.(2.1) for Uy 6= 0 is equivalent to one
in the reference frame of the zero flow rate with the time-periodical forcing
sin(n(y − Uyt))x̂. All variables are non-dimensionalised with length scale
Ly/2π and timescale

√
Ly/2πχ, where Ly and χ are the hight of the domain

and the forcing amplitude. Thus, the characteristic velocity is
√
Lyχ/2π and

Reynolds number is defined as

Re =

√
χ

ν

(
Ly
2π

)3/2

. (2.4)
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Here ν is the kinetic viscosity. Our DNS solves the following equation for
the vorticity, ω = ∂xuy − ∂yux with the pseudo-spectral method for spa-
tial discretization using the two-thirds rule for dealiasing and the 2nd order
Runge-Kutta (Heun) method for time evolution.

∂tω + (u ·∇)ω =
1

Re
∇2ω − n cos(ny). (2.5)

The time and spatial resolutions used for DNSs are 2× 10−3 and 128 points
per 2π, respectively.

This system is equivariant with respect to the action with the following
fundamental symmetries:

Tl : ω(x, y)→ ω(x+ l, y)

(
0 ≤ l <

2π

α

)
, (2.6)

S : ω(x, y)→ −ω(−x, y +
π

n
). (2.7)

Here, Tl is a continuous translational symmetry in x-direction, and S is a
discrete shift-and-reflect symmetry which is represented by cyclic group of
order 2n. We also use these two symbols to denote actions on states of a flow
as long as there is no misunderstanding.

There are two main control parameters in 2D Kolmogorov flow: Re and
the flow rate Uy. Note that for most researches on 2D Kolmogorov flow, Uy
is fixed to 0. If Uy is large enough, this system has multi-stable states, one
of which is the laminar solution stabilized by the finite flow rate, and others
are a single SLT or its coexisting states. For moderate Re and Uy, an SLT
moves in a constant speed, including zero, on average and keeps switching
its moving direction for suitable values of Re and Uy. Since we are interested
in direction reversal events from the point of the relationship between the
motion and the internal turbulent dynamics of a single SLT, we limit Re to
two values: One is Re = 26.75 and slightly higher Re than the lowest Re,
i.e., Rec at which the reversals of the moving direction starts, and the other
is Re = 50 at which the reversal is sustained for a long time and we call this
state the reversal state hereafter.

For a single SLT to be sustained in the box, the mean flow rate Uy is set
to 0.933 for Re = 26.75 and 1.46 for Re = 50, respectively. For the latter
parameter set, the moving direction of an SLT contains quick fluctuations as
well as relatively slow and intermittent switching. The other system param-
eters, n and α are fixed to (n, α) = (4, 0.25) in this paper.
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In the lower Re case, the initial condition assigned is an unstable relative
periodic solution (URO), which is a time-periodic solution with a spatial
shift. The URO is a continuation solution of the stable solitary relative
periodic solution obtained in Ref.[HT15]. By the symmetry S, this URO can
have both positive and negative velocities, cURO = ±0.02, in x. The period
of the URO is ∼ 60 and characterizes the time scale of the internal turbulent
fluctuation.

Because of numerical errors in the initial condition, this solution falls
into an SLT in a few periods and gets to switch intermittently its moving
direction. Furthermore, around at t ∼ 105 it suddenly ceases to move with
a constant speed even on average and begins to hang around changing its
moving direction quickly as shown in FIG.2.4. This transient suggests that
there exist several different types of SLT states: A kind of transition from
traveling to standing SLT. However, we focus on the first (traveling) SLT
state observed before the second transition.

For Re = 50 and Uy=1.46, we fail to obtain a URO solution for an initial
condition. However, based on numerical observations that the state of flow
has a tendency to fall into a unique state similar to the transient reversal state
at Re = 26.75, we picked this transient reversal state as an initial condition
to investigate the reversal state. The reversal states obtained with several
initial conditions are sustained for a long time at least t ∼ O(106).

We introduce a frame system to separate the motion from the internal
turbulent dynamics of each SLT. Here the motion of an SLT stands for the
evolution in a coarse-grained time of a point representing the location of the
SLT. We call this point the center of the SLT. An SLT travels both in x and
y directions. The translation in y is mainly caused by the mean vortex pair
which forms a kind of a Karman vortex street traveling with a constant speed
on average while the translation in x is caused by both the coarse-grained
vortical structure and the short time internal turbulent dynamics. Therefore
we give our attention to the motion in x of an SLT.

This frame system is an extension of Galilean transformation and is de-
fined by formally applying a time-dependent translational symmetry:

ω̂(x, y, t) = Tl(t)ω(x, y, t) = ω(x+ l(t), y, t), (2.8)

where l(t) is a time dependent shift in x-direction. We call the case of
l(t) = 0 the laboratory frame and the case of l(t) = −X(t) the co-moving
frame where X(t) is an approximate or coarse-grained location of the SLT but
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Figure 2.4: Long time evolution of the center ,X(t), of the SLT shown in
FIG.2.2 for Re=26.75 and Uy = 0.933. The SLT transits from a moving
state to a standing state at t ∼ 120000.
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its definition includes some ambiguity originated from the internal turbulent
fluctuation. We define X(t) by setting the phase of the first Fourier mode of
the vorticity field with kx = α and ky = 0 to π/2. Hereafter, we call X(t)
the center of the SLT. Note that if the velocity of the center of the SLT,
i.e., V (t) = dX(t)/dt is not a constant, the dynamics of the SLT even in the
co-moving frame is coupled with the motion of the SLT.

Moreover, we expect (not guaranteed) that the center of the following
average vorticity Ω(x, t) stays around the same positions in the co-moving
frame:

Ω(x, t) =
1

2π

∫ 2π

0

dyω(x, t). (2.9)

This method has been adopted for one-dimensional PDE and three-dimensional
turbulent pipe [BBEC15, BCDS15, WSC16]. Both in the laboratory and co-
moving frames, the time evolution of Ω(x, t) is shown in FIG.2.2 and FIG.2.3.

In the laboratory frame, sudden and intermittent changes of the moving
direction of the SLT can be observed. In the co-moving frame, the SLT stands
around the same position in time with small fluctuations. This enable us to
make a decomposition into the motion of the SLT, i.e., X(t) and the internal
turbulent dynamics, ω̂(x, t) defined in (2.8).

2.3 Motion of moving turbulence

We focus on the nature of the switching of the moving direction. Because
even the coarse-grained center of an SLT, X(t), still fluctuates in a time
scale of the order of the internal dynamics of the SLT, the intervals between
adjacent reverses of the moving direction denoted by ∆t, i.e., the residence
time are evaluated with a velocity averaged over an interval T defined as

cT (t) =
1

T

∫ t+T

t

dt′
dX

dt′
(t′) =

X(T + t)−X(t)

T
. (2.10)

The center of an SLT does not move in one-direction in short time scale even
if an SLT moves in the same direction in the coarse-grained scale because the
average vorticity Ω stays around the same position but strongly fluctuates
in the translational direction especially in the higher Re case as shown in
FIG.2.2 and FIG.2.3. To detect the direction reversal in a coarse-grained
time, we set T = 100, which is longer than the typical time scale of the
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internal turbulence dynamics. This typical time scale is ∼ 60 and of the order
of the period of the URO adopted as the initial condition. The subscript T
is omitted hereafter for simplicity.

The evolutions of the center X(t) and the average velocity c(t) are shown
in FIG.2.5. The average velocity c(t) takes roughly two values, i.e. ±|cmax|
and a direction reversal occurs when c(t) crosses zero. In this sense, the
average velocity c(t) is an adequate variable to detect direction reversals.
This also suggests that at least there are two (that is, twin) unstable invariant
sets with ±|cmax| about one of which the SLT wanders and the direction
reversal corresponds to switching between the stays around these sets. We
expect that these invariant sets are close to the twin URO one of which is
adopted as the initial condition.

In the higher Re case, the histogram of the number of the residence time
∆t larger than t denoted by F (∆t > t) is shown in FIG.2.6 and the exponen-
tial decay is suggested. Note that the average residence time estimated with
the decay rate of the exponential decay is τ ∼ 700 and sufficiently longer
than both the average time T = 100 and the period of the URO, about 60
in the normalized time unit.

The exponential-decay tendency observed in F (∆t > t) reminds us of a
random telegraph signal which is produced by the Poisson process[AVOS03,
VEE+17]. This suggests that the aforementioned twin invariant sets corre-
sponding to SLTs with the positive and negative velocities in x have compli-
cated structures different from simple spiral chaos such as Lorenz attractor
which has a characteristic time scale corresponding to the period of the ro-
tation of the spiral motion and thus the residence time is roughly integral
multiple of the characteristic time. This, however, depends strongly on the
coarse-grained time scale. As shown in FIGs.2.5 and 2.7, coarse-grained scale
switchings occur in a few steps, and thus this phenomenon could be of large
scales and affected by smaller scales that may belong to the internal tur-
bulence and be regarded as a kind of noise, though the mechanism of the
switching has not been understood, yet. Anyway, we should carefully select
a well-acted projection to describe the trajectory in a phase space.
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Figure 2.5: Time evolutions of the average velocity c (blue solid line) and
the central position of SLT X (black dotted line). Large black dots denote
direction reversals at (a) Re=26.5 and (b) Re=50.
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Figure 2.6: F (∆t) for (Re, Uy)=(50,1.46). Dashed straight line is F =
2× 102 exp(−∆t/700) for guide.
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2.4 Relation between moving direction and

internal turbulent dynamics

In this section, we try to describe the motion of a single SLT in the phase
space in relation to internal turbulent dynamics especially in terms of the
symmetry focusing on the correlations between the traveling direction and
variables in the co-moving frame. In the lower Re case, to clarify the role of
the twin URO we will draw a phase portrait based on the standard method
used especially for minimal wall bounded flow[GHC08].

To begin with, we introduce some coarse-grained variables that character-
ize the asymmetric nature in x of the internal turbulent dynamics observed
in the co-moving frame based on S which allows an SLT to travel both to the
negative and positive directions in x. The first one is the following quantity
evaluated simply by the maximum and minimum values of vorticity:

s(t) = max
x

ω(x, t)− |min
x
ω(x, t)|. (2.11)

Since the transformation S, x → −x and y → y + π/n, changes the sign of
the vorticity ω(x, t), the sign of s(t) also changes as follows:

Ss(t) = −(min
x
ω(x, t))− | −max

x
ω(x, t)| = −s(t). (2.12)

The variable s(t) evaluates the degree of the asymmetry of the vorticity
distribution of an SLT. This asymmetry is the origin of the asymmetry of
s(t) and thus closely related to the direction reversal.

Since the maximum and minimum of ω(x, t) fluctuate quickly in time,
the average or coarse-grained s should be also introduced:

sT =
1

T

∫ t+T

t

dt′s(t). (2.13)

The subscript T of sT is omitted hereafter for simplicity. As shown in FIG.2.8,
s correlates adequately with the moving direction of an SLT in the two Re
cases. However, they fluctuate more strongly than cT (t) and this tendency is
enhanced in the higher Re case. This suggests that the internal turbulence
correlates the motion of a single SLT, but the correlation between sT (t)
and cT (t) is not sufficient enough for sT to be used for deterministic and
quantitative description of the motion of the SLT.
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We next introduce another variable representing a distance from these in-
variant sets more quantitatively. The vorticity field in the co-moving frame
ω̂(x, t) is projected onto the two fields defined by the average under the con-
dition that the traveling direction is positive or negative, respectively. The
negative mean state φn and the positive mean state φp are defined numeri-
cally as follows:

φn(x, t) = 〈ω̂(x, t)〉c(ω̂)<0, (2.14)

φp(x, t) = 〈ω̂(x, t)〉c(ω̂)>0, (2.15)

(2.16)

where the bracket 〈 〉 and its subscript denote an ensemble average in the
co-moving frame and the condition under which the average is calculated,
respectively. These two fields are expected to approximate the twin invariant
sets.

The projections onto φn and φp are carried out with the internal product
〈φ|ω〉 between real functions as follows:

an(ω̂) =
〈φn|ω̂〉
||ω̂||2

, (2.17)

ap(ω̂) =
〈φp|ω̂〉
||ω̂||2

, (2.18)

〈f |g〉 =
α

4π2

∫
dxdyf(x, y)g(x, y), (2.19)

||f || =
√
〈f |f〉. (2.20)

The difference between the coefficients denoted by a(t) = ap( ˆω(t))−an( ˆω(t))
also evaluates the asymmetry of an SLT and is expected to indicate the direc-
tion of the motion, because the moving direction of the URO is determined
by the asymmetry of the vorticity field and an SLT seems to stay around
one of the invariant sets close to the corresponding URO. To clarify the im-
portance of the URO, we draw a phase portrait in the 2D space spanned
by c and a using the strobe map in the lower Re case as shown in FIG.2.7.
Most points are concentrated in the two separated sets and the twin URO
are embedded in these sets where a reversal event is identified as a transient
path connecting the two separated sets. As shown in FIG.2.8, a(t) repro-
duces roughly the switching process as the s(t). However, in the higher Re
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Figure 2.7: Phase portrait for Re= 26.75 and Uy = 0.933. Dots indicate the
strobe map with interval 10 non-dimensionalised times. Hashed line indicates
a reversal around t∼1000 in FIG.2.5. Closed loops indicate the twin URO.
One of the twin URO is used as the initial condition, and the other is just
the symmetrical one (also a solution of NS equation.)

case, both the two quantities, s(t) and a(t), which are coarse-grained repre-
sentatives of the internal turbulent dynamics, tend to be less able to follow
the average velocity c(t), although the two moving states with the velocities
∼ ±|cmax| and the direction reversal are still clearly identified. This suggests
that even though the twin or multiple invariant sets are still discriminated
clearly by the moving direction, the number of variables or the dimension of
the phase space required to describe the internal turbulent dynamics which
is directly related to the coarse-grained motion of an SLT seems to increase
with Re.

This difficulty is inherited by their higher order moments. To see this, we
define the dispersion, the second moment of the fluctuations of the vorticity
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Figure 2.8: Time evolutions of c (red thin solid line), s (black dotted line)
and a = ap − an (yellow thick solid line):(a) for Re=26.75 and Uy = 0.933
and (b) for Re = 50 and Uy = 1.4. Minimum and maximum values are (a)
(-0.125,0.126) for a, (-0.0268 0.0266) for c, (-1.36 1.79) for s and (b) (-0.0371
0.0351) for a, (-0.0174 0.0157) for c , (-1.50 1.36) for s.
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field under the condition c < 0 as follows:

δΩ2
n(x) =

∫ 2π

0

dyδω2
n(x, y), (2.21)

δω2
n(x, y) = 〈ω2(x, y)〉c<0 − 〈ω(x, y)〉2c<0. (2.22)

Figure 2.9 shows the dispersion δΩ2
n(x) in both Re cases and is compared with

that of the URO. Since the SLT travels to the left, i.e., c < 0, the fluctuation
on the left side or the front of the SLT is stronger than that of the right side
or the back front, while the absolute value of the average vorticity is larger on
the back front than on the front. As shown in FIG.2.9, this characteristics of
the vorticity fluctuation is shared with a left traveling URO of cURO = −0.02
which is a periodic solution in the co-moving frame though the asymmetry
of the dispersion of the URO is weaker than that of the SLT. This also
supports the simplified picture of the phase space constituted by several
twin unstable invariant sets each of which might correspond to a one-way
traveling SLT. The asymmetry of the vorticity fluctuation is observed in other
traveling localized states or invasion-fronts of turbulence.[BSM+15, TT16] In
the higher Re case, the asymmetry of vorticity fluctuation is weaker than
that in the lower Re case. Therefore we need variables more susceptible to
geometrical or temporal characteristics of the SLT to resolve the internal
turbulent dynamics.

2.5 Concluding remarks

We have found that a single spatially-localized turbulence (SLT) exists stably
and travels in x switching the moving direction randomly and intermittently.
By introducing the coarse-grained center X(t) and traveling velocity cT (t)
of the SLT, we have characterized the traveling motion and these switching
events in the coarse-grained time scale. Even in the relatively high Re case,
cT (t) takes roughly two values ±|cmax| and the residence time ∆t is thought
to obey the exponential distribution, which suggests that cT (t) can be ap-
proximated by a random telegraph signal. At least (several) twin attracting
invariant sets, each of which corresponds to a one-way traveling SLT and may
be close to unstable relative periodic solutions (URO), are embedded in the
attractor of the moving turbulence. Since we expect that like a self-propelled
particle the motion of a single SLT is controlled by the characteristics of the
internal turbulence, the time evolution of the flow is decomposed into the
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Figure 2.9: Dispersion of vorticity field δΩ2
n(x) defined in Eq.(2.21) for

Re=26.75 and Uy=0.933. The average is taken under the condition c < 0:
Solid line for DNS and plus signs for URO. Inset(a) shows a mean vorticity
field < ω >c<0 and inset(b) shows dispersion field δω2

n(x, y). Inset(c) shows
δΩ2

n(x) for Re=50 and Uy=1.46. Each inset shows only a main part of the
field.
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coarse-grained motion of the center of the SLT and the accompanying tur-
bulent field by defining the co-moving frame with X(t). We have introduced
two coarse-grained variables sT (t) and a(t) characterizing the asymmetry in x
of the internal turbulence: sT (t) simply estimates the asymmetry of the vor-
ticity distribution of the SLT and a(t) represents the difference between the
approximated distances from the twin unstable sets one of which is projected
onto the other by the discrete shift-and-reflect symmetry S.

Reversal detection using symmetry-related variable s(t) loses reliability
in the higher Re case although the moving direction can be determined
well. This fact means that the asymmetry of a traveling solution made
by symmetry-breaking is masked by turbulent dynamics. Focusing on the
coarse-grained motion and regarding internal turbulent fluctuation as a noise,
it is easy to make a Langevin model which can reproduce the stochastic na-
ture of the switching events. However, such a model has not been derived
from the governing equation yet. We have tried to study the switching pro-
cess rather in a topological way focusing on a global structure of the phase
space.

Invariant solutions should play a key role in more reliable description of
moving turbulence at higher Re. It is expected that a fixed point like URO
embedded in each of the twin, i.e., a pair of chaotic attracting sets mimics
the average quantity for each direction as suggested by FIG.2.9. These in-
variant solutions also will help us to attain more quantitative and precise
understanding of SLTs.

This type of intermittent switching can be observed in other flows: re-
versal of Large Scale Circulation in a steady forced flow [Som86, MHFV15]
and thermal driven flow[SNS+10, NHX15]. Reversals of flow field can also
be observed in minimal channel flow[NDL17]. The approach based on a low
dimensional model derived by Galerkin method is useful to study such a
transition[SFB16]. We expect that by this approach with the invariant solu-
tions mathematical models representing a moving SLT can be developed.

It is interesting and important to study states consisting of a number of
SLTs[HT15]. Such a multiple SLT state in Kolmogorov flow also can con-
tribute as one of the most simple and tractable examples in the elucidation
of turbulence transitions observed in wall-bounded flows. However, our ap-
proach introduced in this paper needs some improvements in the definitions
of the coarse-grained quantities such as positions, velocities and ones repre-
senting internal turbulent dynamics.

Concerning subcritical turbulence transition as non-equilibrium phase
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transition, where SLTs play a key role, ”moving” SLTs that are observed
there may affect the determination of critical exponents and/or even a class
of the transition itself. In fact, to do so spatial and temporal intervals of
laminar regions have been utilized, but fast moving SLTs might modify the
distribution of such intervals which blurs the estimation of critical expo-
nents. At least, the correlation length between SLTs can be much longer
than the length scale of the support of an SLT. This can be suggested from
the relationship between lattice model(XY model) and self propelled particle
model(Vicsek model)[MW66, VCBJ+95, TT95, VZ12].
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Chapter 3

Construction of Navier-Stokes
model without material wall to
exhibit laminar-turbulence
transition as nonequilibrium
phase transition

3.1 Introduction

Turbulence, macroscopically complex behavior, is seen in a wide range of
phenomena in nature not only on a scale of our daily life such as the stream-
flow of a river and experiments in laboratory[Rey83, Col65] but also from
quantum turbulence of superfluid[KT05, TFY17] to cosmic scales[BR11]. It
can be regarded as a class of solutions of hydrodynamic equations whose
energy is distributed into a wide range of scales. However, we have not com-
pletely uncovered the sustaining mechanism of turbulence even for the flow in
a circular pipe driven by the pressure gradient[Rey83, ESHW07, WPKM08].

Then, the problem of turbulence transition is crucial not only out of
scientific interest but also engineering or practical needs of flow control. Re-
cently, turbulence transition has been approached from the view of statistical
physics. Unlike supercritical transition where a fixed point corresponding to
the laminar state becomes linearly unstable[Lan44, Hop48, Lor63, RT71],
the subcritical transition is difficult to be dealt with since dominant modes
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are unclear because of nonlinearity, complexity, and locality. In subcritical
regimes of canonical wall-bounded flows, nonlinear spatially-localized turbu-
lent states (SLTs), such as a turbulent puff in pipe flow, is often observed,
and they seem to expand or decay locally and randomly[AMdL+11].

Such local and random behaviors of agents of turbulence recall non-
equilibrium phase transition via spatiotemporal intermittency with an ab-
sorbing state, which corresponds to a stable laminar state, and the most
fundamental universality class here is a directed percolation (DP) univer-
sality class[Pom86, CM88, Hin00]. The DP universality class is supposed
to appear under simple conjectures such as locality and stochastic behav-
iors of dynamics[Hin00]. Thus, DP can be seen in a wide range of mod-
els such as epidemics and synchronizations. We can expect that various
flows share a universal spatiotemporal characteristic around critical Reynolds
number. By laboratory experiments and simulations of Navier-Stokes model
flows[LSA+16b, ST16, CTB17b] it is confirmed that the critical exponents
for turbulence fraction and spatiotemporal structures are satisfactorily con-
sistent with those of the DP universality class.

Recent developments of understanding of small systems and SLTs assist
us to identify the unit of turbulence and its dynamics [Nag90, Jim90, Wal97,
AMRH13, WCA13, KE12, ME12, KK01, IT01, KUvV12, GHC08]. Based on
such ideas, several phenomenological models in terms of SLTs were submitted
to describe statistics of near-wall flows[Bar11, AE12, Bar16, SHG16] and
some of them successfully reproduced not only puff but also slug states and
their expanding speeds[BSM+15].

However, from the point of view of the governing equations, which are
nonlinear partial differential equations with global couplings, the dynamics
of fluid should strongly depend on the way to be driven and boundary condi-
tions as well as spatial dimension. Local dynamics in incompressible flows is
affected by long-range interactions due to the pressure gradient term, while
the pressure also contributes to local dynamics itself. Thus, the mechanism
of sustenance of SLT and the locality of its dynamics are not obvious and
remain open problems[KUvV12].

One of the main motivations of this work is to examine the generality
of transitions via spatiotemporal intermittency. While stochastic or deter-
ministic models exhibiting the DP universality class transition have a lot of
examples and long history, corresponding laboratory experiments conducted
so far are not enough. Among them, the first clear one[TKCS07, TKCS09]
was done only in recent years. The mechanism and conditions for the DP
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transition to be realized in the real world are still unclear. In this sense,
further examples of the DP transition especially related to hydrodynamics
are still in demand.

We seek candidates in two-dimensional (2D) Navier-Stokes models in the
following three reasons. The first is that we should search for a new model
not resembling to wall-bounded flows from our aim of generality. The second
is to confirm the effects of the pressure gradient on the DP universality. We
should note that 2D flows can have some disadvantages for the locality of
the dynamics governing the DP, since the strength of the interaction through
the pressure gradient in general seems to be a fatter tail, ∼ |r|−1, than that
of 3D flows, |r|−2. In this sense, the 2D flows are in the most severe situa-
tion among Navier-Stokes models in terms of the locality of the dynamics.
If any 2D models exist, we expect that DP or DP-like transitions can occur
in a relatively wider class of Navier-Stokes systems except for wall-bounded
flows and related models. As the third reason, in general, flows with material
wall boundaries in a sufficiently huge box are difficult to be dealt with di-
rectly using the Navier-stokes equations since the walls induce both explicit
and implicit inhomogeneities in the flows. This difficulty prevents us from
relating large scale behaviors of turbulence such as subcritical transitions
to relatively well-known dynamics of small systems[Nag90, Jim90, Wal97,
AMRH13, WCA13, KE12, ME12, KK01, IT01, KUvV12, GHC08]. Thus, a
tractable model free from walls is also desired to investigate the generality
of subcritical transitions of the Navier-Stokes systems.

One of the most simple 2D flows sustaining turbulence called Kolmogorov
flow (KF) was submitted to investigate routes to turbulence[AM60, MS61,
Siv85, GYM83, Yam86, Mar87]. Kolmogorov flow has been employed to
investigate in details the characteristics of solutions of the Navier-Stokes
equations and also as a test field for novel ideas of complex solutions[GY13,
CK13, Far16, LK15]. Recently, solutions in which spatially-localized chaotic
regions and steady regions coexist were found even in 2D Kolmogorov flow
(2DKF)[LK14, HT15, HT17].

In this paper, we report observations of a subcritical laminar-turbulence
transition belonging to the DP universality class in a pure 2D flow as shown
in FIG.3.1. We also discuss the origin of the linear stability of the laminar
solution, the locality of the dynamics and the conditions for the DP class
transition to be realized in this 2D Navier-Stokes model.

The rest paper is organized as follows: Sec 3.2 is devoted to the definition
of the flow system. In Sec.3.3, we estimate the flow state numerically and
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theoretically. Critical Re of the laminar state is estimated there. In Sec.3.4,
quenching experiments are conducted from high Re to target Re. It is shown
that the scaling of turbulence fraction and histograms of the laminar gaps are
consistent with those of DP universality class. Sec.3.5 is concluding remarks.

x

t

16π 20π
x

0

2π

y

Figure 3.1: Visualization of the flow for (Re ,Reγ, Uy, n, α) =
(242, 30, 0.5, 4, 1/256). (a) Typical time evolution of turbulent re-
gion(black). White region denotes laminar region. (b) Snapshot of a part of
the whole domain, x ∈ [16π, 20π], using vorticity ω. The whole domain is
x ∈ [0, 512π].

3.2 Governing equation and setting

We focus on the 2D Kolmogorov flow (2DKF) with the linear drag force in a
doubly periodic box (x, y) ∈ [0, 2π/α]×[0, 2π]. The velocity field u = (ux, uy)
is governed by the 2D Navier-Stokes equation with a steady sinusoidal force
in non-dimensionalized form as follows:

∂tu + u ·∇u = −∇P − γ(u− Uyŷ)

+
1

Re
∇2u + sin(ny)x̂, (3.1)

∇ · u = 0, (3.2)

where α, Re, γ, n, x̂ and ŷ denote the aspect ratio of the rectangle domain,
Reynolds number, the coefficient of drag force, the wave number of the ex-
ternal force, the unit vectors in x and y, respectively. The pressure function
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P is doubly periodic. The velocity averaged over the box and the unit flow
rate in y-direction are denoted by U and Uy which are defined as follows:

U =
α

4π2

∫
dxdyu = (0, Uy). (3.3)

Note that since the y dependence of the external force breaks Galilean
invariance in y, the unit flow rate Uy is a control parameter of the system.
To non-dimensionalize the governing equation we use Ly/2π for the charac-
teristic length scale where Ly is the length of the box in y-direction in the
dimensional system. For the work rate of the force to be O(1), the character-
istic time is set to

√
Ly/2πχ where χ is the amplitude of the sinusoidal force.

The linear drag force is typically originated from weak but inevitable effects
of material walls[STM+14, STGS17]. For the scales longer than the nondi-
mensional length Ldrg ∼ (γRe)−1/2, the drag term dominates the viscous
term in Eq.(3.1). We expect that the drag force decays large scale struc-
tures of the system size formed by the energy transfer toward large scales as
occurring in 2D inverse-cascade turbulence[Kra67, KM80, LBF+14].

Our direct numerical simulation (DNS) solves the governing equation for
the vorticity ω = ∂yux − ∂xuy with the pseudo-spectral method for spatial
discretization using the two-thirds rule for de-aliasing and the 2nd order
Runge-Kutta (Heun) method for time evolution. The time and spatial reso-
lutions used for DNS are 2× 10−3 and 64 points per 2π, respectively.

3.3 Parameter dependence of flow state

3.3.1 Stability of the laminar solution

When a subcritical laminar-turbulence transition is realized in 2DKF, the
laminar state should be linearly stable at least. First, we check the stability
of the following laminar state which is the stationary solution with global
x-translational symmetry and denoted by ulam(Uy):

ulam(Uy) =
Re

D
sin(ny + θ)x̂ + Uyŷ. (3.4)

Here, tan θ = −ReUyn/(n
2 + γRe) and D2 = (n2 + γRe)2 + (nReUy)

2. This
one-parameter form of Eq.(3.4) can be applied approximately for a part of
the whole system and this locally-embedded laminar profile can take a certain
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value of the local unit flow rate, i.e., β which is not necessarily equal to the
unit flow rate Uy. Hereafter, we call ulam(Uy) as the global laminar (GL)
state and ulam(β) as a local laminar state, respectively.

For γ = 0, we can estimate the critical Reynolds number, Rel, for the
linearly unstable GL state under the assumption that the GL state is unstable
for a long-wave disturbance in x-direction.

The vorticity equation for γ = 0 is rewritten in terms of the doubly
periodic stream function Ψ as follows:

∂t∇2Ψ− {Ψ,∇2Ψ}xy

+ Uy∂y∇2Ψ− 1

Re
(∇2)2Ψ = n cos(ny), (3.5)

where {f, g}xy = ∂xf∂yg − ∂yf∂xg.
We search a stationary solution that is the GL state with small long-wave

modes by the perturbation expansion:

Ψ(x, y) = Ψlam(y) +
∑
i=0

εiΨi(εx, y), (3.6)

where ulam(Uy) = (∂yΨlam(y), Uy) and ε is the small parameter.
Since ∂yΨ0 = 0 in the limit of ε → 0, we set Ψ0 = A(εx). Executing the

perturbation expansion with Eq.(3.5) yields

LyΨi = Fi(Ψlam,Ψ0, · · · ,Ψi−1), (3.7)

Ly =
1

Re
∂4y − Uy∂3y , (3.8)

for the i-th order of ε. We assume that there exists a non-trivial solution
of LyΨe

0 = 0, then Ψe
0 should be a function independent of y. A necessary

condition that each order of Eq.(3.7) has a solution is that the inhomogeneous
term of Eq.(3.7) is orthogonal to Ψe

0 as follows:

Ψe
0(X)

∫
dyFi(Ψlam,Ψ0, . . . ,Ψi−1) = 0, (3.9)

at any X = εx. Substituting Eq.(3.6) into Eq.(3.5) and integrating in y, the
condition (3.9) is rewritten as∫

dy(
{

Ψ, ∂2XΨ
}
Xy

+
ε

Re
∂4XΨ) = 0, (3.10)
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for each i because of the periodicity in y. At the zeroth order Eq.(3.10) is
automatically satisfied and

Ψlam = − Re

Dn
cos(ny + θ). (3.11)

At the first order

∂3X

∫
dy

[
−(∂yΨL)Ψ1 +

1

Re
∂XA

]
= 0. (3.12)

We assume that Ψ1 = (Re/D)2∂XA(X) sin(ny + 2δ), then we obtain the
following condition for Reynolds number Re:

(1− 2n2U4
y )Re4 − 4U2

yn
4Re2 − 2n6 = 0. (3.13)

Therefore, the condition for Ψ1 to exist is that Re of Eq.(3.13) is positive
real. There exists the following unique real solution of Eq.(3.13):

Re = Rel =

√
2U2

yn
4 + n3

√
2

1− 2n2U4
y

, (3.14)

when

|Uy| < U c
y(n) ≡ 1

4
√

2
√
n
. (3.15)

This value of Re, Rel, is a likely candidate for the neutral stability curve of
the GL state: Rec =Rel(n, Uy). In fact, in the case Uy = 0, we obtain the
same result as the previous works[Siv85, LK14]. Equation (3.14) shows the
GL state becomes linearly stable at any Re when |Uy| > U c

y(n) = (2n2)(−1/4)

and thus Uy is a crucial control parameter of 2DKF. We expect this lower
bound, i.e., U c

y(n) at γ = 0 also works at γ > 0 for most cases.
The stabilization of the GL state for large Uy can be understood as follows.

The amplitude of the laminar flow has an upper bound proportional to U−1y .
Thus, for large Uy the amplitude of the GL state is too small to be unstable.
In the following numerical experiments in the subcritical regime, we choose
Uy > U c

y in order for laminar states to be stable.
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3.3.2 Effect of the drag forcing

Next, we check the effect of the drag forcing on coherent structures observed
numerically. We focus on the distribution of velocity in the y-direction, since
Uy is a conserved quantity and then an effective indicator of the redistribution
of the momentum. When γRe is small, the whole state is composed of kink-
antikink arrays connecting between adjacent local laminar states with β 6= Uy
as shown in FIG.3.2a. This state is reminiscent of Cahn-Hilliard like flow
emerged at the weakly nonlinear regime for Uy = 0 and γ = 0 where the
GL state is linearly unstable for large Re[LK14, HT15]. When γRe is large,
the most parts of the whole domain are filled with the GL state and strong
vorticity regions emerge spatially-intermittently as shown in FIGs.3.1b and
3.2b. These kinds of structures are strongly connected with the locality of
the dynamics of SLT.

To see this connection, we simplify the situation where the whole domain
is separated in x-direction into two types of regions in terms of V (x) =∫ 2π

0
dyuy(x, y)/2π. The first type is a laminar state with the local unit flow

rate V (x) ∼ V0 which occupies most of the whole domain. The other type
is the SLT whose characteristic width is assumed to be LSLT. There are N
turbulent states, i.e., SLTs. The local unit flow rate of the i-th SLT is Vi
which is V (x) averaged over its width. Then, the total flow rate is estimated
as follows:

UyL ∼
N∑
i

ViLSLT + V0(L−NLSLT), (3.16)

where L = 2π/α is the width of the box in x direction. When we assume
that the turbulence fraction ρ is approximated by NLSLT/L, then we obtain
the relationship among V0 and Vi:

N∑
i=1

Vi − V0
N

∼ (Uy − V0)/ρ. (3.17)

Since the left-hand side can be regarded as the average distance (norm-like)
from the local laminar state and the right-hand side depends on a global
quantity ρ, this relationship suggests that the dynamics of SLT directly de-
pends on the number of SLT, N or the turbulence fraction, ρ when Uy 6= V0
for γRe is small. Therefore, the dynamics of SLTs should be nonlocal; they
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Figure 3.2: Average flow over y direction, V (x) =
∫ 2π

0
dyuy(x, y)/2π for

Re= 240. (a)γRe = 0, (b)γRe = 30. Straight line (V = 0.5) denotes the GL
state.

could not decay at a finite turbulence fraction ρ and the whole state could not
settle to the global laminar state. We conclude that the condition V0 ∼ Uy
should hold for the dynamics of SLT to be local. In this case, a subcritical
transition observed in 2DKF belongs to the DP universality class.

3.4 Confirmation of consistency with DP uni-

versality class

We numerically conduct quenching experiments and confirm the occurrence
of the DP class transition under the conditions that n = 4, Uy = 0.5 >
U c
y(4) ∼ 0.42 and γRe= 30 for two large domains: 1/α = 64 and 256.

Initial velocity fields are obtained from sustained turbulence consisting
of many SLTs at Re= 1000. Then Re is reduced to the target values of Re
∈ [230, 250]. Typically, SLTs create their own replicas and decay to local
laminar states randomly and independently.

To define numerically the local turbulence state by the binarization, we
adopt the following local distance in a 1D form to the local laminar state
denoted by Lloc(x):

Lloc(x) =
1

2πδx

∫ 2π

0

dy

∫ x+ δx
2

x− δx
2

dx′(ω(x′)− ωlam)2, (3.18)

where ωlam denotes the vorticity of the GL state averaged in y. Then, turbu-
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lent states satisfy the condition that {x|Lloc(x) > const}. Since the threshold
constant is not sensitive to the results, we choose δx = π/16 which is compa-
rable to the characteristic width of the typical SLT, LSLT. Figure 3.1a shows
a typical evolution of turbulent regions defined by this definition. Then,
turbulence fraction ρ is defined numerically as

ρ =
α

2π

∫ 2π/α

0

dxη(Lloc − C), (3.19)

η(z) =

{
1 (x ≥ 0)

0 (x < 0).
(3.20)

To characterize some aspects of the DP critical phenomenon observed
in our 2D system, we assume direct correspondences between turbulence
fraction and each of the order parameters in terms of statistical physics.
Based on the standard scaling hypothesis, the process should be invariant
under the following rescalings with any b:

ε =
Re− Rec

Rec
→ bε, (3.21)

ρ→ b−βρ, (3.22)

x→ b−ν⊥x, (3.23)

t→ b−ν‖t, (3.24)

L→ b−ν⊥L. (3.25)

Hereafter, we use the stationary turbulence fraction, ρ∗, which is an averaged
value of ρ(t) over a long time, and the following values of the indices for
(1+1) D DP estimated in ref.[Jen96]: β = 0.276, ν⊥ = 1.097, ν‖ = 1.734,
µ⊥ = 1.748 and µ‖ = 1.841.

The finite system size scaling Eq.(3.25) is considered because the way of
determining ρ∗(ε) is essentially ambiguous both for finite system size and
simulation time. Near the critical point ε ∼ 0, ρ(t) is small and turbulent
states should fall into the absorbing state with a finite probability. This
means that ρ∗(ε) at a fixed ε is monotonically decreasing with increasing
the simulation time, and thus it is difficult to confirm the continuity of the
transition due to the finite size effect. Figure 3.3(a) shows the turbulence
fraction ρ∗ for two different system sizes, α = 1/64 and 1/256. The finite
size effect is seen especially for ε < 0.
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To estimate the criticality for an infinite size system, we determine the
critical Rec in the following way. Focusing on Eqs.(3.21), (3.22) and (3.25),
one can obtain the following relations:

ρ∗(ε, L) = εβf(Lεν⊥) = L
− β
ν⊥ g(L

1
ν⊥ ε), (3.26)

with a universal function f or g. Equation (3.26) means that the function
Lβ/ν⊥ρ∗(ε) does not depend on the system size L at ε = 0. By this fact,
Rec = 241 is estimated as the value of the cross point of the two curves
ρ∗(ε, 128π) and ρ∗(ε, 512π) as shown in FIG.3.3(b). For Rec = 241, the
rescaled functions Lβ/ν⊥ρ∗(εL1/ν⊥) are collapsed as shown in FIG.3.3(c) as
expected by Eq.(3.26). The turbulence fraction ρ∗ shown in FIG.3.3(a) is
consistent with a continuous transition of (1+1)D DP especially for ε > 0.
Relatively larger errors are originated from the divergence of longtime cor-
relation at the critical point. For the smaller domain α = 1/64, ρ(t) quickly
decays to zero for ε < −0.01, because large fluctuations cause accidentally
transitions into the absorbing state. Note that the existence of a universal
function for any system sizes L means that the transition must be continuous
for the infinite system size.
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Figure 3.3: (a) Turbulence fraction ρ∗(ε, L), (b)Lβ/ν⊥ρ∗(ε, L) and (c) compar-

ison with the universal scaling function g(L
1
ν⊥ ε). Lines indicate prediction

of (1+1)D DP. Red upper triangles denote L = 512π (α = 1/256) and blue
lower triangles denote L = 128π (α = 1/64). Error bars are determined
using min-max values.

We also confirm the consistency of two other independent critical expo-
nents, µ⊥ and µ‖, with those for (1+1)D DP by the distributions of laminar
gaps both in space and time shown in FIG.3.4. Note that the indices are
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estimated from a single realization with the following scalings relations:

N(Slam) ∼ S−µ⊥lam , (3.27)

N(Tlam) ∼ T
−µ‖
lam , (3.28)

where N(Slam) and N(Tlam) are the histograms of the laminar gaps between
turbulent regions in spatial direction Slam and temporal direction Tlam, re-
spectively.

Each of the two critical exponents, µ⊥ and µ‖, of the GL state gaps is
connected with the fractal box-counting dimension in each direction. Both
of the histograms in FIG.3.4 show the consistency with the predictions of
DP at relatively longer scales.
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Figure 3.4: Histogram of laminar gaps (a) in spatial direction (b) in temporal
direction. Straight lines indicate the predictions of (1+1)D DP.

The time evolutions of the turbulence fraction, ρ(t), for quenching pro-
cesses are shown in FIG.3.5a. The turbulence fraction decays in power law,
ρ(t) ∼ t−α (α = β/ν‖), in the intermediate stage of the evolution. Finally, ρ
falls to a finite value ρ∗(ε) and fluctuate around it.

As shown in FIG.3.5b, by the rescaling with the DP critical exponents,
the evolutions of ρ(t) for quenching processes around criticality collapse ap-
proximately onto a universal function. The universal functions denoted by
F and G are introduced from Eqs.(3.22) and (3.24):

ρ(ε, t) = εβF (tεν‖) = t
− β
ν‖G(t

1
ν‖ ε). (3.29)

All these results support that the subcritical transition observed in 2DKF
belongs to (1+1)D DP universality class.
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Figure 3.5: (a) Time evolutions of turbulence fraction, ρ(t), for quench-
ing process. Hashed line indicates the prediction of (1+1)D DP. Re =
239, 240, 241, 242, 243, 245, 247 from the lower left to the upper right. (b)
Estimation of the universal function by rescaling t and ρ with DP exponents.
All curves tend to collapse to a single curve if we consider the sign of ε. Evo-
lutions near t ∼ 0 are omitted when correlations with the initial state are
strong.

3.5 Concluding remarks

In summary, laminar-turbulence transition belonging to the DP universality
class, which is commonly observed in wall-bounded flows with large domains,
also occurs in a 2D Kolmogorov flow with periodic boundary conditions. This
result clearly shows the concrete forms of driving base shear flow and its in-
ducing local dynamics are not crucial for the occurrence of DP-like subcritical
transition. In addition, the DP transition is expected to be realized for a rel-
atively wide range of flows. While the locality of interactions must be also
essential for DP, long-range correlations due to the pressure gradient gen-
erally present in the Navier-Stakes systems. Thus, our results suggest that
the exact correction of the dynamics by coexisting other SLTs is irrelevant
to the appearance of the DP class transition. Moreover, we can also con-
clude the DP class transition realized for subcritical turbulent transition is
not universal because transitions different from the DP are observed for 2D
Kolmogorov flow with γ = 0.

The essential characteristics of DP, the existence of the absorbing state
and the locality, are related in our system to the flow rate Uy and the drag
forcing −γu. This parameter dependency is difficult to be identified for wall-
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bounded flows since they typically have only one independent parameter Re.
We now consider whether or not there exist in wall-bounded flows or more

general flows any counterparts of the roles played by Uy and γ in 2DKF. As
discussed above, the drag force can be interpreted as a frictional force due
to the walls. From the governing equation (3.1), Uy can be interpreted as
an advection speed of a weak disturbance in the frame of zero flow rate: the
forcing term is rewritten as sin(n(y−Uyt)) in this frame. For weak localized
disturbances or tail parts of SLTs in the zero flow rate frame, which may
stay in y-direction, their energy gain oscillates quickly at frequency nUy and
thus is effectively weak. This supports that the global laminar (GL) state
is stabilized at large Uy which is also consistent with the fact that the tails
of SLT do not develop there [HT15, HT17]. In contrast, a strongly localized
disturbance, i.e., SLT that moves with a velocity −c in y-direction in the zero
flow rate frame gains kinetic energy efficiently at the frequency n(Uy − c) if
the phase velocity c is close to Uy.

The state change in x as shown in Fig.3.2 by introducing γ is also ex-
plained as follows: Consider the equation (3.1) with ∂y = ∂x = 0 that means
locally laminar state, no other term than −γ(u − Uyŷ) exists to determine
the absolute value of the laminar state, i.e., local unit flow rate. This means
the locally laminar state may not be unique for γ = 0 while that is unique
for γ � 1. Then the realized flows as shown in Fig.3.2 can be ”hetero clinic”
solution connecting the two laminar states with different unit flow rates for
γ = 0 while only ”homoclinic” solution is realized for γ � 1. Moreover, un-
der stick boundary conditions to material walls, the laminar state is unique,
and the situation of the transition resembles that of 2D Kolmogorov flow for
γ � 1. For the case of Neumann boundary conditions, ”homoclinic” solution
may disturb the locality of dynamics[CTB17b].

The stable GL state and SLTs might correspond to ”bistable” modes in
the models of refs[Bar11, Bar16]. Taken into account our results, as shown in
Fig.2 there are two types of candidates for a sustaining structure: localized
patch and an array of vortex streets with positive or negative signs each
of which originates from a kink or an anti-kink of 2DKF. Since the array
structure contains energy in longer wavelengths and the drag force makes
it decay, only the localized turbulent patch might be sustained. However,
the drag force interferes directly with the inverse-transfer. Thus the stronger
drag makes SLTs unstable and even annihilated in some situations. This kind
of effects also can work in wall-bounded flows but could not be controlled
explicitly at fixed Re unlike in 2DKF.
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The statistical results might be improved by averaging of additional re-
alizations, but we should mention that separation of time scales between the
dynamics of SLT and critical phenomena makes simulation time increase.
We should rather emphasize that only a single realization obeys the critical
scalings of DP.

An advantage of our system is that the dominant effects can be easily
separated in terms of multidimensional parameter space. Therefore we expect
that even more general flows share the characteristics of our simple system
and that more detailed researches help us to grasp fundamental aspects of
sustenance of turbulence.

Effects of global pressure interaction are not observed in the sense of crit-
ical phenomenon. We suppose that actually modified dynamics by interac-
tion via pressure is absorbed into a little change for statistical characteristics
such as lifetime and splitting time. To confirm the above conjectures, we
need to estimate or describe theoretically and quantitatively the interaction
or correlation among localised turbulent structures. These estimation and
description are important not only for the consideration of minimum ele-
ments of the DP transition but also for analyses of collective behaviors of
localised turbulent structures which appear as large scale structures such as
turbulence stripes in the wall-bounded turbulence[Col65, PGC+02, DSH10,
TB11, IDT16].
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Chapter 4

General conclusion

4.1 Summery

We have theoretically and numerically investigated 2D Kolmogorov flow fo-
cusing on spatially-localized turbulence. Both dynamical and statistical as-
pects are crucial keys for proper understanding subcritical behavior of turbu-
lence. In Chapter 2, we have found a novel intermittent direction reversal of
spatially-localized turbulence, and we have tried to find out the mechanism
of direction reversals using a dynamical systems approach in terms of sym-
metry and invariant solutions in phase space. To describe reversal events, the
invariant solutions are still important. In Chapter 3, we have constructed the
first Navier-Stokes example to show subcritical transition belonging to DP
universality class without mimicking wall-bounded flow. The results support
that the concrete form of the dynamics of SLT has only small importance
in existence of universal laws. Moreover, it is also clarified that Kolmogorov
flow is a fundamental model not only for supercritical turbulence but also
for subcritical turbulence.

4.2 Remarks and Future work

The topics of Chapters 2 and 3 have a common point in the sense of the sep-
aration of time scales. At a short time scale, their dynamics are complicated
and difficult to predict while well-defined states exist on average for moderate
time scale, which is the moving direction for Chapter 2 and the number of
SLT for Chapter 3. Moreover, at a longer time scale, state transfer between
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Figure 4.1: Schematic view of scale separation in this thesis.

the well-defined states are observed.
This type of features is shared among a wide range of turbulent systems

such as large scale convection (LSC) [Som86, MHFV15] for thermal convec-
tion in closed system[SNS+10, NHX15] and multiple states in Taylor-Couette
turbulence. Average states, in these cases, at the moderate scale break sym-
metry to realize anisotropic states. Only a few theories predict statistics of
anisotropic states so far. Moreover, scale separation enables us to under-
stand via effective description independent of shorter time scale. This kind
of idea supports, for example, Kolmogorov’s cascade theory of developed
turbulence and effectiveness of the hydrodynamic equations. Constructing
statistical theories applicable to scale-separated phenomena of the subcritical
regime are future work. As mentioned in Chapter 1 of General introduction,
we have not sufficient clues to quantitatively treat ”Interaction among other
turbulent states”.Spatially-localized turbulences behave as they are governed
by their own dynamical systems contained in themselves and coupled each
other maybe through pressure. Strictly speaking, however, the actual gov-
erning equations are global Navier-Stokes equations. We, therefore, should
gain a deeper understanding of how such coupled behavior emerges as the
solutions of the partial differential equations. Plentiful examples of the in-
teractions between SLTs observed in 2D Kolmogorov flow are presented in
Ref.[LK14, HT15]: solitary structures collide or bound to each other. We
believe that the works in this thesis are the first step for further study in this
direction.
Finally, we emphasize the impact of the introduction of the unit flow rate,
|Uy| in this thesis. Originally, Kolmogorov flow was considered in a series
of his seminars held in 1958 and 1959 to study ”instability” problems of the
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laminar flow from the first principle, the Navier-Stokes equations, with math-
ematical sense[AM60, MS61, Iud65, Arn91]. This model was convenient to
find a bifurcation of the laminar flow in the supercritical case, but this origi-
nal Kolmogorov flow for Uy = 0 it was not suitable for subcritical phenomena
since the laminar flow should be unstable at low Re. In general, parallel shear
profiles in two-dimensional periodic flow should be unstable for some critical
amplitude[GYM83, Yam86]. The introduction of |Uy| guarantees that the
amplitude of the laminar flow is kept finite even in the limit of infinite Re.
This means that the flow is able to be complex with a stable laminar flow.
Moreover, this method is easily extended to a wider class of steadily forced
flow: introducing the unit flow rate in the direction of explicit coordinate de-
pendence. Thus, we are able to access subcritical phenomena easily. We also
hope that this leads to the rigorous proofs and understandings in subcritical
transitions.
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Masaki Sano. Directed Percolation Criticality in Turbulent Liq-
uid Crystals. Physical Review Letters, 99(23):234503, 2007.

[TKCS09] Kazumasa A. Takeuchi, Masafumi Kuroda, Hugues Chaté, and
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Appendix A

Numerical method

A.1 Pseudospectral method

The governing equation to be integrated numerically is the equation for the
vorticity ω = ∇× u,

∂tω + (u ·∇)ω = −γω +
1

Re
∇2ω + fω, (A.1)

where fω = ∇× f .
The vorticity ω is expanded using the Fourier series as follows:

ω(x, y) =

Nx/2∑
k=Nx/2

Nx/2∑
l=−Ny/2

ω̂(k, l) exp(iαkx+ ily). (A.2)

Since the vorticity ω takes a real value, the condition ω̂(−k,−l) = ω̂∗(k, l)
holds.

Here, the asterisk denotes complex conjugate. The governing equations
for the coefficients are derived using the pseudo-spectral method:

d

dt
ω̂(k, l) = L(k, l)ω̂(k, l) + F , (A.3)

L(k, l) = −γ − α2k2 + l2

Re
, (A.4)

F = FFT(−(u ·∇)ω + fω). (A.5)
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Here, the nonlinear term are calculated using Fast Fourier Transform(FFT),
and dealiased by the two-thirds rule. The velocity u with the unit flow rate
Uy is calculated via the periodic stream function ψ as follows:

ψ̂(k, l) =
ω̂(k, l)

α2k2 + l2
(k 6= 0, l 6= 0), (A.6)

ûx(k, l) = ilψ̂(k, l), (A.7)

ûy(k, l) = −ikψ̂(k, l) + Uy. (A.8)

Note that the value of ψ̂(0, 0) does not affect the results.

A.2 Avoiding stiffness from viscos term

Straight forward explicit scheme for Eq.(A.3) needs a small time-step dt for
high resolution simulation since linear term of Eq.A.4 has the viscoss term
proportional to α2k2 + l2. In order to solve such a stiff equation, we derive a
numerical scheme to solve the linear term exactly as follows. First, keeping
in mind the exact solution of the linear equation, we consider new variable

Ω̂(k, l) = ω̂(k, l) exp(L(k, l)t). (A.9)

The evolution of the new variable Ω̂ obeys the following equation:

d

dt
Ω̂(k, l) = exp(L(k, l)t)F(ω(t)). (A.10)

Applying the Heun (2nd order Runge-Kutta) method with a time step, ∆t,
to the evolution equation (A.10) the following formal scheme is obtained:

k1 = exp(L(k, l)t)F(ω(t)), (A.11)

k2 = exp(L(k, l)(t+ ∆t))F(ω(t) + exp(−L(k, l)t)k1∆t), (A.12)

Ω(t+ ∆t) = Ω(t) + ∆t(k1 + k2), (A.13)

ω(t+ ∆t) = exp(−L(k, l)∆t)ω(t) +
exp(−L(k, l)(t+ ∆t))

2
∆t(k1 + k2).

(A.14)
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Omitting unnecessary operations, one can finally obtain the numerical scheme
for ω

k
′

1 = F(ω(t)), (A.15)

k
′

2 = exp(−L(k, l)∆t)F(ω(t) + k1∆t), (A.16)

ω(t+ ∆t) = exp(−L(k, l)∆t)(ω(t) +
k

′
1∆t

2
) +

k
′
2∆t

2
. (A.17)

Since in this scheme the large L(k, l)∆t terms only appear as the argument of
the exponential function with minus sign, the stiffess of the original scheme
is removed.

A.3 Newton method

We use Newton method to obtain an exact invariant solution with the iter-
ative method and without any direct calculation of component of linearized
matrix DF (X).

The (n+ 1)th solution of Newton iteration, Xn+1, follows

DF (Xn)δX = −F (Xn), (A.18)

δX = Xn+1 −Xn. (A.19)

Thus, we should solve the following linear problem:

AX = b, (A.20)

where A = DF (Xn) and b = −F (Xn). GMRES(Generel Minimal RESisual)
method find a solution X which minimize the residual r

r = ||AX − b||, (A.21)

of linear equation AX = b on the Krylov spaceKn = Span(b, Ab, . . . , An−1b).
Using Gram-Schmidt iteration, the Krylov spaceKn is constructed:

v1 =
b

|b|
, (A.22)

v̂i+1 = Avi −
i∑
j

vjv
T
j Avi, (A.23)

vi =
v̂i
|v̂i|

. (A.24)
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In the n iterative step, Hessenberg matrix Hn+1,n is defined

AVn = Vn+1Hn+1,n, (A.25)

using Vn, which is the matrix with coluumns v1, · · · ,vn. Note that Vn con-
nects the components of an element in Krylov space Kn and original one.
The residual r is rewriten as,

r = ||AX − b|| = ||Hn+1,nY − |b|e1||, (A.26)

where X = VnY and e1 = (1, 0, . . . , 0). The solution is obtained in the
Krylov space using QR decomposition of Hn+1,n using Givens rotation. Then,
we reduce the order of the matrix from N to n, where the residual is smaller
than the toerance.

Moreover, we do not need to refer to elements of the linearized matrix
since we calculate

DF (Xn)δX ∼ F (εδX + Xn)− F (Xn)

ε
, (A.27)

using a small constant ε.
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