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Several results in classical and modern harmonic

analysis in mixed Lebesgue spaces

By

Rodolfo H. Torres* and Erika L. Ward**

Abstract

Mixed Lebesgue spaces have attracted the interest of harmonic analysts since the early
sixties. These spaces naturally appear when considering functions with different quantitive
behavior on different sets of variables on which they depend. For example, this is the case when
studying functions with physical relevance like the solutions of partial differential equations
with time and space dependence. Mixed Lebesgue spaces can also be seen as vector‐valued
Lebesgue spaces. Using this point of view we revisit some classical results in the literature and
survey newer ones about Leibniz’s rule for fractional derivatives, bilinear null forms, sampling,
Calderóns reproducing formula, and wavelets in the context of mixed norms.

§1. Intorduction

This article is an expansion of the talk presented by the first named author at

the workshop on Harmonic Analysis and Nonlinear Partial Differential Equations held

at the Research Institute for Mathematical Sciences (RIMS , Kyoto University, Kyoto,
Japan, from July 4 to 6, 2017. As such, it is a survey of both classical and more

recent results involving tools of harmonic analysis and their applications in the context

of mixed Lebesgue spaces. All the results presented here have appeared in one way or

another elsewhere, and we reproduce them without proof but providing a brief historical

account of their development and pointing to their motivation and the main references

in the literature. In particular we will be borrowing substantially from [41]. Our hope
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is to provide a comprehensive summary of results in the subject including several which

have been, perhaps, overlooked in more recent works, but which have a lot of potential

for further analysis involving mixed norm estimates.

The continuing interest in mixed Lebesgue spaces has two main motivations. The

most classical one is related to the fact that these spaces represent one of the most simple

examples of vector valued  L^{p} spaces. This has been the focus of the original works  0

Benedek‐Panzone [7] and Benedek‐Calderón‐Panzone [6], where the basic properties
of the spaces and the natural extension of results for classical singular integrals were

first considered. Later works with mixed norms providing evidence of the intimate

connection between vector valued estimates, singular integrals and Littlewood‐Paley

theory include those by Rubio de Francia‐Ruiz‐Torrea [37], and Fernández [19], this last
one also relating the study of mixed Lebesgue spaces to multiparameter analysis. The

more modern interest in mixed norms has arisen from problems in partial differential

equations. In particular, in time dependent equations it is often necessary to consider

function of a time variable  t and a space variable  x with different quantitative and

regularity properties in each variable. Most notably among motivating examples for

our results, we mention the mixed estimates works of Kenig‐Ponce‐Vega [29] using
Leibniz’s rules in their study of well‐posedness of the generalized  KdV equation, and

those involving estimates for null forms by Foschi‐Klainerman [20] and then by Planchon
[36] in their study of homogeneous wave equations. The latter works motivated the work
by Stefanov‐Torres [39] on null forms (from which we will also borrow for this note) while
the former provided the inspiration for the results in [41] on Leibniz’s rule on mixed
Lebesgue spaces. Several fundamental tools in harmonic analysis need to be extended to

the mixed norm setting to deal with the above type of estimates. Once these extension

are achieved one can then apply them to other common problems of today’s harmonic

analysis, such as those involving decomposition and characterization of other function

spaces, sampling and wavelet representations. Such studies started in [42] and [41], but
a lot of work still remains to be done.

This paper is organized as follows. In the next section we collect the basic definitions

and notation that we shall employ. In Section 3 we present results about vector valued

estimates for Calderón‐Zygmund operators and consequences of them, while in Section

4 we recall some results about weighted norm inequalities in mixed Lebesgue spaces

which were obtained by Kurtz in [31] (see also the work of Moen [32]). Section 5
collects several result about bilinear estimates for null forms and fractional derivatives.

Finally Section 6 contains some results in the literature related to sampling and wavelets

in mixed norm spaces.
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§2. Definitions and notation

For convenience, we will consider the mixed Lebesgue spaces  L_{t}^{p}L_{x}^{q}  (\mathbb{R} \cross \mathbb{R}^{n}) , or

simply  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}) , for  0<p,   q<\infty , which for us will be defined by the quasi‐norms

  \Vert f\Vert_{L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1})} = (\int_{\mathbb{R}}(\int_
{\mathbb{R}^{n}}|f(t, x)|^{q}dx)^{p/q}dt)^{1/p}
Although reversing the order of the norms clearly produce different spaces (unless  0

course  p=  q), all what we present here could be done for other version of the spaces,
grouping any number of variables and considering successive  L^{p} norms on them. Our

choice, however, is motivated by the appearance of these spaces in PDEs, where the first

variable  t is viewed as time and has a distinctive role. Also,when the role of variables

and space dimensions are clear we may just write  L^{p}L^{q}.

The mixed Lebesgue spaces are Banach spaces when  1  \leq  p,  q  <  \infty and quasi‐

Banach spaces otherwise. They enjoy very natural duality, density, and interpolation

properties analogous to those for Lebesgue spaces and certainly other underlying prod‐

ucts of measure spaces could be used too. Although mixed Lebesgue spaces may have

appeared in the literature early on, many of their basic properties were proved in great

detail in [7], to where we refer the reader.
More generally, we will need to consider vector valued Lebesgue spaces  L^{p}(\mathbb{R}^{m}, B)

of measurable functions  F in  \mathbb{R}^{m} taking values in a Banach space  B and defined by the
norm

  \Vert f\Vert_{L^{p}(\mathbb{R}^{m},B)} = (\int_{\mathbb{R}^{m}} \Vert f(y)
\Vert_{B}^{p}dy)^{1/p}
In this sense one has the identification  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1})  =L^{p}(\mathbb{R}, L^{q}(\mathbb{R}^{n})) . Even in greater

generality one may consider vector valued mixed Lebesgue spaces  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}, B)  =

 L^{p}(\mathbb{R}, L^{q}(\mathbb{R}^{n}, B)) . The most important example for our purposes will be  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}, \ell^{2})
consisting to sequences of functions  F(t, x)=\{f_{j}(t, x)\}_{j} in  \mathbb{R}^{n+1} such that

  \Vert F\Vert_{L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1},\ell^{2})} = 
(\int_{\mathbb{R}} (\int_{\mathbb{R}^{n}} (\sum_{j}|f_{j}(t, x)|^{2})^{q/2}dx) 
/q_{dt)^{1/p}}<\infty.
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As customarily done, we denote by  \mathcal{L}(B_{1}, B_{2}) the space of bounded linear operators
from a Banach space  B_{1} to another Banach space  B_{2}.

When convenient, we write  z  \in  \mathbb{R}^{n+1} as either  z  =  (x_{0}, x) or  z  =  (t, x) for  x  =

 (x1, . . . , x_{n})  \in  \mathbb{R}^{n} . Likewise, we will denote the full Fourier transform on all  (n+1)
variables by

  \hat{f}(\zeta)=\int_{\mathbb{R}^{n+1}}f(z)e^{-iz\zeta}dz,
with frequency variable  \zeta=(\tau, \xi) or  \zeta=  (\xi_{0}, \xi) and  \xi=(\xi_{1}, \ldots, \xi_{n})  \in \mathbb{R}^{n} . Our notation

for dilations will denote normalization in  L^{1}(\mathbb{R}^{n+1}) , i.e. for any  r  >  0 and  z  \in  \mathbb{R}^{n+1},
 f_{r}(z)=r^{-(n+1)}f(r^{-1}z) . Hence  \hat{f_{r}}(\zeta)=\hat{f}(r\zeta) .

Both the Fourier transform and several operators presented below are assumed to

be a priori given for sufficiently nice functions so that their expressions make sense

and are extended then by continuity to larger spaces of functions or distributions when

allowed to do so by the estimates obtained.

We will consider the (full) homogeneous fractional derivatives  |\nabla|^{s} defined for  s\in \mathbb{R}

by

 \overline{|\nabla|^{s}f}(\zeta)= |\zeta|^{s}\hat{f}(\zeta) .

Note that we will allow  s to be negative, hence we will actually consider fractiona

integration as well. We also have the (partial) homogeneous fractional derivatives  |\nabla_{x}|^{s}
and  |\nabla_{t}|^{s} defined by

 |\overline{\nabla_{x}|^{s}f}(\tau, \xi)=  |\xi|^{s}\hat{f}(\tau, \xi) and  |\overline{\nabla_{t}|^{s}f}(\tau, \xi)=  |\tau|^{s}\hat{f}(\tau, \xi) .

As usual the inhomogeneous fractional derivative operators  J^{s} are defined by

 \overline{J^{s}f}(\zeta)=(1+|\zeta|^{2})^{s/2}\hat{f}(\zeta) .

The null forms  Q_{ij} for  i,  j=0 , . . . ,  n and  Q_{0} , are the bilinear differential operators

given by

 Q_{ij}(f, g)(x_{0}, x)=\partial_{i}f(x_{0}, x)\partial_{j}g(x_{0}, x)-\partial_
{j}f(x_{0}, x)\partial_{i}g(x_{0}, x)
and

 Q_{0}(f, g)(x_{0}, x)=\partial_{0}f(x_{0}, x)\partial_{0}g(x_{0}, x)-\nabla_{x}
f(x_{0}, x) .  \nabla_{x}g(x_{0}, x)

 = \partial_{0}f(x_{0}, x)\partial_{0}g(x_{0}, x)-\sum_{i=1}^{n}\partial_{i}f(x_
{0}, x)\partial_{i}g(x_{0}, x) .

Note that we allow in the definition of  Q_{ij} derivatives in the time variable  t=x_{0}.

§3. Vector valued Calderón‐Zygmund operators

The vector valued version of the Calderón‐Zygmund theory is by now very well

understood. At least for convolution operators it goes back to [6] and more general
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versions can be found in [37]. The books by Stein [38] and by Duoandikoetxea [16] also
present it in great detail. The main result is the following which we state as in [16,
Theorem 5.17]

Theorem 3.1.

Let  K be an  \mathcal{L}(B_{1}, B_{2}) ‐valued function defined at least on  \mathbb{R}^{m}\cross \mathbb{R}^{m}\backslash \{(x, y) : x=y\}
and such that it satisfies the regularity estimate

(3.1)   \int_{|x-y|\geq 2|y-z|}\Vert K(x, y)-K(x, z)\Vert_{B_{1}arrow B_{2}}dx\leq C,
(3.2)   \int_{|x-y|\geq 2|w-x|}\Vert K(x, y)-K(w, y)\Vert_{B_{1}arrow B_{2}}dy\leq C.

Let  T be bounded from  L^{q}(\mathbb{R}^{m}, B_{1}) to  L^{q}(\mathbb{R}^{m}, B_{2}) for some   1<q<\infty and assum

that it is associated with  K , in the sense that

  Tf(x)=\int_{\mathbb{R}^{m}}K(x, y)(f(y))dy
for all compactly supported  f\in L^{\infty}(\mathbb{R}^{m}, B_{1}) and   x\not\in supp  f . Then  T is bounded fro

 L^{p}(\mathbb{R}^{m}, B_{1}) to  L^{p}(\mathbb{R}^{m}, B_{2}) for all   1<p<\infty . Moreover  T satisfies the weak‐type (1,1)
estimate

 | \{x: \Vert Tf(x)\Vert_{B_{2}} >\lambda\}| \leq \frac{C}{\lambda}\Vert f\Vert_
{L^{1}(\mathbb{R}^{m},B_{1})}.
The above theorem states that, even in the vector valued case, the crux of the

(scalar‐valued) Calderón‐Zygmund theory still holds. Namely, the boundedness of the
operator on one  L^{q} space combined with the regularity of its kernel gives the bounded‐

ness on all  L^{p} spaces in the range indicated.

A simple consequence of this result is that we can go further and obtain from the
boundedness on vector‐valued  L^{r} spaces the one on the vector‐valued  L^{p}L^{q} spaces. In

the case of convolution operators the result is in [6]. A scalar‐valued version for non‐
convolution operators was in the thesis work by Moen [32], while the form we present
here is from [41, Corollary 2.3].

Corollary 3.2. Let  T be a bounded operator from  L^{r}(\mathbb{R}^{n+1}, B_{1}) to  L^{r}(\mathbb{R}^{n+1}, B_{2})
for all  r,  1  <r<  \infty , which is associated to a kernel  K in the sense of Theorem (3.1).
Suppose also that  K satisfies the size estimat

(3.3)   \Vert K(x, y)\Vert_{B_{1}arrow B_{2}} \leq \frac{C}{|x-y|^{n+1}},
and for some  0<\delta<  1 , the regularity estimate

(3.4)  \Vert K(x, y)-K(x, z)\Vert_{B_{1}arrow B_{2}}   \leq C\frac{|y-z|^{\delta}}{|x-y|^{n+1+\delta}} for  |x-y|  \geq 2|y-z|,
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(3.5)  \Vert K(x, y)-K(w, y)\Vert_{B_{1}arrow B_{2}}   \leq C\frac{|x-w|^{\delta}}{|x-y|^{n+1+\delta}} for  |x-y|  \geq 2|x-w|.

Then  T extends to a bounded linear operator from  L_{t}^{p}L_{x}^{q}(\mathbb{R}\cross \mathbb{R}^{n}, B_{1}) to  L_{t}^{p}L_{x}^{q}(\mathbb{R}\cross \mathbb{R}^{n}, B_{2})
for all  1<p,  q<\infty.

The proof consists in identifying  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}, B)  =  L^{p}(\mathbb{R}, L^{q}(\mathbb{R}^{n}, B)) and using

 (3.3)-(3.5) to establish  (3.1)-(3.2) via an application of Schur’s test, to then invoke

Theorem 3.1. See the Appendix in [41] for details.

§3.1. Examples and applications

By Corollary 3.2 all classical Calderón‐Zygmund operators are bounded on mixed

Lebesgue spaces. Of relevance to the study of null forms, as we will explain later, are

the Riesz transform operators in  \mathbb{R}^{n+1},  R_{j},  j=0 , . . . ,  n , which are the principal valued

singular integrals defined, following the notation in [39], by the kernels

 k_{0}(t, x)=c_{n} \frac{t}{(|t|^{2}+|x|^{2})^{(n+2)/2}}
and

 k_{j}(t, x)=c_{n} \frac{x_{j}}{(|t|^{2}+|x|^{2})^{(n+2)/2}}.
Here the constant  c_{n} is properly selected so that

 Rdf(\tau, \xi)=-i\tau|(\tau, \xi)|^{-1}\hat{f}(\tau, \xi)

and

 Rdf(\tau, \xi)=-i\xi_{j}|(\tau, \xi)|^{-1}\hat{f}(\tau, \xi) .

It follows that for all  j=0 , . . . ,  n and all  1<p,  q<\infty,

(3.6)  R_{j} :  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1})arrow L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}) ,

since the kernels  k_{j} clearly satisfy  (3.3)-(3.5) for  B_{1}  =B_{2}  =\mathbb{C} . Moreover, as observed

in [41, Corollary 2.5], if  T_{m} is a multiplier operator given by

 \tau df(\tau, \xi)=m(\tau, \xi)\hat{f}(\tau, \xi)

and

(3.7)  | \partial^{\alpha}m(\tau, \xi)|<_{\alpha}\sim \frac{1}{|(\tau,\xi)|^{|\alpha|}
}.
for all multi‐indexes  \alpha , then

 T_{m} :L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1})arrow L_{t}^{p}L_{x}^{q}(\mathbb{R}^
{n+1})
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for all  1<p,  q<\infty.

We note that recently Antonič and Ivec [2] improved on this result by requiring the
Mihlin condition (3.7) only for all  |\alpha|  \leq  [ \frac{n+1}{2}]+1 , as in the classical case of Lebesgue
spaces; or more generally by imposing the Hörmander condition

  \sup_{r>0}r^{-(n+1)+2|\alpha|}\int_{r<|\zeta|<2r}|\partial^{\alpha}m(\zeta)
|^{2}d\zeta\leq C<\infty,
also for all  |\alpha|  \leq  [ \frac{n+1}{2}]+1.

One of the most useful applications of the vector valued Calderón‐Zygmund theory

is the Littlewood‐Paley characterization of Lebesgue spaces by realizing the square

function as an  \ell^{2} valued singular integral. Corollary 3.2 allows to do the same in the

mixed Lebesgue case. The following result is from [41, Corollary 2.4].

Corollary 3.3. Let  1  <p,   q<\infty . Suppose that  \Psi is a function on  \mathbb{R}^{n+1} which

satisfies, for all  |\alpha|  \leq  1,

(3.8)  | \partial^{\alpha}\Psi(x)| \sim< \frac{1}{(1+|(t,x)|)^{n+2+|\alpha|}}.
and has mean value zero. Then for all  f\in L_{t}^{p}L_{x}^{q}(\mathbb{R}\cross \mathbb{R}^{n}) ,

(3.9)   \Vert(\sum_{j\in \mathbb{Z}}|f*\Psi_{2-j}|^{2})^{1/2}\Vert_{L_{t}^{p}L_{x}^{q}
(\mathbb{R}\cross \mathbb{R}^{n})} \sim< \Vert f\Vert_{L_{t}^{p}L_{x}^{q}
(\mathbb{R}\cross \mathbb{R}^{n})}.
Conversely, if  \Psi  \in  S(\mathbb{R}^{n+1}) is such that supp  \hat{\Psi}  \subset   \{\frac{\pi}{4} < |\xi| < \pi\} and  \hat{\Psi}  >  c  >  0  0

  \{\frac{\pi}{4}+\epsilon< |\xi| <\pi-\epsilon\} , then

(3.10)   \Vert f\Vert_{L_{t}^{p}L_{x}^{q}(\mathbb{R}\cross \mathbb{R}^{n})} \sim< \Vert
(\sum_{j\in \mathbb{Z}}|f*\Psi_{2-j}|^{2})^{1/2}\Vert_{L_{t}^{p}L_{x}^{q}
(\mathbb{R}\cross \mathbb{R}^{n})}
The proof of (3.9) given in [41] uses the fact from the classical case that the operator

 T with kernel

 K(t, x) :\mathbb{C}arrow l^{2}

 K(t, x) (v)=\{\Psi_{2-j}(t, x)v\}

is a bounded vector valued Calderón‐Zygmund operator from the space  L^{p}(\mathbb{R}^{n+1}, \mathbb{C}) to

the space  L^{p}(\mathbb{R}^{n+1}, l^{2}) ,  1  <p<  \infty ; see e.g. the book by Grafakos [24, Theorem 5.1.2]
for very detailed arguments. It follows by Corollary 3.2 that  T is also bounded from

 L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}, \mathbb{C}) to  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}, l^{2}) . The converse inequality (3.10) actually follows from
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(3.9) by standard duality arguments and the fact that the extra condition on  \Psi allows
one to construct a reproducing formula of the form

 f= \sum_{j\in \mathbb{Z}}\varphi_{2-j} *\Psi_{2-j} *f,
where  \varphi is another function with similar properties as  \Psi.

§4. Maximal operatorss and weighted estimates

Let  M be the Hardy‐Littlewood maximal operator in  \mathbb{R}^{n+1} defined on cubes. The

results in [19] and [31] extended the boundedness of  M and its Fefferman‐Stein [17]
vector‐valued version to  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}) . In particular, see [19, Theorem 4.2], for  1  <

 p,  q,  r<\infty.

(4.1)   \Vert(\sum_{j}|M(f_{j})|^{r})^{1/r}\Vert_{L^{p}L^{q}(\mathbb{R}\cross 
\mathbb{R}^{n})} \sim< \Vert(\sum_{j}|f_{j}|^{r})^{1/r}\Vert_{L^{p}L^{q}(\mathbb
{R}\cross \mathbb{R}^{n})} .

Actually both [19] and [31] consider the strong maximal operator on  \mathbb{R}\cross \mathbb{R}^{n},

 M_{S}g(t, x)= \sup_{R\ni(t,x)}\frac{1}{|R|}\int_{R}|g(s, y)|dyds
where  R=I\cross Q and  I is an interval in  \mathbb{R} and  Q is a cube in  \mathbb{R}^{n}.

The following weights are considered in [31]. A nonnegative function  w is in
 A_{p}(A_{q})(\mathbb{R}^{n+1}) ,  1<p,  q<\infty,  i

(4.2)  ( \int_{I}(\int_{Q}w(t, x)dx)^{p/q}dt)  ( \int_{I}(\int_{Q}w(t, x)^{1-q} dx)^{p'/q'}dt)^{p-1}  \leq C|I\cross Q|^{p}

for all  I and  Q . Note that for  p=q this is the  A_{p} condition on  \mathbb{R}^{n+1} but on rectangles

of the form  I\cross Q . The smallest constant in the right‐hand side of (4.2) is denoted by

 \Vert w\Vert_{A_{p}(A_{q})}.
The following extrapolation result of Kurtz [31, Theorem 2] is an extension of the

classical result of Rubio de Francia and an extremely powerful tool to obtain bounded‐

ness results in mixed Lebesgue spaces.

Theorem 4.1. Let  T be a sublinear operator bounded on  L^{s}(\mathbb{R}^{n+1}, w) for som
 1  <  s  <  \infty and all  w  \in  A_{s}(A_{s}) , with a norm that depends only on  \Vert w\Vert_{A_{s}(A_{s})} . Then,

for any  1  <p,  q<  \infty,  T is bounded on  L^{p}L^{q}(\mathbb{R}^{n+1}, w) for all  w\in A_{p}(A_{q}) of the for

 w(t, x)=u(t)v(x) (and with a norm that depends only on  \Vert w\Vert_{A_{p}(A_{q})} ).
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Note that  A_{s}(A_{s})(\mathbb{R}^{n+1})  \subset A_{s}(\mathbb{R}^{n+1}) , the regular  A_{s} class, so the above result al‐

lows to extended any operator bounded on one weighted Lebesgue space  L^{s}(\mathbb{R}^{n+1}, w) for

all  w\in A_{s}(\mathbb{R}^{n+1}) to, in particular, all unweighted mixed Lebesgue spaces  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}) .

The extrapolation result of Kurtz can be used then to provide an alternative proo

of the boundedness of Calderón‐Zygmund operators on mixed Lebesgue spaces. With

the same reasoning, we can make the following observation for the commutator with

pointwise multiplication with function in the John‐Nirenberg space BMO.

Corollary 4.2. Let  T be a bounded Calderon‐Zygmund operator in  L^{s}(\mathbb{R}^{n+1})
and  b\in BMO(\mathbb{R}^{n+1}) . Then the commutato

 [T, b]f=T(bf)-bT(f)

is bounded on  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}) for all  1<p,  q<\infty.

The fact that Theorem 4.1 actually involves rectangular weights make it also ap‐

plicable in product‐type situations. In particular it is used in [31, Theorem 4] to obtain
the boundedness on mixed Lebesgue spaces of the product‐type Calderón‐Zygmund

operators of Fefferman‐Stein [18]. See those references for further details.
We conclude this section by mentioning also that an off‐diagonal extrapolation the‐

orem on mixed Lebesgue spaces was obtained by Moen [32, Theorem 5.2], allowing one
to consider also operators like fractional integration in  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}) (and corresponding
weighted versions as well). The following corollary is also a consequence of [32, Corol‐
lary 5.3.3], but this unweighted version was previously obtained in [7, p.321]. See also
the work of Adams and Bagby [1] for a different approach, a more general range  0

exponents, and further references to earlier versions of the result.

Corollary 4.3. Assume  1  <  p_{1},  p_{2},  q_{1},  q_{2}  <  \infty and  0  <  s  <  n+  1 so that

 1/p_{1}-1/p_{2}=s/(n+1) and  1/q_{1}-1/q_{2}=s/(n+1) . The

 |\nabla|^{-s} :L^{p_{1}}L^{q_{1}}(\mathbb{R}^{n+1})arrow L^{p_{2}}L^{q_{2}}
(\mathbb{R}^{n+1}) .

§5. Bilinear estimates involving derivatives

§5.1. Null forms

As mentioned in the introduction, Foschi and Klainerman [20] used several esti‐
mates for null forms in their study of homogeneous wave equations. Moreover they

conjecture several estimates for  \Vert|\nabla|^{\beta}Q(f, g)\Vert_{L^{q}L^{r}} in terms of certain wave‐Sobolev

space norms of  f and  g . Then in [36], Planchon used Littlewood‐Paley argument to
establish, among other things, the estimate

(5.1)  \Vert|\nabla_{x}|^{-s}Q_{ij}(f, g)\Vert_{L^{1}(R^{n+1})} \sim< \Vert|\nabla_{x}
|^{1-s/2}f\Vert_{L^{2}(R^{n+1})}\Vert|\nabla_{x}|^{1-s/2}g\Vert_{L^{2}(R^{n+1})}
,
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for  0<s<  1 , and a Besov‐type estimate

(5.2)  \Vert|\nabla_{x}|^{-s}Q_{ij}(f, g)\Vert_{L_{t}^{q}L_{x}^{r}}^{2} \sim

  \sum_{k\in \mathbb{Z}}(2^{k(1-s/2)}\Vert\triangle_{k}f\Vert_{L_{t}^{q_{1}}
L_{x}^{r_{1}}})^{2}\sum_{k\in \mathbb{Z}}(2^{k(1-s/2)}\Vert\triangle_{k}
g\Vert_{L_{t}^{q_{2}}L_{x}^{r_{2}}})^{2},
for appropriate  q,  r,  s with  1/q=  1/q_{1}+1/q_{2},  1/r=  1/r_{1}+1/r_{2} and  0  \leq  s  \leq  1 . Here

 \triangle_{k}f=\psi_{2-k}f for some  \psi as in Corollary 3.3. The work in [39] further generalizes and
extends this estimate using the boundedness of the Riesz transforms in mixed Lebesgue
spaces. This approach also allows the consideration of time derivatives.

The relation between the Riesz transforms and the null forms is very simple. Note
that

 (|\overline{\nabla|R_{j}}f)(\xi)=-i\xi_{j}\hat{f}(\xi) ,

so

 |\nabla|R_{j}=\partial_{j}.

Hence, writing  u=  |\nabla|f and  v=  |\nabla|g , transforms

 Q_{ij}(f, g)=\partial_{i}f\partial_{j}g-\partial_{j}f\partial_{i}g

into

 R_{i}uR_{j}v-R_{j}uR_{i}v.

It follows that to prove an estimate of the form

 \Vert Q_{ij}(f, g)\Vert_{X_{1}} \sim< \Vert|\nabla|f\Vert_{X_{2}}\Vert|\nabla|g
\Vert_{X_{3}}

for some spaces  X_{1},  X_{2} and X3, is then equivalent to prove

 \Vert R_{i}uR_{j}v-R_{j}uR_{i}v\Vert_{X_{1}} \sim< \Vert u\Vert_{X_{2}}\Vert 
v\Vert_{X_{3}}.

Using this approach Stefanov‐Torres obtained the following result in [39, Theorem 2].

Theorem 5.1. Let  (n+1)/(n+2)  <r<\infty and  s_{0}(r)= \min(n+2-(n+1)/r, 1) .

The

(5.3)  \Vert|\nabla|^{-s}Q_{ij}(f, g)\Vert_{\mathcal{H}^{r}(R^{n+1})} \sim< 
\Vert|\nabla|^{1-s/2}f\Vert_{L^{p}(R^{n+1})}\Vert|\nabla|^{1-s/2}g\Vert_{L^{q}
(R^{n+1})}
for all  p,  q  >  1 such that  1/p+1/q  =  1/r and  0  \leq  s  <  s_{0}(r) . If  r  >  1 , then (5.3)
also holds for  s  =  s_{0}  =  1 . The estimate (5.3) is sharp in the sense that for any
 (n+1)/(n+2)  <r\leq  1 , there are Schwartz functions  f and  g with  |\nabla|^{-s_{0}(r)}Q_{ij}(f, g)\not\in
 \mathcal{H}^{r}(R^{n+1}) .
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Moreover, if  1  <  q,  r  <  \infty,  1  <  q_{1},  q_{2},  r_{1},  r_{2}  <  \infty,  1/q=  1/q_{1}+1/q_{2} , and  1/r  =

 1/r_{1}+1/r_{2} . Then,

(5.4)  \Vert|\nabla|^{-s}Q_{ij}(f, g)\Vert_{L_{t}^{q}L_{x}^{r}(R^{n+1})}  \sim<  \Vert|\nabla|^{1-s/2}f\Vert_{L_{t}^{q_{1}}L_{x}^{r_{1}}(R^{n+1})}\Vert|\nabla|^
{1-s/2}g\Vert_{L_{t}^{q_{2}}L_{x}^{r_{2}}(R^{n+1})},
for all   0\leq s\leq  1.

Here  \mathcal{H}^{r}(R^{n+1})  =  \dot{F}_{r}^{0,2}(R^{n+1}) , i.e., Hardy spaces for  0  <  r  \leq  1 and Lebesgue

spaces for  1  <r  <  \infty . As noted in [39], (5.3) improves (5.1) because we can now take
the full  |\nabla| in space and time variables, null forms also involving the time variable, and

some values of  r<  1 . Meanwhile one can see that (5.4) is, in a sense, an improvement
of (5.2). See [39] for more details.

When  f and  g are solutions of the wave equation  \square  u=  (-\partial_{t}^{2}+\triangle_{x})u=0 , then a

version of (5.3) can be obtained for a higher power of  |\nabla|^{-1} . Recall that  (q, r) is a wav
admissible (Strichartz) pair if it belongs to the set

 A:= \{(q, r) : 2\leq q, r \leq\infty, \frac{1}{q}+\frac{n-1}{2r} \leq \frac{n-
1}{4}\}\backslash {  (2, \infty) when  n=3 }.

The number  s(q, r)  =  n/2-1/q-n/r is called the smoothness parameter associated

with the wave admissible pair  (q, r) . The following is from [39, Theorem 3].

Theorem 5.2. Let  (q, r) , be wave admissible pair with  2  <  q,  r  <  \infty,  s be it

smoothness parameter and  0  \leq  \sigma  <   \frac{4}{(n-1)q} . Suppose that  f and  g are solutions of

 \square  f=\square  g=0 . The

(5.5)  \Vert|\nabla|^{-1-\sigma}Q_{ij}(f, g)\Vert_{L_{t}^{q/2}L_{x}^{r2}(R^{n+1})} 
\sim
 \Vert\nabla_{xt}f(0, \cdot)\Vert_{\dot{L}_{s-1/2-\sigma/2}^{2}(\mathbb{R}^{n})}
\Vert\nabla_{xt}g(0, \cdot)\Vert_{\dot{L}_{s-1/2-\sigma/2}^{2}(\mathbb{R}^{n})} .

Here for any  s  \in \mathbb{R},  \dot{L}_{s}^{2}(\mathbb{R}^{n}) is the homogeneous Sobolev space of all distributions

 f such that  |\nabla|^{s}f\in L^{2} (Rn).
Similar estimates were also obtained in [36] but only for fractional derivatives and

null forms involving the space variables. The proof of the result relies on an estimate

of Klainerman and Tataru [30] for solutions of the wave equation of the form

 \Vert|\nabla_{x}|^{-\sigma}(fg)\Vert_{L_{t}^{q/2}L_{x}^{r2}(R^{n+1})}  \sim<  \Vert\nabla_{xt}f(0, \cdot)\Vert_{\dot{L}_{s-1-\sigma/2}^{2}(\mathbb{R}^{n})}
\Vert\nabla_{xt}g(0, \cdot)\Vert_{\dot{L}_{s-1-\sigma/2}^{2}(\mathbb{R}^{n})}.
We refer again to [39] for details as well as further results involving the null form  Q_{0}.

§5.2. Leibniz’s rule for fractional derivatives

The first Leibniz’s rule results for fractional derivatives go back to the work  0

Kato‐Ponce [28] who showed that for  1<p<\infty,  s>0

 \Vert J^{s}(fg)\Vert_{L^{p}} \sim< \Vert J^{s}(f)\Vert_{L^{p}}\Vert g\Vert_{L^{
\infty}}+\Vert J^{s}(g)\Vert_{L^{p}}\Vert f\Vert_{L^{\infty}}.
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It was also obtained by Christ‐Weinstein [14] that for  1  <p,  q,  r<\infty,  1/p+1/q=1/r,
 s>0,

 \Vert|\nabla|^{s}(fg)\Vert_{L^{r}} \sim< \Vert|\nabla|^{s}(f)\Vert_{L^{p}}\Vert
g\Vert_{L^{q}}+\Vert f\Vert_{L^{p}}\Vert|\nabla|^{s}(g)\Vert_{L^{q}}.

These types of estimates have been generalized by many authors. For example in the

general bilinear estimate context, pseudodifferential versions were obtained by Bényi‐

Torres [9] and Bényi‐Nahmod‐Torres [8]; mixed derivatives estimates were considered by
Muscalu‐Pipher‐Tao‐Thiele [33]; and weighed versions by Bernicot‐Maldonado‐Moen‐
Naibo [11], to name a few. The largest and optimal range of exponents was more
recently investigated by Muscalu and Schlag [34] and Grafakos‐Oh [25].

In the mixed Lebesgue context, Kenig‐Ponce‐Vega [29] established the estimate

 \Vert|\nabla_{x}|^{s}(fg)-f|\nabla_{x}|^{s}(g)-g|\nabla_{x}|^{s}(f)\Vert_{L_{x}
^{p}L_{r}^{q}}  \sim<  \Vert|\nabla_{x}|^{s_{1}}(f)\Vert_{L_{x}^{p_{1}}L_{t}^{q_{1}}}  +\Vert|\nabla_{x}|^{s_{2}}(g)\Vert_{L_{x}^{p_{2}}L_{t}^{q_{2}}},

for  0  <  s,  s_{1},  s_{2}  <  1,  s  =  s_{1}+s_{2},  1  <p,  p_{1},  p_{2},  q,  q_{1},  q_{2}  <  \infty,  1/p=  1/p_{1}+1/p_{2} , and

 1/q=1/q_{1}+1/q_{2}.
The first result involving the full  |\nabla| was obtained by the authors of this note, [41,

Thereom 3.2].

Theorem 5.3. Let  s>0,  1  <p,  q,  p_{i},  q_{i}  <\infty for  1=1 , 4 with   \frac{1}{p}  =   \frac{1}{p_{1}}+\frac{1}{p_{2}}  =

  \underline{1}3+\frac{1}{p_{4}} and   \frac{1}{q}  =   \frac{1}{q_{1}}+\frac{1}{q_{2}}  =   \frac{1}{q_{3}}+\frac{1}{q_{4}} . Then,

 \Vert|\nabla|^{s}(fg)\Vert_{L^{p}L^{q}} \sim< \Vert f\Vert_{L^{p_{1}}L^{q_{1}}}
\Vert|\nabla|^{s}g\Vert_{L^{p_{2}}L^{q_{2}}} +\Vert|\nabla|^{s}f\Vert_{L^{p_{3}}
L^{q_{3}}}\Vert g\Vert_{L^{p_{4}}L^{q_{4}}}

The proof consists in using the method of Christ and Weinstein, writing

 P_{k}f= \sum_{j\leq k-3}\triangle_{j}f,
and the paraproduct expansio

 f .

 g= \sum_{k}\triangle_{k}g
.

 P_{k}f+ \sum_{k}\triangle_{k}f
.

 P_{k}g+ \sum_{|i-j|\underline{<}2}\triangle_{i}f
.  \triangle_{j}g.

The reader familiar with the subject will recall that after this representation, what is

essentially needed in the  L^{p} case is the boundedness of the square function and the

Fefferman‐Stein vector‐valued maximal theorem. As described in previous sections,

these tools have now been made available in the mixed Lebesgue setting and similar

arguments can be applied for  L^{p}L^{q}.

Theroem 5.3 has been recently extended to include mixed derivatives of the form

 |\nabla_{t}|^{\beta}|\nabla_{x}|^{\alpha}(fg) by Benea and Muscalu [3]. Moreover, using different methods, Di Plinio
and Ou considered a range of exponents in  \mathbb{R}^{1+1} that allows for  p> \max(1/2,1/(1+\alpha))
but  q still greater or equal than 1; see [15, Corollary 1]. After the first version of this
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manuscript was submitted we became aware of new versions of preprints of Benea and

Muscalu [4, 5] obtaining the largest set of exponents stated in the next theorem, which
allows also for some values of  q<  1 ; see in particular [5, Theorem 2].

Theorem 5.4. Let  n  =  1 . For any  \alpha,  \beta  >  0 and  1  <  p_{1},  p_{2},  q_{1},  q_{2}  \leq  \infty , such

that   \frac{1}{q}  =   \frac{1}{q_{1}}+\frac{1}{q_{2}},   \frac{1}{p}=   \frac{1}{p_{1}}+\frac{1}{p_{2}},   \max(\frac{1}{2}, \frac{1}{1+\beta})  <q<\infty , and   \max(\frac{1}{2}, \frac{1}{1+\alpha}, \frac{1}{1+\beta})  <p<\infty,

 \Vert|\nabla_{t}|^{\beta}|\nabla_{x}|^{\alpha}(fg)\Vert_{L^{p}L^{q}} \sim< 
\Vert f\Vert_{L^{p_{1}}L^{q_{1}}}\Vert|\nabla_{t}|^{\beta}|\nabla_{x}|^{\alpha}g
\Vert_{L^{p_{2}}L^{q_{2}}}
 +\Vert|\nabla_{t}|^{\beta}f\Vert_{L^{p_{1}}L^{q_{1}}}\Vert|\nabla_{x}|^{\alpha}
g\Vert_{L^{p_{2}}L^{q_{2}}}
 +\Vert|\nabla_{x}|^{\alpha}f\Vert_{L^{p_{1}}L^{q_{1}}}\Vert|\nabla_{t}|^{\beta}
g\Vert_{L^{p_{2}}L^{q_{2}}}
 +\Vert|\nabla_{t}|^{\beta}|\nabla_{x}|^{\alpha}f\Vert_{L^{p_{1}}L^{q_{1}}}\Vert
g\Vert_{L^{p_{2}}L^{q_{2}}}.

Finally in another very recent preprint Hart‐Torres‐Wu [26, Corollary 4.5] improved
on the version in Theorem 5.3 for full fractional derivatives obtaining the following.

Theorem 5.5. Let  1<p_{1},  p_{2},  q_{1},  q_{2}  <\infty,   \frac{1}{q}  =   \frac{1}{q_{1}}+\frac{1}{q_{2}} , and   \frac{1}{p}  =   \frac{1}{p_{1}}+\frac{1}{p_{2}} . Then,

for  s\in 2\mathbb{N} or  s> \max(0, \frac{n}{p}-n, \frac{n}{q}-n) and all  f,  g\in S(\mathbb{R}^{n+1}) ,

 \Vert|\nabla|^{s}(fg)\Vert_{L^{p}L^{q}} \sim< \Vert|\nabla|^{s}f\Vert_{L^{p_{1}
}L^{q_{1}}}\Vert g\Vert_{L^{p_{2}}L^{q_{2}}} +\Vert f\Vert_{L^{p_{1}}L^{q_{1}}}
\Vert|\nabla|^{s}g\Vert_{L^{p_{2}}L^{q_{2}}}.

We observe that the last two theorems were proved with different methods and

neither one seems to imply the other. We also refer the reader to [26] for other Leibniz‐
type rules where the product of two functions is replaced by some bilinear multiplier

operators with limited regularity.

§6. Reproducing formulas

We conclude this survey by listing three reproducing formulas of great value in

analysis which turned out to also hold for  L^{p}L^{q} spaces.

As it is well‐known band‐limited signals can be recovered from their samples via

the Shannon sampling theorem. For example, a band‐limited signal in  \mathbb{R}^{m} with Fourier

transform supported on, say,  (-\pi, \pi)^{m} can be recovered from its values on the integer

lattice  \mathbb{Z}^{m} via the reproducing formula

 f(x)= \sum_{k\in \mathbb{Z}^{m}} (f(k)\prod_{i=1}^{m}\frac{\sin\pi(x_{i}-k_{i})
}{\pi(x_{i}-k_{i})}) .

One can then look at reading other properties of a function (in terms of functional
norms) from those of the samples. That is we look for a characterization

 \Vert f\Vert_{X(\mathbb{R}^{m})} \approx \Vert Sf\Vert_{X_{d}(\mathbb{Z}^{m})},
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where Sf is the sequence of the samples of  f on  \mathbb{Z}^{m} and  X_{d} is a discrete version of the

space of functions  X.

For example, the case  X=L^{p} is the classical Plancherel‐Polya inequality [35] (see
also Boas [12] and Frazier‐Jawerth [21]) where  X_{d}=l^{p} . One has

 ( \int_{\mathbb{R}^{m}}|f(x)|^{p}dx)^{1/p}\approx (\sum_{\mathbb{Z}^{m}}|f(k)|^
{p})^{1/p}
Another example was studied in [40] for the Besov spaces  X  =  \dot{B}_{p}^{\alpha,q} and appropriate
discrete spaces of sequences  X_{d} (defined through Littlewood‐Paley theory).

The tools available now in the mixed norm context, in particular the boundedness

of maximal operators and smooth multipliers, permit to consider a version of Plancherel‐

Polya inequality in  L^{p}L^{q} . We have the following result from [41, Thereom 4.4].

Theorem 6.1. Let  f\in S'(\mathbb{R}^{n+1}) . If supp  \hat{f}\subset\overline{B(0,\pi)} , then for  1<p,  q<\infty,

(6.1)  \Vert\{f(j, k)\}_{j\in \mathbb{Z},k\in \mathbb{Z}^{n}}\Vert_{l_{j}^{p}l_{k}^{q}
(\mathbb{Z}^{n+1})} \leq c_{p,q}\Vert f\Vert_{L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+
1})} .

Moreover, if supp  \hat{f}\subset B(0, (1-\epsilon)\pi) ,  \epsilon>0 , then for  1<p,  q<\infty,

(6.2)  \Vert f\Vert_{L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1})} \leq c_{p,q,\epsilon}\Vert\
{f(j, k)\}_{j\in \mathbb{Z},k\in \mathbb{Z}^{n}}\Vert_{l_{j}^{p}l_{k}^{q}
(\mathbb{Z}^{n+1})}
(Actually in (6.1) we can consider  0<p,   q<\infty but we do not know if (6.2) holds

in the range  0<p,   q\leq  1. )
Next we state Calderón’s reproducing formula. The formula first discovered by

Calderón in [13] has a very rich history involving  L^{p} and other spaces of functions. See,
for example, [10] for a detailed account of it. The result for  L^{p}L^{q} below is taken from
[41, Proposition 5.1].

Theorem 6.2. Let  \psi be a function in  S(\mathbb{R}^{n+1}) real valued, radial, with all mo‐

ments equal to zero and such that

  \int_{0}^{\infty}\hat{\psi}(s\zeta)^{2}\frac{ds}{s} =1.
Then, for  f\in L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}) ,  1  <p,  q<\infty,

(6.3)  f(t, x)= \int_{0}^{\infty}f*\psi_{s}*\psi_{s}(t, x)\frac{ds}{s},
in the sense that

 f(t, x)= \lim_{\epsilonarrow 0}f^{\epsilon}(t, x)\equiv\lim_{\epsilonarrow 0}
\int_{\epsilon}^{1/\epsilon}f*\psi_{s}*\psi_{s}(t, x)\frac{ds}{s}
in the  L_{t}^{p}L_{x}^{q} norm.
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Finally, we state the wavelet characterization of the  L_{t}^{p}L_{x}^{q}(\mathbb{R}^{n+1}) spaces, which can

be seen as a discretization of (6.3). As in [41, Theorem 6.4], for simplicity, we state the
last theorem for the space dimension  n=  1 and we refer to that work for full details.

It is interesting to observe that smooth band‐limited wavelets (obtained for example
by tensor products) for  L^{2}(\mathbb{R}^{2}) also provide a basis of wavelets for all  L^{p}L^{q} spaces. In
particular, we can select three functions  \psi_{1},  \psi_{2},  \psi_{3} so that each  \psi_{i} are functions in  S

and such that  \{\psi_{1Q}, \psi_{2Q}, \psi_{3Q} : \nu, j, k \in \mathbb{Z}\} is an orthonormal basis for  L^{2}(\mathbb{R}^{2}) where

 \psi_{iQ}  =2^{\nu}\psi_{i}(2^{\nu}t-k, 2^{\nu}x-j) and  Q is now the dyadic cube  Q=Q_{\nu,k,j}  =I_{\nu k}  \cross I_{\nu j}  =

 [2^{-\nu}k, 2^{-\nu}(k+1))  \cross  [2^{-\nu}j, 2^{-\nu}(j+1)) .

Theorem 6.3. Let  \psi_{1},  \psi_{2},  \psi_{3} generate a complete orthonormal family of smooth

band‐limited wavelets for  L^{2} (R2). Then, for all  1  <p,  q<\infty,

  \Vert(\sum_{i=1}^{3}\sum_{v,j,k\in \mathbb{Z}}|\langle f|\psi_{iQ}\rangle|^{2}
2^{2\nu}\chi_{Q}(t, x))^{1/2}\Vert_{L_{t}^{p}L_{x}^{q}(\mathbb{R}\cross 
\mathbb{R})} \approx \Vert f\Vert_{L_{t}^{p}L_{x}^{q}(\mathbb{R}\cross 
\mathbb{R})}.
Once again, the harmonic analysts tools developed can be used to follow the

approach for  L^{p} spaces in the original work of Frazier‐Jawerth [22] or the book  0

Hernandez‐Weiss [27]. Such approach relies on the use of the Petree maximal function
(which we do not need to define here) and the Fefferman‐Stein theorem, which can be
adapted to the case of the  L_{t}^{p}L_{x}^{q} spaces.

We conclude by mentioning that, after the initial submission of this article, we

learned of recent wavelet‐type characterization of certain Triebel‐Lizorkin spaces defined

on mixed norms by Georgiadis‐Johnsen‐Nielsen [23]. We refer the reader to that work
for a detailed presentation.
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