# A survey of rational points on Shimura curves 

By<br>Keisuke Arai*


#### Abstract

In this survey, we summarize known results and the author's works concerning rational points on Shimura curves.


## § 1. Introduction

For a prime number $p$, let $Y_{0}(p)$ be the coarse moduli scheme over $\mathbb{Q}$ classifying $(E, C)$ where $E$ is an elliptic curve and $C$ is a cyclic subgroup of $E$ of order $p$. Let $X_{0}(p)$ be the smooth compactification of $Y_{0}(p)$. Then $Y_{0}(p)$ is an affine smooth curve over $\mathbb{Q}$, while $X_{0}(p)$ is a proper smooth curve over $\mathbb{Q}$. These curves are called modular curves. See [11, Chapter II, §1] or [12, §2].

For rational points on $Y_{0}(p)$ and $X_{0}(p)$, we have the following theorem.
Theorem 1.1 ([13, Theorem 7.1]). If $p>163$, then $Y_{0}(p)(\mathbb{Q})=\emptyset . \quad$ Equivalently, if $p>163$, then $X_{0}(p)(\mathbb{Q})$ consists of only cusps.

This theorem was expanded to quadratic fields.
Theorem 1.2 ([15, Theorem B]). Let $k$ be a quadratic field which is not an imaginary quadratic field of class number one. Then there is a constant $C(k)$ depending on $k$ such that if $p>C(k)$, then $Y_{0}(p)(k)=\emptyset$ (equivalently, $X_{0}(p)(k)$ consists of only cusps).

[^0]In Theorems 1.1 and 1.2, the number of cusps is two. If we regard $p$ as the level of $Y_{0}(p)$ and $X_{0}(p)$, then the above theorems can be interpreted as follows: If the level of a modular curve is sufficiently large, then the set of rational points over a number field on the modular curve is small.

From now to the end of this article, let $k$ be a number field. We propose a basic problem concerning $k$-rational points on a certain moduli of abelian varieties or its compactification.

Problem 1.3. Let $X$ be a certain moduli of abelian varieties with a level structure $\left(e . g . X=Y_{0}(p)\right)$ or its compactification (e.g. $\left.X=X_{0}(p)\right)$. If the level of $X$ grows, does the set $X(k)$ become small?

In Problem 1.3, the meaning of " $X(k)$ is small" depends on the case. In some cases, it means that $X(k)=\emptyset$ or that $X(k)$ consists of only cusps. In another case, for example, we have the following open problem (see [2, Question 2.1] or [17, p.187-188]): If $p$ is sufficiently large (depending on $k$ ), does $Y_{0}(p)(k)$ (resp. $X_{0}(p)(k)$ ) consist of at most CM points (resp. at most cusps and CM points)? Here, a CM point means a point which corresponds to an elliptic curve with complex multiplication.

## § 2. Results on Shimura curves

In the following, we discuss the case where $X$ in Problem 1.3 is a Shimura curve over $\mathbb{Q}$, and give partial solutions to this problem. Let $B$ be an indefinite quaternion division algebra over $\mathbb{Q}$, and let $d(B)$ be the product of prime numbers $p$ such that $B \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \not \not \mathrm{M}_{2}\left(\mathbb{Q}_{p}\right)$. Then $d(B)$ is called the discriminant of $B$. Note that $B \mapsto d(B)$ induces a bijection between the set of the isomorphism classes of indefinite quaternion division algebras over $\mathbb{Q}$, and the set of $d \in \mathbb{Z}$ such that $d>1$ and $d$ is the product of an even number of distinct prime numbers (see [18, Theorem 3.5]). Choose a maximal order $\mathcal{O}$ of $B$, which we fix. Note that $\mathcal{O}$ is not unique, but it is unique up to conjugation (see [1, Theorem 1.59], [14, Theorem 5.2.12] or [18, Theorem 3.10]). A QM-abelian surface by $\mathcal{O}$ over a field $F$ is a pair $(A, i)$, where $A$ is a two-dimensional abelian variety over $F$ and $i: \mathcal{O} \hookrightarrow \operatorname{End}_{F}(A)$ is an injective ring homomorphism satisfying $i(1)=i d$. Here, $\operatorname{End}_{F}(A)$ is the ring of endomorphisms of $A$ defined over $F$. Note that a QM-abelian surface is sometimes called a false elliptic curve (see $[7, \S 1]$ ). Let $M^{B}$ be the coarse moduli scheme over $\mathbb{Q}$ classifying QM-abelian surfaces by $\mathcal{O}$. Then $M^{B}$ is a proper smooth curve over $\mathbb{Q}$, which is called the Shimura curve associated to $B$. Note that $M^{B}$ has no cusps. Note also that the isomorphism class of $M^{B}$ does not depend on the choice of $\mathcal{O}$. See [8, p.93] or [9, p.235]. We regard $d(B)$ as the level of $M^{B}$.

There are no $\mathbb{R}$-rational points on $M^{B}$ as follows.

Theorem $2.1([19$, Theorem 0$]) . \quad M^{B}(\mathbb{R})=\emptyset$.
Example 2.2. If $d(B)=6$, then $M^{B}$ is defined by the equation $x^{2}+y^{2}+3=0$ (see [10, Theorem 1-1]).

For a prime number $q$, let $\mathcal{B}(q)$ be the set of the isomorphism classes of indefinite quaternion division algebras $B$ over $\mathbb{Q}$ such that

$$
\begin{cases}B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \not \not \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q})) & \text { if } q \neq 2, \\ B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \not \not \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-1})) \text { and } B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-2}) \not \not \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-2})) & \text { if } q=2\end{cases}
$$

For a prime $\mathfrak{q}$ of $k$, let

- $\kappa(\mathfrak{q})$ : the residue field of $\mathfrak{q}$,
- $l_{\mathfrak{q}}$ : the characteristic of $\kappa(\mathfrak{q})$,
- $\mathrm{N}_{\mathfrak{q}}$ : the cardinality of $\kappa(\mathfrak{q})$,
- $e_{\mathfrak{q}}$ : the ramification index of $\mathfrak{q}$ in $k / \mathbb{Q}$,
- $f_{\mathfrak{q}}$ : the degree of the extension $\kappa(\mathfrak{q}) / \mathbb{F}_{l_{\mathfrak{q}}}$.

We have the following theorem concerning non-existence of $k$-rational points on $M^{B}$.
Theorem 2.3 ([3, Theorem 1.1]). Assume that

- $[k: \mathbb{Q}]$ is even,
- $\mathfrak{q}$ is a prime of $k$ of residue characteristic $q$,
- $\mathfrak{q}$ is the unique prime of $k$ above $q$,
- $f_{\mathfrak{q}}$ is odd,
- $B \in \mathcal{B}(q)$.

Then there is a finite set $P_{1}(k, \mathfrak{q})$ of prime numbers depending on $k$ and $\mathfrak{q}$ satisfying: If there is a prime divisor $p$ of $d(B)$ which is not in $P_{1}(k, \mathfrak{q})$, then $M^{B}(k)=\emptyset$.

Remark.

1. Roughly speaking, the condition that "there is a prime divisor $p$ of $d(B)$ which is not in $P_{1}(k, \mathfrak{q})$ " is equivalent to that $d(B)$ is sufficiently large, because $d(B)$ is square free. Then Theorem 2.3 can be interpreted as follows: Under some assumptions, we have $M^{B}(k)=\emptyset$ if $d(B)$ is sufficiently large. So, this theorem gives a partial solution to Problem 1.3.
2. For an imaginary quadratic field $k$, Theorem 2.3 was proved in [8, Theorem 6.3] (in the case where $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$ ) and [16, Theorem 1.1] (under mild extra assumptions).
3. If $[k: \mathbb{Q}]$ is odd, then there is an embedding $k \hookrightarrow \mathbb{R}$, and so $M^{B}(k)=\emptyset$ by Theorem 2.1.

In Theorem 2.3, the uniqueness of $\mathfrak{q}$ seems strong. In the following theorem, we do not assume the uniqueness of $\mathfrak{q}$, though we impose an additional condition on a prime divisor $p$ of $d(B)$.

Theorem 2.4 ([4, Theorem 2.4]). Assume that

- $[k: \mathbb{Q}]$ is even,
- $\mathfrak{q}$ is a prime of $k$ of residue characteristic $q$,
- $f_{\mathfrak{q}}$ is odd,
- $B \in \mathcal{B}(q)$.

Then there is a finite set $P_{2}(k, \mathfrak{q})$ of prime numbers depending on $k$ and $\mathfrak{q}$ satisfying: If there is a prime divisor $p$ of $d(B)$ such that $p \notin P_{2}(k, \mathfrak{q})$ and $f_{\mathfrak{p}}$ is odd for any prime $\mathfrak{p}$ of $k$ above $p$, then $M^{B}(k)=\emptyset$.

Definitions of the exceptional sets $P_{1}(k, \mathfrak{q}), P_{2}(k, \mathfrak{q})$ will be given in $\S 3$. Let $h_{k}$ be the class number of $k$. From now to the end of this section, assume that $k$ is an imaginary quadratic field of $h_{k}>1$ unless otherwise specified. Then as seen in the following theorem, we need no auxiliary prime $\mathfrak{q}$ as in Theorems 2.3 and 2.4.

Theorem 2.5 ([8, Theorem 6.6]). There is a finite set $P(k)$ of prime numbers depending on $k$ satisfying: If $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$ and if there is a prime divisor $p$ of $d(B)$ which is not in $P(k)$, then $M^{B}(k)=\emptyset$.

## Remark.

1. Theorem 2.5 can be interpreted as follows: If $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$ and if $d(B)$ is sufficiently large, then $M^{B}(k)=\emptyset$. So, this theorem gives a partial solution to Problem 1.3.
2. If $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$ and if $k$ is an imaginary quadratic field of $h_{k}=1$, then $M^{B}(k) \neq \emptyset$ (see [8, Proposition 6.5]).

We have the following theorem in the case where $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$.

Theorem $2.6([5])$. There is a finite set $P^{\prime}(k)$ of prime numbers depending on $k$ satisfying: If $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$ and if there is a prime divisor $p$ of $d(B)$ such that
(i) $p \notin P^{\prime}(k)$, and
(ii) if $p$ splits in $k$, then $p \equiv 1 \bmod 4$, then $M^{B}(k)=\emptyset$.

Definitions of the exceptional sets $P(k), P^{\prime}(k)$ will be given in $\S 3$.
Remark. In Theorem 2.6, the assumption (ii) is technical, and might be unnecessary. If we can drop it, then the following assertion is true: If $d(B)$ is sufficiently large, then $M^{B}(k)=\emptyset$.

## § 3. Definitions of the exceptional sets and numerical examples

In this section, we give a definition of the exceptional set $P_{1}(k, \mathfrak{q})\left(\right.$ resp. $P_{2}(k, \mathfrak{q})$, resp. $P(k)$, resp. $P^{\prime}(k)$ ) of prime numbers in Theorem 2.3 (resp. Theorem 2.4, resp. Theorem 2.5, resp. Theorem 2.6) explicitly. We also give numerical examples of Theorems 2.3 and 2.4. Let

- $C l_{k}$ : the ideal class group of $k$,
- $h_{k}^{\prime}$ : the largest order of the elements in $C l_{k}$.

Then $h_{k}^{\prime}$ divides $h_{k}$. For positive integers $N$ and $e$, let

$$
\begin{gathered}
\mathcal{C}(N, e):= \\
\left\{\beta^{e}+\bar{\beta}^{e} \in \mathbb{Z} \mid \beta, \bar{\beta} \in \mathbb{C} \text { are the roots of } T^{2}+s T+N=0 \text { for some } s \in \mathbb{Z}, s^{2} \leq 4 N\right\}, \\
\mathcal{D}(N, e):=\left\{a, a \pm N^{\frac{e}{2}}, a \pm 2 N^{\frac{e}{2}}, a^{2}-3 N^{e} \in \mathbb{R} \mid a \in \mathcal{C}(N, e)\right\} .
\end{gathered}
$$

Note that any element $a \in \mathcal{C}(N, e)$ satisfies $|a| \leq 2 N^{\frac{e}{2}}$. For a subset $\mathcal{D} \subseteq \mathbb{Z}$, let

$$
\mathcal{P}(\mathcal{D}):=\{\text { prime divisors of some of the integers in } \mathcal{D} \backslash\{0\}\} .
$$

If $e$ is even, then $\mathcal{D}(N, e)$ is a subset of $\mathbb{Z}$, and the set $\mathcal{P}(\mathcal{D}(N, e))$ contains 2,3 and every prime divisor of $N$. We define the finite sets

$$
\begin{aligned}
& \widetilde{P}_{1}(k, \mathfrak{q}):= \begin{cases}\mathcal{P}\left(\mathcal{D}\left(\mathrm{N}_{\mathfrak{q}}, e_{\mathfrak{q}}\right)\right) & \text { if } B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k) \text { and } e_{\mathfrak{q}} \text { is even, } \\
\mathcal{P}\left(\mathcal{D}\left(\mathrm{N}_{\mathfrak{q}}, 2 e_{\mathfrak{q}}\right)\right) & \text { if } B \otimes_{\mathbb{Q}} k \not \mathrm{M}_{2}(k),\end{cases} \\
& \widetilde{P}_{2}(k, \mathfrak{q}):=\mathcal{P}\left(\mathcal{D}\left(\mathrm{N}_{\mathfrak{q}}, 2 h_{k}^{\prime}\right)\right) .
\end{aligned}
$$

In Theorems 2.3 and 2.4, $P_{1}(k, \mathfrak{q})=\widetilde{P}_{1}(k, \mathfrak{q})$ and $P_{2}(k, \mathfrak{q})=\widetilde{P}_{2}(k, \mathfrak{q})$ are appropriate choices, respectively.

For a finite Galois extension $k$ of $\mathbb{Q}$ and a prime number $l$, let $e_{l}$ (resp. $f_{l}$, resp. $g_{l}$ ) be the ramification index of $l$ in $k / \mathbb{Q}$ (resp. the degree of the residue field extension above $l$ in $k / \mathbb{Q}$, resp. the number of primes of $k$ above $l)$. Note that $e_{l} f_{l} g_{l}=[k: \mathbb{Q}]$. We have the following examples of Theorems 2.3 and 2.4 , which will be reconsidered in $\S 5$ in the context of the Hasse principle and the Manin obstruction.

Example 3.1. Assume $d(B)=39, k=\mathbb{Q}(\sqrt{2}, \sqrt{-13})$. Let $(p, q)=(13,2)$. Then $\left(e_{p}, f_{p}, g_{p}\right)=(2,2,1)$ and $\left(e_{q}, f_{q}, g_{q}\right)=(4,1,1)$. Since 3 (resp. 13) splits in $\mathbb{Q}(\sqrt{-2})\left(\right.$ resp. $\mathbb{Q}(\sqrt{-1})$, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-2}) \not \neq \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-2}))\left(\right.$ resp. $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \not \neq$ $\mathrm{M}_{2}(\mathbb{Q}(\sqrt{-1}))$ ). Then $B \in \mathcal{B}(q)$. Since $\left(e_{3}, f_{3}, g_{3}\right)=(1,2,2)$ and $\left(e_{13}, f_{13}, g_{13}\right)=$ $(2,2,1)$, we have $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$ (see [22, Chapitre II, Théorème 1.3]). Let $\mathfrak{q}$ be the unique prime of $k$ above $q=2$. Then $e_{\mathfrak{q}}=4, f_{\mathfrak{q}}=1, \mathrm{~N}_{\mathfrak{q}}=2$, and $\widetilde{P}_{1}(k, \mathfrak{q})=$ $\mathcal{P}(\mathcal{D}(2,4))=\{2,3,5,7,47\} \not \supset p$ (see [3, Table 1]). Applying Theorem 2.3, we obtain $M^{B}(k)=\emptyset$.

Example 3.2. Assume $d(B)=122, k=\mathbb{Q}(\sqrt{-39}, \sqrt{-183})$. Let $(p, q)=(61,3)$. Then $\left(e_{p}, f_{p}, g_{p}\right)=\left(e_{q}, f_{q}, g_{q}\right)=(2,1,2)$. Since 61 splits in $\mathbb{Q}(\sqrt{-3})$, we have $B \otimes_{\mathbb{Q}}$ $\mathbb{Q}(\sqrt{-3}) \not \neq \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-3}))$ and $B \in \mathcal{B}(q)$. Let $\mathfrak{q}$ be any prime of $k$ above $q=3$. Then $f_{\mathfrak{q}}=1, \mathrm{~N}_{\mathfrak{q}}=3$. Since $C l_{k} \cong \mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, we have $h_{k}^{\prime}=8$ and $\widetilde{P}_{2}(k, \mathfrak{q})=$ $\mathcal{P}(\mathcal{D}(3,16))=\{2,3,5,7,11,17,23,31,47,97,113,191,193,353,383,2113,3457,30529$, $36671\} \not \supset p$. Applying Theorem 2.4, we obtain $M^{B}(k)=\emptyset$.

## Remark.

1. If $k=\mathbb{Q}(\sqrt{-39}, \sqrt{-183})$, then no prime number is totally ramified in $k$. So, in the situation of Example 3.2, no prime $\mathfrak{q}$ of $k$ satisfies the assumptions of Theorem 2.3. Then we cannot obtain Example 3.2 from Theorem 2.3.
2. If $k=\mathbb{Q}(\sqrt{2}, \sqrt{-13})$, then $f_{3}=f_{13}=2$. So, in the situation of Example 3.1, there is no prime divisor $p$ of $d(B)=39$ satisfying the assumptions of Theorem 2.4. Then we cannot obtain Example 3.1 from Theorem 2.4.

From now to the end of this section, assume that $k$ is an imaginary quadratic field of $h_{k}>1$. Let $\mathcal{S}_{0}$ be the set of non-principal primes of $k$ which split in $k / \mathbb{Q}$. Then $\mathcal{S}_{0} \neq \emptyset$ since $h_{k}>1$. For each prime $\mathfrak{q}$ of $k$, fix an element $\beta_{\mathfrak{q}, J} \in \mathcal{O}_{k}$ (resp. $\beta_{\mathfrak{q}} \in \mathcal{O}_{k}$ ) satisfying $\mathfrak{q}^{h_{k}}=\beta_{\mathfrak{q}, J} \mathcal{O}_{k}$ (resp. $\mathfrak{q}^{h_{k}^{\prime}}=\beta_{\mathfrak{q}} \mathcal{O}_{k}$ ). Let $c_{k}$ be the least positive integer such that $C l_{k}$ is generated by primes $\mathfrak{q}$ of $k$ satisfying $f_{\mathfrak{q}}=1$ and $\mathrm{N}_{\mathfrak{q}}<c_{k}$. Let

- $\mathcal{A}_{1, \mathfrak{q}, J}(k):=\left\{a-\operatorname{Tr}_{k / \mathbb{Q}}\left(\beta_{\mathfrak{q}, J}^{12}\right) \in \mathbb{Z}\left|a \in \mathbb{Z},|a| \leq 2 \mathrm{~N}_{\mathfrak{q}}^{6 h_{k}}\right\}\right.$,
- $\mathcal{A}_{2, \mathfrak{q}, J}(k):=\left\{a-\mathrm{N}_{\mathfrak{q}}^{4 h_{k}} \operatorname{Tr}_{k / \mathbb{Q}}\left(\beta_{\mathfrak{q}, J}^{4}\right) \in \mathbb{Z}\left|a \in \mathbb{Z},|a| \leq 2 \mathrm{~N}_{\mathfrak{q}}^{6 h_{k}}\right\}\right.$,
- $\mathcal{A}_{3, J}(k)$ : the set of integers of the forms $\operatorname{Norm}_{\mathbb{Q}\left(\zeta_{3 h_{k}}\right) / \mathbb{Q}}\left(a^{2}-q\left(\theta+\theta^{-1}+2\right)\right)$ and $\operatorname{Norm}_{\mathbb{Q}\left(\zeta_{3 h_{k}}\right) / \mathbb{Q}}\left(a^{2}+q\left(\theta+\theta^{-1}-2\right)\right)$, where $\theta^{3 h_{k}}=1, q$ is a prime number less than $c_{k}$, and $a \in \mathbb{Z},|a| \leq 2 \sqrt{q}$,
- $\mathcal{N}_{4, J}(k)$ : the set of prime numbers $p>2$ satisfying $\left(\frac{q}{p}\right)=-1$ for all prime numbers $q$ such that $3<q<\frac{p}{4}$ and $q$ is not inert in $k$.

Here, $\zeta_{3 h_{k}}$ is a primitive $3 h_{k}$-th root of unity. The subscript " $J$ " denotes the initial of Jordan. Note that $\mathcal{A}_{1, \mathfrak{q}, J}(k)$ and $\mathcal{A}_{2, \mathfrak{q}, J}(k)$ are independent of the choice of $\beta_{\mathfrak{q}, J}$, because $\mathcal{O}_{k}^{\times}=\{ \pm 1\}$. Let $\operatorname{Ram}(k)$ be the set of prime numbers which are ramified in $k$. We define

$$
\begin{aligned}
& \widetilde{P}(k):=\operatorname{Ram}(k) \cup\{p \mid p \leq 7\} \cup\left(\bigcap_{\mathfrak{q} \in \mathcal{S}_{0}} \mathcal{P}\left(\mathcal{A}_{1, \mathfrak{q}, J}(k)\right)\right) \cup\left(\bigcap_{\mathfrak{q} \in \mathcal{S}_{0}} \mathcal{P}\left(\mathcal{A}_{2, \mathfrak{q}, J}(k)\right)\right) \\
& \cup \mathcal{P}\left(\mathcal{A}_{3, J}(k)\right) \cup \mathcal{N}_{4, J}(k) .
\end{aligned}
$$

Let

- $\mathcal{A}_{1, \mathfrak{q}}(k):=\left\{a-\operatorname{Tr}_{k / \mathbb{Q}}\left(\beta_{\mathfrak{q}}^{24}\right) \in \mathbb{Z} \mid a \in \mathcal{C}\left(\mathrm{~N}_{\mathfrak{q}}, 24 h_{k}^{\prime}\right)\right\}$,
- $\mathcal{A}_{2, \mathfrak{q}}(k):=\left\{a-\mathrm{N}_{\mathfrak{q}}^{8 h_{k}^{\prime}} \operatorname{Tr}_{k / \mathbb{Q}}\left(\beta_{\mathfrak{q}}^{8}\right) \in \mathbb{Z} \mid a \in \mathcal{C}\left(\mathrm{~N}_{\mathfrak{q}}, 24 h_{k}^{\prime}\right)\right\}$,
- $\mathcal{A}_{3, \mathcal{S}}(k):=\left\{a-2 \mathrm{~N}_{\mathfrak{q}}^{12 h_{k}^{\prime}} \in \mathbb{Z} \mid \mathfrak{q} \in \mathcal{S}, a \in \mathcal{C}\left(\mathrm{~N}_{\mathfrak{q}}, 24 h_{k}^{\prime}\right)\right\}$, where $\mathcal{S}$ is a non-empty finite subset of $\mathcal{S}_{0}$ generating $C l_{k}$,
- $\mathcal{N}(k)$ : the set of integers $N \in \mathbb{Z}$ such that
(i) $N$ is the discriminant of a quadratic field, and
(ii) for any prime number $2<q<\frac{|N|}{4}$, if $q$ splits in $k$, then $q$ does not split in $\mathbb{Q}(\sqrt{N})$,
- $\mathcal{N}^{\text {prime }}(k)$ : the set of prime numbers in $\mathcal{N}(k)$.

Note that $\mathcal{A}_{1, \mathfrak{q}}(k)$ and $\mathcal{A}_{2, \mathfrak{q}}(k)$ are independent of the choice of $\beta_{\mathfrak{q}}$. We define

$$
\begin{gathered}
\widetilde{P}^{\prime}(k):=\operatorname{Ram}(k) \cup\{p \mid p \leq 23\} \cup\left(\bigcap_{\mathfrak{q} \in \mathcal{S}_{0}} \mathcal{P}\left(\mathcal{A}_{1, \mathfrak{q}}(k)\right)\right) \cup\left(\bigcap_{\mathfrak{q} \in \mathcal{S}_{0}} \mathcal{P}\left(\mathcal{A}_{2, \mathfrak{q}}(k)\right)\right) \\
\cup\left(\bigcap_{\mathcal{S} \subseteq \mathcal{S}_{0}}\left(\mathcal{P}\left(\mathcal{A}_{3, \mathcal{S}}(k)\right) \cup\left\{l_{\mathfrak{q}} \mid \mathfrak{q} \in \mathcal{S}\right\}\right)\right) \cup \mathcal{N}^{\text {prime }}(k),
\end{gathered}
$$

where $\mathcal{S}$ runs through non-empty finite subsets of $\mathcal{S}_{0}$ generating $C l_{k}$. Note that $\widetilde{P}^{\prime}(k)$ is defined by modifying $\widetilde{P}(k)$. By [13, Theorem A], the sets $\mathcal{N}_{4, J}(k)$ and $\mathcal{N}(k)$ are finite, and their upper bounds can be effectively estimated except at most one element. Then the sets $\widetilde{P}(k)$ and $\widetilde{P}^{\prime}(k)$ are finite. In Theorems 2.5 and 2.6, $P(k)=\widetilde{P}(k)$ and $P^{\prime}(k)=\widetilde{P}^{\prime}(k)$ are appropriate choices, respectively.

## §4. Difficulty of the case where $B \otimes_{\mathbb{Q}} k \not \neq \mathrm{M}_{2}(k)$

In this section, we explain the difficulty of the case where $B \otimes_{\mathbb{Q}} k \not \approx \mathrm{M}_{2}(k)$, and the way to overcome it. For a rational point on $M^{B}$, there is sometimes a gap between the field of moduli and the field of definition as follows.

Theorem 4.1 ([8, Theorem 1.1]). Let $F$ be a field of characteristic 0 . Then a point $x \in M^{B}(F)$ is represented by a $Q M$-abelian surface by $\mathcal{O}$ over $F$ if and only if $B \otimes_{\mathbb{Q}} F \cong \mathrm{M}_{2}(F)$.

So, when $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$, a point $x \in M^{B}(k)$ is not represented by a QM-abelian surface by $\mathcal{O}$ over $k$. This is the reason why the case where $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$ is difficult. We can overcome the difficulty by improving Jordan's method of studying canonical isogeny characters.

First, we explain Jordan's method in the case where $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$. Suppose that there is a point $x \in M^{B}(k)$. Then $x$ is represented by a QM-abelian surface $(A, i)$ by $\mathcal{O}$ over $k$. Let $p$ be a prime divisor of $d(B)$, and let $T_{p} A$ be the $p$-adic Tate module of $A$. Then $T_{p} A$ has a structure of a free $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$-module of rank one. Let $\bar{k}$ be an algebraic closure of $k$, and let $\mathrm{G}_{k}=\operatorname{Gal}(\bar{k} / k)$ be the absolute Galois group of $k$. The action of $\mathrm{G}_{k}$ on $T_{p} A$ yields a representation

$$
R_{p}: \mathrm{G}_{k} \longrightarrow \operatorname{Aut}_{\mathcal{O}}\left(T_{p} A\right) \cong\left(\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\right)^{\times}
$$

where $\operatorname{Aut}_{\mathcal{O}}\left(T_{p} A\right)$ is the group of $\mathbb{Z}_{p}$-linear automorphisms of $T_{p} A$ commuting with the action of $\mathcal{O}$. Let $\bar{R}_{p}:=R_{p} \bmod p$. Then by conjugating if necessary, we have

$$
\bar{R}_{p}: \mathrm{G}_{k} \longrightarrow\left\{\left(\begin{array}{cc}
a & * \\
0 & a^{p}
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p^{2}}\right)\right\} .
$$

From the $(1,1)$ entry, we obtain a character

$$
\varrho_{p}: \mathrm{G}_{k} \longrightarrow \mathbb{F}_{p^{2}}^{\times}
$$

This is called a canonical isogeny character at $p$, which was introduced in $[8, \S 4]$. In Theorems 2.3, 2.4 and 2.5, we use the classification of $\varrho_{p}$ to conclude that $p$ is in an exceptional finite set.

Next, we explain how to modify Jordan's method in the case where $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$. Suppose that there is a point $x \in M^{B}(k)$. Let $K$ be a quadratic extension of $k$ such that $B \otimes_{\mathbb{Q}} K \cong \mathrm{M}_{2}(K)$, equivalently, if a prime $\mathfrak{l}$ of $k$ satisfies $B \otimes_{\mathbb{Q}} k_{\mathfrak{l}} \not \not \mathrm{M}_{2}\left(k_{\mathfrak{l}}\right)$, then it does not split in $K$ (see [1, Proposition 1.14]). Here, $k_{\mathfrak{l}}$ is the completion of $k$ at $\mathfrak{l}$. We can always take such $K$ (see [6, Remark 4.4]). Then $x$ is represented by a QMabelian surface $(A, i)$ by $\mathcal{O}$ over $K$. Let $p$ be a prime divisor of $d(B)$. Then by the same argument as above, we obtain a representation

$$
R_{p, K}: \mathrm{G}_{K} \longrightarrow \operatorname{Aut}_{\mathcal{O}}\left(T_{p} A\right) \cong\left(\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\right)^{\times}
$$

and a character

$$
\varrho_{p, K}: \mathrm{G}_{K} \longrightarrow \mathbb{F}_{p^{2}}^{\times}
$$

To prove Theorems 2.3 and 2.4, it suffices to take a good choice of $K$. To prove Theorem 2.6 , we use the composition

$$
\varphi_{p, K}: \mathrm{G}_{k} \xrightarrow{\operatorname{tr}_{K / k}} \mathrm{G}_{K}^{\mathrm{ab}} \xrightarrow{\varrho_{p, K}^{\mathrm{ab}}} \mathbb{F}_{p^{2}}^{\times}
$$

where $\operatorname{tr}_{K / k}$ is the transfer map, $\mathrm{G}_{K}^{\mathrm{ab}}=\operatorname{Gal}\left(K^{\mathrm{ab}} / K\right), K^{\mathrm{ab}}$ is the maximal abelian extension of $K$ in $\bar{K}$, and $\varrho_{p, K}^{\mathrm{ab}}$ is the natural map induced from $\varrho_{p, K}$. Then we classify $\varphi_{p, K}$, and conclude that $p$ is in $\widetilde{P}^{\prime}(k)$. Here, $\varphi_{p, K}$ depends on $K$, but $\varphi_{p, K}^{4}$ does not. This is a key to the proof.

Remark. In [16], a different approach is taken when $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$. In this case, we do not have a representation $R_{p}: \mathrm{G}_{k} \longrightarrow \operatorname{Aut}_{\mathcal{O}}\left(T_{p} A\right) \cong\left(\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\right)^{\times}$, but instead a projective representation $\mathrm{G}_{k} \longrightarrow\left(\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\right)^{\times} /\{ \pm 1\}$ is defined and studied.

## §5. Relevance to the Manin obstruction

In this section, we introduce the concept of the Manin obstruction, and give an example concerning Shimura curves. Let $\mathbb{A}_{k}$ be the adèle ring of $k$, and let $\Omega_{k}$ be the set of places of $k$. For $v \in \Omega_{k}$, let $k_{v}$ be the completion of $k$ at $v$. Since $M^{B}$ is proper over $\mathbb{Q}$, we have $M^{B}\left(\mathbb{A}_{k}\right)=\prod_{v \in \Omega_{k}} M^{B}\left(k_{v}\right)$. Let $\operatorname{Br}\left(k_{v}\right)\left(\right.$ resp. $\left.\operatorname{Br}\left(M^{B}\right)=H_{\text {êt }}^{2}\left(M^{B}, \mathbb{G}_{m}\right)\right)$ be the Brauer group of $k_{v}\left(\right.$ resp. $\left.M^{B}\right)$. Let

$$
(,): \operatorname{Br}\left(M^{B}\right) \times M^{B}\left(\mathbb{A}_{k}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}
$$

be the pairing defined by $\left(c,\left\{x_{v}\right\}_{v \in \Omega_{k}}\right)=\sum_{v \in \Omega_{k}} \operatorname{inv}_{v}\left(x_{v}^{*} c\right)$. Here, $\operatorname{inv}_{v}: \operatorname{Br}\left(k_{v}\right) \longrightarrow$ $\mathbb{Q} / \mathbb{Z}$ is the local invariant at $v$, and $x_{v}^{*}: \operatorname{Br}\left(M^{B}\right) \longrightarrow \operatorname{Br}\left(k_{v}\right)$ is the map associated to
$x_{v}: \operatorname{Spec}\left(k_{v}\right) \longrightarrow M^{B}$. Note that in the above sum, we have $\operatorname{inv}_{v}\left(x_{v}^{*} c\right)=0$ for all but finitely many $v \in \Omega_{k}$. Let $M^{B}\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}$ be the right kernel of this pairing, i.e.,

$$
M^{B}\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}:=\left\{\left\{x_{v}\right\}_{v \in \Omega_{k}} \in M^{B}\left(\mathbb{A}_{k}\right) \mid\left(c,\left\{x_{v}\right\}_{v \in \Omega_{k}}\right)=0 \text { for any } c \in \operatorname{Br}\left(M^{B}\right)\right\}
$$

Then

$$
M^{B}(k) \subseteq M^{B}\left(\mathbb{A}_{k}\right)^{\mathrm{Br}} \subseteq M^{B}\left(\mathbb{A}_{k}\right)
$$

When $M^{B}(k)=\emptyset$ and $M^{B}\left(\mathbb{A}_{k}\right) \neq \emptyset, M^{B}$ is called a counterexample to the Hasse principle over $k$. Such a counterexample is said to be accounted for by the Manin obstruction if $M^{B}\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\emptyset$ (see $[20, \S 5.2]$ ).

Theorem 5.1 ([4, Theorems 2.3 and 2.4]). In Theorems 2.3 and 2.4, we can replace " $M^{B}(k)=\emptyset$ " with " $M^{B}(k)=M^{B}\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\emptyset$ ". Moreover, we can take $P_{1}(k, \mathfrak{q})=\widetilde{P}_{1}(k, \mathfrak{q})$ and $P_{2}(k, \mathfrak{q})=\widetilde{P}_{2}(k, \mathfrak{q})$.

Remark. In the situation of Theorem 2.3, $M^{B}(k)=M^{B}\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\emptyset$ for an imaginary quadratic field $k$ was proved in [21, Theorem 3.1] (in the case where $B \otimes_{\mathbb{Q}} k \cong$ $\mathrm{M}_{2}(k)$ ) and [16, Theorem 1.1] (under mild extra assumptions).

Example 5.2. In the situations of Examples 3.1 and 3.2, we have $M^{B}(k)=$ $M^{B}\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\emptyset$ and $M^{B}\left(\mathbb{A}_{k}\right) \neq \emptyset$ (see [3, Proposition 4.1], [4, Proposition 2.6]). So, in these cases, $M^{B}$ is a counterexample to the Hasse principle over $k$, and it is accounted for by the Manin obstruction.

Remark. In the situations of Theorems 2.5 and 2.6, we expect $M^{B}(k)=M^{B}\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}$ $=\emptyset$, but there is no such result so far.

## Acknowledgements

The author would like to thank the organizers Hiroki Sumida-Takahashi, Yasuo Ohno and Takahiro Tsushima for giving him an opportunity to talk at the conference. He would also like to thank the anonymous referee for helpful comments.

## References

[1] Alsina, M. and Bayer, P., Quaternion orders, quadratic forms, and Shimura curves, CRM Monograph Series, 22. American Mathematical Society, Providence, RI, 2004.
[2] Arai, K., Galois images and modular curves, Algebraic number theory and related topics 2010, 145-161, RIMS Kôkyûroku Bessatsu, B32, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012.
[3] Arai, K., Non-existence of points rational over number fields on Shimura curves, Acta Arith., 172 (2016), 243-250.
[4] Arai, K., Rational points on Shimura curves and the Manin obstruction, Nagoya Math. J., 230 (2018), 144-159.
[5] Arai, K., Points on Shimura curves rational over imaginary quadratic fields in the non-split case, preprint, available at the web page (https://arxiv.org/pdf/1411.1162v1).
[6] Arai, K. and Momose, F., Algebraic points on Shimura curves of $\Gamma_{0}(p)$-type, J. Reine Angew. Math., 690 (2014), 179-202.
[7] Buzzard, K., Integral models of certain Shimura curves, Duke Math. J., 87 (1997), no. 3, 591-612.
[8] Jordan, B., Points on Shimura curves rational over number fields, J. Reine Angew. Math., 371 (1986), 92-114.
[9] Jordan, B. and Livné, R., Local Diophantine properties of Shimura curves, Math. Ann., 270 (1985), no. 2, 235-248.
[10] Kurihara, A, On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 25 (1979), no. 3, 277-300.
[11] Mazur, B., Modular curves and the Eisenstein ideal, I.H.E.S. Publ. Math., No. 47 (1977), 33-186.
[12] Mazur, B., Rational points on modular curves, Modular functions of one variable $V$, Lecture Notes in Math., Vol. 601, Springer, Berlin (1977), 107-148.
[13] Mazur, B., Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., 44 (1978), no. 2, 129-162.
[14] Miyake, T., Modular forms. Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint of the first 1989 English edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2006.
[15] Momose, F., Isogenies of prime degree over number fields, Compositio Math., 97 (1995), no. 3, 329-348.
[16] Rotger, V. and de Vera-Piquero, C., Galois representations over fields of moduli and rational points on Shimura curves, Canad. J. Math., 66 (2014), 1167-1200.
[17] Serre, J.-P., Représentations l-adiques, Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 177-193. Japan Soc. Promotion Sci., Tokyo, 1977.
[18] Shimizu, H., Hokei kansu. I-III. (Japanese) [Automorphic functions. I-III] Second edition. Iwanami Shoten Kiso Sūgaku [Iwanami Lectures on Fundamental Mathematics], 8. Daisū [Algebra], vii. Iwanami Shoten, Tokyo, 1984.
[19] Shimura, G., On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann., 215 (1975), 135-164.
[20] Skorobogatov, A., Torsors and rational points, Cambridge Tracts in Mathematics, 144, Cambridge University Press, Cambridge, 2001.
[21] Skorobogatov, A., Shimura coverings of Shimura curves and the Manin obstruction, Math. Res. Lett., 12 (2005), no. 5-6, 779-788.
[22] Vignéras, M.-F., Arithmétique des algèbres de quaternions. (French) [Arithmetic of quaternion algebras]. Lecture Notes in Mathematics, 800. Springer, Berlin, 1980.


[^0]:    Received March 31, 2016. Revised October 7, 2016.
    2010 Mathematics Subject Classification(s): Primary 11G18, 14G05; Secondary 11G10, 11 G 15.
    Key Words: rational points, Shimura curves, QM-abelian surfaces.
    This work was supported by JSPS KAKENHI Grant Numbers JP25800025, JP16K17578 and
    Research Institute for Science and Technology of Tokyo Denki University Grant Number Q16K-06 / Japan.
    *Department of Mathematics, School of Science and Technology for Future Life, Tokyo Denki University, Tokyo 120-8551, Japan.
    e-mail: araik@mail.dendai.ac.jp

