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A survey of rational points on Shimura curves

By

Keisuke Arai*

Abstract

In this survey, we summarize known results and the author’s works concerning rational
points on Shimura curves.

§1. Introduction

For a prime number  p , let  Y_{0}(p) be the coarse moduli scheme over  \mathbb{Q} classifying

 (E, C) where  E is an elliptic curve and  C is a cyclic subgroup of  E of order  p . Let

 X_{0}(p) be the smooth compactification of  Y_{0}(p) . Then  Y_{0}(p) is an affine smooth curve

over  \mathbb{Q} , while  X_{0}(p) is a proper smooth curve over  \mathbb{Q} . These curves are called modular

curves. See [11, Chapter II, §1] or [12, §2].
For rational points on  Y_{0}(p) and  X_{0}(p) , we have the following theorem.

Theorem 1.1 ([13, Theorem7.1]). If  p  >  163 , then  Y_{0}(p)(\mathbb{Q})  =  \emptyset . Equiva‐
lently, if  p>163 , then  X_{0}(p)(\mathbb{Q}) consists of only cusps.

This theorem was expanded to quadratic fields.

Theorem 1.2 ([15, Theorem B]). Let  k be a quadratic field which is not an
imaginary quadratic field of class number one. Then there is a constant  C(k) depending

on  k such that if  p>  C(k) , then  Y_{0}(p)(k)  =\emptyset (equivalently,  X_{0}(p)(k) consists of only
cusps).
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In Theorems 1.1 and 1.2, the number of cusps is two. If we regardp as the level of

 Y_{0}(p) and  X_{0}(p) , then the above theorems can be interpreted as follows: If the level of

a modular curve is sufficiently large, then the set of rational points over a number field
on the modular curve is small.

From now to the end of this article, let  k be a number field. We proposea basic

problem concerning  k‐rational points on a certain moduli of abelian varieties or its
compactification.

Problem 1.3. Let  X be a certain moduli of abelian varieties with a level struc‐

ture  (e.g. X=Y_{0}(p)) or its compactification  (e.g. X=X_{0}(p)) . If the level of  X grows,
does the set  X(k) become smal  l ?

In Problem 1.3, the meaning of  X(k) is small” depends on the case. In some
cases, it means that   X(k)=\emptyset or that  X(k) consists of only cusps. In another case, for

example, we have the following open problem (see [2, Question 2.1] or [17, p.187–188]):
If  p is sufficiently large (depending on  k), does  Y_{0}(p)(k) (resp.  X_{0}(p)(k) ) consist of at
most CM points (resp. at most cusps and CM points)? Here, a CM point means a point
which corresponds to an elliptic curve with complex multiplication.

§2. Results on Shimura curves

In the following, we discuss the case where  X in Problem 1.3 is a Shimura curve

over  \mathbb{Q} , and give partial solutions to this problem. Let  B be an indefinite quaternion

division algebra over  \mathbb{Q} , and let  d(B) be the product of prime numbers  p such that

 B\otimes_{\mathbb{Q}}\mathbb{Q}_{p}\not\cong M_{2}(\mathbb{Q}_{p}) . Then d(B) is called the discriminant of  B . Note thatB  arrow d(B)
induces a bijection between the set of the isomorphism classes of indefinite quaternion

division algebras over  \mathbb{Q} , and the set of  d\in \mathbb{Z} such that  d>1 and  d is the product of an

even number of distinct prime numbers (see [18, Theorem3.5]). Choose a maximal order
 \mathcal{O} of  B , which we fix. Note that  \mathcal{O} is not unique, but it is unique up to conjugation (see
[1, Theorem 1.59], [14, Theorem 5.2.12] or [18, Theorem 3.10]). A  QM‐abelian surface
by  \mathcal{O} over a field  F is a pair  (A, i) , where  A is a two‐dimensional abelian variety over
 F and  i :  \mathcal{O}\hookrightarrow End_{F}(A) is an injective ring homomorphism satisfying  i(1)=id. Here,

 End_{F}(A) is the ring of endomorphisms of  A defined over  F . Note that a QM‐abelian

surface is sometimes called a false el liptic curve (see [7, §1]). Let  M^{B} be the coarse
moduli scheme over  \mathbb{Q} classifying QM‐abelian surfaces by  \mathcal{O} . Then  M^{B} is a proper
smooth curve over  \mathbb{Q} , which is called the Shimura curve associated to  B . Note that
 M^{B} has no cusps. Note also that the isomorphism class of MB does not depend on the
choice of  \mathcal{O} . See [8, p.93] or [9, p.235]. We regard  d(B) as the level of MB.

There are no  \mathbb{R}‐rational points on  M^{B} as follows.
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Theorem 2.1 ([19, Theorem  0] ).  M^{B}(\mathbb{R})=\emptyset.

Example 2.2. If  d(B)=6 , then  M^{B} is defined by the equation  x^{2}+y^{2}+3=0
(see [10, Theorem 1‐1]).

For a prime number  q , let  \mathcal{B}(q) be the set of the isomorphism classes of indefinite

quaternion division algebras  B over  \mathbb{Q} such that

 \{  BB\otimes_{\mathbb{Q}}\mathbb{Q}(\sqrt{-1})\not\cong\otimes_{\mathbb{Q}}\mathbb
{Q}(\sqrt{-q})\not\cong M_{2}(\mathbb{Q}(\sqrt{-q}))M_{2}(\mathbb{Q}(\sqrt{-1})) and  B\otimes_{\mathbb{Q}}\mathbb{Q}(\sqrt{-2})\not\cong M_{2}(\mathbb{Q}(\sqrt{-2})
) ifqifq  =\neq 22.’
For a prime  q of  k , let

 \bullet  \kappa(q) : the residue field of q,

 \bullet  l_{q} : the characteristic of  \kappa(q) ,

 \bullet  N_{q} : the cardinality of  \kappa(q) ,

 \bullet  e_{q} : the ramification index ofq in k  /\mathbb{Q},

 \bullet  f_{q} : the degree of the extension  \kappa(q)/\mathbb{F}_{l_{q}}.

We have the following theorem concerning non‐existence of  k‐rational points on  M^{B}.

Theorem 2.3 ([3, Theorem 1.1]). Assume that

 \bullet  [k : \mathbb{Q}] is even,

 \bullet  q is a prime of  k of residue characteristic  q,

 \bullet  q is the unique prime of  k above  q,

 \bullet  f_{q} is odd,

 \bullet  B\in \mathcal{B}(q) .

Then there is a finite set  P_{1}(k, q) of prime numbers depending on  k and  q satisfying: If

there is a prime divisor  p of  d(B) which is not in  P_{1}(k, q) , then  M^{B}(k)=\emptyset.

Remark.

1. Roughly speaking, the condition that “there isaprime divisorp of d(B) which is not
in  P_{1}(k, q) is equivalent to that  d(B) is sufficiently large, because  d(B) is square
free. Then Theorem 2.3 can be interpreted as follows: Under some assumptions,

we have  M^{B}(k)  =  \emptyset if  d(B) is sufficiently large. So, this theorem gives apartial
solution to Problem 1.3.
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2. For an imaginary quadratic field  k , Theorem 2.3 was proved in [8, Theorem 6.3]
(in the case where  B\otimes_{\mathbb{Q}}k  \sim=  M_{2}(k) ) and [16, Theorem 1.1] (under mild extra
assumptions).

3. If  [k:\mathbb{Q}] is odd, then there is an embeddingk  \hookrightarrow \mathbb{R} , and so MB  (k)=\emptyset by Theorem
2.1.

In Theorem 2.3, the uniqueness of  q seems strong. In the following theorem, we do

not assume the uniqueness of  q , though we impose an additional condition on a prime
divisor  p of  d(B) .

Theorem 2.4 ([4, Theorem 2.4]). Assume that

 \bullet  [k : \mathbb{Q}] is even,

 \bullet  q is a prime of  k of residue characteristic  q,

 \bullet  f_{q} is odd,

 \bullet  B\in \mathcal{B}(q) .

Then there is a finite set  P_{2}(k, q) of prime numbers depending on  k and  q satisfying: If

there is a prime divisor  p of  d(B) such that  p\not\in P_{2}(k, q) and  f_{p} is odd for any prime  p

of  k above  p , then  M^{B}(k)=\emptyset.

Definitions of the exceptional sets  P_{1}(k, q) ,  P_{2}(k, q) will be given in §3. Let  h_{k}

be the class number of  k . From now to the end of this section, assume that  k is an

imaginary quadratic field of  h_{k}  >  1 unless otherwise specified. Then as seen in the

following theorem, we need no auxiliary prime  q as in Theorems 2.3 and 2.4.

Theorem 2.5 ([8, Theorem6.6]). There is a finite set  P(k) of prime numbers
depending on  k satisfying: If  B\otimes_{\mathbb{Q}}k_{=}^{\sim}M_{2}(k) and if there is a prime divisor  p of  d(B)
which is not in  P(k) , then  M^{B}(k)=\emptyset.

Remark.

1. Theorem 2.5 can be interpreted as follows: If  B\otimes_{\mathbb{Q}}k  \sim=  M_{2}(k) and if  d(B) is

sufficiently large, then  M^{B}(k)  =  \emptyset . So, this theorem gives a partial solution to
Problem 1.3.

2. If  B\otimes_{\mathbb{Q}}k_{=}^{\sim}M_{2}(k) and if  k is an imaginary quadratic field of  h_{k}=1 , then   M^{B}(k)\neq\emptyset
(see [8, Proposition 6.5]).

We have the following theorem in the case where  B\otimes_{\mathbb{Q}}k\not\cong M_{2}(k) .
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Theorem 2.6 ([5]). There is a finite set  P'(k) of prime numbers depending on
 k satisfying: If  B\otimes_{\mathbb{Q}}k\not\cong M_{2}(k) and if there is a prime divisor  p of  d(B) such that

(i)  p\not\in P'(k) , and

(ii) if  p splits in  k , then  p\equiv 1mod 4,

then  M^{B}(k)=\emptyset.

Definitions of the exceptional sets  P(k) ,  P'(k) will be given in §3.

Remark. In Theorem 2.6, the assumption (ii) is technical, and might be unneces‐
sary. If we can drop it, then the following assertion is true: If  d(B) is sufficiently large,
then  M^{B}(k)=\emptyset.

§3. Definitions of the exceptional sets and numerical examples

In this section, we give a definition of the exceptional set  P_{1}(k, q) (resp.  P_{2}(k, q) ,
resp.  P(k) , resp.  P'(k) ) of prime numbers in Theorem 2.3 (resp. Theorem 2.4, resp. The‐
orem 2.5, resp. Theorem 2.6) explicitly. We also give numerical examples of Theorems
2.3 and 2.4. Let

 \bullet  Cl_{k} : the ideal class group of k,

 \bullet  h_{k}' : the largest order of the elements in Clk.

Then  h_{k}' divides  h_{k} . For positive integersN and e, let

 \mathcal{C}(N, e) :=

{  \beta^{e}+\overline{\beta}^{e}\in \mathbb{Z}  |  \beta,  \overline{\beta}\in \mathbb{C} are the roots of  T^{2}+sT+N=0 for some  s\in \mathbb{Z},  s^{2}\leq 4N },
 \mathcal{D}(N, e) :=\{a, a\pm N^{\frac{e}{2}} , a\pm 2N^{\frac{e}{2}} , a^{2}-
3N^{e}\in \mathbb{R}|a\in \mathcal{C}(N, e)\}.

Note that any element  a\in \mathcal{C}(N, e) satisfies  |a|  \leq 2N^{\frac{e}{2}} . Fora subset  \mathcal{D}\subseteqq \mathbb{Z} , let

 \mathcal{P}(\mathcal{D})  := { prime divisors of some of the integers in  \mathcal{D}\backslash \{0\} } .

If  e is even, then  \mathcal{D}(N, e) is a subset of  \mathbb{Z} , and the set  \mathcal{P}(\mathcal{D}(N, e)) contains 2, 3 and

every prime divisor of  N . We define the finite sets

 \overline{P}_{1}(k, q):=  \{_{\mathcal{P}(\mathcal{D}(N_{q},2e_{q}))}^{\mathcal{P}(\mathcal{D}(N_{q},
e_{q}))} if B  \otimes_{\mathbb{Q}}k\not\cong M_{2}(k)if B
 \otimes_{\mathbb{Q}}k\cong M_{2}(k)

,and eq is even,
 \overline{P}_{2}(k, q) :=\mathcal{P}(\mathcal{D}(N_{q}, 2h_{k}')) .
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In Theorems 2.3 and 2.4,  P_{1}(k, q)  =  \overline{P}_{1}(k, q) and  P_{2}(k, q)  =  \overline{P}_{2}(k, q) are appropriate

choices, respectively.

For a finite Galois extension  k of  \mathbb{Q} and a prime number  l , let  e_{l} (resp.  f_{l} , resp.
 g_{l}) be the ramification index of  l in  k/\mathbb{Q} (resp. the degree of the residue field extension
above  l in  k/\mathbb{Q} , resp. the number of primes of  k above  l ). Note that  e_{l}f_{l}g_{l}  =  [k : \mathbb{Q}].
We have the following examples of Theorems 2.3 and 2.4, which will be reconsidered in

§5 in the context of the Hasse principle and the Manin obstruction.

Example3.1. Assume  d(B)  =  39,  k  =  \mathbb{Q}(\sqrt{}2, \sqrt{}-13) . Let  (p, q)  =  (13,2) .

Then  (e_{p}, f_{p}, g_{p})  =  (2,2,1) and  (e_{q}, f_{q}, g_{q})  =  (4,1,1) . Since 3 (resp. 13) splits in
 \mathbb{Q}(\sqrt{}-2) (resp.  \mathbb{Q}(\sqrt{}-1) ), we have B  \otimes_{\mathbb{Q}}\mathbb{Q}(\sqrt{-2})\not\cong M_{2}(\mathbb{Q}(\sqrt{-2})) (resp.  B\otimes_{\mathbb{Q}}\mathbb{Q}(\sqrt{-1})  \not\cong

 M_{2}(\mathbb{Q}(\sqrt{}-1))) . Then  B  \in  \mathcal{B}(q) . Since (e3, f3, g3)  =  (1 , 2, 2  ) and (ei3, f13, g13)  =

 (2,2,1) , we have  B\otimes_{\mathbb{Q}}k  =\sim  M_{2}(k) (see [22, Chapitre II, Théorème 1.3]). Let  q be
the unique prime of  k above  q  =  2 . Then  e_{q}  =  4,  f_{q}  =  1,  N_{q}  =  2 , and  \overline{P}_{1}(k, q)  =

 \mathcal{P}(\mathcal{D}(2,4))  =  \{2 , 3, 5, 7, 47  \}  \ovalbox{\tt\small REJECT} p (see [3, Table 1]). Applying Theorem 2.3, we obtain
 M^{B}(k)=\emptyset.

Example3.2. Assume  d(B)=122,  k=\mathbb{Q}(\sqrt{}-39, \sqrt{}-183) . Let  (p, q)=(61,3) .

Then  (e_{p}, f_{p}, g_{p})  =  (e_{q}, f_{q}, g_{q})  =  (2,1,2) . Since 61 splits in  \mathbb{Q}(\sqrt{}-3) , we have  B\otimes_{\mathbb{Q}}
 \mathbb{Q}(\sqrt{-3})  \not\cong M_{2}(\mathbb{Q}(\sqrt{-3})) and  B  \in  \mathcal{B}(q) . Let  q be any prime ofk above  q=3 . Then

 f_{q}  =  1,  N_{q}  =  3 . Since  Cl_{k}  \sim=  \mathbb{Z}/8\mathbb{Z}\cross \mathbb{Z}/4\mathbb{Z}\cross \mathbb{Z}
/2\mathbb{Z} , we have  h_{k}'  =  8 and  \overline{P}_{2}(k, q)  =

 \mathcal{P}(\mathcal{D}(3,16))=\{2 , 3, 5, 7, 11, 17, 23, 31, 47, 97, 113, 191, 193, 353, 383, 2113, 3457, 30529,

36671}  \ovalbox{\tt\small REJECT} p . Applying Theorem2.4, we obtain MB  (k)=\emptyset.

Remark.

1. If  k=\mathbb{Q}(\sqrt{}-39, \sqrt{}-183) , then no prime number is totally ramified in k. So, in the
situation of Example 3.2, no prime  q of  k satisfies the assumptions of Theorem 2.3.

Then we cannot obtain Example 3.2 from Theorem 2.3.

2. If  k=\mathbb{Q}(\sqrt{}2, \sqrt{}-13) , then f 3=f_{13}=2 . So, in the situation of Example3.1, there

is no prime divisor  p of  d(B)=39 satisfying the assumptions of Theorem 2.4. Then

we cannot obtain Example 3.1 from Theorem 2.4.

From now to the end of this section, assume that  k is an imaginary quadratic field
of  h_{k}  >  1 . Let  \mathcal{S}_{0} be the set of non‐principal primes of  k which split in  k/\mathbb{Q} . Then

 \mathcal{S}_{0}  \neq\emptyset since  h_{k}  >  1 . For each primeq of k, fix an element  \beta_{q,J}  \in  \mathcal{O}_{k} (resp.  \beta_{q}  \in  \mathcal{O}_{k} )
satisfying  q^{h_{k}}  =\beta_{q,J}\mathcal{O}_{k} (resp.  q^{h_{k}'}  =\beta_{q}\mathcal{O}_{k} ). Let  c_{k} be the least positive integer such
that  Cl_{k} is generated by primes  q of  k satisfying  f_{q}=1 and  N_{q}  <c_{k} . Let

 \bullet  \mathcal{A}_{1,q,J}(k)  :=\{a-Tr_{k/\mathbb{Q}}(\beta_{q,J}^{12})\in \mathbb{Z}|a\in \mathbb{Z}, |a| 
\leq 2N_{q}^{6h_{k}} \},
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 \bullet  \mathcal{A}_{2,q,J}(k)  :=\{a-N_{q}^{4h_{k}}Tr_{k/\mathbb{Q}}(\beta_{q,J}^{4}) \in \mathbb{Z}|a\in 
\mathbb{Z}, |a|\leq 2N_{q}^{6h_{k}} \},
 \bullet  \mathcal{A}_{3,J}(k) : the set of integers of the forms  Norm_{\mathbb{Q}(\zeta_{3h_{k}})/\mathbb{Q}}(a^{2} -q (\theta+\theta^{-1} +2)) and

Norm \mathbb{Q}(\zeta_{3h_{k}})/\mathbb{Q}(a^{2}+q(\theta+\theta^{-1}-2)) , where  \theta^{3h_{k}}  =1 , qisaprime number less than

 c_{k} , and  a\in \mathbb{Z},  |a|  \leq 2\sqrt{}q,

 \bullet  \mathcal{N}_{4,J}(k) : the set of prime numbers  p>2 satisfying  ( \frac{q}{p})  =-1 for all prime numbers

 q such that  3<q<   \frac{p}{4} and  q is not inert in  k.

Here,  \zeta_{3h_{k}} is a primitive  3h_{k}‐th root of unity. The subscript “J” denotes the initial

of Jordan. Note that  \mathcal{A}_{1,q,J}(k) and  \mathcal{A}_{2,q,J}(k) are independent of the choice of  \beta_{q,J},
because  \mathcal{O}_{k}^{\cross}  =  \{\pm 1\} . Let Ram(k) be the set of prime numbers which are ramified in
 k . We define

 \overline{P}(k)  :=Ram(k)\geq\{p|p\leq 7\}\geq  (_{q\in}\leqq_{S_{0}}\mathcal{P}(\mathcal{A}_{1,q,J}(k)))  \geq  (_{q\in}\leqq_{S_{0}}\mathcal{P}(\mathcal{A}_{2,q,J}(k)))
 \geq \mathcal{P}(\mathcal{A}_{3,J}(k))\geq \mathcal{N}_{4,J}(k) .

Let

 \bullet  \mathcal{A}_{1,q}(k)  :=\{a-Tr_{k/\mathbb{Q}}(\beta_{q}^{24})\in \mathbb{Z}|a\in \mathcal{C}(N_{q}, 
24h_{k}')\},

 \bullet  \mathcal{A}_{2,q}(k)  :=\{a-N_{q}^{8h_{k}'}Tr_{k/\mathbb{Q}}(\beta_{q}^{8})\in \mathbb{Z}|a\in 
\mathcal{C}(N_{q}, 24h_{k}')\},
 \bullet  \mathcal{A}_{3,S}(k)  :=  \{a-2N_{q}^{12h_{k}'} \in \mathbb{Z}| q\in \mathcal{S}, a\in \mathcal{C}(N_{q},
24h_{k}')\} , where  \mathcal{S} is a non‐empty

finite subset of  \mathcal{S}_{0} generating  Cl_{k},

 \bullet  \mathcal{N}(k) : the set of integersN  \in \mathbb{Z} such that

(i)  N is the discriminant of a quadratic field, and

(ii) for any prime number  2  <  q  <   \frac{|N|}{4} , if  q splits in  k , then  q does not split in
 \mathbb{Q}(\sqrt{}N) ,

 \bullet  \mathcal{N}^{prime}(k) : the set of prime numbers in  \mathcal{N}(k) .

Note that  \mathcal{A}_{1,q}(k) and  \mathcal{A}_{2,q}(k) are independent of the choice of  \beta_{q} . We define

 \overline{P}'(k)  :=Ram(k)\geq  \{ p|p\leq 23 \}  \geq  (_{q\in}\leqq_{S_{0}}\mathcal{P}(\mathcal{A}_{1,q}(k)))  \geq  (_{q\in}\leqq_{S_{0}}\mathcal{P}(\mathcal{A}_{2,q}(k)))
 \geq (\leqq (\mathcal{P}(\mathcal{A}_{3,S}(k))\geq\{l_{q} |q\in \mathcal{S}\}))
\geq \mathcal{N}^{prime}(k) ,
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where  \mathcal{S} runs through non‐empty finite subsets of  \mathcal{S}_{0} generating  Cl_{k} . Note that  \overline{P}'(k)
is defined by modifying  \overline{P}(k) . By [13, Theorem  A], the sets  \mathcal{N}_{4,J}(k) and  \mathcal{N}(k) are
finite, and their upper bounds can be effectively estimated except at most one element.

Then the sets  \overline{P}(k) and  \overline{P}'(k) are finite. In Theorems 2.5 and 2.6,  P(k)  =  \overline{P}(k) and

 P'(k)=\overline{P}'(k) are appropriate choices, respectively.

§4. Difficulty of the case where  B\otimes_{\mathbb{Q}}k\not\cong M_{2}(k)

In this section, we explain the difficulty of the case where  B\otimes_{\mathbb{Q}}k  \not\cong  M_{2}(k) , and

the way to overcome it. Fora rational point on MB, there is sometimes agap between
the field of moduli and the field of definition as follows.

Theorem4.1 ([8, Theorem1.1]). Let  F be a field of characteristic  0 . Then a
point  x  \in  M^{B}(F) is represented by a  QM‐abelian surface by  \mathcal{O} over  F if and only if

 B\otimes_{\mathbb{Q}}F_{=}^{\sim}M_{2}(F) .

So, when  B\otimes \mathbb{Q}k\not\cong M_{2}(k) , a point  x\in M^{B}(k) is not represented by a QM‐abelian

surface by  \mathcal{O} over  k . This is the reason why the case whereB  \otimes_{\mathbb{Q}}k\not\cong M_{2}(k) is difficult.

We can overcome the difficulty by improving Jordan’s method of studying canonical

isogeny characters.

First, we explain Jordan’s method in the case where  B\otimes_{\mathbb{Q}}k  \sim=  M_{2}(k) . Suppose

that there is a point  x\in M^{B}(k) . Thenx is represented bya QM‐abelian surface  (A, i)
by  \mathcal{O} over  k . Letp beaprime divisor of d(B) , and let  T_{p}A be the  p‐adic Tate module
of  A . Then  T_{p}A has a structure of a free  \mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}‐module of rank one. Let  \overline{k} be an

algebraic closure of  k , and let  G_{k}  =  Ga1(\overline{k}/k) be the absolute Galois group of  k . The

action of  G_{k} on  T_{p}A yields a representation

 R_{p}:G_{k}arrow Aut_{O}(T_{p}A)=\sim(\mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}
_{p})^{\cross},

where  Aut_{O}(T_{p}A) is the group of  \mathbb{Z}_{p} ‐linear automorphisms of  T_{p}A commuting with the

action of  \mathcal{O} . Let  \overline{R}_{p}  :=R_{p}mod p . Then by conjugating if necessary, we have

 R_{p}:G_{k}arrow \{ (\begin{array}{l}
a*
0a^{p}
\end{array}) \in GL_{2}(\mathbb{F}_{p^{2}})\}
From the (1, 1) entry, we obtain a character

ϱ p :  G_{k}arrow \mathbb{F}_{p^{2}}^{\cross}.

This is called a canonical isogeny character at  p , which was introduced in [8, §4]. In
Theorems 2.3, 2.4 and 2.5, we use the classification of ϱp to conclude that  p is in an
exceptional finite set.
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Next, we explain how to modify Jordan’s method in the case where  B\otimes_{\mathbb{Q}}k\not\cong M_{2}(k) .

Suppose that there is a point  x  \in  M^{B}(k) . Let Kbeaquadratic extension ofk such

that  B\otimes_{\mathbb{Q}}K_{=}^{\sim}M_{2}(K) , equivalently, if a prime 1 of  k satisfies  B\otimes_{\mathbb{Q}}k_{1}\not\cong M_{2} (kl), then
it does not split in  K (see [1, Proposition 1.14]). Here,  k_{1} is the completion ofk at 1.
We can always take such  K (see [6, Remark 4.4]). Then  x is represented by a QM‐
abelian surface  (A, i) by  \mathcal{O} over  K . Letp beaprime divisor of d(B) . Then by the same
argument as above, we obtain a representation

 R_{p,K} :  G_{K}arrow Aut_{O}(T_{p}A)=\sim(\mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_{p})^
{\cross}

and a character

ϱp,K:  G_{K}arrow \mathbb{F}_{p^{2}}^{\cross}.
To prove Theorems 2.3 and 2.4, it suffices to take a good choice of  K . To prove Theorem

2.6, we use the composition

 \phi p,K :  G_{k}  -\ovalbox{\tt\small REJECT}arrow tr_{K\underline{/}k}  G_{K}^{ab} −ϱapb,‐K arrow  \mathbb{F}_{p^{2}}^{\cross},

where  tr_{K/k} is the transfer map,  G_{K}^{ab}  =  Ga1(K^{ab}/K) ,  K^{ab} is the maximal abelian

extension of  K in  \overline{K} , and ϱpab, K is the natural map induced from ϱp,K. Then we classify
 \phi p,K , and conclude that  p is in  \overline{P}'(k) . Here,  \phi p,K depends on K, but  \phi_{p,K}^{4} does not.

This is a key to the proof.

Remark. In [16], a different approach is taken when  B\otimes_{\mathbb{Q}}k\not\cong M_{2}(k) . In this case,
we do not have a representation  R_{p} :  G_{k}  arrow Aut_{O}(T_{p}A)  \sim=  (\mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_{p})^{\cross} , but instead a

projective representation  G_{k}arrow(\mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_{p})^{\cross}/\{\pm 1\} is defined and studied.

§5. Relevance to the Manin obstruction

In this section, we introduce the concept of the Manin obstruction, and give an

example concerning Shimura curves. Let  \mathbb{A}_{k} be the adèle ring of k, and let  \Omega_{k} be the
set of places of  k . Forv  \in\Omega_{k} , let kv be the completion of  k at  v . Since MB is proper
over  \mathbb{Q} , we have  M^{B}( \mathbb{A}_{k})=\prod_{v\in\Omega_{k}}M^{B} (kv). Let Br  (k_{v}) (resp. Br  (M^{B})=H_{\'{e} t}^{2}(M^{B}, \mathbb{G}_{m}) )

be the Brauer group of  k_{v} (resp.  M^{B} ). Let

 ( , ):Br(M^{B})\cross M^{B}(\mathbb{A}_{k})-arrow \mathbb{Q}/\mathbb{Z}

be the pairing defined by  (c, \{x_{v}\}_{v\in\Omega_{k}} )  =   \sum_{v\in\Omega_{k}}inv_{v}(x_{v}^{*}c) . Here, invv:  Br(k_{v})  -arrow

 \mathbb{Q}/\mathbb{Z} is the local invariant at  v , and  x_{v}^{*}:  Br(M^{B})  arrow Br(k_{v}) is the map associated to
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 x_{v} :  {\rm Spec}(k_{v})  arrow M^{B} . Note that in the above sum, we have  inv_{v}(x_{v}^{*}c)  =0 for all but

finitely many  v\in\Omega_{k} . Let  M^{B}(\mathbb{A}_{k})^{Br} be the right kernel of this pairing, i.e.,

 M^{B}(\mathbb{A}_{k})^{Br}:= {  \{x_{v}\}_{v\in\Omega_{k}}  \in M^{B}(\mathbb{A}_{k})  |  (c, \{x_{v}\}_{v\in\Omega_{k}})=0 for any  c\in Br(M^{B}) }.

Then

 M^{B}(k)\subseteqq M^{B}(\mathbb{A}_{k})^{Br}\subseteqq M^{B}(\mathbb{A}_{k}) .

When  M^{B}(k)  =  \emptyset and  M^{B}(\mathbb{A}_{k})  \neq  \emptyset,  M^{B} is called a counterexample to the Hasse

principle over  k . Such a counterexample is said to be accounted for by the Manin

obstruction if   M^{B}(\mathbb{A}_{k})^{Br}=\emptyset (see [20, §5.2]).

Theorem 5.1 ([4, Theorems 2.3 and 2.4]). In Theorems 2.3 and 2.4, we can
replace  M^{B}(k)  =  \emptyset with  M^{B}(k)  =  M^{B}(\mathbb{A}_{k})^{Br}  =  \emptyset . Moreover, we can take

 P_{1}(k, q)=\overline{P}_{1}(k, q) and  P_{2}(k, q)=\overline{P}_{2}(k, q) .

Remark. In the situation of Theorem 2.3,   M^{B}(k)=M^{B}(\mathbb{A}_{k})^{Br}=\emptyset for an imag‐

inary quadratic field  k was proved in [21, Theorem 3.1] (in the case where  B\otimes_{\mathbb{Q}}k  \sim=

 M_{2}(k)) and [16, Theorem 1.1] (under mild extra assumptions).

Example 5.2. In the situations of Examples 3.1 and 3.2, we have  M^{B}(k)  =

  M^{B}(\mathbb{A}_{k})^{Br}=\emptyset and  M^{B}(\mathbb{A}_{k})  \neq\emptyset (see [3, Proposition 4.1], [4, Proposition 2.6]). So, in
these cases,  M^{B} is a counterexample to the Hasse principle over  k , and it is accounted

for by the Manin obstruction.

Remark. In the situations of Theorems 2.5 and 2.6, we expect  M^{B}(k)=M^{B}(\mathbb{A}_{k})^{Br}
 =\emptyset , but there is no such result so far.
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