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\S 0. INTRODUCTION
This rather long Introduction is a survey of this paper. We describe the main subject

of this paper in \S 0.1, a key idea in \S 0.2, the main results in \S 0.3, and the plan of the
paper in \S 0.4. We fix general notation in \S 0.5.

\S 0.1. A DREAM OF GRIFFITHS

0.1.1. Let $D$ be the classifying space of polarized Hodge structures of fixed weight
$w$ and fixed Hodge numbers $(h^{p,q})$ defined by Griffiths [G1]. For example, in the case

(1) $w=1,$ $h^{1,0}=h^{0,1}=g$ , $h^{p,q}=0$ if $(p, q)$ ’ $(1, 0)$ , $(0, 1)$ ,

$D$ is SiegeFs upper half space of degree $g$ . In [G3, \S 9], Griffiths considered a general
$D$ “aux points \‘a Finfini”. and described a dream to enlarge $D$ to classifying spaces of
degenerating polarized Hodge structures. The subject of this paper is to realize his
dream by defining eight enlargements of $D$ with maps between them which form the
following diagram (2), and to show that the quotient space $f” ZD_{\Sigma}$ of the enlargement
$D_{\Sigma}$ , defined by a fan ($=$ cone decomposition) I and a discrete subgroup $\Gamma$ of Aut(D)
satisfying certain conditions, is the fine moduli space of polarized logarithmic Hodge
structures ( $=$ logarithmic degenerations of polarized Hodge structures).

$D_{\mathrm{S}\mathrm{L}(2),\mathrm{v}\mathrm{a}1}$
$\mathrm{c}_{->}$

$D_{\mathrm{B}\mathrm{S},\mathrm{v}\mathrm{a}1}$

$\downarrow$ $\downarrow$

(2) $D_{\Sigma,\mathrm{v}\mathrm{a}1}$ $arrow$ $D_{\Sigma,\mathrm{v}\mathrm{a}1}^{\#}$ $arrow$ $D_{\mathrm{S}\mathrm{L}(2)}$
$D_{\mathrm{B}\mathrm{S}}$

$\downarrow$ $\downarrow$

$D_{\Sigma}$ $arrow$ $D_{\Sigma}^{\#}$

In the above classical case (1), for a subgroup $\Gamma$ of Sp(g, Z) of finite index, $\Gamma\backslash D_{\mathrm{B}\mathrm{S}}$ is
the Borel-Serre compactification ([BS]) of $\Gamma\backslash D$ , and $\Gamma\backslash D_{\Sigma}$ is a Mumford compactifica-
tion (i.e., a toroidal compactification) ([AMRT]) of $\Gamma\backslash D$ if $\Sigma$ is chosen suitably.

In general,

$D_{\Sigma}=$ (the space of nilpotent orbits),
$D_{\Sigma}^{\oint}=$ (the space of nilpotent $i$-orbits) ,
$D_{\mathrm{S}\mathrm{L}(2)}=$ (the space of $\mathrm{S}\mathrm{L}(2)$ -orbits) ,
$D_{\mathrm{B}\mathrm{S}}=$ (the space of Borel-Serre orbits),
$D_{\Sigma,\mathrm{v}\mathrm{a}1}=$ (the space of valuative nilpotent orbits),
$D_{\Sigma,\mathrm{v}\mathrm{a}1}^{\beta}=$ (the space of valuative nilpotent $i$ -orbits)

$)$

$D_{\mathrm{S}\mathrm{L}(2)}$ , $\mathrm{v}\mathrm{a}\mathrm{l}=$ (the space of valuative $\mathrm{S}\mathrm{L}(2)$ -orbits) ,
$D_{\mathrm{B}\mathrm{S},\mathrm{v}\mathrm{a}1}$ $=$ (the space of valuative Borel-Serre orbits).

Here an orbit is either a point of $D$ or a family which runs on $D$ to a direction of
degeneration outside $D$ . Nilpotent orbits and $\mathrm{S}\mathrm{L}(2)$ -orbits often appear in the theory of
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degeneration of polarized Hodge structures ([Sc], [CKS]). Borel-Serre orbits are defined
by the method of Borel-Serre [BS]. Nilpotent $i$ -orbits are as follows. Whereas a nilpotent
orbit is an orbit under the group $\exp(\sigma_{\mathrm{C}})$ where $\sigma$ is a cone consisting of mutually
commutative nilpotent operators and $\sigma_{\mathrm{C}}$ denotes the $\mathrm{C}$-vector space spanned by $\sigma$ , a
nilpotent $i$ orbit is an orbit under the group $\exp(i\sigma \mathrm{R})$ .

A valuative orbit which appears in the last four spaces runs to an “infinitely narrow
direction” of degeneration, and the upper space (space of valuative orbits) of a vertical
arrow in the above diagram (2) is obtained from the lower space as the limit by dividing
the direction of degeneration into narrower and narrower directions. We can say also
that vertical arrows in (2) are projective limits of kinds of blowing-ups.

0.1.2. The space $\Gamma\backslash D_{\Sigma}$ is of primary interest in this paper. A main result of this
paper is, roughly speaking, the following (for the precise statement, see Theorem 0.3.8,
Theorem 0.3.11 below).

Theorem. $\Gamma\backslash D_{\Sigma}$ is the fine moduli space of “polarized logarithmic Hodge structures”
with a $(‘\Gamma$ -level structure” whose “local monodromies are in the directions in $\Sigma$ ”.

Roughly speaking,

$\Gamma\backslash D=$ (polarized Hodge structures with a (
$T$-level structur\"e)\subset

$\Gamma\backslash D_{\Sigma}=(^{(}\mathrm{t}‘ \mathrm{u}\mathrm{P}^{01\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}1\mathrm{o}\mathrm{g}\mathrm{a}\mathrm{r}}\mathrm{r}\mathrm{e}" \mathrm{w}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e}‘ 1(\mathrm{o}\mathrm{H}\mathrm{a}1$ $\mathrm{m}_{\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{e}\mathrm{s}\mathrm{a}}^{\mathrm{c}\mathrm{H}\mathrm{o}\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}}\mathrm{g}_{\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}}^{\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}’}$

’ weitdi$\mathrm{r}\mathrm{e}\mathrm{a}_{\mathrm{C}\mathrm{t}\mathrm{i}_{0}^{-}1\mathrm{n}_{\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{H}^{\mathrm{u}^{\mathrm{C}-)}}}^{\mathrm{v}\mathrm{e}1\mathrm{s}}}"$, $\cdot$

The space $\Gamma\backslash D\Sigma$ is not necessarily a complex analytic space, but has a kind of com-
plex strucuture, and infinitesimal calculus can be performed on $fI\mathit{2}D_{\Sigma}$ nicely. In the
terminology of this paper, $\Gamma\backslash D_{\Sigma}$ is a logarithmic manifold”. as explained in 0.3.9 be-
low. Classically variations of polarized Hodge structures give period maps into $f\Gamma \mathit{2}D$ .
Polarized logarithmic Hodge structures give extended period maps into $\Gamma\backslash D\Sigma$ defined
also on the boundary, and infinitesimal calculus on $\Gamma\backslash D\Sigma$ enables us to consider the
differentials of the extended period maps.

To prove the above theorem and to prove that $\Gamma\backslash D\Sigma$ has good properties such as
Hausdorff property, nice infinitesimal calculus etc., we need to consider other spaces in
the diagram (2); we discuss from the right to the left in the diagram (2) to deduce nice
properties of $\Gamma\backslash D_{\Sigma}$ starting from nice properties of the Borel-Serre compactifications
in [BS].

0.1.3. Enlargements of $D$ such as the Satake-Baily-Borel and as toroidal have been
constructed only when, like in the case 0.1.1 (1), $D$ is a Hermitian symmetric domain
and the tangent bundle of $D$ coincides with the horizontal tangent bundle. That is,
when one of the following (1), (2) is satisfied.
(1) $w=2t+1$ , $h^{p,w-p}=0$ if $p\neq t$ , $t+$ l.

(2) $w=2t,$ $h^{t+1_{1}t-1}\leq 1,$ and $h^{p,w-p}=0$ if $p\neq t-1$ , $t$ , $t+$ l.

The only successful attempts to go beyond these cases are the work [CK] of Cattani-
Kaplan for the Satake-Baily-Borel type and the work [U2] for troidal. ([CK] has no
differential of period maps.) By the construction of the present article, we can talk
about the extended period maps associated to degenerations of surfaces of general type,
of Calabi-Yau manifolds, or of other higher dimensional algebraic manifolds, and about
their differentials.
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\S O.2. POLARIZED LOGARITHMIC $\mathrm{H}$ ODGE STRUCTURES

Here we describe the theory of (‘polarized logarithmic Hodge structure” (PLH, for
short) and the relationship with the space of nilpotent orbits. To avoid to enter too
technical explanations, we often omit the details refering the reader to the contents of
this paper.

0.2.1. $Fs$ logarithmic analytic spaces. The subject of the logarithmic geometry
in the sense of Fontaine-Illusie ([Kkl]) is a “logarithmic local ringed space” that is,
a local ringed space $(X, \mathcal{O}_{X})$ endowed with a logarithmic structure, which means a
sheaf of commutative monoids $M_{X}$ endowed with a homomorphism $\alpha$ : $M_{X}arrow \mathcal{O}_{X}$ ,
where we regard $\mathcal{O}_{X}$ as a sheaf of monoids with respect to the multiplication, satisfying
$\alpha^{-1}(\mathcal{O}_{X}^{\mathrm{x}})arrow \mathcal{O}_{X}^{\mathrm{x}}\sim$ .

We will consider ((
$\mathrm{f}\mathrm{s}$ logarithmic structures” defined as follows.

A commutative monoid $S$ is called an $fs$ monoid if it is finitely generated, if $ab=ac$
implies $b=c$ in $S$ (hence $S$ is $\mathrm{e}$ mbedded in the group $S^{\mathrm{g}\mathrm{p}}= \{\frac{a}{b}|a$ , $b\in 5\}$ ), and if
$a\in \mathrm{S}^{\mathrm{g}\mathrm{p}}$ with $a^{n}\in \mathit{5}$ for some $n\geq 1$ implies $a\in S.$

For a local ringed space $X$ and an fs monoid $S$ , and for a homomorphism $h:S$ $arrow \mathcal{O}_{X}$

(for the multiplication in $\mathcal{O}x$ )
$)$ we have a logarithmic structure on $X$ associated to $h$ ,

which is defined to be the pushout of $S$ $arrow h^{-1}(\mathcal{O}_{X}^{\cross})arrow \mathcal{O}_{X}^{\cross}$ in the category of sheaves
of commutative monoids. A logarithmic structure is called an $fs$ logarithmic structure
if it is locally obtained in this way. An analytic space endowed with an fs logarithmic
structure is called an $fs$ logarithmic analytic space.

We denote by

(1) $A$ , $A(\log)$ ,

the category of analytic spaces and the category of fs logarithmic analytic spaces, re-
spectively.

0.2.2. We discuss PLH on an fs logarithmic analytic space $X$ . We have a certain
ringed space $(X^{\log}, \mathcal{O}_{X}^{\log})$ over $(X, \mathcal{O}_{X})$ ([KkNc]). A PLH on $X$ is a triple $(H_{\mathrm{Z}}, \langle. \rangle, F)$

consisting of a local system $H\mathrm{z}$ on $X^{\log}$ , an intersection pairing $\langle$ , $\rangle$ on $H_{\mathrm{Q}}=\mathrm{Q}\otimes \mathrm{z}H\mathrm{z}$ ,
and a Hodge filtration $F$ on $\mathcal{O}_{X}^{\log}$

$\otimes \mathrm{z}$ $H_{\mathrm{Z}}$ , satisfying certain conditions.
In this Introduction, not to enter complicated arguments but to have a clear picture,

we consider only PLH on $X:=\Delta^{n}$ with $\Delta:=$ $\{z\in \mathrm{C}||z|< 1\}$ and $r\iota$ $\geq 0$ which is
endowed with the logarithmic structure $M_{X}$ associated to $\mathrm{N}^{r}arrow \mathcal{O}_{X}$ , $a \mapsto\prod_{1<j\leq r}z_{j}^{a(j)}$ .
for some $r$ such that $0\leq r\leq n.$ Here $z_{j}$ , $(1 \leq j\leq n)$ denote the coordinate functions.
Let $U$ $:=(\Delta^{*})^{r}\mathrm{x}4^{n-r}$ where $\Delta$’ $:=\Delta-\{0\}$ . Then,

$M_{X}=$ { $f\in \mathcal{O}_{X}|f$ is invertible on $U$}.

In this case, $(X^{\log}, \mathcal{O}_{X}^{\log})$ is described as follows. First,

$X^{\log}$ $:=|$a $|^{r}$ x $(\mathrm{S}^{1})^{r}\cross\Delta^{n-r}$

where $|\Delta|:=\{r\in \mathrm{R}|0\leq r<1\}$ , $\mathrm{S}^{1}:=$ $\{u\in \mathrm{C}^{\mathrm{x}}||u|=1\}$ , and the canonical map
7 : $X^{\log}arrow X$ is given by

$((r_{j})_{1\leq j\leq r}, (u_{j})_{1\leq j\leq r}$ , $(z_{j})_{r+1\leq j\leq n})\mapsto((r_{j}u_{j})_{1\leq j\leq r}, (z_{j})_{r+1\leq j\leq n})$ .
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Next
$\mathcal{O}_{X}^{\log}:=\tau^{-1}(\mathcal{O}_{X})[\log(z_{j})(1\leq j\leq r)]\subset(j^{\log})_{*}(\mathcal{O}_{U})$ ,

where $j^{\log}$ : $Uarrow X^{\log}$ is the evident extension of the inclusion map $j$ : $U(-\rangle X$ .
A PLH on $X$ is a triple ( $H_{\mathrm{Z}}$ , $(, \rangle, F)$ where $H_{\mathrm{Z}}$ is a local system on $X^{\log}$ of free

$\mathrm{Z}$-modules of finite rank, $\langle\rangle$ is a non-degenerate $\mathrm{Q}$-bilinear form $H_{\mathrm{Q}}\cross H_{\mathrm{Q}}arrow$ Q,

and $F$ is a decreasing filtration on $\mathcal{O}_{X}^{\log}\otimes \mathrm{z}H\mathrm{z}$ , which satisfy certain condition (see

\S 2.3 for the precise definition). If $r=0,$ then $X=U,$ $X^{\log}=X$ and $\mathcal{O}_{X}^{\log}=\mathcal{O}\chi$ ,
and this condition is that the fiber $(H_{\mathrm{Z},x}, \langle. \rangle_{x}, F(x))$ at each $x\in X$ is a polarized
Hodge structure. In general, at each $x\in U,$ we require that the fiber is a polarized
Hodge structure, but at each $x\in X-U,$ we require a delicate condition. Note that
for $x\in X-U$ and $y\in \mathrm{X}^{\log}$ , lying over $x$ , $\mathcal{O}_{X,y}^{\log}$ is not a local ring. For example,

if $x=0\in X,$ then $\mathcal{O}_{X,y}^{\log}$ is the polynomial ring $\tau^{-1}(\mathcal{O}_{X,0})[\log(z_{1}), \ldots, \log(z_{r})]$ in r-

variables over $\tau^{-1}(\mathcal{O}\mathrm{x},0)$ . Hence there are many homomorphisms $\mathcal{O}_{X,y}^{\log}arrow \mathrm{C}$ extending
$\mathcal{O}_{X,x}arrow$ C, $f\mapsto f(x)$ . The specializations of $(H_{\mathrm{Z})} \langle. \rangle, F)$ by these homomorphisms
form an ((

$\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}"$ , and the condition at $x$ is that this orbit is a nilpotent orbit (cf. \S 2.4).
Thus roughly speaking,

(1) (PLH on $X$ ) $=$ (analytic family of nilpotent orbits parametrized by $X$ ).

0.2.3. How a $PLH$ arises. Let $X$ and $U$ be as in 0.2.2, and let ( $H_{\mathrm{Z}}$ , $(. \rangle, F)$ be a
variation of polarized Hodge structure on $U$ having unipotent local monodromy around
$X-$ U. Then, the nilpotent orbit theorem of Schmid ([Sc]) can be interpreted as a
statement that $(H\mathrm{z}, (, ), F)$ extends uniquely to a PLH on $X$ .

PLH arises in a geometric way as follows. Let $Y$ be a complex analytic manifold
and let $f$ : $Yarrow X$ be a projective morphism such that the restricion $f’$ : $Varrow U,$

where $V:=f^{-1}(U)_{7}$ is smooth and that $Y-V$ is a divisor with normal crossings on $Y$

Assume that $f$ is a “logarithmically smooth morphism’) (2.3.10), and assume, moreover,
that $\mathrm{C}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}(f^{-1}(M_{X,f(y)}^{\mathrm{g}\mathrm{p}}/\mathcal{O}_{X,f(y)}^{\cross})arrow M_{Y,y}^{\mathrm{g}\mathrm{p}}/\mathcal{O}_{Y,y}^{\cross})$ is torsion free for any $y\in Y$ Then,

by a generalization of Steenbrink [St], we have the following PLH $(H\mathrm{z}, \langle. \rangle, F)$ on $X$

satisfying the Griffiths transversality (2.3.5) for each $m\geq 0:$

$H_{\mathrm{Z}}=R^{m}(f^{\log})_{*}\mathrm{Z}/(\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n})$ ,

$F^{p}=\mathcal{O}_{X}^{\log}\otimes \mathrm{o}_{X}R^{m}f_{*}(\omega_{Y/X}^{\geq p})$ .

Here 7 : $Y^{\log}arrow X^{\log}$ is the map induced from $f$ , $\omega_{Y/X}^{\geq p}$ is the degree $\geq p$ part of
the relative de Rham complex $\omega_{Y/X}$

. with logarithmic poles, and $F^{p}$ is regarded as an
$\mathcal{O}_{X}^{\log}$ -submodule of $\mathcal{O}_{X}^{\log}$ & $\mathrm{z}$

$H_{\mathrm{Z}}$ via a certain canonical isomorphism

C)$x^{\mathrm{o}\mathrm{g}}\mathrm{l}\otimes_{\mathrm{Z}}H_{\mathrm{Z}}\simeq \mathcal{O}_{X}^{\log}\otimes_{\mathcal{O}_{X}}R^{m}f_{*}(\omega_{Y/X}.)$ .

By using the Lefschetz decomposition, a polarization of $Y$ over $X$ defines a polarization
$\langle$ , / : $H_{\mathrm{Q}}\cross H_{\mathrm{Q}}arrow \mathrm{Q}$ in the usual way. This PLH is the unique extension of the classical
variation of polarized Hodge structure $(H_{\mathrm{Z}}’, \langle, \rangle’, F’)$

$H_{\mathrm{Z}}’=R^{m}(f’)_{*}\mathrm{Z}/(\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n})$,

$(F’)^{p}=R^{m}(f’)_{*}(\Omega_{V/U}^{\geq p})$ ,
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arising from $f’$ : $Varrow U$ . (More generally, see 2.3.10.)

0.2.4. Extended period maps. Let $X$ and $U$ be as above. For a given PLH on
$X$ , by associating to each $x\in X$ the nilpotent orbit which appears at $x$ , we have a
map $Xarrow\Gamma\backslash D\Sigma$ where $\Gamma$ is the group of global monodromy of $H_{\mathrm{Z}}$ , and I is the fan
consisting of local monodromy cones at points of $X$ . This extends the classical period
map $Uarrow\Gamma\backslash D$ as in the diagram

$U$ $arrow$ $\Gamma\backslash D$

$\cap$ $\cap$

$X$ $arrow$ $\Gamma\backslash D\Sigma$ .

In the geometric situation of $f$ : $Yarrow X$ described in 0.2.3, the differential of the
corresponding extended period map is related to the (degenerating) Kodaira-Spencer
map of $f$ : $Yarrow X$ just as in the classical case $r=0$ (see 4.3.8).

\S 0.3. MOdUli OF PLH

We describe our main results in this paper. In 0.3.1-0.3.4, we fix our situation and
notation precisely.

0.3.1. Griffiths domains $D$ . We use the Notation in \S 0.5 below:

$\Phi_{0}=(w, (h^{p,q})_{p,q}\mathrm{e}\mathrm{z}$ , $H_{0}$ , $\langle$ . $\rangle_{0})$

is a 4-tuple consisitng of an integer $w$ , called a weight, a set of non-negative integers
$(h^{p,q})_{p}$ , $q\in \mathrm{Z}$ satisfying certain conditon, called Hodge numbers, a free $\mathrm{Z}$-module $H_{0}$ of
rank $E_{p,q}h^{p,q}$ , called a lattice, and of a non-degenerate $\mathrm{Q}$-bilinear form $\langle$ . $\rangle_{0}$ : $\# 0,\mathrm{q}\cross$

$\# 0,\mathrm{q}arrow \mathrm{Q}$ which is sym metric if $w$ is even and anti-symmetric if $w$ is odd, called a
polarization. Here $\mathrm{i}\mathrm{f}\mathrm{o},\mathrm{Q}:=\mathrm{Q}$ $\otimes \mathrm{z}$ $H_{0}$ . Let $G_{R}:=$ Aut $(H_{0,R}, ( . \rangle 0)$ for $R=$ Z, $\mathrm{Q}$ , R. C.

As in \S 1.2, the classyfying space of polarized Hodge structures ( $=$ Griffiths dornain)
$D$ of type $1)_{0}$ and its “compact dual” $\check{D}$ is defined as follows.

$\mathcal{F}:=\mathrm{F}1\mathrm{a}\mathrm{g}(H_{0,\mathrm{C}}, (h^{p,q})):=$ { $F$ decreasing filtration $|$ dimc $F^{p}= \sum_{p\geq}$,
$p$

$h^{p’,w-p’}$ }
$\supset\check{D}:=$ $\{F\in \mathrm{F} |\langle F^{p}, F^{q}\rangle_{0}=0(p+q>w)\}$

$\supset D:=$ { $F\in\check{D}|i^{p-q}\langle x$ , $\overline{x}$) $0>0$ if $x$ $\in H^{p,q}-\{0\},p+q=w$}
$=$ { $F\in$ ’ $|$ ( $H_{0}$ , $\langle$ , $\rangle_{0}$ , $F$ ) is a polarized Hodge structure}.

Here $H^{p,q}:=F^{p}\cap\overline{F}^{q}$ Then $D$ is open in $\check{D}$ , and $D$ (resp. $\check{D}$ ) is homogeneous under
$G_{\mathrm{R}}$ (resp. $G_{\mathrm{C}}$ ).

0.3.2. Fans I. As in Notation QO.5, let $\mathfrak{g}_{R}:=$ Lie $G_{R}$ for $R=\mathrm{Q}$ , $\mathrm{R}$ , C. We use the
terminology in \S 1.3. A nilpotent cone is a cone $\sigma$ in $\mathfrak{g}_{\mathrm{R}}$ which is non-degenerate (i.e.,
$\sigma\cap(-\sigma)=\{0\})$ and is generated over $\mathrm{R}_{\geq 0}$ by a finite number of mutually commutative
nilpotent elements. A rational nilpotent cone is a nilpotent cone which is generated over
$\mathrm{R}\geq 0$ by a finite number of elements of $\mathrm{g}_{\mathrm{Q}}$ . A fan $\Sigma$ in $\mathfrak{g}_{\mathrm{Q}}$ is a set of rational nilpotent
cones in $\mathfrak{g}_{\mathrm{R}}$ which satisfies

$\{$

$\sigma\in$ $\mathrm{L}$ , $\tau$ is a face of $\sigma\Rightarrow\tau\in$ iL,
$\sigma$ , $y’\in$ $\mathrm{p}$ $\Rightarrow\sigma\cap\sigma’$ is a face of a and of $\sigma’$ .
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0.3.3. Nilpotent orbits, nilpotent $i$ -orbits. We use also the following terminology and
notation in \S 1.3. A nilpotent orbit (resp. $i$ -orbit)is a pair $(\sigma, Z)$ consists of a nilpotent
cone $\sigma=\sum_{1\leq j\leq r}\mathrm{R}\geq 0N_{j}$ and a subset $Z\subset\check{D}$ which satisfy, for some $F\in Z,$

$\{$

$Z=$ exp(ac)F (resp. $\exp(i\sigma_{\mathrm{R}})F$),
$NF^{P}\subset F^{p-1}$ $(Vp, \forall N\in\sigma)$ (Griffiths transversality),

$\exp$ ( $\sum_{1\leq j\leq r}$ WjNj)F\in D $(\forall y_{j}\gg 0)$ (positivity).

As sets we define

$D_{\Sigma}$ (resp. $D_{\Sigma}^{\#}$ ) $:=$ { $(\sigma,$ $Z)$ nilpotent orbit (resp. $i$-orbit) $|\sigma\in E,$ $Z\subset\check{D}$ }.

There is the canonical surjection $D_{\sigma}^{\mathfrak{p}}arrow D_{\sigma}$ , $(\sigma, 2\mathrm{r})$ $\mapsto(\sigma, \exp(\sigma \mathrm{c})Z)$ .

0.3.4. As in 1.3.11 (ii), we say a subgroup $\Gamma$ of $G_{\mathrm{Z}}$ is strongly compatible with a fan
$)$ if

$\{$

$\gamma\in\Gamma$ , a $\in$ I $\Rightarrow \mathrm{A}\mathrm{d}(7)$ $(\mathrm{a})$ $\in\Sigma$ ,
$\Gamma(\sigma)$ $:=\Gamma\cap\exp(\sigma)\Rightarrow\log\Gamma(\sigma)$ generates $\sigma$ .

We say a subgroup $\Gamma$ of $G_{\mathrm{Z}}$ is neat if the subgroup of $\mathrm{C}$ ’, generated by all the
eigenvalues of all $\mathrm{y}$

$\in\Gamma$ . is torsion ffee. It is known that there exists a neat subgroup
of $G_{\mathrm{Z}}$ of finite index.

0.3.5. Let $\mathrm{C}$ be a fan in $\mathfrak{g}_{\mathrm{Q}}$ and let $\Gamma$ be a subgroup of $G_{\mathrm{Z}}$ which is strongly
compatible with E. As in 2.5.2, we denote by

(1) $\Phi:=(w, (h^{p,q})_{p+q=w)}H_{0\}}\langle$
’

$\rangle_{0}$ , $\Gamma$ , $\Sigma$ )

the 6-tuple consisting of the 4-tuple $(w, (h^{p,q})_{p+q=w}$ , $H_{0}$ , $\langle\backslash \rangle_{0})$ as in 0.3.1 and of the
above I and $\Gamma$ .

For an fs logarithmic analytic space $X$ , we have a notion “PLH on $X$ of type I”.
It is a PLH on $X$ of weight $u$) and of Hodge numbers $(h^{p,q})$ endowed with a T-level
structure” on local isomorphisms between $(H_{\mathrm{Z}}, ())$ and ($H_{0}$ , $($ . $\rangle_{0})$ whose local
monodromies are in the directions in $\Sigma$

” (see 2.5.2, for the precise definition in a more
general setting).

Now our first main result is the following.

Theorem 0.3.6. Assume $\Gamma$ is neat. Define the functor $\underline{\mathrm{P}\mathrm{L}\mathrm{H}}_{\Phi,4(\log)}$ from the category
$4(\log)$ in 0.2.1 (1) to the category of sets by

$\underline{\mathrm{P}\mathrm{L}\mathrm{H}}_{\Phi,A(\log)}(X):=$ ( isomorphism classes of $PLH$ on $X$ of type $\Phi$ ).

Then there exists a structure of a logarithmic local ringed space over $\mathrm{C}$ on the set $\Gamma\backslash D\Sigma$

having the following properties (i), (ii).

(i) There is an isomorphism of functors

$\psi$ : $\underline{\mathrm{P}\mathrm{L}\mathrm{H}}_{\Phi,A(\log)}arrow\sim$ Mor$(, \Gamma\backslash D\Sigma)|_{A(\log)}$ .
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(ii) For a logarithmic local ringed space $Z$ over $\mathrm{C}$ and for a morphism of functors
$h$ : $\underline{\mathrm{P}\mathrm{L}\mathrm{H}}_{\Phi,A(\log)}arrow$ Mor $(, Z)|_{A(\log)}$ , there exists a unique morphism $f$ : $\Gamma\backslash D\Sigmaarrow Z$

such that $h=f\circ\psi$ .

The part (ii) of this theorem says that $\Gamma\backslash D_{\Sigma}$ is the universal object for period maps
ffom objects of $4(\log)$ into logarithmic local ringed spaces. However the logarithmic
local ringed space $\Gamma\backslash D\Sigma$ over $\mathrm{C}$ itself does not belong to $4(\log)$ in general. It is a very
special object of a category $B(\log)\supset$ $4(\log)$ . The category $B(\log)$ is explained in 0.3.7
below, and how (‘special” is explained in 0.3.9 below.

0.3.7. The strong topology, the categories $B$ , $B(\log)$ . The underlying local ringed
space over $\mathrm{C}$ of $\Gamma\backslash D\Sigma$ is not necessarily an analytic space in general. Sometimes, it can
be something like

(1) $S:=\{(x, y)\in \mathrm{C}^{2}|x\neq 0\}\cup\{(0,0)\}$

endowed with a topology which is stronger than the topology as a subspace of $\mathrm{C}^{2}$ , called
the strong topology’

Let $Z$ be an analytic space and $S$ be a subset of $Z$ . A subset $U$ of $S$ is open in the
strong topology of $S$ in $Z$ if and only if, for any analytic space $Y$ and any morphism
$\lambda$ : $Yarrow Z$ such that $\lambda(Y)\subset S$ , $\lambda^{-1}(U)$ is open on $Y$ .

If $S$ is a locally closed analytic subspace of $Z$ , the strong topology coincides with the
topology as a subspace of Z. (Cf. 3.1.3 to see how the strong topology of the set $S$ in
(1) is stronger than the topology as a subspace of $\mathrm{C}^{2}$ .)

Define the categories

(2) $B$ $\supset A,$ $B(\log))$ $A(\log)$

as follows (cf. 3.2.4).
Let $B$ be the full subcategory of the category of local ringed spaces over $\mathrm{C}$ consisting

of objects $X$ having the following property: $X$ has an open covering $(U_{\lambda})_{\lambda}$ such that,

for each $\lambda$ , there exists an isomorphism of local ringed spaces over $\mathrm{C}$ between $U_{\lambda}$ and
a subset $S_{\lambda}$ of an analytic space $Z_{\lambda}$ , where $S_{\lambda}$ is endowed with the strong topology in
$Z_{\lambda}$ and with the inverse image of $Ozk$ .

Let $B(\log)$ be the full subcategory of logarithmic local ringed spaces over $\mathrm{C}$ consisting
of objects of $B$ endowed with an fs logarithmic structure.

Our second main result is the following theorem which generalizes the part (i) of
Theorem 0.3.6. We can define PLH on objects of $B(\log)$ .

Theorem 0.3.8 (cf. Theorem $\mathrm{B}$ in Q4.2). Assume $\Gamma$ is neat. Define the functor
PLH$\Phi$ ,!3(l $\mathrm{o}\mathrm{g}$ from the category $B(\log)$ in 0.3.7 (2) to the category of sets in the same way
as $\underline{\mathrm{P}\mathrm{L}\mathrm{H}}_{\Phi,A(\log)}$ , Then, $\Gamma\backslash D_{\Sigma}$ belon$.qs$ to $B(\log)$ and represents the functor $\underline{\mathrm{P}\mathrm{L}\mathrm{H}}_{\Phi,B(\log)}$ .
Thus we have

$\underline{\mathrm{P}\mathrm{L}\mathrm{H}}_{\Phi,B(\log)}(X)=$ (isomorphism classes of $PLH$ on $X$ of type $\Phi$ ) $=$ Mor(X, $\Gamma\backslash D\Sigma$ )

for $X\in$ $(\log)$ .

For an PLH of type (I on $X(X\in B(\log))$ , the corresponding morphism $Xarrow\Gamma\backslash D\Sigma$

is the associated period map.
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0.3.9. Logarithmic manifolds. Our space $\Gamma\backslash D_{\Sigma}$ is a very special object in $B(\log)$ ,
called a “logarithmic manifold” (cf. \S 3.5).

We first describe the idea of logarithmic manifold by using the example $S\subset \mathrm{C}^{2}$ in
0.3.7 (1). Let $Z=\mathrm{C}^{2}$ with coordinate functions $x$ , $y$ , and endow $Z$ with the logarithmic
structure associated to $\mathrm{N}arrow \mathcal{O}_{Z}$ , $n\mapsto x^{n}$ . Then, the sheaf $\omega_{Z}^{1}$ of logarithmic differential
forms on $Z$ ( $=$ the sheaf of differential forms with logarithmic poles along $x=0$) is
the free $\mathcal{O}_{Z}$ -module with basis (dlog(x), $dy$). For each $z\in Z,$ let $\omega_{z}^{1}$ be the module
of logarithmic differential forms on the point $z$ which is regarded as an fs logarithmic
analytic space endowed with the ring $\mathrm{C}$ and with the inverse image of $M_{Z}$ (cf. 2.1.7).
Then, if $z$ does not belong to the part $x=0$ of $Z$ , $z$ is just a usual point $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{C})$

with the trivial logarithmic structure, and $\omega_{z}^{1}=0.$ If $z$ is in the part $x=0$ , $z$ is a
point $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{C})$ with the induced logarithmic structure $- \mathrm{W}_{z}=\bigcup_{n\geq 0}\mathrm{C}^{\mathrm{x}}xn\simeq$ C’ $\cross$ N,
and hence $\omega_{z}^{1}$ is a one dimensional $\mathrm{C}$-vector space generated by $d\log(x)$ . Thus $\omega_{z}^{1}$ is
not equal to the fiber of $\omega_{Z}^{1}$ at $z$ which is a 2-dimensional $\mathrm{C}$-vector space with basis
$(d\log(x))dy)$ . Now the the above set $S$ has a presentation

(1) $S=$ { $z\in Z|$ the image of $yd$ $1o\mathrm{g}(x)$ in $\omega_{z}^{1}$ is zero}.

Recall that zeros of a holomorphic function on $Z$ form a closed analytic subset of $Z$ .
Here we discovered that $S$ is the set of “zeros” of the differential form ydlog(x) on
$Z$ , but the meaning of “zero” is not that the image of ydlog(x) in the fiber of $\omega_{Z}^{1}$ is
zero (the latter “zeros” form the closed analytic subset $y=0$ of $Z$). The “zeros in the
new sense” of a differential form with logarithmic poles is the idea of a “logarithmic
manifold”.

The precise definition is as follows (cf. 3.5.7). In [KkNc], we have a notion of $((\log-$

arithmically smooth” fs logarithmic analytic spaces. An fs logarithmic analytic space
is logarithmically smooth if and only if it has an open covering whose each member is
isomorphic to an open set $Z$ of a toric variety $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{C}[S])_{\mathrm{a}\mathrm{n}}$ ( $S$ an fs monoid) whose
logarithmic structure is associated to the inclusion homomorphism $S$ $\mathrm{c}-k\mathrm{C}[S]$ . For
example, $Z=\mathrm{C}^{2}$ with the above logarithmic structure is logarithmically smooth.

By a logarithmic manifold, we mean a logarithmic local ringed space over $\mathrm{C}$ which
has an open covering $(U_{\lambda})_{\lambda}$ with the following property: For each $\lambda$ , there exist a
logarithmically smooth fs logarithmic analytic space $Z_{\lambda}$ , a finite subset $I_{\lambda}$ of $\Gamma(Z_{\lambda}, \omega_{Z_{\lambda}}^{1})$ ,
and an isomorphism of logarithmic local ringed spaces over $\mathrm{C}$ between $U_{\lambda}$ and an open
subset of

(2) $S_{\lambda}=$ { $z\in Z_{\lambda}|$ the image of $I_{\lambda}$ in $\omega_{z}^{1}$ is zero},

where $S_{\lambda}$ is endowed with the strong topology in $Z_{\lambda}$ and with the inverse images of
$\mathcal{O}_{Z_{\lambda}}$ and $M_{Z_{\lambda}}$ .

0.3.10. The reason why our space $\Gamma\backslash D_{\Sigma}$ is not necessarily an analytic space but a
logarithmic manifold is as follows.

For each $\sigma\in$ $\mathrm{I}$ , there are a logarithmic version $\check{E}_{\sigma}$ of $\check{D}$ , which is a logarithmically
smooth fs logarithmic analytic space, and a subset $E_{\sigma}$ of $\check{E}_{\sigma}$ , which is a logarithmic
version of the subset $D$ of $\check{D}$ and is closely related to $\Gamma\backslash D_{\Sigma}$ . See Q3.3 for the definitions
of $\check{E}_{\sigma}$ and $E_{\sigma}$ .

Points of $\check{E}_{\sigma}$ yield ((
$\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}\mathrm{s}"$ As in 0.3.3 or 1.3.6, there are two conditions, the Griffiths

transversality and the positivity, for an “orbit” to be a nilpotent orbit. Points of $\check{E}_{\sigma}$
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which yield orbits satisfying the Griffiths transversality form a subset $\tilde{E}_{\sigma}$ of $\check{E}_{\sigma}$ , points
of $\tilde{E}_{\sigma}$ which yield orbits satisfying the positivity form the subset $E_{\sigma}$ of $\tilde{E}_{\sigma}$ , and thus $E_{\sigma}$

consists of all points of $\check{E}_{\sigma}$ which yield nilpotent orbits. In Ea, $\tilde{E}_{\sigma}$ is the set of common
zeros in the above $\zeta$“new sense (0.3.9)” of logarithmic differential forms (3.5.10), $E_{\sigma}$ is
an open set of $\tilde{E}_{\sigma}$ in the strong topology of $\tilde{E}_{\sigma}$ in $\check{E}_{\sigma}$ , and thus $E_{\sigma}$ is a logarithmic
manifold (Theorem A (i)). Here it is essential that we work with the strong topology
to have this openness (see 12.3.10).

By taking the corresponding orbits, we have a map $E_{\sigma}arrow\Gamma(\sigma)^{\mathrm{g}\mathrm{p}}\mathit{3}D_{\sigma}$ where $D_{\sigma}:=$

$D_{\{\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{o}\mathrm{f}}$

$\sigma\}$ ( $\Gamma(\sigma)^{\mathrm{g}\mathrm{p}}$ becomes strongly compatible with the fan {face of $\sigma\}$ ). Further-
more, $E_{\sigma}$ is a $\sigma_{\mathrm{C}}$-torsor over $\Gamma(\sigma)^{\mathrm{g}\mathrm{p}}\backslash D_{\sigma}$ in the category $B(\log)$ , $\Gamma(\sigma)^{\mathrm{g}\mathrm{p}}s$ $D_{\sigma}arrow\Gamma\backslash D_{\Sigma}$ is
a local isomorphism of logarithmic local ringed spaces over $\mathrm{C}$ , and the images of the last
maps for a61 form an open covering of $\Gamma\backslash D\Sigma$ . From the fact that $E_{\sigma}$ are logarithmic
manifolds, we can deduce that $\Gamma(\sigma)^{\mathrm{g}\mathrm{p}}\mathit{3}D_{\sigma}$ and $\Gamma\backslash D_{\Sigma}$ are also logarithmic manifolds as
well. We have

Theorem 0.3.11 (cfi Theorem A in Q4.1). Assume $\Gamma$ is neat.

(i) $E_{\sigma}$ ancl $\Gamma(\sigma)^{\mathrm{g}\mathrm{p}}\backslash D_{\sigma}$ for $\sigma\in$ $\Sigma$ , and $fI\backslash D_{\Sigma}$ are $l$ ogarithmic manifolds. They are
Hausdorff spaces.

(ii) For $\sigma\in\Sigma$ , $E_{\sigma}$ is a $\sigma_{\mathrm{C}}$ -torsor over $\Gamma(\sigma)^{\mathrm{g}\mathrm{p}}\backslash D_{\sigma}$ in the category of logarithmic
manioflds.

(iii) For $\sigma\in$ $\Sigma$ , $\Gamma(\sigma)^{\mathrm{g}\mathrm{p}}\backslash D_{\sigma}arrow\Gamma\backslash D_{\Sigma}$ is a local isomorphism of logarithmic manifolds.
When $\sigma\in E$ varies, the images of these maps form an open covering of $\Gamma\backslash D\Sigma$ .

(iv) There is a canonical homeomorphism $\Gamma\backslash D_{\Sigma}^{\beta}\simeq(\Gamma\backslash D\Sigma)^{\log}$ .

0.3.12. As in \S 11, we can generalize the above theorems to the moduli of PLH with
coefficients. Let $A$ be a finite dimensional semi-simple $\mathrm{Q}$-algebra endowed with a map
$Aarrow A,$ $a\mapsto a_{:}^{\mathrm{o}}$ satisfying

$(a+b)^{\mathrm{o}}=a^{\mathrm{o}}+b^{\mathrm{o}}$ , (ab) $)^{\mathrm{o}}=b^{\mathrm{o}}a^{\mathrm{o}}$ $( ia, ib\in A)$ .

By a PLH with coefficients in $A$ , or by an $A$-PLH, we mean a PLH (H%, $\langle$ , $\rangle$ , $F$ )
endowed with a ring homomorphism $Aarrow \mathrm{E}\mathrm{n}\mathrm{d}_{\mathrm{Q}}(H_{\mathrm{Q}})$ satisfying

$\langle ax, y\rangle=\langle x, a^{\mathrm{o}}y\rangle$ $(Va\in A, \forall x,\forall y\in H_{\mathrm{Q}})$ .

The theorems 0.3.6, 0.3.8 and 0.3.11 can be generalized to the moduli of A-PLH.

To prove the main theorems 0.3.6, 0.3.8 and 0.3.11, as already mentioned in \S O. 1, we
need to study other spaces in the diagram (2) in 0.1.1. Concerning those spaces, we
have the following result.

Theorem 0.3.13. (i) The topological spaces $D_{\Sigma}^{\#}$ , $D_{\Sigma,\mathrm{v}\mathrm{a}1}^{\#}$ , $D_{\mathrm{S}\mathrm{L}(2)}$ , $D_{\mathrm{S}\mathrm{L}(2),\mathrm{v}\mathrm{a}1}$ , $D_{\mathrm{B}\mathrm{S}}$ ,
$D_{\mathrm{B}\mathrm{S}}$ , $\mathrm{v}\mathrm{a}\mathrm{l}$ are Hausdorff.

(ii) Let $\Gamma$ be a subgroup of $G_{\mathrm{Z}}$ (resp. a subgroup of $G_{\mathrm{Z}}$ which is compatible with $\Sigma$ ).
Then, the quotient spaces $\Gamma\backslash D_{\mathrm{S}\mathrm{L}(2)}$ , $\Gamma\backslash D_{\mathrm{S}\mathrm{L}(2),\mathrm{v}\mathrm{a}1}$ , $\Gamma\backslash D_{\mathrm{B}\mathrm{S}}$ , $\Gamma\backslash D_{\mathrm{B}\mathrm{S},\mathrm{v}1}$ (resp. $\Gamma\backslash D_{\Sigma}^{\beta}$ and

$\Gamma\backslash D1,\mathrm{v}\mathrm{a}1)$ are Hausdorff.
If $\Gamma$ is neat, the projections $D_{\Sigma}^{\mathrm{Q}}arrow\Gamma\backslash D_{\Sigma}^{\#}$ , $D_{\Sigma,\mathrm{v}\mathrm{a}1}^{\beta}arrow\Gamma\backslash D\mathrm{E},\mathrm{v}\mathrm{a}1’ D_{\mathrm{S}\mathrm{L}(2)}arrow\Gamma\backslash D_{\mathrm{S}\mathrm{L}(2)}$,

$D_{\mathrm{S}\mathrm{L}(2)}$ ,val $arrow\Gamma\backslash D_{\mathrm{S}\mathrm{L}(2),\mathrm{v}\mathrm{a}1}$ , $D_{\mathrm{B}\mathrm{S}}arrow$ \Gamma \DBS, $D_{\mathrm{B}\mathrm{S}}$ ,val $arrow\Gamma\backslash D_{\mathrm{B}\mathrm{S},\mathrm{v}\mathrm{a}1}$ are local homeomor-
phisms.
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In Theorem 0.3.13, the results concerning $D_{\mathrm{S}\mathrm{L}(2)}$ , $D_{\mathrm{S}\mathrm{L}(2),\mathrm{v}\mathrm{a}1}$ , $D_{\mathrm{B}\mathrm{S}}$ , $D_{\mathrm{B}\mathrm{S},\mathrm{v}\mathrm{a}1}$ are al-
ready proved in [KU2]. The space $D_{\mathrm{B}\mathrm{S}}$ was constructed also by Borel and Ji in [BJ]
independently.

\S 0.4. COMPLEMENTS

0.4.1. One of the remaining open problems is to find “big fans” I so that the spaces
$\Gamma\backslash D_{\Sigma}$ contain all possible boundary points. See \S 12.6.

0.4.2. The plan of this paper is as follows.
In \S 1-\S 3 are preliminaries to state the main results of the present paper, Theore$\mathrm{m}$

A and Theorem $\mathrm{B}$ , in Q4. In \S 1, we define the sets $D_{\Sigma}$ and $D_{\Sigma}^{\mathrm{Q}}$ . In \S 2, we describe
the theory of polarized logarithmic Hodge structures. In \S 3, we discuss the strong
topology, logarithmic manifolds, the spaces Ea, $\tilde{E}_{\sigma},\check{E}_{\sigma}$ , the categories $B$ , $B(\log)$ , and
other enlargements of the category of analytic spaces. In \S 4, we state Therem A and
Theorem $\mathrm{B}$ without proofs. The above Theorem 0.3.8 (and hence Theorem 0.3.6 (i))
is contained in Theorem $\mathrm{B}$ , Theorem 0.3.11 is contained in Theorem $\mathrm{A}$ , and Theorem
0.3.6 (ii) is contained in Thoerem $\mathrm{A}$ , Theorem $\mathrm{B}$ , and Theorem 3.2.5 as explained in
4.2.2. We also discuss, in \S 4, infinitesimal properties of the extended period maps.

In \S 5-\S 8, we prove Theorem A and Theorem $\mathrm{B}$ by moving fro $\mathrm{m}$ the right to the left
in the diagram 0.1.1 (2). In Q5, we review the spaces $D\mathrm{s}\mathrm{L}(2)$ , $D_{\mathrm{B}\mathrm{S}}$ , $D_{\mathrm{S}\mathrm{L}(2),\mathrm{v}\mathrm{a}1}$ , $D_{\mathrm{B}\mathrm{S},\mathrm{v}\mathrm{a}1}$

defined in [KU2], and then we define $D_{\Sigma,\mathrm{v}\mathrm{a}1}$ and $D_{\Sigma,\mathrm{v}\mathrm{a}1}^{\phi}$ . By using the work [CKS] of
Cattani-Kaplan-Schmid on $\mathrm{S}\mathrm{L}(2)$-orbits in several variables, we connect, in \S 5-\S 6, the
spaces $D_{\Sigma,\mathrm{v}\mathrm{a}1}^{\Downarrow}$ and $D_{\mathrm{S}\mathrm{L}(2)}$ as in the diagram 0.1.1 (2). In \S 7, we prove Theorem $\mathrm{A}$ , and
in \S 8, we prove Theorem B.

In \S 9-il2, we give complements, examples, genealizations, and open problems. In
\S 9, we consider the relationship of the present work with the enlargements of $D$ in
Cattani-Kaplan [CK]. In \S 10, we describe local structures of $D_{\mathrm{S}\mathrm{L}(2)}$ . In \S 11, we can
sider the moduli of PLH with coefficients. Though the case with coefficients is more
general than the case without coefficients, we have chosen the formulation of this paper
not to put coefficients everywhere (then the description of the paper would become
too complicated), but to describe the theory without coefficients except in Qll where
we show that the results with coefficients can be simply deduced ffom those without
coefficients. In \S 12, we give examples and discuss open problems.

0.4.3. Corrections to previous works.
We indicate three mistakes in our previous works [UK1], [UK2].
(i) In $[\mathrm{U}\mathrm{K}1, (5.2)]$ , there is a mistake in the definition of the notion of polarized

logarithmic Hodge structures of type $\Phi$ . This mistake and its correction are explained
in 2.5.6.

(ii) In [$\mathrm{K}\mathrm{U}2$ , Lemma 4.7], the definition of $B$ (U, $U_{\mathrm{I}}’U$”) is written as $\{g\tilde{\rho}(t)k\mathrm{r}| \})$

which is wrong. It should be corrected as $\{\tilde{\rho}(t)gk\mathrm{r}|\cdot\cdot\}$ . This point will be explained
in 5.2.17. This mistyping happened after the referees finished their careful readings and
corrections of mistakes.

(iii) In [$\mathrm{U}\mathrm{K}2$ , Remarks 3.15, 3.16], we announced that we would consider a space
$D_{\mathrm{S}\mathrm{L}(2)}^{\mathrm{b}}\mathrm{i}\mathrm{m}$ this paper. $\mathrm{H}$ Jwev(jr, we coulslder actually only a part $D_{\mathrm{S}\mathrm{I}(2),\leq 1}^{\mathrm{b}}$ of $D_{\mathrm{S}\mathrm{L}(2)}^{\mathrm{b}}$ in

this paper (Q9). The reason is that the authors realized that $D_{\mathrm{S}\mathrm{L}(2)}^{\mathrm{b}}$ i $\mathrm{s}$ not Hausdorff
and seems not to be a good object to consider but that the part $D_{\mathrm{S}\mathrm{L}(2),\leq 1}^{\mathrm{b}}$ is Haussdorff
and is certainly a nice object.
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(iv) The present work was announced in [KU1] under the title “Logarithmic Hodge
structures and classifying spaces” and in [KU2] under the title “Logarithmic Hodge
structures and their moduli” . but we have changed the title as of the present work.

0.4.4. As the first trial of geometric application of the present paper, S. Saito [Ss]
proved a logarithmic version of infinitesimal Torelli theorem for certain degenerating
hypersurfaces in a projective space.

More precisely, he considered a general degeneration of hypersurfaces $X\subset \mathrm{P}^{m+1}\cross\Delta$

in a projective space over a disc $\Delta$ with $X$ having only one singular point, which has
a semi-stable reduction over $\Delta$ . When the dimension of the fiber $X_{t}$ is 2 and the
multiplicity of the singularity of the central fiber $X_{0}$ is 2, the above considered family
reduces to a degeneration with a rational double point of type $\mathrm{A}2\mathrm{S}-1(s\in \mathrm{Z}_{>0})$ .

The main result [Ss, Theorem(2-1)] asserts that, under suitable assumptions, the
infinitesimal logarithmic Torelli theorem (i.e., the injectivity of the right vertical map
in Theorem 4.3.8 below) holds for the above degeneration. To prove this, he generalized
the method of Jacobi rings in the classical case [G2].

0.4.5. The authors are grateful to Professors Kazuhiro Fujiwara, Chikara Nakayama
for stimulating discussions and advices. A part of this work was done when the first
author was a visitor of Institut Henri Poincare whose hospitality is gratefully appreci-
ated.

The first line of the Japanese poem (5-7-5 syllables), at the beginning of this paper,
was made by Kato and then, following a $\mathrm{J}$ apanese tradition of collaboration, the second
line (7-7 syllables) was made by Usui. We are very grateful to Professor Luc Illusie for
his beautiful translation.

\S 0.5. NOTATION

Throughout this paper, we use the following notation.
We denote $\mathrm{N}:=\mathrm{z}_{\geq 0}$ .
Let $H$ be a $\mathrm{Z}$ modul\"i, For $A=$ Q) $\mathrm{R}$ , $\mathrm{C}$ , we denote $H_{A}:=A\otimes_{\mathrm{Z}}H$ .
We fix a 4-tuple

$\Phi_{0}=(w, (h^{p,q})_{p,q}6\mathrm{z}$ , $H_{0}$ , $\langle$ , $\rangle_{0})$

where ([ is an integer, $(h^{p,q})_{p,q\in \mathrm{Z}}$ is a set of non-negative integers satisfying

$\{$

$h^{p,q}=0$ for almost all $p$ , $q$ ,
$h^{p,q}=0$ if $p+q\neq w,$

$h^{p_{\}}q}=h^{q,p}$ for any $p$ , $q$ ,

$H_{0}$ is a free $\mathrm{Z}$-module of rank $\sum_{p,q}h^{p,q}$ , and $\langle$ , $\rangle_{0}$ is a $\mathrm{Q}$-rational non-degenerate C-
bilinear form on $H_{0,\mathrm{C}}$ which is symmetric if $w$ is even and anti-symmetric if ut is odd.
In the case $w$ is even, say $w=2t,$ we assume that the signature $(a, b)$ of $(H_{0,\mathrm{R}}, \langle\rangle_{0})$

satisfies
$a$ (resp. $b$) $= \sum_{j}h^{t+j_{l}t-j}$ ,

where $j$ ranges over all even (resp. odd) integers. (By this assumption, the classifying
space $D$ of Griffiths (1.2.1) becomes non-empty.) Let

$G_{\mathrm{Z}}:=$ Aut $(H_{0}, \langle, \rangle_{0})$ ,
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and for $R=\mathrm{Q}$ , $\mathrm{R}$ , $\mathrm{C}$ , let

$G_{R}:=$ Aut $(H_{0,R}$ , $($ . $\rangle_{0})$ ,
$\mathfrak{g}_{R}:=$ Lie $G_{R}$

$=\{N\mathrm{C}-\mathrm{E}\mathrm{n}\mathrm{d}_{A}(H_{0,R})|\langle Nx, y\rangle_{0} \dagger\langle x, Ny\rangle 0=0(\forall x, ly\in H_{0,R})\}$.

Following [BS], a parabolic subgroup of $G_{\mathrm{R}}$ means a parabolic subgroup of $(G^{\mathrm{o}})_{\mathrm{R}}$ ,
where $G^{\mathrm{o}}$ denotes the connected component of $G$ in the Zariski topology containing the
unity. (Note that $G^{\mathrm{o}}=G$ if $w$ is odd, and $G^{\mathrm{o}}=\{g\in G|\det(g)=1\}$ if $w$ is even.)

We denote by
$A$ , $A(\log)$ ,

the category of analytic spaces, and the category of fs logarithmic analytic spaces, i.e. ,
analytic spaces endowed with an fs logarithmic structure, respectively. Here “analytic
spaces” is in the sense of Grothendieck, i.e. , we allow nilpotent elements in the structure
sheaf.


