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This paper discusses a ring coupled buck-type inverter system to harness energy from DC sources
of electricity. The DC-DC buck converter circuit is modified with an H-bridge to convert the DC
input voltage to a usable AC output voltage. Passivity-based Control (PBC) with Port Controlled
Hamiltonian Modelling (PCHM) is a method where the system is controlled by considering not
only the energy properties of the system but also the inherent physical structure. PBC is applied to
achieve stabilization of the AC output voltage to a desired amplitude and frequency. Unsynchronized
output voltages in terms of phase angle or frequency can cause detrimental effects on the system.
PLL is employed in the ring structure to maintain synchronization of the AC output voltage of all
inverter units in the ring coupled system.

I. INTRODUCTION

Harnessing renewable energy for the production of electricity is seen as one of the most important task for researchers
in the field of electrical engineering today. Generation and storage of electricity with non-conventional power sources
like photovoltaic cells, fuel cells, wind power, and battries is realized with distributed generation [1, 2]. With the
increase in the amount of renewable energy available, the integration of renewable energy to the existing power supply
mechanism is imperative [3, 4].

Distributed generation or dispersed generation is defined as electric power generation within distribution network,
or on the consumer side of the network [1]. It consists of generation and storage of electricity with the help of
various distributed resources (power resources covering a large area) connected in a grid. An autonomous distributed
generation system is dispersed generation not connected to the conventional electric grid. A distributed power
generation system can be used to harness energy from AC as well as DC sources of electricity. Examples include
stand-alone power grids in rural areas and microgrids and smart grids in urban areas [5–7]. To ensure stable operation
of a distributed generation system, there is a growing need for a control stratergy which will be able to incorporate
the diverse nature of renewable energy resources and increase operational flexibility [8, 9].

In this paper we focus on renewable DC sources of electricity, and suggest an autonomous grid formulation to utilize
the DC electric power, motivated by recent stand-alone solar power initiatives in rural areas in various developing
countries [6, 10, 11]. We introduce a ring coupled buck-type inverter system to utilize energy from DC power sources
by converting it to AC voltage. The basic design of this grid is shown in Fig.1. In the ring coupled buck-type
inverter system, multiple units of inverter circuits are connected in a ring formulation with dissipation in between
them. Power inverters play the role of an interface to transfer energy from DC sources of electricity to AC voltage
form with a desired frequency [12, 13]. The buck-type inverter circuit employs the circuit configuration of a DC/DC
buck converter with the DC input switched using a H-bridge circuit which enables to change the polarity to obtain
AC output voltage.

The stabilization of the grid to the desired AC voltage, usually carried out by AVR and governer, is replaced by
passivity-based control (PBC). This method of control focuses on the energy characteristics of the autonomous grid
[14]. PBC is employed for passive systems, i.e systems where energy stored in the system is always less than the
energy supplied to the system from outside [15] and is performed in two stages. The first stage entails modifying
the energy of the system such that the modified energy function has a unique global equilibrium at the desired state,
satisfying the passification objective. It is referred to as energy-shaping. The second stage is to add damping to make
the system exponentially stable [16]. In this way, PBC forces individual inverter units to share energy so as to allow
the entire system to retain passivity and achieve stability at the desired state.

Port Controlled Hamiltonian Modelling (PCHM) is an indespensable tool for applying PBC to electrical systems that
have switching elements and dissipation [17]. It facilitates the description of the system into well defined matrices
indicating dissipation, structure and external inputs to the system. Hamiltonian modelling for optimal control of
converters has been shown [18]. In this paper we implement PCHM to the autonomous AC grid formulate the control
rule using PBC.
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FIG. 1: Proposed autnomous AC grid.
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FIG. 2: Working of the buck-type inverter.

The application of PBC for DC/DC converters was shown in [19]. Analysis of the transient behaviours of boost
converters with respect to the energy characteristics was performed in [20]. Then, the application of PBC for parallely
connected DC/DC converters was described in detail in [21]. In both the above mentioned works, the objective was to
stabilize the system to a constant DC voltage. When stabilizing the system to a sinusoidal desired state, the steady
state analysis is significantly intricate. This paper lays out the steady state analysis as well as formulation of the
control equations for a sinusoidal desired state.

Another crucial task is that of grid synchronization. Existing projects of stand-alone PV systems have often reported
problems of grid stability due to lack of synchroinization [9, 22]. Various methods for synchronizing the power from
multiple renewable resources to the existing power system are shown in [23]. Here, we focus on synchronizing the
multiple AC voltage outputs to the desired state in terms of frequency and phase. It is shown that, if the multiple
inverters in the ring coupling have inconsistent phase or frequency, it can prove to be harmful to the system. It
is desirable that all the inverters autonomously adjust themselves to the desired sinusoidal state without any phase
difference. To achieve this, phase synchronization for all the inverter units in the grid is implemented with attached
phase locked loop (PLL) [24].

Finally, the theory is successfully tested with numerical simulations to illustrate the temporal behaviour of the
system. Numerical simulations are performed in the SIMULINK environment on MATLAB R2017.

II. BUCK-TYPE INVERTER

The circuit configuration of the buck-type inverter is shown in Fig.2. A double bridge is implemented to invert
the polarity of the DC source []. Here, u represents the instantaneous switch position as shown in the figure. The
instantaneous switch position takes the values in the discrete set {−1, 1} as shown in the figure. It is seen that the
value of u is responsible for changing the polarity of the DC source, thus making it possible to obtain the negative
part of the sinusoidal output voltage.

To obtain a constant AC output voltage, the control objective is to regulate the average output voltage to a
periodic value with frequency much smaller than the switching frequency (usually 50 or 60 Hz). Then, it is desirable
to consider the average value of the voltages and currents rather than the instantaneous values, given that the ripple
and harmonics are sufficiently small. To derive an averaged model, it is necessary to average the circuit variables as
well as the switching function [12]. Hence, we replace the instantaneous switch position with a modulating signal for
the averaged circuit. Hereafter, the modulating function will be referred to with the variable µ(t).

To implement a PWM policy for switch regulation for generating a digital pulse signal to drive the transistor
switches, this modulating function µ acts as the continuous control input. As the modulating signal varies slowly in
comparison to the frequency of the switching, it can be shown that the switching function is equal to the modulating
signal [12]. We refer to the switching function as the duty ratio.

To obtain the averaged circuit variables, we replace the instantaneous values by the average values. Thus, iL and
vC are the average the inductor current and capacitor voltage respectively, and µ, the duty ratio. The output voltage
of the inverter depends on the duty cycle of the switching [25]. Thus, the averaged control input is takes values in
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the closed set [−1, 1]. The averaged duty cycle will be sinusoidally modulated to achieve a sinusoidal output voltage.
The average model of a buck-type inverter is given in Eq.(1). Owing to the buck-type configuration, the peak output
voltage will be less than the DC input voltage.

Li̇L = −vC + µE

Cv̇C = iL − vC/R (1)

Here L, C and R represents the inductance, capacitance and load resistance respectively. E is the external DC input.
Optimal control of DC/AC inverters with an H-bridge topology has been obtained in [13]. Here, we aim to stabilize
the output of the inverter with PBC.

III. SYSTEM DESIGN

The AC grid has multiple DC sources each connected to a buck-type inverter, to invert the DC voltage to AC
output, which can be used by the existing household loads. These inverters are coupled together with dissipation
through inductance and resistance.

The schematic diagram of the circuit is shown in Fig. 3. The role of the control input, for each buck-type inverter,
is to decide the amplitude and frequency of the output voltage. In a ring coupled configuration, it is imperative that
the output voltage of each inverter converge to the same value. Then, the voltage in the ring will be maintained at a
user-defined desired value.

Here, load resistances(R2T ) are across the output voltages whereas the dissipation elements of line inductor (Lt)
and line resistance (R1T ) are in series. The coupling through dissipation represents a transmission line model, with
inductive and resistive elements. The capacitor in the transmission line model is considered as negligible. This is
owing to the fact that a parallel capacitor is dominant in the buck-type inverter configuration. The number of inverters
in the ring does not cause any loss of generality. Then, the objective is to apply PBC to the whole system, including
the dissipation between the inverters.

Ln
diLn

dt
= −vCn

+ µnEn (2)

Cn
dvCn

dt
= iLn

− iTn + iTn−1 −
vCn

R2n−1
(3)

LTn
diTn

dt
= vCn

− vCn+1
−R1niTn (4)

The averaged model of the ring coupled buck-type inverter system is given by Eqs.(2)-(4). Subscription n denotes
the index of the inverter. µn denotes duty ratio function for the #n inverter. LTn is the inductance and R1Tn in
the dissipation between the #0 and #1 inverter. The circuit variables, vCn, iLn and iTn denote the average of the
instantaneous value over one switching cycle, as the frequency of these variables is much smaller than the switching
frequency.

To ensure phase and frequency synchronization of the ring coupled inverter system, PLLs are added to the basic
circuit formulation. Let v̄Cn = An sin(Φn) be the desired sinusoidal output voltage. Then, sin(Φn) is the sinusoidal
reference, where, Φn = ωdt+ θin(t) is the phase. Here ωd is the centre frequency, and θi the phase angle of the input
singal. In order to synchronize the phase of the output voltages of ring coupled buck-type inverter systems, any #p
inverter can be taken as a reference. The sinusoidal reference for the #p inverter is used as the input signal for
the PLL, the output of which is used as the sinusoidal reference of the #p− 1 and #p + 1 inverter. The sinusoidal
reference of #p− 1 and #p + 1 is in turn used as the input to PLL, the output of which is used as the sinusoidal
reference to #p− 2 and #p + 2, respectively. It ensures minimun time delay in synchronising the phase and frequency
of all the inverters in the ring. The connection of the PLL to the system is shown in Fig.4.

We consider the centre frequency ωd to be the same for all the PLLs employed in the ring coupled AC grid. Then,
θi(t) incorporates the error in the input frequency (ωi) from the centre frequency of the voltage controlled oscillator

(VCO). This error is given by ∆ω = ωi − ωd. Let the output of the VCO be r(t, Φ̃n) = V0 cos(ωdt + θo(t)), with V0

as the amplitude and Φ̃ = ωdt + θo(t) as the phase. θo represents the phase angle of the output signal. The state
equation governing the change in the phase are given by Eq.(34) [26, 27].

dθo
dt

= KC [L−1[F (s)Vcomp(s)]KpA sin(θe) + ve] (5)

Here, θe = θi − θo is the phase error, vcomp is the input of the low pass filter, and Vcomp(s) is the Laplace transform
of vcomp, which is the output voltage of the comparator. The transfer function of the LPF in the frequency domain
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FIG. 3: Schematic circuit diagram of ring coupled buck-type inverters.
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FIG. 4: System configuration: Connection of
PLL to multiple inverter system.

is given as F (s) and Kp and KC are the gains of the phase detector and VCO of the PLL respectively. Lastly, L−1

denotes the Laplace inverse and ve is the external control voltage. For more details on the working of PLL, please
refer to Appendix A.

IV. PORT CONTROLLED HAMILTONIAN MODELLING

Port Controlled Hamiltonian Modeling(PCHM) is the network representation of systems in interaction with their
environment [17]. The Hamiltonian approach allows for the systematic modelling of electrical systems including
resistors and switching elements. The non-energetic terms are extracted from the circuit. It leaves the energy
conserving LC circuit. The non-energy elements are then introduced into the circuit in the form of ‘ports’ [17].
Such configuration of LC circuits with ports is represented as a generalized Hamiltonian system with external input
variables. PCHM technique is used for modeling the inverter circuit, to allow for the inclusion of power electronic
switches and load resistances.

PCHM classifies the system neatly into physically well defined interconnection(J), dissipation(R) and external in-
put(E) matrices within a state space framework [16]. The system model using the Port Controlled Hamiltonian(PCH)
framework is given by Eq.(7) as in the form given in [28].

Dẋ(t) = [J−R]
∂He

∂x
+ G(x)E (6)

y = GT (x)
∂He

∂x
(7)

For m inverters in the configuration, x, the state of the system, is a column matrix ((m× 3)× 1) of all the inductor
currents and capacitance voltages. The matrix D, is a diagonal matrix of the capacitances and inductances of the
corresponding currents and voltages. J and the vector function G(x) gives the interconnection, and R the dissipation
in the system. G(x) is a function of un, the switch position of the corresponding buck-type inverters in the ring
configuration. E , the input matrix is a column matrix of the input voltages to the respective inverters. He = 1

2xIx
is the Hamiltonian. Here, I is the identity matrix.

Here, D, R, J and G are ((m× 3)× (m× 3)) matrices, E is a (m× 3)× 1 matrix.

D =


D0 0 . . . 0
0 D1 . . . 0
...

...
. . .

...
0 0 . . . Dm

where , Dn

Ln 0 0
0 Cn 0
0 0 LTn

 , and x =

x0

...
xm

where , xn =

 iLn

vCn

iTn

 . (8)
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J =



A0 −BT 0 . . . 0 B

B A1 −BT 0 . . . 0

0 B
. . .

. . .
. . .

...
... 0

. . .
. . .

. . . 0

0
...

. . .
. . .

. . . −BT

−BT 0 . . . 0 B Am


where, An =

0 −1 0
1 0 −1
0 1 0

 ,B =

0 0 0
0 0 1
0 0 0

 . (9)

R =


R0 0 . . . 0
0 R1 . . . 0
...

...
. . .

...
0 0 . . . Rm

 , where Rn =


0 0 0

0
1

R2n
0

0 0 R1n

 . (10)

G =


G0 0 . . . 0
0 G1 . . . 0
...

...
. . .

...
0 0 . . . Gm

 , where Gn =

µn 0 0
0 0 0
0 0 0

 , and E =

E0

...
Em

where , En =

En

0
0

 . (11)

Looking at the adjacency matrix of the interconnection matrix (J), the ring coupled structure is clearly verified. It is
seen that D is a diagonal matrix and R is a symmetric matrix for m inverters. The matrix J is the interconnection
matrix, and shows the coupling between neighbouring inverters through dissipation. From Eq.(9), it can be verified
that J is a skew-symmetric matrix, with keeping the PCHM structure [28].

V. STEADY STATE ANALYSIS

To gain insight into the steady state behaviour of the system, it is desirable to establish the relationship between
the equilibrium values of the average output voltage, the average input current and the average dissipation current.
Then, a sinusoidal duty ratio can be implemented to obtain the desired output voltage. It is analogous to setting a
constant average duty ratio for the switching for DC/DC converters. This constitues the open loop system, without
a feedback control.

For the #n buck-type inverter in the, the desired voltage is a AC waveform in the form v̄Cn = sin(2πfnt) =
An sin(Φn). Φn = 2πfnt+ θin with angular frequency ωdn = 2πfn. For steady state analysis, θin is a constant, i.e the
angular frequency does not change with time.

Eqs.(2)-(4) give the mathematical description of the system for any #n buck-type inverter system. Steady sate
analysis is employed to formulate the equilibrium values for the desired inductor current (̄iLn) and the desired disspi-
ation current (̄iTn) for a given desired voltage vCn = v̄Cn. Then, it will be possible to formulate the sinusoidal duty
ratio U .

It is possible to analytically solve the linear differential equation Eq.(4), by employing the known values of vCn = v̄Cn,
vCn+1 = v̄Cn+1. The solution to the equation is given by Eq.(14).

īTn =
R1nAn

R2
1n + L2

Tnωdn
(sin Φn−

ωnLTn

R1n
cos Φn)− R1nAn+1

R2
1n + L2

Tnωdn+1
(sin Φn+1−

ωdn+1LTn

R1n
cos Φn+1)+ke−(R1n/Ln)t (12)

Here, k is the constant of integration. The value of k is obtained by applying the initial condition iTd(0) = 0.

k =
AnωnLTn

R2
1n + L2

nωdn
− An+1ωdn+1LTn

R2
1n + L2

nωdn+1
(13)

Then, the equilibrium value of iLn can be obtained by solving Eq.(2) with iTn = īTn.



6

īLn = Cn ˙̄vC − īTn + īTn−1 +
v̄C

R2n−1
(14)

Finally, the open loop duty ratio Unto obtain from Eq.(3) by substituting iLn = īLnand given in (15).

Un =
Ln

En
[Cn ¨̄vCn − i̇Tdn + ˙̄iTn−1 +

˙̄vC
R2n−1

]
+
v̄C
En

(15)

Here, x̄ denotes the desired averaged value, ẋ denotes dx
dt , and ẍ denotes d2x

dt2 .

VI. ENERGY SHAPING IN PBC

We investigate whether it is possible for PBC to be applied to a system of multiple inverters coupled with dissipation.
The stored energy of a circuit is the sum of the energy in the passive elements, that is the inductors and capacitors.
The energy of the multiple inverter system is given by Eq.(16).

H =
1

2
xTDx (16)

x and D are as given in Eqs.(8). H, which is the total energy which is a summation of the kinetic and potential
energy.

The modified energy function is based on the Hamiltonian. The formulation is taken to be the quadratic function
of errors. It is given by Eq.(17).

Hd =
1

2
eTDe, e = x− xd (17)

Here, xd is the desired trajectory of the state. In order to prove that this function is a candidate of Lyapunov function,
let us check the derivative of the energy function as in Eq.(18).

Ḣd = (x− xd(t))
TD(ẋ− ẋd(t))

= (x− xd(t))
T ([J−R]x + E−Dẋd(t))

(18)

By setting the term Dẋd(t) as given in Eq.(19), the control rule with PBC can be formulated for nuck-type inverters.

Dẋd(t) = (J−R)xd(t) + E + RI(x− xd(t)) (19)

Where, RI is a symmetric and positively defined matrix, which acts as the damping injection, making the system
asymptotically stable if R + RI > 0. By considering that eTJ(µ)e = 0 for all values of µ, we get the following
condition on the derivative of our chosen Lyapunov function Hd(e).

Ḣd(e) = eT (J(µ)e−Re−RI)e = −eT (R + RI)e < 0 (20)

Under the control rule, the error e converges to the origin asymptotically. Then, by satisfying the condition
(R + RI) > 0, the system becomes exponentially and asymptotically stable at the equilibrium point [29]. Then the
derivative of Hd(e) is given in Eq.(21).

Ḣd(e) = −eT (R + RI)e ≤ −kHd(e) (21)

Hence it is proved that Lyapunov’s Theorem is satisfied. That is, the equilibrium state xd is asymptotically stable
with the control rule given in Eq.(19), and exponentially asymptotically stable with the damping injection. RI is
given in Eq.(22).

RI =


RI0 0 . . . 0

0 RI1 . . . 0
...

...
. . .

...
0 0 . . . RIn

 , where RIn =

Rαn 0 0
0 0 0
0 0 0

 . (22)
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Ḣd(e) = eT (J(µ))e−Re−RIe (23)

= −eT (R + RI)e < 0 (24)

For a buck-type inverter system, an indirect output stabilization is ensured by setting the current (̄iL) to a constant
sinusoidal value, depending on the desired output voltage amplitude and frequency. The zero dynamics of the buck-
type inverter with respect to the output capacitor voltage being unstable, a feedback control is considered through
current (indirect stabilization)[25]. Thus, we set a constant desired current, and then formulate the desired state
values for the output voltage and dissipation current. The desired current (̄iLn) is obtained from the steady state
analysis given by Eq.(14). The control equations are formulated based on the PBC equation Eq.(25)-(27).

µn = [Ln
˙̄iLn + ṽCn −Rα(iLn − īLn)] (25)

Cn
˙̃vCn = īLn − ĩTn + ĩTn−1 −

[ ṽCn

R2n−1

]
(26)

LTn
˙̃iTn = ṽCn − ṽCn+1 −R1nĩTn (27)

Here, xd = [̄iL ṽC ĩLT ]T is the desired dynamic state vector for the controller, and µ is the feedback duty ratio.
The value of the duty ratio µ is evaluated atevery instant t depending on the input, the parameters, and the desired

output of the system. That is, µ depends on time and the state. Hereafter, when PBC is applied to the system, µ is
considered as a function of time and state of the system.

To synchronize the phase of the output voltages of ring coupled buck-type inverter systems, the #p inverter is
taken as a reference. The sinusoidal reference for the #p inverter is used as the input signal for the PLL, the output
of which is used as the external frequency input for the sinusoidal reference of the #p− 1 and #p + 1 inverter. The
sinusoidal reference of #p− 1 and #p + 1 is in turn used as the input to PLL, the output of which is used as the
external frequency to #p− 2 and #p + 2 respectively. For odd number of inverters in the system, it ensures minimun
time delay in synchronising the phase and frequency of all the inverters in the ring. The connection of the PLL to
the system is shown in Fig.4.

VII. NUMERICAL SIMULATIONS

The simulation results are obtained for five inverters coupled in a ring form are given in this section. The numerical
simulations were carried out on ode45 solver Simulink (Version 8.7 R2016a). The numerical simulations are performed
in three cases depending on the phase angle and frequency of the inverters in the ring.

A. Case I: ∆ωn = 0, θn = 0

In Case I we test the effectiveness of the original system as well as the system with PBC under balance and
unbalanced conditions. There is no phase diference between the output of the inverter systems and the desired
frequency remains constant at the centre frequency of the VCO. Thus ωin = ωdn = ωd. This implies the output
frequency of all inverters stays constant at a particular value.

The simulations were proceeded for a ring-coupled system consisting of 5 buck-type inverters to enhance the
asymmetry in the system. Firstly, we investigate the effectiveness of the application of a sinusoidal averaged duty
cycle to the switches through PWM to achieve AC voltage. Fig.5 shows system behaviour with the steady state
analysis as given in Eq.(15). The steady state analysis is applied to a balanced ring coupled inverter system. A
balanced system implies that the parameters of all inverter systems are set to be the equal. The parameters are given
in Fig.3.

It is seen in Fig.5 that AC output voltage is generated in all five inverters, and due to the condition of balance,
all inverters synchronize with each other. The energy of the entire system is the sum of the energy in the inductors
(analogous to kinetic energy in mechanical systems) and the energy in the capacitors (analogous to the potential
energy in mechanical systems). The energy of the system depends on the inductor currents and capacitor voltage,
it oscillates with twice the frequency as the output voltage frequency. As all the inverter system and the dissipation
between them is balanced, there is no flow of energy between the coupled inverters.
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FIG. 5: Time evolution of original AC grid system without control. Here, v̄Cn is set with parameters An = 13,
fn = 60 Hz.

FIG. 6: Time evolution of AC grid with PBC. Here, v̄Cn is set with parameters An = 13, fn = 60 Hz.

Next, the system behaviour with the application of PBC is shown in Fig.6. The results show a marked improvement
in the transient period of the dynamic behaviour, with a smaller transient peak amplitude and a faster convergence
to the desired state. The behaviour of the designed energy function (Hd) is also shown. The system achieves control
when the value of the energy function drops down to zero. As the system output is not constant with time, the energy
function oscillates around the zero value.

The network is said to be imbalanced when the coupled inverters in the ring have different parameters. For practical
cases where the input comes from PV arrays, imbalance occurs at the change of input voltage for each inverter system,
depending on the irradiation, and with the change in the resistances owing to changing loads. Therefore, next, we
check the effectiveness of PBC by applying extreme noise to the input voltage as well as the load resistances. This will
create high imbalance conditions, as the input voltage and load resistances for each inverter will change separately
from the others. When the input voltage or load resistances are varied, the other parameters are kept consistent with
the balanced case. The application of PBC to such an unbalanced system is shown in Fig.7 and Fig.8 for different
input voltage and load transients respectively. It can be seen that despite extreme variation from the balanced values,
the output is fairly sinusoidal in both the cases. The frequency as well as the phase is maintained. The transient
expected at the sudden change of parameters is dampened and the output is kept fairly constant at the desired
sinusoidal voltage. Imbalance occurring in the ring coupled inverter system creates a difference in the output voltage
of the inverters, inducing the flow of dissipation current between the inverters.

B. Case II: ∆ω = 0, θin = constant

In the numerical simulations shown in Sec.VII A, the frequency and phase of the output voltages was same for all the
inverters. It was assumed that the sinusoidal reference for the PWM for all the inverters has the same frequency and is
switched ON at the same time, resulting in zero phase difference between the outputs. Even though all the sinusoidal
references can be provided with an external frequency, it is not fair to assume that all the sinusoidal references will
start at the exact same moment. Thus, it is possible that there might be a phase difference between the sinusoidal
references, and as a consequence, between the output voltages themselves.

Figures 9 and 10 show the output voltage and input currents of all 5 inverter systems without and with PBC
respectively. The origin of the temporal axis is when all the input voltages are switched ON. For the numerical
simulations #0 is used as the reference inverter. The proportional gain (Kp) of the PLL is set at 180. To emulate
a practical case, all the sinusoidal signals start at different times. Without PLL, it would create a constant phase
difference in the outputs, leading to an undesirable output voltage. Here, # 0 is considered as the reference inverter.
The phase of this reference is as Φ = ωdt+ 0.6, with an arbitarary constant phase angle θi = 0.6 rad. It is observed
that until all the sinusoidal references are switched ON, the output in unstable. As the reference signals are switched
ON, the PLL achieves the lock-in condition and the system output settles down to the desired state. The centre
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FIG. 7: Behaviour of unbalanced AC-grid with varying input voltages under PBC.

FIG. 8: Behaviour of unbalanced AC-grid with varying load resistances under PBC.

frequency is ωd = 377rad/sec (60 Hz).
Comparing the two figures, it is seen that the inverter output is more synchronized when PBC is applies, which is

indicated by the dissipation current flowing between the inverters. The dissipation current for the original system is
almost three times higher than when PBC is applied. The output settles down to the desired state faster with PBC,
and the dissipation current goes to zero for all inverters. With PBC, the duty ratio governing the output voltage
dynamically changes to drive the energy function to the minimum value. The dynamic change in the duty ratio
ensures a smaller deviation from the desired state due to the thorough consideration of the energy characteristics of
the system through PBC. In both cases, the PLL shows the phase synchronization of all the inverters to that of the
reference inverter.

C. Case III: ∆ω 6= 0, θin = f(t)

Next we vary the desired frequency from the centre frequency of the oscillator frequency creating an error frequency
∆ω = ωi − ωd. Then, the tracking of the PLL is observed for changes in frequency. The frequency is varied in two
ways. First, the frequency of this input is set to be different than the centre frequency of the VCO. For a VCO centre
frequency of 377 rad/sec, we set the initail input frequency to be 396 rad/sec. Then, the frequency is varied linearly
as a function of time with ∆ω = 10t. The results for these two cases is shown in Fig.11. Here, ∆α is the difference
between the sinusoidal signal of the reference inverter and the other inverters in the ring. Thus, ∆α indicates the
deviation of the PLL output from the desired sinusoidal reference. Note that ve = 0 for the purpose of numerical
simulations.

The PLL achieves a phase lock in when the frequency is set at a different value from the centre frequency. After
initial transient oscillations of different phase, the output steadies at the input frequency. Then, for the linear change
in frequency, the PLL is able to keep the locked-in conditions even when the frequency is slowly increasing. The
PLL maintains the hold-in conditions for the linearly increasing input frequency and retains all inverter systems at
the input frequency. Thus, the PLL is successful in tracking the input successfully for these two cases of frequency
change.

For cases where the frequency changes sinusoidally, the output shows an interference effect and the PLL may not
be able to synchronize all the inverter outputs at the desired frequency. Thus a sinusoidal change in the frequency
poses as a limitation of the synchronization with PLL.
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FIG. 9: Phase synchronization with PLL applied to autonomous AC grid of ring coupled buck-type inverter without
PBC.

FIG. 10: Phase synchronization with PLL applied to autonomous AC grid of ring coupled buck-type inverter with
PBC.

FIG. 11: Linear change in the frequency of the sinusoidal PWM reference.

VIII. CONCLUSION

In this paper we introduce an autonomous distributed generation AC grid to harness renewable DC sources of
electricity. System stabilization for the grid to the desired output voltage is achieved through PBC. PBC with energy
shaping and damping injection techniques was discussed with a modified energy function based on the quadratic
function of errors. The modified function approaches zero as the system reaches the equilibrium condition.

A buck-type inverter was introduced to obtain a AC voltage with the desired amplitude and frequency by alternating
the polarity of the DC input with the help of power electronic switches. Analysing the steady state of the system, the
necessary switching is determined via the sinusoidal duty ratio. The control of the output voltage in a ring coupled
inverter system was attained with the focus on the energy characteristics of the system with the application of PBC.
The control equations were obtained by proving the desired energy function as a Lyapunov function. The convergence
to the desired steady state as well as the effectiveness of PBC were verified by numerical simulations. The system
was studied under conditions of imbalance. Numerical simulations indicate that PBC proves to remain an effective
method of control under imbalance conditions.

It was found that phase differences between the output voltage of different inverter systems leads to unstable output
voltage for the entire system. PBC causes the system to converge to a desired state, but even small inconsistencies in
frequency can prove to be detrimental. In order to avoid such instabilities we implement frequency and phase angle
synchronization to the entire system through PLL. Application of PLL was achieved through mathematical modelling,
and then studied through numerical simulations. It was seen that the PLL successfully tracks the input reference for
frequencies other than the centre frequency for the VCO as well as a linear change in the input frequency. Thus, a
PLL, along with PBC, proves to be an efficient method to bring about phase synchronization in an autonomous grid
with ring coupled buck-type inverters.
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APPENDIX A: PHASE LOCKED LOOP

An inconsistency in the frequency or phase of the output voltages causes an interference effect. This effect is not
desirable as the output voltage amplitude becomes unstable, instead of a pure sinusoidal waveform. Frequency as well
as phase synchronization can be achieved with the help of a phase locked loop.

Input

Output
VCO

LPFComparator

+

+

FIG. 12: Block diagram of a phase locked loop.

A phase locked loop is a circuit that generates an output signal, whose phase is the same as that of the input signal
[24]. A PLL generally consists of a phase detector or a comparator, a VCO and a low pass filter [26, 27]. The phase
detector(PD) produces an error signal that is proportional to the phase error between the input signal and the output
of the VCO. The low pass filter supresses noise and the unwanted PD outputs, thus determining the dynamics of the
PLL. The VCO produces a signal with frequency proportional to the control voltage (vVCO). The closed loop forces
the VCO to lock the phase of the output to that of the input signal. The output of the VCO is the output of the
PLL. The block diagram of a phase locked loop is shown in Fig.12.

The input signal to the PLL is the sinusoidal signal for the PWM of the reference inverter. Let the input signal be
given by s(t,Φ) = A sin(ωdt + θi(t)), where A is the amplitude and φ = ωdt + θi(t) is the phase of the input signal.
ωd is the centre frequency of the VCO. θi(t) incorporates the error in the input frequency, δω = ωi − ωd from the

centre frequency of the VCO. Let the output of the VCO be r(t, Φ̃) = V0 cos(ωdt + θo(t)), with V0 as the amplitude

and Φ̃ = ωdt+ θo(t) as the phase.

With s(t,Φ) and r(t, Φ̃) as the inputs to the PD, the output voltage of the PD can be given by Eq.(28).

vcomp = KpA sin(θe) (28)

Here, Kp is the gain from the PD and θe = θi − θo is the phase error. It is set a dimensionless quantity and is set
at Kp = AV0/2. vcomp is the input of the LPF. If the transfer function of the LPF in the frequency domain is given
as F (s), then the output voltage of the filter can be obtained by Eq.(29). The LPF is considered ideal without any
harmonics.

vfilter = L−1[F (s)Vcomp(s)] (29)

Here, L−1 denotes the Laplace inverse and Vcomp(s) is the Laplace transform of vcomp. The instantaneous output
frequency of the VCO, given by ωVCO(t), is proportional to the control input of the VCO. Then, Eq.30 can be
obtained.

ωVCO(t) = ωd +KCvVCO (30)

Here, KC represents the gain of the VCO. The units are Hz/V and is calculated as fmax−fmin/vmax−vmin. Where
fmax and fmin represent the maximum and minimum frequency, and vmax and vmin, the maximum and minimum
voltage respectively. The instantaneous frequency of of the output of the VCO is given by the derivative of Φ̃. Thus,
the following set of equations hold, where ve is the external control voltage.

ωVCO(t) =
dΦ̃

dt
(31)

dθo
dt

= KCvVCO (32)

vVCO = vfilter + ve (33)
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Thus, the phase of the output voltage, Φ̃ is locked with the phase of the input, and the output signal can be used as
a sinusoidal reference to the PWM of the adjoining inverter. The loop equation for θo(t) is given by Eq.(34)

dθo
dt

= KC [L−1[F (s)Vcomp(s)]KpA sin(θe) + ve] (34)

Here, KC represents the gain of the VCO. The units are Hz/V and is calculated as fmax−fmin/vmax−vmin. Where
fmax and fmin represent the maximum and minimum frequency, and vmax and vmin, the maximum and minimum
voltage respectively.


