RCP2.6 シナリオを用いた日本付近における気候変化の将来予測について

山田賢,卜部佑介,後藤敦史(気象庁気候情報課) 川瀬宏明,野坂真也,遠藤洋和、佐々木秀孝,村田昭彦(気象研究所) 伊東瑠衣,渡邉俊一(気象業務支援センター)

1. はじめに

気象庁では、平成8年度より、数値モデル による地球温暖化の予測結果を「地球温暖化 予測情報」として数年おきに公表している。 平成29年3月には、防災上の意識を高める 観点等から、高位の温室効果ガス排出シナリ オである RCP8.5 シナリオに基づく将来予 測として「地球温暖化予測情報第9巻」(気 象庁,2017)(以下、「第9巻」とする)を公 表した。

また、平成 30 年 12 月には「気候変動適 応法」が施行され、地球温暖化対策として、 緩和策はもとより適応策の重要性が高まっ ている。適応策の観点から、2℃目標が達成 された状況でどの程度温暖化の影響が現れ、 どういった対応が必要かを検討するため、そ れに相当する RCP2.6 シナリオに基づいた 温暖化予測結果の需要が増している。

このような背景を踏まえ、気象庁と気象研 究所では RCP2.6 シナリオに基づく予測計 算及び解析を実施している。本稿では、 RCP2.6 シナリオの予測結果と、RCP8.5 シ ナリオに基づく「第9巻」の予測結果を比較 することにより、その特徴について報告する。

2. データと解析手法

RCP2.6シナリオの予測実験は、「第9巻」 の元となった予測と同じ条件で計算・解析を 実施した。まず、水平解像度 20km の全球大 気モデル (MRI-AGCM3.2S) (Mizuta et al., 2012)を用い、1980~1999年(以下、現在 気候とする)及び 2076~2095年(以下、将 来気候とする)の計算を実施した。それらの 結果を境界条件として、水平解像度 5km の 非静力学地域気候モデル(NHRCM05)

(Sasaki et al., 2011)を用い、日本とその 周辺を対象に計算を行った。なお、同じく境 界条件として与える海面水温データは、予測 結果のばらつき具合に基づく不確実性の幅 を考慮するため、Mizuta et al. (2014)に基 づき作成された4パターンを用いた。気温の 階級別日数、降水の階級別発生頻度について は、非静力学地域気候モデルの出力値を観測 データと比較してバイアス補正を実施した (詳細は「第9巻」【資料3】)。

将来変化量は、将来気候の20年平均値を 4メンバーで平均した値と現在気候の20年 平均値の差とし、将来変化率は現在気候20 年平均値に対する将来変化量の比として示 した。地域別の解析については、第1図の7 つの領域区分ごとに計算を実施し、年々変動 の幅は Wakamatsu et al. (2017)に基づき 算出した。将来変化の有意性の検定には Mann-Whitney 検定を用い、信頼度水準 90%以上(両側)で判定を行った。

第1図 予測データの解析に用いる地域区分

3. 予測結果

3.1 気温要素

まず、第2図に年平均気温の将来変化を示

第2図 RCP2.6シナリオ及び RCP8.5シナリオに基づく年平均気温の将来変化の予測 (a):各地域における年平均気温の将来変化量[単位:℃]。棒グラフは将来変化量、細い縦線は年々変動の幅(左: 現在気候、右:将来気候)。統計的に有意に増加する領域は、その領域名を赤のハッチで示している。 (b):年平均気温の将来変化量の分布[単位:℃]。

す。年平均気温は、RCP2.6、RCP8.5 シナリ オともに、すべての地域で有意に上昇し、全 国平均で見た場合の気温の上昇量は、 RCP2.6 シナリオの下では 1.4 ± 0.4 °C、 RCP8.5 シナリオの下では 4.5 ± 0.6 °C と予測 される(第2図(a))。また、日本付近におけ る平均気温の将来変化量の分布(第2図(b)) から、RCP2.6、RCP8.5 シナリオともに、高 緯度地域ほど大きく上昇し、特に北海道の一 部では、オホーツク海の海氷が減少すること を反映して大きな上昇が現れている。

次に、極端な高温の発生頻度の予測の一例 として、猛暑日(日最高気温35℃以上)日数 の将来変化について示す。猛暑日日数は、平 均気温と同様、RCP2.6、RCP8.5 シナリオと もに、すべての地域で有意に増加し、全国平 均の増加量は、RCP2.6シナリオの下では2.7 ±1.6 日に対し、RCP8.5 シナリオの下では 19.1±5.2 日と予測される(図略)。

3.2 降水要素

第3図に年降水量の将来変化の特徴につ

いて示す。年降水量は、気温要素とは異なり、 RCP2.6、RCP8.5 シナリオともに、ほとんど の地域で有意な増減は見られない。ただし、 沖縄・奄美の変化量は、RCP2.6シナリオの 下では 294.5±430.2mm の増加(統計的に 有意)に対し、RCP8.5 シナリオの下では 114.1±477.4mmの増加(統計的に有意では ない) が予測され、RCP2.6 シナリオの方が 増加量が大きく、統計的に有意な予測となっ ている(第3図(a))。また、日本付近におけ る降水量の将来変化率の分布(第3図(b)) から、北日本、沖縄・奄美を中心に増加傾向、 東·西日本を中心に減少傾向という空間分布 の特徴は、RCP2.6、RCP8.5 シナリオともに 共通しているが、沖縄・奄美付近の広い範囲 で、RCP2.6 シナリオの方が RCP8.5 シナリ オよりも増加率の大きい領域が見られる。

次に、短時間強雨の頻度の予測の一例として、1時間降水量 50mm 以上の降水の発生 回数の将来変化について第4図に示す。その 発生回数は、RCP2.6、RCP8.5 シナリオとも にすべての地域で有意に増加し、また、ほと

第3図 RCP2.6シナリオ及びRCP8.5シナリオに基づく年降水量の将来変化の予測 (a):各地域における年降水量の将来変化量[単位:mm]。棒グラフは将来変化量、細い縦線は年々変動の幅(左: 現在気候、右:将来気候)。統計的に有意に変化する領域は、その領域名を青のハッチで示している。 (b):年降水量の将来変化率の分布[単位:%]。

第4図 RCP2.6シナリオ及び RCP8.5シナリオに基づく1時間降水量50mmの発生回数の将来変化の予測 (a):各地域における1時間降水量50mmの現在気候及び将来気候の発生回数[単位:回/地点]。棒グラフは発 生回数、細い縦線は年々変動の幅(左:現在気候、右:将来気候)。統計的に有意に増加する領域は、その領域 名を青のハッチで示している。

(b):1 時間降水量 50mm の発生回数の将来変化量の分布 [単位:回]。変化傾向が4メンバーとも一致した地点のみ表示。

んどの地域において RCP2.6 シナリオの予 測の方が RCP8.5 シナリオよりも増加量は 少ないと予測されている。例えば、全国平均 で見た場合の現在気候に対する将来気候の 発生回数の倍率は、RCP2.6 シナリオの下で は 1.6(1.1~2.1)倍、RCP8.5 シナリオの下で は 2.3(1.6~3.0)倍と予測される。一方、沖縄・ 奄美では RCP2.6 と RCP8.5 シナリオ間の
予測における増加量はほぼ同程度で、倍率は
それぞれ 2.2(0.8~3.7)倍、2.1(0.9~3.2)倍で
ある(第4図(a))。発生回数の将来変化量の
分布(第4図(b))からは、全国的に RCP2.6
シナリオの方が RCP8.5 シナリオよりも増
加量が少なく、メンバー間の一致度も低いこ

第5図 非静力学領域気候モデルと全球大気モデルの年降水量の比較(1メンバー(c0)) (a):非静力学領域気候モデル(MHRCM05:水平解像度 5km)の年降水量の将来変化率[単位:%]。現在気候: 1980~1999 年、将来気候:2076~2095 年。

(b):全球大気モデル (MRI-AGCM3.2:水平解像度 20km)の年降水量の将来変化量 [単位:mm/日]。現在気候:1979 ~2003 年、将来気候: 2075~2099 年。

とが分かるが、沖縄・奄美については地点数 が少なく明瞭な傾向を確認できない。

4. まとめ・考察

本稿では、今回新たに計算を実施した RCP2.6シナリオに基づく予測結果について、 RCP8.5シナリオに基づく「第9巻」の予測 結果と比較することにより、その特徴を調べ た。その結果、多くの気候要素・地域におい て、RCP2.6シナリオの下での予測は RCP8.5シナリオの下での予測と比べて温暖 化に伴う変化が小さくなっていたが、沖縄・ 奄美の降水要素の将来変化に関しては異な る傾向が示された。そこで、年降水量につい て、非静力学領域気候モデルと全球大気モデ ルの予測結果の比較を行った。

第5図には、非静力学領域気候モデル及び 全球大気モデルの年降水量の将来変化(1メ ンバーのみ)の分布を示す。この図から、全 球大気モデルにおいても、沖縄・奄美付近で RCP2.6 シナリオの下での予測の方が RCP8.5シナリオのそれよりも増加量が多い 領域が見られる。このことから、非静力学領 域気候モデルの予測で見られた、沖縄・奄美

における降水要素の将来変化の排出シナ リオ間の違いは、全球大気モデルの予測結果 を反映していることが示唆される。なお、こ のような特徴がみられた要因については、今 後さらなる解析を実施する予定である。

謝辞

本稿で利用したデータセットは、文部科学 省気候変動リスク情報創生プログラム、統合 的気候モデル高度化研究プログラムにおい て、気象庁の協力のもと、気象庁気象研究所 が開発した気候モデルを利用して作成・提供 されたものである。

参考文献

- 気象庁,2017:地球温暖化予測情報第9巻,IPCC の RCP8.5 シナリオを用いた非静力学地域気 候モデルによる日本の気候変化予測,平成29 年3月,41pp.
- Mizuta, R., H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, M. Hosaka, M. Sugi, S. Yukimoto, S. Kusunoki, and A. Kitoh 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233-258.
- Mizuta, R., O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh 2014: Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA, 10,167-171.
- Sasaki, H., A. Murata, M. Hanafusa, M. Oh'izumi, and K. Kurihara 2011: Reproducibility of present climate in a nonhydrostatic regional climate model nested within an atmosphere general circulation model. *SOLA*, **7**, 173–176.
- Wakamatsu, S., K. Oshio, K. Ishihara, H. Murai, T. Nakashima and T. Inoue 2017: Estimating regional climate change uncertainty in Japan at the end of 21st century with mixture distribution. *Hydrological Research Letters.* 11, 65-71.