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1 Introduction

Plant-soil mechanical interaction plays an essential role in sustaining water supply and plant production, and
the interaction is a significant research subject from the standpoints of geotechnical engineering and plant
production science for decades. It is widely accepted that soils are vital materials for building and supporting
artificial/biological agricultural objects such as dams, irrigation/drainage open channels, agricultural fields,
as well as crops. As can be seen on earth dams and embankments, soil domains are covered by vegetation
which interacts with the microscopic structure and stability of soils (Ali and Osman, 2008; Liang et al., 2017).
Since soil behavior is affected by microscopic soil structure such as void ratio, contact conditions of soil
particles, and contamination of natural/artificial fibers, the presence of the plant roots affects the mechanical
characteristics of soil structure. During the last four decades, it has been reported that plant roots often
increase the shear strength of soils by reinforcing apparent cohesion and that the reinforcement is beneficial
to increase the stability of soils (Endo 1980; Gray and Ohashi., 1983; Abe and Ziemer, 1991;Docker and
Hubble., 2008; Hejazi et al., 2012). On the other hand, the mechanical stability of the crops is influenced
by the mechanical strength of soils (Berry et al., 2003; 2004), which is an important research subject for
sustainable cereal production. Cereals have their grains at their upper sides of the body, hence, loss of stability
called lodging causes the decline of both the yield and the qualities. For instance, it is reported that severe
lodging causes more than 45 % of yield losses (Baker et al., 1998; 2014), and also causes low grain quality
due to the delay of the harvest. Since the failure of root-soil systems induces severe and permanent lodging,
it is essential to present mathematical and physical models to understand and predict plant-soil interactions
to sustain the productivity of cereals.

Vegetation reinforces surface layers on both of artificial soil structures and natural slopes (Bischetti
et al., 2010; Liu et al., 2016; Bizet et al., 2018). Rainfall events often cause erosion of soil particles on
natural/artificial slopes(Das et al., 2018), which induces geo-disasters of soil structure as dams, embankments,
slopes, roads, and other foundations. It is often employed that slope protections by using concrete, cemented
soils, and artificial fibers. Although these methodologies substantially increase the resistance of the soil
structures, there are annoying problems that the deterioration of concrete, cement, and synthetic fibers
induces the reduction of the function. The deterioration also result in increasing the life-cycle costs of soil
structures. By contrast, biological reinforcement such as plant roots increases the shear strength of soils
(Hejazi et al., 2012) with far less financial costs than the artificial materials since biological materials grows
and increase the resilience of the soil structures against the erosion. The reinforcement is relatively weak and
hard to predict quantitatively. Therefore, the utilization of biological reinforcement is still less common than
artificial ones.
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From another standpoint, soil supports crops to prevent lodging. Lodging is defined as a permanent
displacement of cereals (Baker et al., 1998) and induced by loss of stability of plant body and rhizosphere.
Prevention of lodging is one of the most critical problems to sustain yield and quality of cereals (Baker et
al., 1998; Berry et al., 2004) since the lodging causes pre-harvest sprouting, diseases, and decline of the
radiation utilization efficiency. There are two types of lodging: stem lodging and root lodging. Stem lodging
is caused by bending or breakage of plant stems, and there has been presented that some schemes to estimate
and prevent this type of lodging (Ookawa et al., 2010). The root lodging, however, is still hard to predict,
and the prediction/prevention is being challenged. Beker et al. (1998) proposed a method to predict the root
lodging of wheat, which is an empirical model based on numerous observation data from field experiments.
Though Baker’s model is convenient for roughly simulating the lodging of wheat, it has difficulty for its
accuracy when it is used for breeding or field management. To increase the accuracy of the lodging model,
it is necessary to propose physics-based methods such as numerical simulations for plant-soil systems.

The problems mentioned above motivate researchers to investigate and predict plant-soil mechanical
interactions for decades. it has been presented that roots reinforce the rooted soils, and the reinforcement is
visible as incremental cohesion/friction. The reinforcement model has been utilized for the homogeneous
approach which models rooted soils as homogeneous domain. In the 1990s, Abe and Ziemer (1990) propose
a method to estimate the shear strength of the rooted soils from material properties and geometries of roots
and soils. The Mohr-Coulomb model is one of the most widely-used models to estimate the stability of rooted
soils in artificial/natural slopes (Rahardjo et al., 2009; Rahardjo et al., 2014; Eab et al., 2015; Zhu et al.,
2017).

Recently, Dupuy et al. (2007; 2018) and Michovski et al. (2011) propose direct simulations of root-
soil contact problems based on the Finite Element Method (FEM) and simple root-soil contact models.
They utilize commercial software packages of the FEM with some mechanical data of plants, soils, and
root-soil interfaces to directly predict the deformation of roots, soils, and contact between roots and soils.
These approaches are substantially innovative since the methods can utilize the exact root morphology in
the prediction, which has not been done in the previous approaches. Their approach clearly visualizes the
stress fields of the soils and roots, which provides far more detailed information to estimate and understand
the deformation of rooted soils. For instance, Dupuy’s approach gives a prediction of the failure zone of
roots and soils and shows how wind forces are propagated from roots to soils, which did not estimate by the
conventional approaches based on the Mohr-Coulomb model.

Although the direct approaches are novel and accurate, some important problems are still remained about
the constitutive model of root-soil contact interfaces to utilize the models for practical problems such as
soil erosions and lodging. The primary problem is the absence of a consistent method to measure the shear
strength of root-soil interfaces. The FEM with contact models necessitates slip criterion of root-soil interfaces
which express cohesion and frictions. However, there have not been presented any methods which accurately
measure cohesion and friction of root-soil interfaces.

Further, another problem exists for the discretization scheme of the root-soil interfaces. Dupuy et al.
(2007) utilized the Node-To-Node (NTN) approach, which does not allow slip of the interface, and Michovski
et al. (2011) used the Line Element (LE) approach which requires special conversion from 2-D or 3-D scanned
data to straight or curved lines. Therefore, to utilize the direct simulation of root-soil contact problems for
the design and management of the soil structures and crops, it is necessary to develop both of discretization
scheme of root-soil interfaces and software to predict the root-soil contact problems.

This thesis aims to present a set of experiments, constitutive models, and numerical methods for predicting
the deformation of rooted soils based on the computational contact mechanics (Hughes et al., 1976; ) approach
with FEM. As discussed in the previous subsection, numerical simulations of root-soil contact problem
necessitate accurate measurements of shear strength of root-soil interfaces such as frictional coefficient of
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root-soil interface, and cohesion induced by suction. However, little experiments are available for measuring
frictional coefficients of root-soil interfaces, and no models are presented to obtain cohesion in root-soil
interfaces induced by suction. This thesis presents two novel experiments to measure friction and suction-
induced cohesion, respectively. From these experiments, two models that are utilized for soil-soil interfaces
are introduced to give mathematical expressions for friction (Mohr-Coulomb model) and suction-induced
cohesion (Vilar model, Vilar, 2006), which are implemented for numerical simulations of root-soil contact
problems. It is also discussed in the previous subsection that NTN and LE approaches have limitations for
expressing such root-soil contact phenomena as (1) slip between roots and soils, (2) separation between roots
and soils, or (3) complex root geometry and surface topology of root-soil interfaces. These limitations result in
reduced accuracy or high pre-processing costs in the previous results. The Node-To-Segment (NTS) approach
which is a modified approach of the NTN, hence, is newly introduced in the thesis to avoid these problems,
which can express (1) slip between roots and soils under large-slip conditions, (2) separation/contact between
roots and soils, and (3) geometrical nonlinearity of roots and soils. Although the original version of the NTS
approach induces ill-convergence problems when it is applied for root-soil contact problems (Dupuy et al.,
2008), a novel scheme is successfully introduced to stabilize the NTS approach. The following chapters are
devoted to the set of experiments, modeling, and numerical simulations.

In Chapter 2, the outline of the NTS approach with FEM (NTS-FEM) is briefly explained to model
root-soil contact interfaces. The chapter presents kinematics of root-soil contact problems, mathematical
expressions of the governing equation, the discretization and linearization of the governing equation, and
the solution algorithm for numerical simulations. Since the solution algorithm for the numerical simulation
necessitates the constitutive modeling of roots, soils, and root-soil interfaces, the chapter also discusses
experiments and models for the mechanical characteristics of them.

Chapter 3 proposes a novel pull-out apparatus to measure the cohesion and frictional coefficient of root-
soil interfaces, both of which are essential to perform root-soil contact simulations. The pull-out apparatus
is validated by measuring the frictional coefficient of a steel-sand interface, which has been measured in
previous studies (Uesugi and Kishida., 1986). It is also confirmed that shear zones in experiments are not
mainly in the roots or soils, but the root-soil interface through the comparison between the steel-sand tests and
the wood-sand tests. Afterward, the shear strength of root-soil interfaces is measured by using a paddy soil,
and the apparatus accurately measure a root of barley, which suggests that the Mohr-Coulomb (MC) model
well governs the shear stress of root-soil interfaces as well as the frictional coefficients and the cohesion.

Chapter 4 presents a 2-D experiment and a numerical simulation of the lodging problem, which utilizes the
apparatus presented in the previous chapter. The chapter contains the implementation of the NTS approach,
a novel stabilization scheme of the NTS approach, and the procedure to measure the material parameters
of roots, soils, and root-soil interfaces. The chapter also contains numerical simulations for pull-out tests
and lodging problems to validate and confirm the accuracy of the present method. The results are highly
consistent with both of the experiments and suggested that the present method is capable of reproducing the
deformation of rooted soils.

Chapter 5 describes a set of methods to measure, model, and predict the shear strength of root-soil contact
interfaces under dynamic suction conditions, the model of which is based on Mohr-Coulomb-Vilar (MCV)
model with the NTS approach. The chapter extends the MC model to predict the shear strength of root-soil
interfaces under dynamic suction conditions.

Chapter 6 shows validations and applications of the root-soil contact simulation based on the MCV model.
The MCV model is first validated by simulating the suction-controlled pull-out tests and then applied for a
numerical experiment of pull-out tests under dynamic suction conditions. The results show that the MCV-
NTS approach expresses the root-soil contact behavior under dynamic suction conditions. The numerical
experiment of the pull-out behavior of roots is performed, and the effect of wet-dry conditions is reasonably
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estimated as the pull-out force of roots.
Chapter 7 remarks on the conclusion of the whole thesis and describes future studies.

2 Continuum Model for Root-Soil Contact Problem

This section summarizes general formulations for frictional-cohesion contact problems. First, the contact
kinematics is described where the schematics of the contact problem and mathematical expression of the
deformation and contact, stick, and slip are given based on the CCM. Second, it is also shown that the weak
form of contact problems in terms of FEM and the NTS approach. Afterward, the discretization and matrix
form of domains and contact surfaces are explained in which friction and cohesion are also modeled and
discretized by using contact elements. Lastly, the solution algorithm is discussed.

2.1 Formulation of root-soil contact interface

Figure 1: Schematic view of contact kinematics.

This section reviews the contact kinematics and its formulation in terms of CCM. The formulation of
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roots and soils were done by using the finite elasto-plasticity and the CCM. This section summarizes the
derivation of the governing equation of contact problems and its discretization by using the NTS approach
(Wrigger, 2006). Let us consider two deformable bodies, in which one is usually denoted as the master body(
Ω1,Ω1

)
and another as the slave body

(
Ω2,Ω2

)
. Both bodies can undergo deformation through motion

during [0, t] and come into contact, where (Ω1,Ω2) is identified at the current configuration and
(
Ω1,Ω2

)
is

in the initial configuration (Fig. 1). Further, in the current configuration, boundaries of each body can be
divided into three non-overlapping subdivisions: displacement boundaries, traction boundaries, and contact
boundaries.

Accordingly, the governing equation for the displacement field is given by a virtual work equation,

δW =
(∫
Ω

σi j
∂δui
∂xj

dΩ −
∫
Ω

fiδuidΩ −
∫
Γ

tiδuidΓ
)m

+

(∫
Ω

σi j
∂δui
∂xj

dΩ −
∫
Ω

fiδuidΩ −
∫
Γ

tiδuidΓ
)s
+ δWc = 0,

(1)

where i and j are subscripts which have values of 1, 2, 3 in the three-dimensional Euclidean space, δW is
the virtual work, superscripts m and s denote the master/slave notations in the current configuration, Γ is
the boundary of the domains, σi j is the Cauchy stress tensor, δui is the virtual displacement vector, δ is the
variational operator with respect to displacement, fi is the body force vector, and ti is the traction vector. The
first and second terms are identical to the conventional virtual work for one-body problems (Hashiguchi and
Yamakawa, 2013). The last term represents the virtual work for the contact interfaces, which is derived from
the constraint conditions such as the non-penetration conditions, friction, and cohesion (Wriggers, 2006).
The virtual work of contact interfaces δWc is generally taking the form of

δWc =

∫
Γ

tNiδgNidΓ +
∫
Γ

tTiδgTidΓ, (2)

in which tNi and tTi are the normal and the frictional stress, respectively. gNi is the normal gap and gNi is
the tangential displacement from the initial contact point (Fig. 1). Here, the first term enforces the normal
contact stress to prevent overlaps between the bodies, and the second term works as the tangential one such
as friction and cohesion. This interfacial virtual work δWc is analogous to the well-known virtual work, and
it becomes zero under contactless conditions (Wriggers, 2006).

The first and the second term of the governing equation (Eq. (1)) are discretized by using the finite
elements, and the last one is discretized by using the NTS elements. The bodies are initially discretized
by finite elements, as illustrated in Fig. 1. Then, each node on the slave surface is paired with the closest
segment on the master surface (Fig. 2). Since the contact element mechanically connects a node to a segment,
it is called an NTS element. From the geometrical relationship, the normal gap vector gNi , tangential gap
vector gTi is formulated by using the nodal coordinates. Under the penalty method, a slave node and a master
segment are connected by virtual springs, as depicted in Fig. 2 (b) and (c), which is the penalty parameter.
The frictional stress is relaxed if it is greater than the frictional strength, which is described as the parallel
shift of the virtual spring from the initial contact point (Fig. 2). Above all, the governing equation is given by

δWc =

ne∑
A=1

δuid(A)Ri
d(A) +

nc∑
A=1

δuic(A)Ri
c(A) (3)
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Figure 2: Schematic view of NTS contact elements with the penalty method. (a) Contact interfaces formed
between two finite element meshes, (b) expression of normal contact, and (c) model of stick-slip phenomenon
in terms of the NTS approach.

6



where A and B denote the identification numbers of nodes in each element, ne and nc are the numbers of
finite elements and NTS elements, respectively, δuid(A) and δuic(A) are variations of the nodal displacement
vectors for the bodies and the contact interfaces, Ri

d(A) and Ri
c(A) are the residual vectors. The detailed

derivation of the previous equation is displayed in the next section.
This section provides the standard contact algorithm based on the penalty method (Wriggers, 2001; Liu

et al., 2006) and an implementation of the friction and the cohesion. For solving the discretized equations
(Eq. (2.3)), the Newton’s method is utilized since the discretized equations have nonlinear relationships with
the displacement (Wriggers et al., 2001; Liu et al. 2003; Wriggers, 2006). From Eq. (3), the linearized
equation is expressed by

δW +
∂ (δW)
∂ui

∆ui =
ne∑
A=1

ne∑
B=1

δuid(A)
(
Ri

d(A) +
[
Ki j

d(AB)
]
∆uid(B)

)
+

nc∑
C=1

ne∑
D=1

δuic(C)
(
Ri

c(C) +
[
Ki j

c(CD)
]
∆uic(D)

)
,

(4)

in which ∆ui denotes the displacement increments, ui is the global displacement vector,
[
Ki j

d(AB)] is the
stiffness matrix of each finite elements,

[
Ki j

c(CD)] is the stiffness matrix of contact elements. As the NTS
elements share the nodes with the finite elements as seen in Fig. 2, Eq. (4) can be assembled into a system
of equation [

Kαβ

]
∆uβ = −Rα (5)

[
Kαβ

]
= ∪〈

[
Ki j

d(AB)
]
,
[
Ki j

c(CD)
]
〉 (6)

Rα = ∪〈Ri
d(A),Ri

c(C)〉 (7)

where
[
Kαβ

]
is the global stiffness matrix, Rα is the global residual vector, and ∪〈·, ·〉 is the matrix-vector

assembly operator, which rearrange a matrix form into a vector form. In every iteration in the Newton’s
method, the displacement fields are updated by using the solution of Eqs. (5), (6), and (7).

For the sake of stability of the solution algorithm, there are two phases during every time step, which are
the first and the second the Newton’s loop (Wriggers, 2006). The first Newton’s loop is in the trial mode, in
which the frictional stress assumed to be proportional to the displacement without any plastic slip. After the
convergence, the frictional law is enforced in the second phase, where displacement and frictional stress are
updated at every iteration until equilibrium is achieved.

In order to update frictional stress (Fig. 2), the return-mapping algorithm is employed. The algorithm is
originally proposed by Simo and Taylor (1986) for updating stress in the framework of the elasto-plasticity.
The idea has been extended in terms of the CCM as an algorithm for updating the frictional stress (Peric and
Owen, 1992; Wriggers et al., 2001). Although the scheme generally is solved by iterative methods, it can be
directly solved in case of the Mohr-Coulomb’s model,

f =
√

tTitTi − µ · ϵ√gNigNi − c ≥ 0 (8)

where f is the yield function, µ is the frictional coefficient and c is the cohesion. The system of equations is
given by,
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tn+1
Ti = ϵ

(
gn+1
Ti − gslip,n+1

Ti

)
( f > 0) (9)

tn+1
Ti =

(
µ
√

tn+1
Ni tn+1

Ni + c
)

ttr ,n+1
Ti√

ttr ,n+1
Ti ttr ,n+1

Ti

(10)

g
slip,n+1
Ti = g

slip,n
Ti ( f < 0) (11)

g
slip,n+1
Ti = g

slip,n
Ti +

(√
tn+1
Ti tn+1

Ti − µ ·
√

tn+1
Ni tn+1

Ni − c
)

ϵ
·

ttr ,n+1
Ti√

ttr ,n+1
Ti ttr ,n+1

Ti

( f ≥ 0) (12)

where ttr ,n+1
Ti is the frictional trial stress, and these equations are used in the solution algorithm.

In this thesis, a simple modification is proposed for the pairing algorithm of the NTS element, which is
explained in detail in Chapter 4. One of the main issues in the NTS formulation is that the pairing between
a node and a segment is not unique in some cases (Wriggers, 2006; Zavarise and De Lorenzis, 2009). For
instance, there are two possible master segments for single slave node. This phenomenon causes oscillations
of the solution and the ill-convergence problem (Zavarise and De Lorenzis, 2009). Extensive research has
shown that the problem is avoided by introducing a smooth surface in interfaces. Wriggers et al. (2001) have
proposed some interpolations by using the Hermite functions and the cubic Bernstein functions. A more
straightforward method has been proposed by Liu et al. (2003). However, these approaches are far more
complicated than the original NTS approach due to the nonlinearity of the interpolations. Therefore, in this
thesis, a simple algorithm is provided to avoid this problem, as illustrated in Chapter 4, and it is illustrated
that the algorithm increases the robustness.

2.2 Formulations of root and soil

This section presents the discretization of domains, where two following points are discussed based on the
NTS approach. First, the virtual work should be formulated in terms of the current configuration since the
momentum balance can be formulated only at the current configuration, and not in the initial configuration
within contact problems (Wriggers, 2006). Also, a constitutive equation used in the formulation should
satisfy objectivity for rotation. The reason for it is that the frictional contact problem, as presented here, is
large-deformation or large-slip problems where domains significantly rotate. A formulation is based on the
finite strain theory with the multiplicative decomposition of the deformation gradient tensor to satisfy the
objectivity.

The finite strain theory is derived from the momentum balance in the current configuration,

∂σi j

∂xj
+ ρbi = ρ Ûvi (13)

where σi j is the Cauchy stress tensor, vi the velocity and Ûvi the acceleration, bi is the body force, ρ is the bulk
density, xj is the coordinate in terms of current configuration. Eq. (13) is solved with Dirichlet boundary
condition (displacement boundary)

ui = ūi on Γu, (14)
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Neumann boundary condition (traction boundary condition)

σi jnj = t̄i on Γt, (15)

and initial conditions

ui = ūi on t = 0, (16)
σi j = σ̄i j on t = 0, (17)

where Γu is the Dirichlet boundary and ūi is the displacement on the boundary, Γt is the Neumann boundary
and t̄i is the traction on the boundary, nj is the normal vector on the boundary, ūi and σ̄i j are initial values.
Consequently, the integral form of Eq. (13) is∫

Ω

∂σi j

∂xj
dΩ +

∫
Ω

ρbidΩ =
∫
Ω

ρ ÛvidΩ (18)

In case of the formulation based on finite strain theory, Eq. (13) and above initial/boundary conditions are
pulled back to the initial configuration for convenience. Among the various pull-back operations, following
pull-back operation is often used,

PiJ = τikF−T
kJ = Jσi jF−T

kJ (19)

where τik is the Kirchhoff stress tensor, PiJ is the first Piola-Kirchhoff stress tensor, FiJ is the deformation
gradient tensor which is the two-point tensor and explained in detail in the next section,

FiJ =
∂xi
∂XJ

(20)

where XJ is the coordinate of initial configuration and J is

J = ϵIJKF1IF2JF3K (21)

where ϵIJK is the Levi Civita symbol.
Based on this pull-back operation, an area is pulled-back as

σi jdΓ =
τik
J

F−T
kJ NJ JdΓ̄ = PiJNJdΓ̄ (22)

where NJ is the normal vector on the initial configuration. From the relationships, the integral form of the
Eq. (13) is pulled back by using the relationship of Eq. (19) as∫

Ω̄

∂PiJ

∂XJ
dΩ̄ +

∫
Ω̄

ρ0bidΩ̄ −
∫
Ω

ρ0 ÛvidΩ̄ = 0 (23)

where Ω̄ and Γ̄ are the domain and the surface in terms of the initial configuration, respectively, and ρ0 is the
density with respect to the initial configuration. Taking the weak derivative of the equation, the weak form
is obtained.
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δWd =

∫
Ω̄

∂PiJ

∂XJ
δuidΩ̄ +

∫
Ω̄

ρ0bidδuiΩ̄ −
∫
Ω

ρ0 ÛviδuidΩ̄

=

∫
Ω̄

PiJ
∂δui
∂XJ

dΩ̄ +
∫
Ω̄

ρ0bidδuiΩ̄ −
∫
Ω

ρ0 ÛviδuidΩ̄ −
∫
Γ̄

t̄iδuidΓ̄

= 0

(24)

where δWd is the virtual work of domains.
Since Eq. (24) is a system of nonlinear equations, it is solved by the Newton’s method. The linearized

equation is analytically computed by taking the directional derivative of δW for displacement field u in terms
of the initial configuration. The linearized equation is given below. The first term of the right-hand side part
is discretized by following mathematical operations. First, let us linearize the Eq. (24).

∂δWd

∂XI
∆uI =

∂

∂XI

∫
Ω̄

PiJ
∂δui
∂XJ

dΩ̄∆uI (25)

Here, the first Piola-Kirchhoff stress tensor has the relationship of PiJ = FiKSKJ . Substituting this to the Eq.
(26),

∂δWd

∂XI
∆uI =

∫
Ω̄

∂FiKSKJ

∂XI
∆uI

∂δui
∂XJ

dΩ̄ (26)

noting that the directional derivative is decomposed as

∂FiKSKJ

∂XI
∆uI =

∂FiK

∂XI
SKJ∆uI + FiK

∂SKJ

∂XI
∆uI (27)

with

∂FiK

∂XI
SKJ∆uI =

∂∆uI

∂XJ
SKJ, (28)

and

FiK
∂SKJ

∂XI
∆uIδui∂XJ = δEIJCIJKL∆EKL . (29)

Substituting Eqs (27) to (29) into Eq. (26), Eq. (30) is obtained.

∂δWd

∂XI
∆uI =

∫
Ω̄

(
∂∆uI

∂XJ
SJK

∂δuI

∂XK
+ δEIJCIJKL∆EKL

)
dΩ̄ (30)

where CIJKL is the algorithmic stiffness matrix in terms of reference configuration since the contact can
only be described with respect to the current configuration. Eq. (30) is pushed-forward to the current
configuration.

∂δWd

∂XI
∆uI =

∫
Ω

(
∂∆ui
∂xj

σjk
∂δui
∂xk

+ δdi j c̄i jkl∆dkl

)
dΩ (31)

where c̄i jkl is the stiffness matrix with respect to the current configuration,

c̄i jkl =
1
J

FiIFjJFkKFlLC̄IJKL (32)
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Eq. (31) is discretized based on Galerkin’s method, thereby, the stiffness matrix Kd(IJ) of Eq. (4) is obtained.

Kd(IJ) = Kd(IJ)
1 + Kd(IJ)

2 (33)

where Kd(IJ)
1 and Kd(IJ)

2 are

Kd(IJ)
1 =

∫
Ωe

∂NI

∂xk
τkl

∂NJ

∂xl
dΩe (34)

Kd(IJ)
2 =

∫
Ωe

BIkDklBlJdΩe (35)

since the Eq. (36) is discretized as below.

∂δWd

∂XI
∆uI =

∫
Ωe

(
δuI

∂NI

∂xk
τkl

∂NJ

∂xl
∆uJ + δuI BIkDklBlJ∆uJ

)
dΩe (36)

2.3 Solution algorithm

This subsection discusses the solution algorithm for root-soil contact simulations. As discussed in the last
subsection, the system of equations is nonlinear with respect to the displacement field. Consequently, iterative
solver such as the Newton’s method is to be employed, where the trial variables of displacement and internal
variables (e.g., stress measure, strain measure, and softening/hardening parameters) are updated so that the
final solution satisfies the virtual work equation (Eq. (24)) and the yield criterions of domains and interfaces.
The solution algorithm also updates the pairing of contact elements (Fig. 2) within the iterative loops of the
Newton’s method; this pairings algorithm is also explained in the current subsection.

Chapters 4 and 5 show solution algorithms for friction-cohesion contact problems. The algorithm consists
of two parts: a stick part and a slip part. In the stick part, all contact elements are under elastic stick conditions,
which indicates no slip is allowed in the interfaces. The stress, internal variables, and displacements are
computed as trial values, which are used as the initial trial value of the second part. The second part,
afterward, updates the frictional stress where the slip is allowed. The scheme mentioned above is a widely-
used technique to reduce the instability of the iterative method, as shown in Wriggers (2006). In each part, the
pairing is detected firstly, and then the stiffness matrix and residuals are computed for every solid and contact
elements. Then some linear solver is utilized to solve the system of discretized equations, for instance, the
iterative method as the Conjugate Gradient (CG) method or direct solver such as the Gauss-Jordan method.

The configurations of domains and contact interfaces are updated based on the stress-updating methods,
as seen in the previous subsections. The stress, plastic strain measure, and hardening/softening parameters are
updated based on elasto-plasticity, and the shear stress of root-soil interfaces is updated by the stress-updating
scheme discussed in Eq. (12).

3 Constitutive model and material tests of root and soil domains

This section discusses material tests and modeling of the root matrix in terms of continuum mechanics and
CCM. The present model based on the CCM necessitates some parameters to solve the system of equations.
The parameters are roughly categorized into the material parameters for root domains, soil domains, and
ones of root-soil interfaces. This section discusses the physical tests and models for domains of roots
and soils, and the next section describes that for root-soil interfaces. The material tests of roots are not
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standardized; therefore, this section proposes a possible simplest method and an apparatus to measure the
stiffness parameters of roots. As for the material tests of soils, there have been many methods to determine
the stiffness parameters, and the method is standardized by, for instance, the JIS and the JGS. Thereby the
present section introduces some of the testing methods to measure the stiffness parameters of soils from the
standardized methods. The constitutive models for roots and soils are also to be discussed. For these reasons,
the current section utilizes some consistent models for roots and soils.

This section firstly provides a summary of the finite strain theory for general cases which include both
elastic and plastic behaviors. From the standpoint of finite strain theory, the constitutive model is given as
an elastic/plastic potential function; consequently, this section also suggests the possible simplest models of
both potential functions.

Ω

Ω  

Ω

ΩΩ
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root

root

root

soil soil 

soil 

Reference Intermediate Current

Xroot

dXroot

Xroot
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Xsoil

dXsoil

Xsoil

dXsoil

xsoil

dxsoil

F
e

F
p

F
e

F
p

F=F
e
F

p

F=F
e
F

p

0

0

Figure 3: Schematic view of kinematics of two elasto-plastic bodies and the kinematic measures.

The contact kinematics with the finite strain theory is shown in Fig. 3, whereas the reference configurations
Ωroot

0 , Ωsoil
0 , and the current configurations Ωroot , Ωsoil indicate the initial and present control volumes,

respectively. Hereby the intermediate configurations Ω̄root , Ω̄soil are also introduced to describe the virtual
stress-free configuration. It is worth noting that the stress-free configuration is purely virtual and not
uniquely observed in realistic situations and introduced just for convenience. Thanks to the stress-free
intermediate configurations, the constitutive models of elastic/plastic parts are simply expressed as below
by using elastic/plastic potential functions, respectively. Under these assumptions, let us project a small
vector around a material point in terms of the reference configuration, which is denoted as dXI into the
intermediate/current configurations as shown in the figure, where the superscript root and soil denote the
amounts of the roots and soils, respectively; the projections are visible as ¯dXI and dxi. Further, the
deformation gradient tensor is introduced as follows;

dxi =
∂xi
∂XJ

dXJ = FiJdXJ (37)
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dxi =
∂xi
∂ X̄J̄

dX̄J̄ = FiJ̄
edX̄J̄ (38)

dX̄Ī =
∂ X̄J̄

∂XJ
dXJ = FĪ J

pdXJ (39)

where FiJ is the deformation gradient tensor, FiJ̄
e is the elastic deformation gradient tensor, and FĪ J

p is the
plastic deformation gradient tensor (e.g. Hashiguchi and Yamakawa, 2013). Hence, the three deformation
gradient tensors has a relationship of Eq. (40)

FiJ =
∂xi
∂XJ

=
∂xi
∂ X̄Ī

∂ X̄Ī

∂XJ
= Fi Ī

eFĪ J
p . (40)

As well as vectors, areas and volumes are projected and the mathematical expression of the projections are
also given by using deformation gradient tensors. First, areas are projected by

dai = nida = JFiJ
−T NJdA = JFiJ

−T d AJ (41)

where ni and NJ are the outer normals with respect to the infinitesimal area, which is called the Nanson’s
formula. The analogous of the Nanson’s formula is also given for other two projections for elastic and plastic
deformation gradient tensors.

dai = nida = JeFi Ī
e−T N̄Īd Ā = JFi Ī

e−T d ĀĪ (42)

d ĀĪ = N̄Īd Ā = JpFp−T
ĪJ

NJdA = JpFĪ J
p−T dAJ, (43)

where dai, d ĀĪ , and d ĀI are the area vectors on the current, the intermediate, and the initial configuration,
respectively. N̄Ī is the normal vector on the area in the intermediate configuration. The projection of the
volumes are described as below.

dv = JdV = JedV̄ = JeJpdV (44)

where Je = ϵ ¯IJKFĪ
eFJ̄

eFK̄
e, and Jp = ϵIJKFI

pFJ
pFK

p

The elastic constitutive equations are provided by using the elastic deformation gradient tensor Fi Ī
e and

decoupled from the plastic deformation gradient tensor FĪ J
p. Before describing the elastic potential function

and constitutive models of roots and soils, both strain and stress measures are to be defined. Here are the
strain measures which is directly computed by using these deformation gradient tensors.

CIJ = FIi
T FiJ (45)

CĪ J̄
e = FĪ I

eT FI J̄
e (46)

CIJ
p = FI Ī

pT FĪ J
p (47)
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where CIJ is called right Cauchy-Green tensor, CĪ J̄
e is called elastic right Cauchy-Green tensor, and CIJ

p is
called plastic right Cauchy-Green tensor. It is worth noting that the elastic right Cauchy-Green tensor CĪ J̄

e

is defined in the intermediate configuration and the others are defined in the reference configuration. Since
the elastic right Cauchy-Green tensor is defined in the intermediate configuration, the elastic potential energy
and constitutive models are defined in the intermediate configuration. Further, material-time derivative of
the strain measures are necessary for the time-integration of the plastic strain measure, for instance, CIJ

p,
which is given as analogy of the velocity gradient tensor li j ,

li j =
∂vi
∂xj
= FiKFK j

−1 (48)

and given as

L̄p

Ī J̄
= Fp

Īk
Fp−1
kJ̄

(49)

where L̄p

Ī J̄
is the plastic velocity gradient tensor. The symmetric part of this tensor is utilized for plastic flow

rule.

D̄p

Ī J̄
= L̄p

Ī J̄
+ LĪ J̄

pT (50)

where D̄p

Ī J̄
is the plastic stretch tensor.

The work-conjugate stress tensor of the elastic right Cauchy-Green tensor is the Mandel stress tensor,
which is given by push-forward of the second Piola-Kirchhoff stress tensor from the initial configuration
to the intermediate configuration and pull-back of the Kirchhoff stress tensor τi j = Jσi j from the current
configuration to the intermediate configuration.

M̄Ī J̄ = FĪK
p−TCKLSLMFMJ̄

pT = FĪ k
eT τklFlJ̄

e−T (51)

noting following work-conjugacy.

τi j : li j = M̄Ī J̄ : L̄Ī J̄ (52)

Finally, elastic potential functions W , which is equivalent to the Gibbs free energy, are given as function of
elastic right Cauchy-Green tensor and satisfy the following relationships.

M̄Ī J̄ = 2C̄e
Ī K̄

∂W
∂C̄e

Ī J̄

(53)

On the other hand, plastic potential functions and yield functions are defined in terms of Mandel stress
tensor M̄Ī J̄ . For instance, soil constitutive models often utilizes the Drucker-Prager model or Mohr-Coulomb
model as their plastic potential function and/or yield functions (Wu et al., 2017): Both models are modeled
in Eqs. (54) and (55).

f
(
M̄

)Drucker−Prager
=

√
(J M̄

2 ) + Bc − 1
√

3Bc + 2
√

3
I M̄1 −

√
3

Bc + 2
fc (54)

f
(
M̄

)Mohr−Coulomb
=

√
(J M̄

2 ) +
(Bc − 1) I M̄1 − 3 fc

3 (Bc + 1) cos θM̄ +
√

3 (Bc − 1) sin θM̄
(55)
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where I M̄1 , J M̄
2 , and θM̄ are the first invariant of the Mandel stress tensor, the second invariant of the deviatoric

part of the Mandel stress tensor, and the Lode angle in terms of Mandel stress tensor, respectively. Bc and fc
is computed as below.

Bc =
1 + sinϕ
1 − sinϕ

, (56)

where c is the cohesion of soils.

fc =
2ccosϕ
1 + sinϕ

. (57)

The Cauchy stress tensor is often utilized instead of the Mandel stress tensor in case of infinitesimal strain
theory. It is worth noting that there is a simple relationship between these invariants of Mandel stress and the
Cauchy stress tensors, as seen below. First, the first invariant of the Mandel stress tensor has a relationship of

I M̄1 = M̄Ī Ī = JFeT
Īi
σi jFe−T

j Ī
= Jδjiσi j = Jσii = JIσ1 , (58)

and the second invariant has a relationship of

J M̄
2 =

1
2

(
M̄Ī J̄ M̄Ī J̄

)
= J2Jσ2 . (59)

Further, the Lode angle of the Mandel stress is the same as the one of the Cauchy stress tensor.

θM̄ =
1
3

sin−1
©«−

3
√

3
2

J M̄
3(

J M̄
2

) 3
2

ª®®®¬ =
1
3

sin−1 ©«−3
√

3
2

Jσ3(
Jσ2

) 3
2

ª®¬ = θσ (60)

where the third invariants of the deviatoric stress tensor M̄
′

Ī J̄
is defined as seen.

J M̄
3 =

1
3

M̄
′

Ī K̄
M̄

′

K̄ L̄
M̄

′

L̄ Ī
= J3Jσ3 . (61)

where the deviatoric stress tensor is defined as

M̄
′

Ī J̄
= M̄Ī J̄ −

1
M̄K̄ K̄

δĪ J̄ (62)

These indicates that the stress invariants are identical with respect to the rotation and only depends upon
the volumetric change; this fact is consistent with the definition of the stress invariants. The plastic strain
measure, Cp

IJ is updated by integrating the increments ÛCp
IJ which is computed by flow rule. The flow rule is

also described in terms of the intermediate configuration.

D̄p

Ī J̄
= ∆λ

(√
∂ f

∂M̄K̄ L̄

∂ f
∂M̄K̄ L̄

)−1
∂ f
∂M̄Ī J̄

(63)

ÛCp
IJ = 2FpT

IK̄
D̄p

K̄ L̄
Fp

L̄J
= ΞIKCp

KJ, (64)

here, a operator ΞIK is
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ΞIK = 2∆λ

(√
∂ f

∂M̄K̄ L̄

∂ f
∂M̄K̄ L̄

)−1

FpT

IK̄

∂ f
∂M̄K̄ L̄

Fp−T
L̄K

. (65)

The plastic strain measure is integrated by using time-integration scheme such as backward-Euler method;
the algorithm to compute this time-integration is called the Return-Mapping (RM) method. Here is a general
expression of the RM method.

Yµ1 = Cp
n+1,µ − ∆tΞµνCnp

ν = 0 (66)

Y2 = f n+1 = 0 (67)

where Cn+1p
µ and Cnp

ν are the plastic right Cauchy-Green tensors in terms of the time-step n + 1 and n,
respectively. f M̄

n+1 is a yield function with respect to the Mandel stress tensor. The system of non-linear
equations are solved by using the Newton’s method.

Y total,k
µ =

(
Y1,k

11 ,Y1,k
12 , · · ·,Y1,k

33 ,Y2,k

)T
= 0 (68)

X total,k
µ =

(
Cpn+1,k

11 ,Cpn+1,k
12 , · · ·,Cpn+1,k

33 , δλk

)T
(69)

X total,k+1
µ = X total,k

µ − J−1
µνY total,k

ν (70)

where the matrix Jµν is the Jacobian matrix which is updated in every stress-update process in the global
solution algorithm. Following subsections present the concrete formulations.

3.1 Constitutive model for root domain

This subsection proposes constitutive models for root domains based on the finite strain theory. In order to
determine the constitutive model, bending tests are conducted by utilizing two types of plant roots, which are
soybean and barley roots. The results are described in the next subsection, where the material mostly behaves
as elastic bodies. Consequently, this subsection utilizes a perfectly elastic model by enforcing a constraint
condition,

Cp
IJ = δIJ (71)

where, δIJ is the identity matrix, which indicates that no plastic strain is computed during simulations. It is
worth noting that this assumption sustains only when the loading stress is smaller than the failure stress of
the root tissues.

This section utilizes the Neo-Hookean elastic potential function for root material, which has been utilized
for living bio-material such as cell-wall (Huang et al., 2012). As mentioned in the previous subsection,
the finite strain theory necessitates an elastic potential function to provide constitutive relationships for a
material. The elastic potential function should be chosen so that the stress-strain relationship of material
is accurately reproduced. This thesis utilizes the Neo-Hookean elastic potential function since it has been
employed to express stress-strain relationships of plant bodies (Huang et al., 2012). The elastic potential
function is visible in Eqs. (73) and (74).
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W = W1 +W2 (72)

with

W1 =
Λ

4

(
ϵĪ J̄ K̄C̄e

1̄Ī C̄
e
2̄J̄C̄e

3̄K̄ − 1 − 2 ln
√
ϵĪ J̄ K̄C̄e

1̄Ī
C̄e

2̄J̄
C̄e

3̄K̄

)
(73)

W2 =
µ

2

(
C̄e
K̄K̄

− 3 − 2 ln
√
ϵĪ J̄ K̄C̄e

1̄Ī
C̄e

2̄J̄
C̄e

3̄K̄

)
(74)

where Λ and µ are the first and second Lame constants, respectively.

3.2 Constitutive model for soil domain

This subsection discusses the constitutive models of soil domains. There have been developed numerous
constitutive models of soils, and some of them have been utilized in terms of the finite strain theory, for
instance, the Cam-clay model (Yamakawa et al., 2010). One of the simplest models of soils is a Mohr-
Coulomb Drucker-Prager model, which utilizes the Mohr-Coulomb model as a yield function and Drucker-
Prager model as a potential plastic function. Both models are visible in Eqs. (55) and (54), respectively.
Both models also necessitate an elastic model, and hereby, the Neo-Hookean model is utilized since the
model is one of the possible simplest and the widely-used model for elastic behavior ob elasto-plastic models
(Hashiguchi and Yamakawa, 2013). Here is the Jacobian matrix of the plastic potential function in terms of
return-mapping algorithm.

Jµν = α

[
1
2

(
Mµν −

I M̄1
3

Gµν

)
+

BI − 1
√

3BI + 2
√

3
Gµν

]
(75)

where α is

α = 4∆λ

MKL : MKL −

(
I M̄1

)2

3
+ 3

(
BI − 1

√
3BI + 2

√
3

)2
 (76)

3.3 Material test for root domain

The root matrix necessitates two elastic moduli; the first and the second Lame constant, which are measured
by using a simple bending test. Fig. 4 illustrates a schematic of the bending test where a root is sampled
from a straight-root of a soybean seedling, and set on a bending machine. Thereby the relationship between
forces P and displacements u are obtained. From the relationship, Young’s modulus is estimated. Further,
the Poisson’s ratio of 0.3 is utilized according to the previous study (Kim et al., 2008).

3.4 Material test for soil domain

This subsection discusses the material tests of soils to determine the parameters of elastic and plastic potential
functions. There are two elastic parameters of soil in terms of the MC-DP model; Young’s modulus and
Poisson’s ratio. Young’s modulus is measured by using unconfined compression (UC) tests (JGS-0511-
2009), which has been used for measuring the Young’s modulus-like E50 value. This test is conducted for
cylinder-shaped specimens of soils, and the stiffness and yield stress under unconfined condition is measured.
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Figure 4: The bending test of a soybean root.

Since plant roots exist in the shallow, unconfined condition, the unconfined compression tests can realize
similar stress conditions as the realistic conditions. Besides, the Poisson’s ratio is measured by using a simple
compression apparatus depicted in Fig. 5, which is similar to the conventional consolidation tests of clays.
The presented apparatus loads the vertical pressure on the top of the soil specimen and measures horizontal
soil pressure on the side of the specimen. From these results, the soil pressure coefficient is measured, as
shown in the left graph of Fig. 5; the Poisson’s ratio can be computed from the angle of the regression line.

By contrast, there are three plastic parameters of the MC-DP model, the cohesion c, the frictional angle
ϕ, and the dilatancy angle ψ. These parameters are usually measured by using the Direct Shear (DS) tests
(JGS-0560-2009 and JGS-0561-2009) or Triaxial Compression (TC) tests (JGS-0521-2009, JGS-0522-2009,
JGS-0523-2009, and JGS-0524-2009). The frictional angle ϕ is used for determining the MC model as a
yield criterion, and the dilatancy angle ψ is utilized for plastic flow rule to compute the dilatancy effect;
noting that the cohesion is utilized for both of yield function and plastic potential function. The material tests
and the results are displayed in Chapters 4 and 5.

4 Material test and model of root-soil contact interface

This subsection briefly discusses the numerical model of root-soil interaction for the FE-analysis, which
contains novel ideas and approaches, and the detail is presented in Chapters 4 and 6. As can be seen in Fig.
1, it is necessary to model the mechanical interaction of the root and soil domains to precisely predict the
deformation of the root-soil system. There are two types of contact phenomena observed in generic contact
interfaces: normal and tangential contact. The normal contact indicates the collision at the contact interface,
the direction of which is identical to the outer normal vector of the contact interfaces. By contrast, the
tangential contact is so-called shear, the direction of which is the same as the tangential vectors of the contact
interfaces. It is worth noting that it is possible to define a set of the normal/tangential vectors if and only if
the two domains are in contact. Otherwise, sets of normal/tangential vectors of possible contact surfaces are
not identical. These two normal vectors are to be preliminarily identified before computing the above contact
variables, which is essential for the existence and uniqueness of the solution.

By using the NTS approach, the normal contact and elastic stick of the tangential contact are automatically
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Figure 5: The Poisson’s ratio test.
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introduced. However, it should be given that the model and parameters of the slip rule of the tangential contact.
The detail of the experiment is presented in Chapters 3, 4, and 5.

5 Conclusion

This abstract provides a continuum model for root-soil contact problems based on the finite strain theory
and the CCM. The governing equations are derived from the momentum balance, elastic constitutive laws,
and plastic flow rules in terms of the finite strain theory, which are essential for root-soil contact problems
since both bodies undergo largely deformed processes and often rotate. The CCM is introduced to express
root-soil contact interfaces, and the NTS approach is chosen since it is the possible simplest way to express
contact, separation, friction, cohesion, and slip in the root-soil interfaces. The NTS approach is also capable
of expressing complex root/soil morphologies, which is vital for the application to the practical problems
such as numerical simulation of surface erosions in vegetated slopes and lodging of cereals. The concrete
expression and material parameters of the root, soil, and root-soil interfaces are visible in the following
chapters.
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