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Chapter 1

Introduction

1.1 Background

Plant-soil mechanical interaction plays an essential role in sustaining water supply and plant
production, and the interaction is a significant research subject from the standpoints of
geotechnical engineering and plant production science for decades. It is widely accepted
that soils are vital materials for building and supporting artificial/biological agricultural ob-
jects such as dams, irrigation/drainage open channels, agricultural fields, as well as crops.
As can be seen on earth dams and embankments, soil domains are covered by vegetation
which interacts with the microscopic structure and stability of soils (Ali and Osman, 2008;
Liang et al., 2017). Since soil behavior is affected by microscopic soil structure such as void
ratio, contact conditions of soil particles, and contamination of natural/artificial fibers, the
presence of the plant roots affects the mechanical characteristics of soil structure. During
the last four decades, it has been reported that plant roots often increase the shear strength
of soils by reinforcing apparent cohesion and that the reinforcement is beneficial to increase
the stability of soils (Endo 1980; Gray and Ohashi., 1983; Abe and Ziemer, 1991;Docker
and Hubble., 2008; Hejazi et al., 2012). On the other hand, the mechanical stability of the
crops is influenced by the mechanical strength of soils (Berry et al., 2003; 2004), which is
an important research subject for sustainable cereal production. Cereals have their grains
at their upper sides of the body, hence, loss of stability called lodging causes the decline of
both the yield and the qualities. For instance, it is reported that severe lodging causes more
than 45 % of yield losses (Baker et al., 1998; 2014), and also causes low grain quality due
to the delay of the harvest. Since the failure of root-soil systems induces severe and perma-
nent lodging, it is essential to present mathematical and physical models to understand and
predict plant-soil interactions to sustain the productivity of cereals.

Vegetation reinforces surface layers on both of artificial soil structures and natural slopes
(Bischetti et al., 2010; Liu et al., 2016; Bizet et al., 2018). Rainfall events often cause
erosion of soil particles on natural/artificial slopes(Das et al., 2018), which induces geo-
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disasters of soil structure as dams, embankments, slopes, roads, and other foundations. It
is often employed that slope protections by using concrete, cemented soils, and artificial
fibers. Although these methodologies substantially increase the resistance of the soil struc-
tures, there are annoying problems that the deterioration of concrete, cement, and synthetic
fibers induces the reduction of the function. The deterioration also result in increasing the
life-cycle costs of soil structures. By contrast, biological reinforcement such as plant roots
increases the shear strength of soils (Hejazi et al., 2012) with far less financial costs than
the artificial materials since biological materials grows and increase the resilience of the
soil structures against the erosion. The reinforcement is relatively weak and hard to predict
quantitatively. Therefore, the utilization of biological reinforcement is still less common
than artificial ones.

From another standpoint, soil supports crops to prevent lodging. Lodging is defined as
a permanent displacement of cereals (Baker et al., 1998) and induced by loss of stability of
plant body and rhizosphere. Prevention of lodging is one of the most critical problems to
sustain yield and quality of cereals (Baker et al., 1998; Berry et al., 2004) since the lodging
causes pre-harvest sprouting, diseases, and decline of the radiation utilization efficiency.
There are two types of lodging: stem lodging and root lodging. Stem lodging is caused
by bending or breakage of plant stems, and there has been presented that some schemes to
estimate and prevent this type of lodging (Ookawa et al., 2010). The root lodging, however,
is still hard to predict, and the prediction/prevention is being challenged. Beker et al. (1998)
proposed a method to predict the root lodging of wheat, which is an empirical model based
on numerous observation data from field experiments. Though Baker’s model is convenient
for roughly simulating the lodging of wheat, it has difficulty for its accuracy when it is
used for breeding or field management. To increase the accuracy of the lodging model, it
is necessary to propose physics-based methods such as numerical simulations for plant-soil
systems.

The problems mentioned above motivate researchers to investigate and predict plant-soil
mechanical interactions for decades. it has been presented that roots reinforce the rooted
soils, and the reinforcement is visible as incremental cohesion/friction. The reinforcement
model has been utilized for the homogeneous approach which models rooted soils as ho-
mogeneous domain. In the 1990s, Abe and Ziemer (1990) propose a method to estimate the
shear strength of the rooted soils from material properties and geometries of roots and soils.
The Mohr-Coulomb model is one of the most widely-used models to estimate the stability
of rooted soils in artificial/natural slopes (Rahardjo et al., 2009; Rahardjo et al., 2014; Eab
et al., 2015; Zhu et al., 2017).

Recently, Dupuy et al. (2007; 2018) and Michovski et al. (2011) propose direct simula-
tions of root-soil contact problems based on the Finite Element Method (FEM) and simple
root-soil contact models. They utilize commercial software packages of the FEM with some
mechanical data of plants, soils, and root-soil interfaces to directly predict the deformation
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of roots, soils, and contact between roots and soils. These approaches are substantially in-
novative since the methods can utilize the exact root morphology in the prediction, which
has not been done in the previous approaches. Their approach clearly visualizes the stress
fields of the soils and roots, which provides far more detailed information to estimate and
understand the deformation of rooted soils. For instance, Dupuy’s approach gives a pre-
diction of the failure zone of roots and soils and shows how wind forces are propagated
from roots to soils, which did not estimate by the conventional approaches based on the
Mohr-Coulomb model.

Although the direct approaches are novel and accurate, some important problems are
still remained about the constitutive model of root-soil contact interfaces to utilize the mod-
els for practical problems such as soil erosions and lodging. The primary problem is the
absence of a consistent method to measure the shear strength of root-soil interfaces. The
FEM with contact models necessitates slip criterion of root-soil interfaces which express
cohesion and frictions. However, there have not been presented any methods which accu-
rately measure cohesion and friction of root-soil interfaces.

Further, another problem exists for the discretization scheme of the root-soil interfaces.
Dupuy et al. (2007) utilized the Node-To-Node (NTN) approach, which does not allow
slip of the interface, and Michovski et al. (2011) used the Line Element (LE) approach
which requires special conversion from 2-D or 3-D scanned data to straight or curved lines.
Therefore, to utilize the direct simulation of root-soil contact problems for the design and
management of the soil structures and crops, it is necessary to develop both of discretization
scheme of root-soil interfaces and software to predict the root-soil contact problems.

1.2 Motivation and objectives

This thesis aims to present a set of experiments, constitutive models, and numerical methods
for predicting the deformation of rooted soils based on the computational contact mechan-
ics (Hughes et al., 1976; ) approach with FEM. As discussed in the previous subsection,
numerical simulations of root-soil contact problem necessitate accurate measurements of
shear strength of root-soil interfaces such as frictional coefficient of root-soil interface, and
cohesion induced by suction. However, little experiments are available for measuring fric-
tional coefficients of root-soil interfaces, and no models are presented to obtain cohesion in
root-soil interfaces induced by suction. This thesis presents two novel experiments to mea-
sure friction and suction-induced cohesion, respectively. From these experiments, two mod-
els that are utilized for soil-soil interfaces are introduced to give mathematical expressions
for friction (Mohr-Coulomb model) and suction-induced cohesion (Vilar model), which are
implemented for numerical simulations of root-soil contact problems. It is also discussed in
the previous subsection that NTN and LE approaches have limitations for expressing such
root-soil contact phenomena as (1) slip between roots and soils, (2) separation between
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roots and soils, or (3) complex root geometry and surface topology of root-soil interfaces.
These limitations result in reduced accuracy or high pre-processing costs in the previous
results. The Node-To-Segment (NTS) approach which is a modified approach of the NTN,
hence, is newly introduced in the thesis to avoid these problems, which can express (1) slip
between roots and soils under large-slip conditions, (2) separation/contact between roots
and soils, and (3) geometrical nonlinearity of roots and soils. Although the original version
of the NTS approach induces ill-convergence problems when it is applied for root-soil con-
tact problems (Dupuy et al., 2008), a novel scheme is successfully introduced to stabilize
the NTS approach. The following chapters are devoted to the set of experiments, modeling,
and numerical simulations.

In Chapter 2, the outline of the NTS approach with FEM (NTS-FEM) is briefly ex-
plained to model root-soil contact interfaces. The chapter presents kinematics of root-soil
contact problems, mathematical expressions of the governing equation, the discretization
and linearization of the governing equation, and the solution algorithm for numerical simu-
lations. Since the solution algorithm for the numerical simulation necessitates the constitu-
tive modeling of roots, soils, and root-soil interfaces, the chapter also discusses experiments
and models for the mechanical characteristics of them.

Chapter 3 proposes a novel pull-out apparatus to measure the cohesion and frictional
coefficient of root-soil interfaces, both of which are essential to perform root-soil contact
simulations. The pull-out apparatus is validated by measuring the frictional coefficient of
a steel-sand interface, which has been measured in previous studies (Uesugi and Kishida.,
1986). It is also confirmed that shear zones in experiments are not mainly in the roots or
soils, but the root-soil interface through the comparison between the steel-sand tests and the
wood-sand tests. Afterward, the shear strength of root-soil interfaces is measured by using
a paddy soil, and the apparatus accurately measure a root of barley, which suggests that the
Mohr-Coulomb (MC) model well governs the shear stress of root-soil interfaces as well as
the frictional coefficients and the cohesion.

Chapter 4 presents a 2-D experiment and a numerical simulation of the lodging problem,
which utilizes the apparatus presented in the previous chapter. The chapter contains the im-
plementation of the NTS approach, a novel stabilization scheme of the NTS approach, and
the procedure to measure the material parameters of roots, soils, and root-soil interfaces.
The chapter also contains numerical simulations for pull-out tests and lodging problems
to validate and confirm the accuracy of the present method. The results are highly con-
sistent with both of the experiments and suggested that the present method is capable of
reproducing the deformation of rooted soils.

Chapter 5 describes a set of methods to measure, model, and predict the shear strength
of root-soil contact interfaces under dynamic suction conditions, the model of which is
based on Mohr-Coulomb-Vilar (MCV) model with the NTS approach. The chapter extends
the MC model to predict the shear strength of root-soil interfaces under dynamic suction
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conditions.
Chapter 6 shows validations and applications of the root-soil contact simulation based

on the MCV model. The MCV model is first validated by simulating the suction-controlled
pull-out tests and then applied for a numerical experiment of pull-out tests under dynamic
suction conditions. The results show that the MCV-NTS approach expresses the root-soil
contact behavior under dynamic suction conditions. The numerical experiment of the pull-
out behavior of roots is performed, and the effect of wet-dry conditions is reasonably esti-
mated as the pull-out force of roots.

Chapter 7 remarks on the conclusion of the whole thesis and describes future studies.
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Chapter 2

Continuum Model for Root-Soil Contact
Problem

2.1 Introduction

The root-soil contact problem is challenging from the viewpoint of numerical simulations
for two reasons; geometrical and material nonlinearity induced by root-soil contact phe-
nomena. Roots often exist as composite materials with soils in natural conditions, where
roots and soils contact each other. Numerous investigations are performed to provide a me-
chanical model that estimates the root-soil contact problem. Early investigations propose
mathematical models of a root-soil contact problem for rooted soils, the contact model of
which is implicitly expressed by utilizing the apparent cohesion in terms of Mohr-Coulomb
model (Gray and Ohashi 1983; Abe and Ziemmer, 1991; Mickovski et al., 2010, 2011).
For instance, Abe and Ziemmer (1991) investigate the relationship between the proper-
ties/numbers of roots and the apparent cohesion and propose a new root-induced reinforce-
ment model. Although the contact of root and soil is not directly solved but indirectly
considered, the strategies were the possible best ones under the capacity of computers in
the past.

Recent advances of computers allow more computationally expensive approaches such
as direct stimulation of root-soil contact problems, which call forth more micro-scaled root-
soil contact interfaces. Dupuy et al. (2007) and Mickovski et al. (2011) utilize the FEM
to model and predict the root-soil contact problems, in which roots and soils are modeled
by based on the finite strain theory. They utilized 3-D models of roots and soils directly in
the simulations and succeeded in predicting the deformation of the rhizosphere. This novel
approach necessitates a novel research question; how the contact, separation, stick, and slip
of root-soil contact interfaces can be modeled consistently.

This chapter presents a consistent model, formulations, and computational implementa-
tion to predict root-soil contact problems accurately. The general formulations for friction-
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cohesion contact problems are introduced in the second section, which gives a series of
mathematical expressions of the root-soil contact problems. The third section proposes
constitutive models and physical tests to measure the model parameters for root and soil
domains suitable for root-soil contact problems. The material tests and modeling of root-
soil interfaces are also discussed in the fourth section based on the Computational Contact
Mechanics (CCM). The last section summarizes the models and physical tests for roots,
soils, and root-soil interfaces and shows how present models are utilized for the following
chapters.

2.2 Continuum-based formulation for root-soil contact prob-
lem

This section summarizes general formulations for frictional-cohesion contact problems.
First, the contact kinematics is described where the schematics of the contact problem and
mathematical expression of the deformation and contact, stick, and slip are given based on
the CCM. Second, it is also shown that the weak form of contact problems in terms of FEM
and the NTS approach. Afterward, the discretization and matrix form of domains and con-
tact surfaces are explained in which friction and cohesion are also modeled and discretized
by using contact elements. Lastly, the solution algorithm is discussed.

2.2.1 Formulation of root-soil contact interface

This section reviews the contact kinematics and its formulation in terms of CCM. The for-
mulation of roots and soils were done by using the finite elasto-plasticity and the CCM. This
section summarizes the derivation of the governing equation of contact problems and its dis-
cretization by using the NTS approach (Wrigger, 2006). Let us consider two deformable
bodies, in which one is usually denoted as the master body

(
Ω1,Ω1

)
and another as the slave

body
(
Ω2,Ω2

)
. Both bodies can undergo deformation through motion during [0, t] and come

into contact, where (Ω1,Ω2) is identified at the current configuration and
(
Ω1,Ω2

)
is in the

initial configuration (Fig. 2.1). Further, in the current configuration, boundaries of each
body can be divided into three non-overlapping subdivisions: displacement boundaries,
traction boundaries, and contact boundaries.

Accordingly, the governing equation for the displacement field is given by a virtual work
equation,

δW =

(∫
Ω
σij

∂δui
∂xj

dΩ−
∫
Ω
fiδuidΩ−

∫
Γ
tiδuidΓ

)m

+

(∫
Ω
σij

∂δui
∂xj

dΩ−
∫
Ω
fiδuidΩ−

∫
Γ
tiδuidΓ

)s

+ δW c = 0,

(2.1)
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Figure 2.1: Schematic view of contact kinematics.

9



where i and j are subscripts which have values of 1, 2, 3 in the three-dimensional Euclidean
space, δW is the virtual work, superscripts m and s denote the master/slave notations in the
current configuration, Γ is the boundary of the domains, σij is the Cauchy stress tensor, δui
is the virtual displacement vector, δ is the variational operator with respect to displacement,
fi is the body force vector, and ti is the traction vector. The first and second terms are iden-
tical to the conventional virtual work for one-body problems (Hashiguchi and Yamakawa,
2013). The last term represents the virtual work for the contact interfaces, which is derived
from the constraint conditions such as the non-penetration conditions, friction, and cohe-
sion (Wriggers, 2006). The virtual work of contact interfaces δW c is generally taking the
form of

δW c =

∫
Γ
tNiδgNidΓ +

∫
Γ
tTiδgTidΓ, (2.2)

in which tNi and tTi are the normal and the frictional stress, respectively. gNi is the normal
gap and gNi is the tangential displacement from the initial contact point (Fig. 2.1). Here,
the first term enforces the normal contact stress to prevent overlaps between the bodies, and
the second term works as the tangential one such as friction and cohesion. This interfacial
virtual work δW c is analogous to the well-known virtual work, and it becomes zero under
contactless conditions (Wriggers, 2006).

The first and the second term of the governing equation (Eq. (2.1)) are discretized by
using the finite elements, and the last one is discretized by using the NTS elements. The
bodies are initially discretized by finite elements, as illustrated in Fig. 2.1. Then, each
node on the slave surface is paired with the closest segment on the master surface (Fig.
2.2). Since the contact element mechanically connects a node to a segment, it is called an
NTS element. From the geometrical relationship, the normal gap vector gNi, tangential gap
vector gTi is formulated by using the nodal coordinates. Under the penalty method, a slave
node and a master segment are connected by virtual springs, as depicted in Fig. 2.2 (b)
and (c), which is the penalty parameter. The frictional stress is relaxed if it is greater than
the frictional strength, which is described as the parallel shift of the virtual spring from the
initial contact point (Fig. 2.2). Above all, the governing equation is given by

δWc =
ne∑
A=1

δui
d(A)Ri

d(A) +
nc∑

A=1

δui
c(A)Ri

c(A) (2.3)

whereA andB denote the identification numbers of nodes in each element, ne and nc are the
numbers of finite elements and NTS elements, respectively, δuid(A) and δuic(A) are variations
of the nodal displacement vectors for the bodies and the contact interfaces, Ri

d(A) andRi
c(A)

are the residual vectors. The detailed derivation of the previous equation is displayed in the
next section.
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Figure 2.2: Schematic view of NTS contact elements with the penalty method. (a) Contact inter-
faces formed between two finite element meshes, (b) expression of normal contact, and (c) model
of stick-slip phenomenon in terms of the NTS approach.
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This section provides the standard contact algorithm based on the penalty method (Wrig-
gers, 2001; Liu et al., 2006) and an implementation of the friction and the cohesion. For
solving the discretized equations (Eq. (2.3)), the Newton’s method is utilized since the
discretized equations have nonlinear relationships with the displacement (Wriggers et al.,
2001; Liu et al. 2003; Wriggers, 2006). From Eq. (2.3), the linearized equation is expressed
by

δW +
∂ (δW )

∂ui
∆ui =

ne∑
A=1

ne∑
B=1

δui
d(A)

(
Ri

d(A) +
[
Kij

d(AB)
]
∆ui

d(B)
)

+
nc∑

C=1

ne∑
D=1

δui
c(C)

(
Ri

c(C) +
[
Kij

c(CD)
]
∆ui

c(D)
)
,

(2.4)

in which ∆ui denotes the displacement increments, ui is the global displacement vector,[
Kij

d(AB)
]

is the stiffness matrix of each finite elements,
[
Kij

c(CD)
]

is the stiffness matrix
of contact elements. As the NTS elements share the nodes with the finite elements as seen
in Fig. 2.2, Eq. (2.4) can be assembled into a system of equation

[
Kαβ

]
∆uβ = −Rα (2.5)

[
Kαβ

]
= ∪⟨

[
Kij

d(AB)
]
,
[
Kij

c(CD)
]
⟩ (2.6)

Rα = ∪⟨Ri
d(A), Ri

c(C)⟩ (2.7)

where
[
Kαβ

]
is the global stiffness matrix, Rα is the global residual vector, and ∪⟨·, ·⟩ is

the matrix-vector assembly operator, which rearrange a matrix form into a vector form. In
every iteration in the Newton’s method, the displacement fields are updated by using the
solution of Eqs. (2.5), (2.6), and (2.7).

For the sake of stability of the solution algorithm, there are two phases during every
time step, which are the first and the second the Newton’s loop (Wriggers, 2006). The first
Newton’s loop is in the trial mode, in which the frictional stress assumed to be proportional
to the displacement without any plastic slip. After the convergence, the frictional law is
enforced in the second phase, where displacement and frictional stress are updated at every
iteration until equilibrium is achieved.

In order to update frictional stress (Fig. 2.2), the return-mapping algorithm is employed.
The algorithm is originally proposed by Simo and Taylor (1986) for updating stress in the
framework of the elasto-plasticity. The idea has been extended in terms of the CCM as an
algorithm for updating the frictional stress (Peric and Owen, 1992; Wriggers et al., 2001).
Although the scheme generally is solved by iterative methods, it can be directly solved in
case of the Mohr-Coulomb’s model,
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f =
√
tTitTi − µ · ϵ√gNigNi − c ≥ 0 (2.8)

where f is the yield function, µ is the frictional coefficient and c is the cohesion. The system
of equations is given by,

tn+1
Ti = ϵ

(
gn+1
Ti − gslip,n+1

Ti

)
(f > 0) (2.9)

tn+1
Ti =

(
µ
√
tn+1
Ni t

n+1
Ni + c

)
ttr,n+1
Ti√

ttr,n+1
Ti ttr,n+1

Ti

(2.10)

gslip,n+1
Ti = gslip,nT i (f < 0) (2.11)

gslip,n+1
Ti = gslip,nT i +

(√
tn+1
Ti tn+1

Ti − µ ·
√
tn+1
Ni t

n+1
Ni − c

)
ϵ

·
ttr,n+1
Ti√

ttr,n+1
Ti ttr,n+1

Ti

(f ≥ 0) (2.12)

where ttr,n+1
Ti is the frictional trial stress, and these equations are used in the solution algo-

rithm.
In this thesis, a simple modification is proposed for the pairing algorithm of the NTS

element, which is explained in detail in Chapter 4. One of the main issues in the NTS
formulation is that the pairing between a node and a segment is not unique in some cases
(Wriggers, 2006; Zavarise and De Lorenzis, 2009). For instance, there are two possible
master segments for single slave node. This phenomenon causes oscillations of the solution
and the ill-convergence problem (Zavarise and De Lorenzis, 2009). Extensive research has
shown that the problem is avoided by introducing a smooth surface in interfaces. Wriggers
et al. (2001) have proposed some interpolations by using the Hermite functions and the
cubic Bernstein functions. A more straightforward method has been proposed by Liu et
al. (2003). However, these approaches are far more complicated than the original NTS
approach due to the nonlinearity of the interpolations. Therefore, in this thesis, a simple
algorithm is provided to avoid this problem, as illustrated in Chapter 4, and it is illustrated
that the algorithm increases the robustness.
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2.2.2 Formulations of root and soil

This section presents the discretization of domains, where two following points are dis-
cussed based on the NTS approach. First, the virtual work should be formulated in terms of
the current configuration since the momentum balance can be formulated only at the cur-
rent configuration, and not in the initial configuration within contact problems (Wriggers,
2006). Also, a constitutive equation used in the formulation should satisfy objectivity for
rotation. The reason for it is that the frictional contact problem, as presented here, is large-
deformation or large-slip problems where domains significantly rotate. A formulation is
based on the finite strain theory with the multiplicative decomposition of the deformation
gradient tensor to satisfy the objectivity.

The finite strain theory is derived from the momentum balance in the current configura-
tion,

∂σij
∂xj

+ ρbi = ρv̇i (2.13)

where σij is the Cauchy stress tensor, vi the velocity and v̇i the acceleration, bi is the body
force, ρ is the bulk density, xj is the coordinate in terms of current configuration. Eq. (2.13)
is solved with Dirichlet boundary condition (displacement boundary)

ui = ūi on Γu, (2.14)

Neumann boundary condition (traction boundary condition)

σijnj = t̄i on Γt, (2.15)

and initial conditions

ui = ūi on t = 0, (2.16)

σij = σ̄ij on t = 0, (2.17)

where Γu is the Dirichlet boundary and ūi is the displacement on the boundary, Γt is the
Neumann boundary and t̄i is the traction on the boundary, nj is the normal vector on the
boundary, ūi and σ̄ij are initial values. Consequently, the integral form of Eq. (2.13) is∫

Ω

∂σij
∂xj

dΩ +

∫
Ω
ρbidΩ =

∫
Ω
ρv̇idΩ (2.18)

In case of the formulation based on finite strain theory, Eq. (2.13) and above ini-
tial/boundary conditions are pulled back to the initial configuration for convenience. Among
the various pull-back operations, following pull-back operation is often used,

PiJ = τikF
−T
kJ = JσijF

−T
kJ (2.19)
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where τik is the Kirchhoff stress tensor, PiJ is the first Piola-Kirchhoff stress tensor, FiJ is
the deformation gradient tensor which is the two-point tensor and explained in detail in the
next section,

FiJ =
∂xi
∂XJ

(2.20)

where XJ is the coordinate of initial configuration and J is

J = ϵIJKF1IF2JF3K (2.21)

where ϵIJK is the Levi Civita symbol.
Based on this pull-back operation, an area is pulled-back as

σijdΓ =
τik
J
F−T
kJ NJJdΓ̄ = PiJNJdΓ̄ (2.22)

where NJ is the normal vector on the initial configuration. From the relationships, the
integral form of the Eq. (2.13) is pulled back by using the relationship of Eq. (2.19) as∫

Ω̄

∂PiJ

∂XJ
dΩ̄ +

∫
Ω̄
ρ0bidΩ̄−

∫
Ω
ρ0v̇idΩ̄ = 0 (2.23)

where Ω̄ and Γ̄ are the domain and the surface in terms of the initial configuration, re-
spectively, and ρ0 is the density with respect to the initial configuration. Taking the weak
derivative of the equation, the weak form is obtained.

δW d =

∫
Ω̄

∂PiJ

∂XJ
δuidΩ̄ +

∫
Ω̄
ρ0bidδuiΩ̄−

∫
Ω
ρ0v̇iδuidΩ̄

=

∫
Ω̄
PiJ

∂δui
∂XJ

dΩ̄ +

∫
Ω̄
ρ0bidδuiΩ̄−

∫
Ω
ρ0v̇iδuidΩ̄−

∫
Γ̄
t̄iδuidΓ̄

= 0

(2.24)

where δW d is the virtual work of domains.
Since Eq. (2.24) is a system of nonlinear equations, it is solved by the Newton’s method.

The linearized equation is analytically computed by taking the directional derivative of δW
for displacement field u in terms of the initial configuration. The linearized equation is given
below. The first term of the right-hand side part is discretized by following mathematical
operations. First, let us linearize the Eq. (2.24).

∂δW d

∂XI
∆uI =

∂

∂XI

∫
Ω̄
PiJ

∂δui
∂XJ

dΩ̄∆uI (2.25)

Here, the first Piola-Kirchhoff stress tensor has the relationship of PiJ = FiKSKJ . Substi-
tuting this to the Eq. (2.26),
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∂δW d

∂XI
∆uI =

∫
Ω̄

∂FiKSKJ

∂XI
∆uI

∂δui
∂XJ

dΩ̄ (2.26)

noting that the directional derivative is decomposed as

∂FiKSKJ

∂XI
∆uI =

∂FiK

∂XI
SKJ∆uI + FiK

∂SKJ

∂XI
∆uI (2.27)

with

∂FiK

∂XI
SKJ∆uI =

∂∆uI
∂XJ

SKJ , (2.28)

and

FiK
∂SKJ

∂XI
∆uIδui∂XJ = δEIJCIJKL∆EKL. (2.29)

Substituting Eqs (2.27) to (2.29) into Eq. (2.26), Eq. (2.30) is obtained.

∂δW d

∂XI
∆uI =

∫
Ω̄

(
∂∆uI
∂XJ

SJK
∂δuI
∂XK

+ δEIJCIJKL∆EKL

)
dΩ̄ (2.30)

where CIJKL is the algorithmic stiffness matrix in terms of reference configuration since
the contact can only be described with respect to the current configuration. Eq. (2.30) is
pushed-forward to the current configuration.

∂δW d

∂XI
∆uI =

∫
Ω

(
∂∆ui
∂xj

σjk
∂δui
∂xk

+ δdij c̄ijkl∆dkl

)
dΩ (2.31)

where c̄ijkl is the stiffness matrix with respect to the current configuration,

c̄ijkl =
1

J
FiIFjJFkKFlLC̄IJKL (2.32)

Eq. (2.31) is discretized based on Galerkin’s method, thereby, the stiffness matrix Kd(IJ) of
Eq. (2.4) is obtained.

Kd(IJ) = K
d(IJ)
1 +K

d(IJ)
2 (2.33)

where Kd(IJ)
1 and Kd(IJ)

2 are

K
d(IJ)
1 =

∫
Ωe

∂NI

∂xk
τkl
∂NJ

∂xl
dΩe (2.34)

K
d(IJ)
2 =

∫
Ωe

BIkDklBlJdΩe (2.35)

since the Eq. (2.36) is discretized as below.

∂δW d

∂XI
∆uI =

∫
Ωe

(
δuI

∂NI

∂xk
τkl
∂NJ

∂xl
∆uJ + δuIBIkDklBlJ∆uJ

)
dΩe (2.36)
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2.2.3 Solution algorithm

This subsection discusses the solution algorithm for root-soil contact simulations. As dis-
cussed in the last subsection, the system of equations is nonlinear with respect to the dis-
placement field. Consequently, iterative solver such as the Newton’s method is to be em-
ployed, where the trial variables of displacement and internal variables (e.g., stress measure,
strain measure, and softening/hardening parameters) are updated so that the final solution
satisfies the virtual work equation (Eq. (2.24)) and the yield criterions of domains and inter-
faces. The solution algorithm also updates the pairing of contact elements (Fig. 2.2) within
the iterative loops of the Newton’s method; this pairings algorithm is also explained in the
current subsection.

Chapters 4 and 5 show solution algorithms for friction-cohesion contact problems. The
algorithm consists of two parts: a stick part and a slip part. In the stick part, all contact
elements are under elastic stick conditions, which indicates no slip is allowed in the inter-
faces. The stress, internal variables, and displacements are computed as trial values, which
are used as the initial trial value of the second part. The second part, afterward, updates the
frictional stress where the slip is allowed. The scheme mentioned above is a widely-used
technique to reduce the instability of the iterative method, as shown in Wriggers (2006). In
each part, the pairing is detected firstly, and then the stiffness matrix and residuals are com-
puted for every solid and contact elements. Then some linear solver is utilized to solve the
system of discretized equations, for instance, the iterative method as the Conjugate Gradient
(CG) method or direct solver such as the Gauss-Jordan method.

The configurations of domains and contact interfaces are updated based on the stress-
updating methods, as seen in the previous subsections. The stress, plastic strain measure,
and hardening/softening parameters are updated based on elasto-plasticity, and the shear
stress of root-soil interfaces is updated by the stress-updating scheme discussed in Eq.
(2.12).

2.3 Constitutive model and material tests of root and soil do-
mains

This section discusses material tests and modeling of the root matrix in terms of continuum
mechanics and CCM. The present model based on the CCM necessitates some parameters
to solve the system of equations. The parameters are roughly categorized into the material
parameters for root domains, soil domains, and ones of root-soil interfaces. This section
discusses the physical tests and models for domains of roots and soils, and the next sec-
tion describes that for root-soil interfaces. The material tests of roots are not standardized;
therefore, this section proposes a possible simplest method and an apparatus to measure the
stiffness parameters of roots. As for the material tests of soils, there have been many meth-
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ods to determine the stiffness parameters, and the method is standardized by, for instance,
the JIS and the JGS. Thereby the present section introduces some of the testing methods to
measure the stiffness parameters of soils from the standardized methods. The constitutive
models for roots and soils are also to be discussed. For these reasons, the current section
utilizes some consistent models for roots and soils.

This section firstly provides a summary of the finite strain theory for general cases which
include both elastic and plastic behaviors. From the standpoint of finite strain theory, the
constitutive model is given as an elastic/plastic potential function; consequently, this section
also suggests the possible simplest models of both potential functions.
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Figure 2.3: Schematic view of kinematics of two elasto-plastic bodies and the kinematic measures.

The contact kinematics with the finite strain theory is shown in Fig. 2.3, whereas the
reference configurations Ωroot

0 , Ωsoil
0 , and the current configurations Ωroot, Ωsoil indicate the

initial and present control volumes, respectively. Hereby the intermediate configurations
Ω̄root, Ω̄soil are also introduced to describe the virtual stress-free configuration. It is worth
noting that the stress-free configuration is purely virtual and not uniquely observed in real-
istic situations and introduced just for convenience. Thanks to the stress-free intermediate
configurations, the constitutive models of elastic/plastic parts are simply expressed as be-
low by using elastic/plastic potential functions, respectively. Under these assumptions, let
us project a small vector around a material point in terms of the reference configuration,
which is denoted as dXI into the intermediate/current configurations as shown in the figure,
where the superscript root and soil denote the amounts of the roots and soils, respectively;
the projections are visible as ¯dXI and dxi. Further, the deformation gradient tensor is intro-
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duced as follows;

dxi =
∂xi
∂XJ

dXJ = FiJdXJ (2.37)

dxi =
∂xi
∂X̄J̄

dX̄J̄ = FiJ̄
edX̄J̄ (2.38)

dX̄Ī =
∂X̄J̄

∂XJ
dXJ = FĪJ

pdXJ (2.39)

where FiJ is the deformation gradient tensor, FiJ̄
e is the elastic deformation gradient tensor,

and FĪJ
p is the plastic deformation gradient tensor (e.g. Hashiguchi and Yamakawa, 2013).

Hence, the three deformation gradient tensors has a relationship of Eq. (2.40)

FiJ =
∂xi
∂XJ

=
∂xi
∂X̄Ī

∂X̄Ī

∂XJ
= FiĪ

eFĪJ
p. (2.40)

As well as vectors, areas and volumes are projected and the mathematical expression of the
projections are also given by using deformation gradient tensors. First, areas are projected
by

dai = nida = JFiJ
−TNJdA = JFiJ

−TdAJ (2.41)

where ni and NJ are the outer normals with respect to the infinitesimal area, which is called
the Nanson’s formula. The analogous of the Nanson’s formula is also given for other two
projections for elastic and plastic deformation gradient tensors.

dai = nida = JeFiĪ
e−T N̄ĪdĀ = JFiĪ

e−TdĀĪ (2.42)

dĀĪ = N̄ĪdĀ = JpF p−T
ĪJ

NJdA = JpFĪJ
p−TdAJ , (2.43)

where dai, dĀĪ , and dĀI are the area vectors on the current, the intermediate, and the ini-
tial configuration, respectively. N̄Ī is the normal vector on the area in the intermediate
configuration. The projection of the volumes are described as below.

dv = JdV = JedV̄ = JeJpdV (2.44)

where Je = ϵ ¯IJKFĪ
eFJ̄

eFK̄
e, and Jp = ϵIJKFI

pFJ
pFK

p

The elastic constitutive equations are provided by using the elastic deformation gradi-
ent tensor FiĪ

e and decoupled from the plastic deformation gradient tensor FĪJ
p. Before

describing the elastic potential function and constitutive models of roots and soils, both
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strain and stress measures are to be defined. Here are the strain measures which is directly
computed by using these deformation gradient tensors.

CIJ = FIi
TFiJ (2.45)

CĪ J̄
e = FĪI

eTFIJ̄
e (2.46)

CIJ
p = FIĪ

pTFĪJ
p (2.47)

where CIJ is called right Cauchy-Green tensor, CĪ J̄
e is called elastic right Cauchy-Green

tensor, and CIJ
p is called plastic right Cauchy-Green tensor. It is worth noting that the

elastic right Cauchy-Green tensor CĪ J̄
e is defined in the intermediate configuration and the

others are defined in the reference configuration. Since the elastic right Cauchy-Green ten-
sor is defined in the intermediate configuration, the elastic potential energy and constitutive
models are defined in the intermediate configuration. Further, material-time derivative of
the strain measures are necessary for the time-integration of the plastic strain measure, for
instance, CIJ

p, which is given as analogy of the velocity gradient tensor lij ,

lij =
∂vi
∂xj

= FiKFKj
−1 (2.48)

and given as

L̄p
ĪJ̄

= F p
Īk
F p−1
kJ̄

(2.49)

where L̄p
ĪJ̄

is the plastic velocity gradient tensor. The symmetric part of this tensor is utilized
for plastic flow rule.

D̄p
ĪJ̄

= L̄p
ĪJ̄

+ LĪ J̄
pT (2.50)

where D̄p
ĪJ̄

is the plastic stretch tensor.
The work-conjugate stress tensor of the elastic right Cauchy-Green tensor is the Mandel

stress tensor, which is given by push-forward of the second Piola-Kirchhoff stress tensor
from the initial configuration to the intermediate configuration and pull-back of the Kirch-
hoff stress tensor τij = Jσij from the current configuration to the intermediate configuration.

M̄Ī J̄ = FĪK
p−TCKLSLMFMJ̄

pT = FĪk
eT τklFlJ̄

e−T (2.51)

noting following work-conjugacy.

τij : lij = M̄Ī J̄ : L̄Ī J̄ (2.52)
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Finally, elastic potential functionsW , which is equivalent to the Gibbs free energy, are given
as function of elastic right Cauchy-Green tensor and satisfy the following relationships.

M̄Ī J̄ = 2C̄e
ĪK̄

∂W

∂C̄e
ĪJ̄

(2.53)

On the other hand, plastic potential functions and yield functions are defined in terms of
Mandel stress tensor M̄Ī J̄ . For instance, soil constitutive models often utilizes the Drucker-
Prager model or Mohr-Coulomb model as their plastic potential function and/or yield func-
tions (Wu et al., 2017): Both models are modeled in Eqs. (2.54) and (2.55).

f
(
M̄
)Drucker−Prager

=

√
(JM̄

2 ) +
Bc − 1√
3Bc + 2

√
3
IM̄1 −

√
3

Bc + 2
fc (2.54)

f
(
M̄
)Mohr−Coulomb

=

√
(JM̄

2 ) +
(Bc − 1) IM̄1 − 3fc

3 (Bc + 1) cos θM̄ +
√
3 (Bc − 1) sin θM̄

(2.55)

where IM̄1 , JM̄
2 , and θM̄ are the first invariant of the Mandel stress tensor, the second invari-

ant of the deviatoric part of the Mandel stress tensor, and the Lode angle in terms of Mandel
stress tensor, respectively. Bc and fc is computed as below.

Bc =
1 + sinϕ

1− sinϕ
, (2.56)

where c is the cohesion of soils.

fc =
2ccosϕ

1 + sinϕ
. (2.57)

The Cauchy stress tensor is often utilized instead of the Mandel stress tensor in case of
infinitesimal strain theory. It is worth noting that there is a simple relationship between
these invariants of Mandel stress and the Cauchy stress tensors, as seen below. First, the
first invariant of the Mandel stress tensor has a relationship of

IM̄1 = M̄Ī Ī = JF eT
Īi σijF

e−T
jĪ

= Jδjiσij = Jσii = JIσ1 , (2.58)

and the second invariant has a relationship of

JM̄
2 =

1

2

(
M̄Ī J̄M̄Ī J̄

)
= J2Jσ

2 . (2.59)

Further, the Lode angle of the Mandel stress is the same as the one of the Cauchy stress
tensor.

θM̄ =
1

3
sin−1

−3
√
3

2

JM̄
3(

JM̄
2

) 3
2

 =
1

3
sin−1

(
−3

√
3

2

Jσ
3

(Jσ
2 )

3
2

)
= θσ (2.60)
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where the third invariants of the deviatoric stress tensor M̄
′

Ī J̄
is defined as seen.

JM̄
3 =

1

3
M̄

′

ĪK̄M̄
′

K̄L̄M̄
′

L̄Ī = J3Jσ
3 . (2.61)

where the deviatoric stress tensor is defined as

M̄
′

Ī J̄ = M̄Ī J̄ − 1

M̄K̄K̄

δĪ J̄ (2.62)

These indicates that the stress invariants are identical with respect to the rotation and
only depends upon the volumetric change; this fact is consistent with the definition of the
stress invariants. The plastic strain measure, Cp

IJ is updated by integrating the increments
Ċp
IJ which is computed by flow rule. The flow rule is also described in terms of the inter-

mediate configuration.

D̄p
ĪJ̄

= ∆λ

(√
∂f

∂M̄K̄L̄

∂f

∂M̄K̄L̄

)−1
∂f

∂M̄Ī J̄

(2.63)

Ċp
IJ = 2F pT

IK̄
D̄p

K̄L̄
F p
L̄J

= ΞIKC
p
KJ , (2.64)

here, a operator ΞIK is

ΞIK = 2∆λ

(√
∂f

∂M̄K̄L̄

∂f

∂M̄K̄L̄

)−1

F pT
IK̄

∂f

∂M̄K̄L̄

F p−T
L̄K

. (2.65)

The plastic strain measure is integrated by using time-integration scheme such as backward-
Euler method; the algorithm to compute this time-integration is called the Return-Mapping
(RM) method. Here is a general expression of the RM method.

Yµ1 = Cp
n+1,µ −∆tΞµνC

np
ν = 0 (2.66)

Y2 = fn+1 = 0 (2.67)

where Cn+1p
µ and Cnp

ν are the plastic right Cauchy-Green tensors in terms of the time-step
n + 1 and n, respectively. fM̄n+1 is a yield function with respect to the Mandel stress tensor.
The system of non-linear equations are solved by using the Newton’s method.

Y total,k
µ =

(
Y 1,k
11 , Y 1,k

12 , · · ·, Y 1,k
33 , Y2,k

)T
= 0 (2.68)

Xtotal,k
µ =

(
Cpn+1,k

11 , Cpn+1,k
12 , · · ·, Cpn+1,k

33 , δλk

)T
(2.69)

Xtotal,k+1
µ = Xtotal,k

µ − J−1
µν Y

total,k
ν (2.70)

where the matrix Jµν is the Jacobian matrix which is updated in every stress-update process
in the global solution algorithm. Following subsections present the concrete formulations.
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2.3.1 Constitutive model for root domain

This subsection proposes constitutive models for root domains based on the finite strain
theory. In order to determine the constitutive model, bending tests are conducted by utilizing
two types of plant roots, which are soybean and barley roots. The results are described in
the next subsection, where the material mostly behaves as elastic bodies. Consequently, this
subsection utilizes a perfectly elastic model by enforcing a constraint condition,

Cp
IJ = δIJ (2.71)

where, δIJ is the identity matrix, which indicates that no plastic strain is computed during
simulations. It is worth noting that this assumption sustains only when the loading stress is
smaller than the failure stress of the root tissues.

This section utilizes the Neo-Hookean elastic potential function for root material, which
has been utilized for living bio-material such as cell-wall (Huang et al., 2012). As men-
tioned in the previous subsection, the finite strain theory necessitates an elastic potential
function to provide constitutive relationships for a material. The elastic potential function
should be chosen so that the stress-strain relationship of material is accurately reproduced.
This thesis utilizes the Neo-Hookean elastic potential function since it has been employed to
express stress-strain relationships of plant bodies (Huang et al., 2012). The elastic potential
function is visible in Eqs. (2.73) and (2.74).

W = W1 +W2 (2.72)

with

W1 =
Λ

4

(
ϵĪ J̄K̄C̄

e
1̄ĪC̄

e
2̄J̄ C̄

e
3̄K̄ − 1− 2 ln

√
ϵĪ J̄K̄C̄

e
1̄Ī
C̄e
2̄J̄
C̄e
3̄K̄

)
(2.73)

W2 =
µ

2

(
C̄e
K̄K̄ − 3− 2 ln

√
ϵĪ J̄K̄C̄

e
1̄Ī
C̄e
2̄J̄
C̄e
3̄K̄

)
(2.74)

where Λ and µ are the first and second Lame constants, respectively.

2.3.2 Constitutive model for soil domain

This subsection discusses the constitutive models of soil domains. There have been devel-
oped numerous constitutive models of soils, and some of them have been utilized in terms
of the finite strain theory, for instance, the Cam-clay model (Yamakawa et al., 2010). One
of the simplest models of soils is a Mohr-Coulomb Drucker-Prager model, which utilizes
the Mohr-Coulomb model as a yield function and Drucker-Prager model as a potential plas-
tic function. Both models are visible in Eqs. (2.55) and (2.54), respectively. Both models
also necessitate an elastic model, and hereby, the Neo-Hookean model is utilized since the
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model is one of the possible simplest and the widely-used model for elastic behavior ob
elasto-plastic models (Hashiguchi and Yamakawa, 2013). Here is the Jacobian matrix of
the plastic potential function in terms of return-mapping algorithm.

Jµν = α

[
1

2

(
Mµν −

IM̄1
3
Gµν

)
+

BI − 1√
3BI + 2

√
3
Gµν

]
(2.75)

where α is

α = 4∆λ

MKL :MKL −

(
IM̄1

)2
3

+ 3

(
BI − 1√
3BI + 2

√
3

)2

 (2.76)

2.3.3 Material test for root domain

The root matrix necessitates two elastic moduli; the first and the second Lame constant,
which are measured by using a simple bending test. Fig. 2.4 illustrates a schematic of the
bending test where a root is sampled from a straight-root of a soybean seedling, and set
on a bending machine. Thereby the relationship between forces P and displacements u are
obtained. From the relationship, Young’s modulus is estimated. Further, the Poisson’s ratio
of 0.3 is utilized according to the previous study (Kim et al., 2008).

(a) (b)
P

u

Length : 20.0 mm

Diameter : 0.85 mm

Figure 2.4: The bending test of a soybean root.

2.3.4 Material test for soil domain

This subsection discusses the material tests of soils to determine the parameters of elastic
and plastic potential functions. There are two elastic parameters of soil in terms of the MC-
DP model; Young’s modulus and Poisson’s ratio. Young’s modulus is measured by using
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unconfined compression (UC) tests (JGS-0511-2009), which has been used for measuring
the Young’s modulus-like E50 value. This test is conducted for cylinder-shaped specimens
of soils, and the stiffness and yield stress under unconfined condition is measured. Since
plant roots exist in the shallow, unconfined condition, the unconfined compression tests can
realize similar stress conditions as the realistic conditions. Besides, the Poisson’s ratio is
measured by using a simple compression apparatus depicted in Fig. 2.5, which is similar
to the conventional consolidation tests of clays. The presented apparatus loads the vertical
pressure on the top of the soil specimen and measures horizontal soil pressure on the side of
the specimen. From these results, the soil pressure coefficient is measured, as shown in the
left graph of Fig. 2.5; the Poisson’s ratio can be computed from the angle of the regression
line.
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Figure 2.5: The Poisson’s ratio test.
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By contrast, there are three plastic parameters of the MC-DP model, the cohesion c, the
frictional angle ϕ, and the dilatancy angle ψ. These parameters are usually measured by us-
ing the Direct Shear (DS) tests (JGS-0560-2009 and JGS-0561-2009) or Triaxial Compres-
sion (TC) tests (JGS-0521-2009, JGS-0522-2009, JGS-0523-2009, and JGS-0524-2009).
The frictional angle ϕ is used for determining the MC model as a yield criterion, and the
dilatancy angle ψ is utilized for plastic flow rule to compute the dilatancy effect; noting
that the cohesion is utilized for both of yield function and plastic potential function. The
material tests and the results are displayed in Chapters 4 and 5.

2.4 Material test and model of root-soil contact interface

This subsection briefly discusses the numerical model of root-soil interaction for the FE-
analysis, which contains novel ideas and approaches, and the detail is presented in Chapters
4 and 6. As can be seen in Fig. 2.1, it is necessary to model the mechanical interaction
of the root and soil domains to precisely predict the deformation of the root-soil system.
There are two types of contact phenomena observed in generic contact interfaces: normal
and tangential contact. The normal contact indicates the collision at the contact interface,
the direction of which is identical to the outer normal vector of the contact interfaces. By
contrast, the tangential contact is so-called shear, the direction of which is the same as
the tangential vectors of the contact interfaces. It is worth noting that it is possible to
define a set of the normal/tangential vectors if and only if the two domains are in contact.
Otherwise, sets of normal/tangential vectors of possible contact surfaces are not identical.
These two normal vectors are to be preliminarily identified before computing the above
contact variables, which is essential for the existence and uniqueness of the solution.

By using the NTS approach, the normal contact and elastic stick of the tangential contact
are automatically introduced. However, it should be given that the model and parameters of
the slip rule of the tangential contact. The detail of the experiment is presented in Chapters
3, 4, and 5.

2.5 Summary

This chapter provides a continuum model for root-soil contact problems based on the fi-
nite strain theory and the CCM. The governing equations are derived from the momentum
balance, elastic constitutive laws, and plastic flow rules in terms of the finite strain the-
ory, which are essential for root-soil contact problems since both bodies undergo largely
deformed processes and often rotate. The CCM is introduced to express root-soil contact
interfaces, and the NTS approach is chosen since it is the possible simplest way to express
contact, separation, friction, cohesion, and slip in the root-soil interfaces. The NTS ap-
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proach is also capable of expressing complex root/soil morphologies, which is vital for the
application to the practical problems such as numerical simulation of surface erosions in
vegetated slopes and lodging of cereals. The concrete expression and material parameters
of the root, soil, and root-soil interfaces are visible in the following chapters.
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Chapter 3

Shear Test and Model of Root-Soil Contact
Interface by Using Novel Pullout Test

3.1 Introduction

One of the significant difficulties of modeling rooted soils is due to the difficulty of pre-
dicting shear behavior of the root-soil interface. Mechanical behavior of rooted soils can be
seen as contact problems of roots and soils. From this viewpoint, there are three domains to
be modeled: soil domain, root domain, and root-soil interface. The mechanical behavior of
soils has been a subject of soil mechanics, where various and reliable models are established
in past decades, and some models are available for mechanical behavior of roots. However,
few models are available for the shear strength of root-soil interfaces. Since the root-soil
interface joints roots and soils, the shear strength of root-soil interfaces are to be modeled
for full-understanding of rooted soils.

This chapter aims to measure and model the mechanical behavior of root-soil interfaces,
where the mechanical behavior is consists of two characteristics: (1) the relationship be-
tween shear displacement and shear stress, and (2) the relationship between normal stress
and shear strength. A novel pull-out apparatus is developed to measure the mechanical
behavior of root-soil interfaces, which is presented in the next section. The next section
also displays material properties and procedures of the pull-out tests. Tests are conducted
preliminary for steel-sand interfaces and wood-sand interfaces for validation of both of
the apparatus and procedures. Afterward, shear tests of root-soil interfaces are performed
to evaluate the relationship between shear stress and displacement. Section 3 shows the
results of the three pull-out tests, and the Mohr-Coulomb model models the mechanical be-
havior of the root-soil interfaces. Section 4 discusses the characteristics of the mechanical
behavior of the root-soil interface and proposes continuum modeling based on the Compu-
tational Contact Mechanics (CCM). The verification of the model is also demonstrated in
the section. Section 5 summarizes the chapter and remarks on the conclusion.
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3.2 Shear test of root-soil contact interface

Several pull-out tests are proposed for different scopes, and the objectives are roughly cate-
gorized into two types. The first type of pull-out tests are conducted to measure the pull-out
resistance of natural fibers such as roots (e.g., Abe and Zimmer, 1991); This type of studies
present that the pull-out resistance of roots is closely related to the diameter. The Sec-
ond type is applied for artificial fibers such as geo-membranes to evaluate the mechanical
strength of reinforced soil (Kiyota et al., 2009). It is shown that the natural/artificial fibers
increase the tensile strength of the mixtures. Further, this mechanism is directly observed
by using microscopes (Hejazi et al., 2012). However, few studies are conducted to mea-
sure the shear strength of root-soil interfaces under realistic conditions. Hence, this section
proposes a novel pull-out apparatus and the procedure.

3.2.1 Pull-out apparatus

Fig. 3.1 displays the outline of the pull-out apparatus. As can be seen in the center of
the figure, a straight root is horizontally set on a steel soil-box (diameter is 6.0 cm, width
is 2.0 cm) through a set of holes (diameter is 0.5 cm) and the soil is filled into the soil-
box afterward. The weights vertically compress the specimen, and the root is pulled out
to the left side of the figure, the speed of which is less than 0.1 mm/min so that it can be
seen as a pseudo-static condition. The force gauge measures the reaction force, and the
horizontal displacement is measured by displacement gauge attached on the left side of the
force gauge. During the pull-out process, horizontal soil pressure is measured by using
a soil pressure gauge attached in the side of the soil-box. The soil pressure is used for
computing the mean normal stress of root-soil interfaces.
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Figure 3.1: Schematic view of pullout apparatus which measures the shear stress in root-soil inter-
faces for given soil pressures.
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3.2.2 Material properties

There are three case of experiments are conducted (indicated as Case 1 to Case 3). As the
Case 1, pullout tests of a steel test-piece and silica sand No.7 is performed; this case is
for validation of the apparatus and the procedure, thereby, the results are compared with
the experiments of previous studies (Uesugi and Kishida 1986a, 1986b). In the Case 2,
the same silica sand No. 6 is chosen, and instead of a steel test-piece, the same size (the
diameter is about 3.0 mm) of wooden test-piece is utilized to observe the difference of shear
behavior due to the difference of pull-out material, where the type of the wood is the balsa.
Afterward, Case 3 is presented, where the apparatus is utilized for root-soil interfaces. Prior
to the experiment, a root of barley and soil of the paddy field is sampled from the same site.
The cite is located at an experimental field of Kyoto University in Sakyo-Ku, Kyoto City,
Japan (35 ◦ 01’56.9"N 135 ◦ 47’00.4"E). The soil particle density of silica sand No. 6 and
paddy soil is 2.67 g/cm3 and 2.76 g/cm3, respectively. The particle size distribution curveof
the paddy soil is plotted in Fig. 3.2, and the liquid limit, plastic limit, plasticity index are
48.3 %, 35.4 %, and 13.1 %, respectively. Therefore, the soil is categorized as FS according
to the standard of JGS 0051 (JGS, 2010). The bulk density of the paddy soil is 1.28 g/cm3,
and the dry density of the soil is 0.97 g/cm3. The water content of the paddy soil is set as a
value of 31.5 %, which is consistent with the water content of the sampling site.
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Figure 3.2: Material profiles of paddy soil utilized in experiment.
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3.2.3 Procedure of pull-out test

The procedure of the pull-out test is shown below:

1. Dry sand is prepared for Case 1 and Case 2, and the water content of paddy soil used
in Case 3 is set as 31.5 %.

2. The height and width of the soil-box are measured, and afterward, the soil pressure
gauge is set in the soil-box and calibrated. Since the soil pressure is measured, the
soil pressure gauge is started at this timing.

3. The pull-out materials are processed so that the length of the segment is 10.0 cm. The
diameter of the materials is measured two times for each end of the materials, and the
average of the diameters is used as the diameter of the material. The root segment is
sampled from roots of barley; a root without branch roots is chosen for the test. The
root is washed and tied to the force gauge by using a cotton string. The edge of the
root is covered by wet papers to prevent drying. The steel and the wood are also tied
to the force gauge in the same way.

4. Soils are filled into the soil-box. The paddy soil in Case 3 is filled into soil-box so
that the bulk density is 1.28 g/cm3. Here, the soil is divided into four and supplied
four separate times. The top of the soil surface is flattened by using a soil knife. The
weights are put onto the soil specimen. It is worth noting that the horizontal soil
pressure is measured during this time.

5. Vertical displacement of the soil surface is measured by a displacement gauge until
the deformation is stopped. It took less than 5 minutes in Case 1 and 2 and took more
than 20 minutes in Case 3.

6. After the deformation is stopped, the pull-out material is pulled out with a speed of 0.1
mm/min and over 6.0 mm. During the pull-out process, the profiles of the horizontal
soil pressure (kPa), pull-out force (N), horizontal displacement (mm) are measured.

7. The process 1 to 6 is repeated for several weights. In the case of the root-soil interface,
the root is worn out when it is used for more than five times; therefore, the tests are
repeated four times in Case 3.

After the experiment, water content (%), dry bulk density g/cm3 is measured. The nor-
mal stress and shear stress of interfaces are estimated by σ = (σ1 + σ2)/2, where σ1 is
vertical soil pressure induced by weights, σ2 is the horizontal soil pressure measured by the
soil pressure gauge. This equation is derived by the following operations. First, Cauchy’s
stress tensor of the soil is expressed as below.
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σ =
1

2πrL

∫
A
σn · ndA (3.1)

with

σ =


σ1 0 0

0 σ2 0

0 0 σ2

,

 (3.2)

n =


cosθ

sinθ

0

 (3.3)

where n is outer normal on the pull-out material surface, σ is mean is outer normal on the
pull-out material surface, σ is mean normal stress on pull-out material, r and L are mean
radius and length of pull-out material, respectively, π is circle ratio, A is the interface of
pull-out material and soils. From above equations, Eq. (3.4) is derived.

σ =
1

2πrL

∫
A


σ1 0 0

0 σ2 0

0 0 σ2



cosθ

sinθ

0

 ·


cosθ

sinθ

0

 dA (3.4)

is derived. From Eq. (3.4) , Eq. (3.5) is computed.

σ =
1

2πrL

∫
A
σ1sin

2θ + σ3cos
2θdA. (3.5)

In this chapter, the pull-out materials can be seen as a cylinder, therefore, Eq. (3.5) can be
rewritten as Eq. (3.6).

σ =
1

2πrL

∫ 2π

0
σ1 + (σ3 − σ1)cos

2θrLdθ. (3.6)

From the relationship of Eq. (3.6), σ = (σ1 + σ2)/2 is derived. On the other hand, the shear
stress of root-soil interface is computed by Eq. (3.7),

τ =
S

2πrL
. (3.7)

Here, as shown in Fig. 3.3, a inflection point is appeared in the relationship between dis-
placement and shear stress, which is due to the slack of a cotton string. The similar phe-
nomena is occurred in the unconfined compression tests (JIS A 1216) and a modification
of the origin is proposed in the standard; this modification is also applied to the current
procedure as shown in Fig. 3.3.
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Figure 3.3: Modification of the origin to determine theoretical origin analogous to JGS-0520:2009

3.3 Results and discussion

3.3.1 Shear test of steel-sand interface

The relationship between shear displacement and shear stress for under different normal
stress is visible in Fig. 3.4. For all cases, shear stress is proportional to the shear displace-
ment when the shear displacement is less than 0.5 mm. In this section, the gradient of this
initial curve is denoted as shear displacement modulus in this chapter. The shear stress starts
declining as shear displacement reaches around 0.5 mm to 1.5 mm and reaches the maxi-
mum shear stress. After the peak shear stress, the shear stress decreases with oscillation,
and finally becomes 20% to 50% of the peak shear stress.

The relationship between normal stress and shear displacement modulus is displayed
in Fig. 3.5. The results suggest that a shear displacement modulus is proportional to the
normal stress of a root-soil interface. This coefficient is used in the constitutive modeling
of Section 4.

The relationship between normal stress and maximum shear stress is shown in Fig. 3.6.
It is indicated that the maximum shear stress is proportional to the normal stress (R2 =
0.98). The intercept of the line is around 0 kPa, and the coefficient is around 0.28. This
relationship is well-known Coulomb’s friction, and the coefficient is consistent with the
frictional coefficient. Hence, it shows that the frictional coefficient between steel and silica
sand No. 7 is 0.28. The frictional coefficient is almost the same as or a little smaller than
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the frictional coefficient reported by previous studies (Uesugi and Kishida, 1986).
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Figure 3.4: Relationship between displacement and shear stress measured by pull-out test of steel
and silica sand
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Figure 3.5: Relationship between normal stress and shear displacement modulus measured by pull-
out test of steel and silica sand
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3.3.2 Shear test of wood-sand interface

The relationship between shear displacement and shear stress for under different normal
stress is visible in Fig. 3.7. For all cases, shear stress is proportional to the shear displace-
ment when the shear displacement is less than 1.0 mm. The shear stress starts declining
as shear displacement reaches around 1.0 mm to 6.0 mm and reaches the maximum shear
stress, which is greater than these of the steel-sand case. After the peak shear stress is ob-
served, the shear stress keeps almost the same value over 0.5 mm to 1.0 mm and decreases
with oscillation, and the finally becomes 40% to 60% of the peak shear stress.

The relationship between normal stress and shear displacement modulus is displayed
in Fig. 3.8. The results suggest that a shear displacement modulus is proportional to the
normal stress of a wood-sand interface. This coefficient is also used in the constitutive
modeling of Section 4.

The relationship between normal stress and maximum shear stress is shown in Fig. 3.9.
It is indicated that the maximum shear stress is proportional to the normal stress (R2 = 0.99).
The intercept of the line is 1.81 kPa, and the coefficient is around 0.94. This relationship
is well-known Coulomb’s friction, and the coefficient is consistent with the frictional coef-
ficient. Hence, it shows that the frictional coefficient between wood and silica sand No. 7
is 0.97: The frictional coefficient is larger than that of the steel-sand case, which indicates
that the current method provides a unique frictional coefficient for each combination of ma-
terials. Further, a small amount of cohesion is observed. Since it does not appear in the
steel-sand test, it is suggested that the cohesion is due to the softness of the wood material.
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Figure 3.7: Relationship between displacement and shear stress measured by pull-out test of wood
specimen and silica sand.
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Figure 3.9: Relationship between normal stress and shear stress measured by pull-out test of wood
specimen and silica sand.
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Table 3.1: Dry density and water content of test pieces.

Original 1.7 kPa 3.6 kPa 6.1 kPa 8.3 kPa
Dry density g/cm3 0.97 0.96 0.97 0.96 0.98
Water content % 31.5 32.4 30.8 33.1 29.9

3.3.3 Shear test of root-soil interface

The dry densities of specimens are measured after the experiments Table 3.1. For all cases,
the initial dry density is 0.97 g/cm3, and the water content is 31.5 %. After the experi-
ment, the dry density is 0.96 g/cm3 to 0.98 g/cm3, which is almost the same as the original
value. The water content also did not change significantly. From these results, the mechan-
ical properties of soils did not changed significantly during the experiment since the soil
pressure is extremely small.

The relationship between shear displacement and shear stress for under different normal
stress is visible in Fig. 3.10. For all cases, shear stress is proportional to the shear displace-
ment when the shear displacement is less than 2.0 mm. The shear stress starts declining
as shear displacement reaches around 2.0 mm to 7.0 mm and reaches the maximum shear
stress, which is greater than these of the steel-sand case. After the peak shear stress is ob-
served, the shear stress keeps almost the same value over 2.0 mm to 5.0 mm and decreases
with oscillation, and the finally becomes 30% to 50% of the peak shear stress. This figure
also shows that the current case is more cohesive than other cases, which should be due to
the cohesion of the soil material or softness of the root.

The relationship between normal stress and shear displacement modulus is displayed
in Fig. 3.11. The results suggest that a shear displacement modulus is proportional to
the normal stress of a root-soil interface. This coefficient is also used in the constitutive
modeling of Section 4.

The relationship between normal stress and maximum shear stress is shown in Fig. 3.12.
It is clearly indicated that the maximum shear stress is proportional to the normal stress (R2

= 0.98). The intercept of the line is 3.14 kPa, and the coefficient is around 0.60. This
relationship is consistent with the well-known Mohr-Coulomb’s model, and the coefficients
are consistent with the frictional coefficient; hence, it shows that the frictional coefficient
between the root and the soil is 0.60. The frictional coefficient is larger than that of the
steel-sand case and less than the wood-sand case. Further, the cohesion is greater than that
of the wood-sand case, which characterizes the shear strength of root-soil interfaces out of
other cases.
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Figure 3.11: Relationship between normal stress and shear displacement modulus measured by
pull-out test of root of a barley plant and paddy soil.

3.4 Constitutive model of shear behavior

This section proposes a constitutive model for root-soil interfaces which reproduce the rela-
tionship between shear displacement and shear stress. CCM is one of the most widely-used
approaches to model the relationship between shear displacement and shear stress (Wrig-
gers, 2006). Simple and typical modeling of the interfacial constitutive model is analogous
to the elasto-plasticity theory(Wriggers, 2006). When the shear displacement is small, the
shear stress is proportional to the shear displacement, and after the shear stress reaches
the shear strength, the shear stress keeps the same value as the shear strength even if the
shear displacement is increased. Further, if the shear displacement is decreased, the shear
stress proportionally decreases, and the shear stress increases when the shear displacement
is increased again. The stress-displacement relationship is analogous to the stress-strain
relationship of elastoplastic constitutive relationship; hence, the mathematical expression is
also similar to the elastoplastic constitutive models (Wriggers, 2006). The elastic part of
the interfaces are called stick, and the plastic part is called slip. the displacement with the
stick is called elastic displacement ue, and the displacement with the slip is called plastic
displacement up. Further, the yield function of interfaces is called slip criterion, which gov-
erns the shear strength of interfaces. The above-mentioned relationships are mathematically
expressed as below. The total displacement of interfaces are decomposed as (3.8).
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Figure 3.12: Relationship between normal stress and shear stress measured by pull-out test of root
of a barley plant and paddy soil.

ui = uei + upi (3.8)

where upi is the total relative displacement, uei is the plastic part of the displacement, and upi
is the plastic part. The elastic and the plastic part is governed by following rules seen in the
following subsections.

3.4.1 Constitutive model of elastic stick

The shear stress and the shear displacement of an interface are represented by vectors as
Eq. (3.9)

τi =

τ1
τ2

 , ui =

u1
u2

 . (3.9)

The shear stress is proportional to the shear displacement in case of stick phase. The rela-
tionship is generally written as Eq. (3.10)

τi = Ciju
e
j (3.10)
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where Cij is a elastic modulus tensor. Here, it is reasonable to assume isotropy of the shear
behavior, hence, the Eq. (3.10) is rewritten by using shear displacement modulus Es as Eq.
(3.10)

τi = Esδiju
e
i , (3.11)

where δij is unit tensor. The results of pull-out tests of root-soil case indicates that the shear
displacement modulus Es is proportional to the stress σ, which is expressed by Eq. (3.12)

Es = ασ + β (3.12)

where α and β are model parameters. On the other hand, slip criterion is expressed based
on Mohr-Coulomb model

fs = ∥τ∥ − c− σ tanϕ = 0 (3.13)

where c and ϕ are cohesion and frictional angle, respectively. In case of fs < 0, the state is
in stick, and slip occurs when fs = 0; the process is visualized by using a space of σ, τ1 and
τ2 in Fig. 3.14. If the stress-state is in the cone, the state is stick; if the stress-state is on the
cone, the state is slip.

3.4.2 Constitutive model of plastic slip

From Eqs. (3.8), (3.10) and (3.13), constitutive model of the root-soil interface is expressed
as Eq. (3.14)

τi = Esu̇
e
i (3.14)

substituting Eq. (3.8) into Eq. (3.14),

τ̇i = Es

(
u̇i − u̇pi

)
(3.15)

is given. Now, assuming the associated flow rule, the plastic velocity is given as Eq. (3.16),

u̇pi = γ

(
∂fs
∂τi

)T

= γ
1

√
τkτk

τi (3.16)

where γ is slip multiplier which indicate the degree of plastic velocity. It is worth noting
that the Eq. (3.16) says that the direction of the shear stress is consistent with the direction
of slip, which is natural assumption. By taking total derivative of the Eq. (3.13),

dfs =
∂fs
∂τi

τ̇i +
∂fs
∂σ

σ̇ = 0 (3.17)

the multiplier γ is determined below.
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γ =
Es

∂fs
∂τi
u̇i +

∂fs
∂σ σ̇

∂fs
∂τk

∂fs
∂τk

T
(3.18)

Here, σ̇ is time derivative of normal stress. The constitutive relationship is obtained by
substituting Eqs. (3.16) and (3.18) into Eq. (3.15).

τ̇i = Es

(
δij −

1
√
τkτk

τiτj

)
u̇j −

σ̇tanϕ
√
τkτk

τi (γ ≥ 0) (3.19)

τ̇i = Esτi (γ ≥ 0) . (3.20)

Fig. 3.15 displays an example of computation of strain for a slip case. The momentum
balance is achieved in τi and the shear stress increases τ̇i and trial stress state is shifted to
A’. In this case, the stress state remains on the slip criterion as A, and slip is increased, the
amount of which is computed by the Eq. (3.20).
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Figure 3.15: Schematic view of loading-unloading process modeled by the Computational Contact
Mechanics.
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3.4.3 Parameter fitting and validation

The results of parameter fitting are shown in Figs. 3.16, 3.17 and 3.18. The presented model
is similar to the experiment from the stick state to the slip state. The presented model and
the experiment are almost identical when the shear stress is smaller than the slip criterion,
which indicates that the elasticity model of the present model is capable of reproducing stick
behavior. For each case, the estimated shear strength of interfaces is also consistent with
the experiment. Therefore, it is indicated that the Mohr-Coulomb model is applicable to
contact problems. Although the shear stress of the model is not identical to the experiment
as the displacement is increased, the softening can be expressed by using the more complex
models in future studies.
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Figure 3.16: Relationship between shear stress and displacement and results of fitting based on the
present model in case of steel-sand tests.
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3.5 Summary

According to the results of pull-out tests, the proposed apparatus and method can mea-
sure the relationship between displacement and shear stress of the root-soil interface. For
all cases, shear stress is proportional to the shear displacement when the displacement is
relatively small and becomes constant after the peak shear stress. The peak shear stress
can be used as the shear strength of root-soil interfaces, and the shear strength is clearly
proportional to the normal stress for all cases. The Mohr-Coulomb model can model the
critical state line, and the cohesion and the frictional coefficient is precisely measured. The
cohesions are greater in the following order: root-soil case > wood-sand case > steel-sand
case. The frictional coefficient is larger in the following order: wood-sand case > root-soil
case > steel-sand case. It is also suggested that the relationship between shear displacement
and shear displacement coefficient is proportional. These properties are modeled based on
CCM, which is analogous to the elasto-plasticity theory of soils. The result of parameter
fitting shows that the current model can reproduce the profile of shear stress of the experi-
ments. Although the current model cannot express the softening of the root-soil interface,
this point will be overcome by introducing more flexible and modern models in future stud-
ies. The future study also targets the application of the current model with a numerical
method such as the FEM to simulate more realistic problems for root lodging of cereals and
slope stability problems of vegetated slopes.
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Chapter 4

Experiments and FE-Analysis of 2-D
Root-Soil Contact Problems Based on
Node-To-Segment Approach

4.1 Introduction

The roots of plants play an essential role in the mechanical stability of both slopes and
plants. It has been reported that through the reinforcement of soil masses, roots reduce the
risk of disasters such as landslides and surface erosions (Abe and Ziemer, 1991; Freer, 1991;
Dupuy et al., 2007; Bischetti et al., 2010; Mickovski et al., 2011). Field investigations have
revealed that the failure and erosion of soils are often induced by the loss of shear strength in
the shallow parts of slopes, where roots can reinforce their strength (Perry, 1989; Mickovski
et al., 2010). The mechanism of root reinforcement is of interest in terms of developing low-
cost techniques for slope stabilization using vegetation (Schwarz et al., 2011; Hejazi et al.,
2012). Further, it has been confirmed that roots also contribute to sustaining the productivity
of agriculture and forestry because roots resist the lodging of trees and crops (Shimada et
al., 2002; Wu and Ma, 2016). Severe lodging is frequently caused by the failure of root
zones under heavy rains and/or strong winds. It damages the yield of cereals and impedes
the growth of trees (Berry et al., 2004; Mickovski et al., 2011). To mitigate the risks of
lodging, the mechanical response of root zones is of increasing significance.

Historically, the mechanical response of rooted soils has been investigated while con-
sidering the root-soil system to be a homogeneous system (Endo, 1980; Abe and Ziemer,
1991; Schwarz et al., 2011; Muir Wood et al., 2016). In these studies, the Mohr-Coulomb
model was used to model the inelastic deformation of rooted soils, and the effects of root
reinforcement were modeled by increasing the apparent cohesion term. In this context, Abe
and Ziemer (1991) and Freer (1991) proposed some empirical models to explain the amount
of the apparent cohesion. Such empirical approach shows that the apparent cohesion can be
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roughly explained by such quantities as the root content per unit soil volume, the diameter
of the roots, and the material properties of the roots and the soils. The main challenge faced
by researchers is the trade-off between accuracy and the cost of the experiments. This is
due to the fact that, in the homogeneous approach, the apparent cohesion of rooted soils
is measured by direct shear tests. Hence, in order to conduct accurate simulations, it is
desirable that a unique and a consistent value of cohesion is given for each material by the
direct shear test. However, the specimens do not deform uniformly during the material tests
and the results are disturbed by the existence of plant segments since rooted soils often
contain large segments of plant roots and trunks. This inevitably necessitates the use of
a large number of large-size undisturbed samples to obtain reliable results. The trade-off
between the accuracy of such experiments and the cost of performing them to obtain the
model parameters limits the applicability of the model.

Recently, novel numerical approaches have been proposed to investigate the detailed
mechanism of root-soil contact interaction. Dupuy et al. (2007) and Mickovski et al.
(2011) applied the Finite Element Method (FEM) with contact elements developed in com-
putational contact mechanics to the deformation analysis of rooted soils. These studies are
innovative for two points: First, the deformation of rooted soils is seen as a contact prob-
lem between roots and soils, and it visualizes the stress fields and deformation of root-soil
systems. It has also been difficult to observe the slip and separation in the root-soil inter-
faces. These visualizations help us to understand the deformation behavior of rooted soils
and improve homogeneous models. Second, High-resolution morphological data, such as
scanning data or X-ray CT data, are directly available in the simulation. Since the mor-
phology of roots characterizes the mobility of rooted soils (Hudek et al., 2017), this kind
of recent approaches are useful to obtain precise and repeatable predictions of deforma-
tion of rooted soils. Previous studies have roughly modeled the constitutive relationship of
the root-soil interfaces. Initially, the Node-To-Node (NTN) approach was used to express
the root-soil interaction (Dupuy et al., 2007), where slip and separation were not allowed.
Mickovski et al. (2011) overcame this limitation by using three-node Line Elements (LE)
that can express the friction, and the friction was modeled using the Mohr-Coulomb model
which has been validated through experimental studies (Schwarz et al., 2011; Tomobe et
al., 2016; Ji et al., 2018). However, NTN approach is available only when the slip and the
separation in the root-soil interfaces are not significantly large or can be ignored. Further,
since LE approach approximates roots by fibers, it is difficult to directly input the root mor-
phology and it limits the accuracy. To provide more accurate predictions, it is necessary
that both problem is avoided to the model of the root-soil interfaces. The objective of this
chapter is to apply the Node-To-Segment (NTS) approach (Zavarise et al., 2009) within
the framework of the FEM to precisely simulate the contact phenomena of roots and soils
with high-resolution morphological data of rhizosphere. In recent decades, this scheme has
been the most widely used technique for various contact problems since it is simple and
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can be adapted to geometrically nonlinear problems (Wriggers, 2006). Furthermore, the
technique is capable of expressing complex and realistic geometries: it is flexible enough
that high-resolution morphological data of roots which are scanned by cameras or X-ray
CT technology (Hudek et al., 2017) can be input directly into the analysis. Although the
NTS can overcome the problems mentioned above of NTN and LE methods, the robust-
ness of it is lower than them, and it prevents researches from using it for root-soil contact
problems (Dupuy et al., 2007), hence the current chapter challenges this point. One of the
reason is the non-uniqueness of solutions. It appears especially when the method is used for
geometrically complex problems like the root-soil system. Thereby, this chapter proposes
a simple algorithm to avoid the non-uniqueness problem of the solutions with the NTS
approach. This chapter is also focusing on measuring and using reliable material parame-
ters and high-resolution geometrical data for roots, soils and root-soil interfaces to perform
accurate simulations. Material properties of soils are measured mainly based on the labora-
tory testing standards of Japanese Geotechnical Society, the root parameters are measured
by using bending tests, and the parameters of root-soil interfaces are measured by using
pull-out tests (Tomobe et al., 2016). The morphological data is taken by digital camera and
converted into a mesh data by using Python Imaging Library (PIL) and Gmsh (Geuzaine et
al., 2009) that is an open-source pre-processing software to obtain a fine mesh. This chap-
ter is organized as follows: The derivations of the governing equation, the discretization,
and the solution algorithm are summarized in Sections 2 and 3. In Sections 2 and 3, a novel
pairing algorithm is implemented in the NTS approach to solve the non-uniqueness problem
of NTS pairing due to the geometrical nonlinearity of root-soil interfaces. The simulation
code is firstly validated under geometrically linear condition by re-analyzing pullout tests
in Section 4. Section 5 provides an experiment and a simulation of a lodging test, which
is a horizontal loading test for a root planted in a soil-box to measure the bearing capacity
of the rhizosphere. Lodging is a falling down of the plant bodies on grounds and it dam-
ages productivity and the quality of cereal crops such as rice, wheat, maize and soybean
(Berry et al, 2003). The accurate prediction of the lodging has been required to find best
agricultural practice and select the lodging-resistant varieties for decades. It also includes
a novel technique for mesh-generation of roots and soils from a scanned image of the root
architecture. Section 6 concludes all sections and future works.

4.2 Implementation of NTS approach

4.2.1 Implementation of NTS approach in root-soil contact problems

This section briefly discuss the implementation of contact/separation and stick/slip in root-
soil interfaces based on the Node-To-Segment (NTS) approach, which allows contact and
separation between two finite elements and also stick and slip is consistently expressed.
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NTS approach utilizes Node-To-Segment elements, which are consists of a finite element
node on one body and a surface element on the other domain. This section focuses on two
points; (1) judgment and computation of the contact/separation, and (2) the constitutive law
and its implementation which governs stick/slip.

Fig. 4.1 describes schematics of how to judge and compute the contact/separation in
NTS elements. The gap is computed in the current configuration by the dot product between
the outer normal vector of the segment and the position vector from the virtual contact point
on the segment to the node. In case that the gap is positive, the NTS element is ignored since
the node and the segment is separated; in case that the gap is negative, the NTS element is
activated contact force is given as, by using penalty method, it is given by;

tN = ϵgN (4.1)

where tN is contact force in normal direction and ϵ is a penalty parameter which takes
large value so that the overlaps between meshes are minimized. If the contact element is
activated, it starts to update shear stress on the interface, as seen in Fig. 4.1. Here the
penalty parameter is also employed to compute the shear stress as,

tT = ϵgstickT = ϵ
(
gT − gslipT

)
(4.2)

where tT is tangential stress and gstickT is an elastic tangential gap from a virtual contact
point, which is like an anchor and the shear stress is computed by multiplication of the
penalty parameter and the gap vector from the anchor point.

Once the shear stress violates a friction law, the virtual contact point shifts according
to the slip rule, which is analogous to flow rule in terms of elasto-plasticity theory. This
paper utilizes Mohr-Coulombs criterion since previous studies present that the criterion is
applicable to the slip criterion for root-soil interfaces (Mickovski et al., 2011; Schwarz et
al., 2011; Tomobe et al., 2016; Ji et al., 2018). The model can be expressed as an inequality
constraint within the framework of the penalty method.

f = ||tT || − µ · ϵ ||gN || − c < 0, (4.3)

where f is the yield function, µ is the frictional coefficient, ϵ is the penalty parameter, and
c is the cohesion. To update the frictional stress (Fig. 4.2), the return-mapping algorithm
is applied. The algorithm was initially proposed by Simo and Taylor (1986) for updati ng
stress. in the theory of elastoplasticity. The idea has been extended to computational contact
mechanics as an algorithm for updating the frictional stress (Wriggers et al., 1990; Peric
and Owen, 1992). Although the scheme is generally solved by iterative methods, it can be
directly solved in the case of the Mohr-Coulomb model. The shear stress and the slip is
explicitly updated by following equations.

ttrTn+1 = ϵ
(
gTn+1 − gslipTn

)
(f < 0) (4.4)
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towards normal direction, and (c) Schematics of stick/slip based on penalty method.
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ttrTn+1 = (µ · ||tTn+1||+ c)
ttrTn+1∣∣ttrTn+1

∣∣ (f > 0) (4.5)

gslipTn+1 = gTn (f < 0) (4.6)

gslipTn+1 = gTn + (||tTn+1|| − µ · ||tNn+1|| − c) · tTn+1

ϵ ||tTn+1||
(f > 0) (4.7)

Here, tTn+1 and tNn+1 are the shear/normal stress at the time-step n + 1, gslipTn and gslipTn+1

are slips at time-step n and n+ 1, respectively; these equations are used in the flow chart in
Fig. 4.2. The linearized equations are derived from momentum balance of the multi-body
system, which is briefly reviewed in Wriggers (2006). The real problems are to mostly
be modeled and simulated as a purely 3-D problem. The NTS formulation can also be
applicable to the 3-D by pairing a node on one surface with a surface element on the other
surface. The only difference is that the dimension of the surface is changed from 1 (line
element) to the 2 (surface element). The basic formulations of the 3-D NTS formulation is
also similar to the current formulation and visible in Wriggers (2006)

4.2.2 Avoidance of non-uniqueness problem for the NTS pairing in root-soil
contact problems

Non-uniqueness problem of the pairing between a node and a segment is a critical problem
for applying NTS approach to root-soil contact problems. It has been mentioned that a
NTS element is not uniquely determined under some special cases as seen in the Fig. (4.3)
(Wriggers, 2006; Zavarise and De Lorenzis, 2009): In this circumstance, there are two
possible pairing for a node. It results in non-uniqueness of the gap, the contact force and
shear stress, hence causes non-uniqueness of the solution for one simulation. This problem
disturbs the solution especially in root-soil contact problems since root-soil interfaces are
geometrically complex and, therefore, this circumstance is frequently appears. Further,
there are a huge number of contact elements utilized in single problem, it means the number
of possible solutions also diverges.

A simple and novel algorithm is introduced to guarantee the uniqueness of the NTS
pairing as illustrated in Fig. 4.3, which was inspired by the base-line concept of Lius
method(Liu et al., 2003). As the first step, for each slave node, the closest master node
is detected. Then, the base-line is drawn between the neighboring nodes, as depicted in the
figure. In Lius method, the base-line is utilized to compute the smooth virtual surface. In
contrast, the current approach uses the base-line to draw another line that is perpendicular
to the base-line and lies on the master node. This new line is denoted as a border-line which
divides the master surface into two sides. Thus, a master segment on the same partition is
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Figure 4.2: Algorithm of contact analysis: First Newton’s method solves momentum balance by
assuming that all interfaces are stick and no slips happen and second Newton’s method updates the
shear stress by using flow rules.
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adopted as the master segment, as depicted. This process is numerically given by employing
the following judgement function:

α = b×
(
xs − xm1

)
||xs − xm1||

(4.8)

where b is defined as a unit vector which is perpendicular to the base-line, × means the
cross product operator, xm1 and xs are a master and a slave node, respectively, and α is the
judgement function. If α is zero or positive, the master segment on the right side is adopted;
otherwise, the one on the left side is adopted. This algorithm increases the robustness in
some cases, as will be demonstrated in the next subsection.
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Figure 4.3: Schematic of proposed method to determine unique pairing: (a) Typical non-uniqueness
problem of NTS elements and (b) Proposed method to avoid non-uniqueness of pairing, where
master segment is determined for every slave node using base-line.
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4.2.3 Validation of simulation code by press-fit problem

The stabilization algorithm presented in the previous subsection is compared with the orig-
inal NTS algorithms to evaluate the effect of the stabilization scheme. The stabilization
scheme in the last subsection is examined through the press-fit problem which is a widely-
known benchmark of its kind. The problem simulates the extrusion process of an elastic
block as shown in Fig. 4.4. The solution oscillates or diverges during the elastic body pass
through an extraction die (Fig. 4.4). Wriggers et al. (2001) present that the problem can
be robustly solved by using the C1-interpolation scheme which introduces smooth virtual
surfaces in the master body, and Liu et al. (2003) utilized the problem to demonstrate the
effect of the algorithmic stabilization. This subsection evaluated the effect of the current
modification through the comparison with these studies. In the press-fit problem, a rubber
plug is pushed into a steel channel as illustrated in Fig. 4.4. Due to symmetricly about
the vertical axis of both geometry and boundary conditions, this section utilizes the lower
half of the system. The mesh model and the boundary conditions are depicted in Fig. 4.5,
which is discretized by using four-node elements. The force-displacement relationship on
the left side of the rubber is plotted for the comparison among ones of the previous cases.
The constitutive model of the materials is supposed to be the modified neo-Hookean model
proposed by Vladimirov et al. (2008, 2010), which have been applied for rubbers and met-
als (Wriggers, 2006; Hashiguchi and Yamakawa, 2013). This constitutive model is almost
the same as the neo-Hookean model which is used in Wriggers et al. (2001) and the St.
Venant model in Liu et al. (2003). The material parameters are identical with these cases.

The deformed mesh is depicted in Fig. 4.6, which is consistent with the results of the
previous results. As can be seen in the interface of the rubber and the steel channel, the
overlap between those domains is successfully minimized. This result indicates that the
non-penetration condition between the two bodies is precisely implemented.

Fig. 4.7 shows the force-displacement relationships of the current and the previous
approaches, in which the rubber block contacts the edge of the steel channel during the
displacement is 30.0 mm to 90.0 mm. The oscillating behavior is appeared in the process,
which is induced by the non-smoothness of the NTS approach. The oscillation in the current
results are more moderate than one of the non-stabilized NTS approach of Liu et al. (2003),
and the profile is almost the same as one of Wriggers et al. (2001). Hence, it is indicated
that the non-uniqueness problem of the master-slave pairing can disturb the convergence of
the NTS approach and that the current method can improve the robustness by avoiding the
problem. However, the current approach is less smooth than other stabilizing approaches,
which confirms that the smooth interpolations are more powerful.
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Figure 4.4: Schematics of the press-fit problem (Wriggers, 2006) in which a rubber plug is passing
through a steel channel.
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Figure 4.5: Mesh and initial condition of the press-fit problem.
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(a)
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20.0 mm

Figure 4.6: Deformed mesh simulated by the modified NTS approach in which the total displace-
ment is (a) 0.0 mm, (b) 5.0 mm, and (c) 100.0 mm.
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Figure 4.7: Relationship between displacement and total reaction force on the left side of the rubber
plug in cases of Wriggers (2001), Liu et al. (2003), and the current result.
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4.3 Material model and mechanical tests for root, soil and in-
terface

4.3.1 Model and parameters of soil

The neo-Hookean hyperelastic model (Vladiminov, 2008, 2010) is utilized in terms of finite
strain theory, and material parameters of soils which are used in this simulation are mea-
sured based on the method of unconfined compression test of soils. The constitutive model
and the soil test are chosen for two reasons

• The soil is in low-confining pressure condition, and it is challenging to measure and
model rheological properties of soils under the conditions. Hence, this paper does not
focus on this point and employs the possible simplest constitutive model

• The neo-Hookean hyperelastic model only necessitates the measurement of two ma-
terial parameters, Youngs modulus, and Poissons rate. Youngs modulus under low-
confining pressure can well be measured by using the unconfined compression test of
soils.

On the other hand, Poissons rate is measured by using a compression test described be-
low. Preliminary, the Mohr Coulomb Drucker-Prugger (MC-DP) constitutive equation are
implemented within the framework of Finite Strain theory based on the multiplicative de-
composition of deformation gradient tensor (Hashiguch and Yamakawa, 2011). Although
the model can simulate the shear behavior of both roots and soils, it is difficult to get numeri-
cal solution when it is combined with Node-To-Segment Approach and applied for root-soil
contact problems presented in this paper. This ill-convergence problem in root-soil contact
problems is also reported by Dupuy et al. (2007) and in order to get convergence, they used
rigid root-soil interfaces. Since this paper focuses on providing accurate implementation of
root-soil interfaces, the application of the NTS scheme with the elasto-plasticity model for
root-soil contact problem is remained for future studies.

Prior to the mechanical tests, the soil is sampled from a paddy field located in Maibara
City, Shiga Prefecture, JAPAN in 2018, and the natural density and the water content of the
soil are measured. The sampling is conducted for the top soil layer (0 to 30.0 cm depth) and
put through a 2.0 mm sieve. By using the soil, the natural density, the water content, soil
particle density, sand fraction content and fine fraction content are measured. The properties
of the soil is visible in Table 4.1 and the soil is classified as FS (JGS-0051-2009).

The material parameters, Youngs modulus and Poissons ratio are measured by uncon-
fined compression tests (JGS-0511-2009) and consolidation tests. The specimen for the
unconfined compression test is made by following procedure. First, the disturbed soil is
hydrated so that the water content of the soil specimen is 29.99 % which is same as one

65



Table 4.1: Properties of soil.

Protocol Value
Soil particle density (g/cm3) JGS 0111-2009 2.79
Bulk density (g/cm3) JGS 0191-2009 1.73
Water content (%) JGS 0121-2009 29.99
Sand fraction content (%) JGS 0135-2009 24.37
Fine fraction content(%) JGS 0135-2009 75.63
Classification JGS 0051-2009 FS
E50 (kPa) JGS 0511-2009 1618.8
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Figure 4.8: Results of the unconfined compression test.
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measured by the sampling. Then the soil is put into a mold and compressed so that the
water content and the natural density of the specimen is same as ones of the field condition.
The stress-strain relationship of the unconfined compression test of soils are shown in Fig
4.8. Conforming to the standard, the value (1,618.8 kPa) is obtained by the relationship.
This section utilize the value as a Youngs modulus of the soil since the value can be seen as
Youngs modulus during the axial strain is small (less than 1.0 %). Utilizing the same soil,
the Poissons ratio of the soil are measured by using equipment described as Fig. 4.9. The
equipment loads stress on the axial direction and measures horizontal pressure by using a
soil pressure gauge, and the Poissons rate is estimated by the relationship,

σh
σv

=
ν

1− ν
(4.9)

where ν is the Poissons rate, σv and σh are vertical/horizontal stresses, respectively. The
relationship between vertical/horizontal stresses of which is presented in Fig 4.9. The result
shows that the Poissons rate is estimated as 0.28.

4.3.2 Model and parameters of root

The Neo-Hookean model is also used for the root domain, and bending tests measure
Young’s modulus of the root. The root is sampled from a soybean plant grown under an
artificial environment, the variety of which is UA4805. The soybean is firstly germinated
on a wet tissue under 25 degrees, and planted onto a soil-box and grown under LED lights
for 96 hours. The root of the soybean plant is shown in Fig. 4.10. The primary root sur-
rounded by a rectangular is cut off, and a segment of a root is obtained with no branches
and the diameter of which is the almost constant. The schematics of the bending tests
are visible in Fig. 4.10, where the left side of the root segment is fixed, and weights are
loaded at the right side. The tests were repeated under four different weight and, from the
displacement-force relationship, Youngs modulus is given by the following equation.

E =
PL3

3uI
(4.10)

where, E is Youngs modulus, u and P are the displacement and the force loaded on the
right end, I is the second moment of area, L is the length of the root segment. As a result,
Youngs modulus is 34,920 kPa. As for the Poissons ratio of the root, few references are
available and it is difficult to measure, hence the Poissons ratio of the fresh tissue of apples
measured by Kim et al., (2008) is referred. They presented that the Poissons ratio of it is
0.23 to 0.28, then, for simplicity, the 0.28 is chosen. It is worth noting that few change is
observed in following results due to the choice of the Poissons ratio of roots in the range of
0.23 to 0.28.
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Length : 20.0 mm

Diameter : 0.85 mm

Figure 4.10: Schematics of bending test to measure Young’s modulus of a root: (a) Image of soil-
box and root used in bending test and (b) Schematic of bending test and properties of root segment.

Table 4.2: Material parameters of roots, soils and root-soil interfaces utilized in simulation.

Young’s
modulus
(kPa)

Poisson’s ratio
Penalty
parameter
(kPa/m)

Frictional
coefficient

Cohesion
(kPa)

Root 34920.0 0.28 - - -
Soil 1618.0 0.28 - - -
Root-soil
interface

- - 300000.0 0.4716 0.767

4.3.3 Cohesion and frictional angle of root-soil interface

The interfacial parameter, cohesion and frictional angle, are determined according to To-
mobes pull-out tests (2016). The method is chosen since it can measure the friction coeffi-
cient and cohesion of root-soil interfaces under unconfined condition. The detail of methods
and results of the test is described with its numerical simulation in the next section and the
friction coefficient and cohesion are shown in Table 4.2.
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4.4 Experiment and simulation of pullout test

Prior to simulate the real-scale problem, the current approach is validated under simple geo-
metrical condition by simulating pullout tests of root from soil. The simulation is compared
with the experiment of Tomobe et al. (2016) since the current approach can measure the
exact friction coefficient and cohesion by using the pullout tests.

(a)

Soil Root

Soil Root

20.0

20.0

4.0

60.0

20.0

20.0

4.0

60.0
(Metric : mm)

(b)

Figure 4.11: Plan view of pull-out tests: (a) soil is vertically compressed prior to the simulation,
and (b) root is pulled out towards left side, and during pull-out process, top and bottom surfaces are
fixed.

The pullout problem measures the shear strength of the root-soil interfaces by pulling
out a root segment from a soil specimen under constant normal pressure, a brief description
of which is given in Fig. 4.11. At the beginning of the experiment, a soil specimen is
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set in a steel column, and the root is horizontally penetrated through the soil. Then, a
prescribed pressure is loaded by pushing down on the upper wall and the root is statically
pulled out from the specimen until the displacement reaches more than 10 % of the width
of the specimen. During the pullout stage, the displacement (mm), the horizontal reaction
force (N), and the horizontal soil pressure (kPa) are recorded, and the normal and frictional
stresses on the root-soil interfaces (kPa) are estimated from these data using the equation
of Tomobe et al. (2016). The tests are repeated under four different vertical pressures; for
four cases, the vertical pressures are 0.5 kPa, 1.0 kPa, 1.4 kPa, and 2.3 kPa.
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4.4.1 Material and method of pullout test

Fig. 4.12 illustrates the mesh and the boundary conditions of the numerical simulation. The
experiment is actually carried out under contact boundary condition, which indicates that
a rigid wall is pressed by constant stress. In order to realize the condition in the numeri-
cal simulation, the boundary condition is given as displacement boundary condition where
equivalent horizontal displacement is loaded. As can be seen, four-node elements discretize
the model and only a half system is modeled, as depicted, due to the symmetry about the
horizontal line. The root segment has approximately the same length (80.0 mm) and radius
(2.0 mm) as the tests. The left side of the root is displaced until the displacement is more
than 10 % of the width of the specimen (Fig. 4.12). The pullout process is divided into
200 time steps and is supposed to be in the pseudo-static condition. In each time step, the
displacement and the total reaction forces on the left side of the root and the top of the soil
are recorded, and the average of the stresses is computed by dividing the total forces by the
contact area.

In order to verify the frictional behavior of the numerical simulation, the constitutive
models and the material parameters for the interfaces and the bodies are selected in the fol-
lowing way. The Mohr-Coulomb model is employed for implementing the friction and the
cohesion at the interfaces, and the material parameters are installed from the experimental
results seen in Table 4.2. Therefore, it is expected that the root-soil interfaces slip when
the shear stress exceeds the criterion of the Mohr-Coulomb model. Through the numerical
simulation, the overlapping of the root and the soil is minimized, as presented in Fig. 4.13.
Here, deviatoric stress q is computed for each Gaussian point using Eq. (4.11).

q =

√
3

2
(σij − pδij) (σij − pδij) (4.11)

In the equation, σij is the Cauchy stress tensor and δij is the unit tensor. The contour plot
of the distribution of deviatoric stresses is mostly static during the test, which is consistent
with the friction law. Fig. 4.13 shows the distribution of deviatoric stresses; the values on
and around the root-soil interfaces are relatively large compared with the other parts, which
qualitatively suggests that both friction and cohesion resist the pullout force.

4.4.2 Comparison between experiment and simulation

The relationship between displacements and frictional stress during the pullout process is
illustrated in Fig. 4.14, which shows that the simulations are similar to the experimental
results. At the start, the frictional stress increases along with the increase in displacement at
an almost constant rate. After the frictional stress reaches the frictional strength, the global
slip starts and the frictional stress maintains an almost constant value for each case. The
result also shows that the shear stress during the slip phase are similar to the experimental
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(b)

(a)

10.0 mm

Figure 4.12: Mesh and boundary conditions of pullout tests: (a) prior to simulation, initial stress is
loaded to reproduce experimental conditions. (b) The topsoil is vertically fixed during the pullout
simulation.
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(a)

(b)

(c)

Figure 4.13: Contour plots of deviatoric stress when horizontal displacement is (a) 0.1 mm, (b) 5.0
mm, and (c) 10.00 mm.
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data. Although the angle of the initial curve is different, the difference is un-controllable
since it is governed by the penalty parameter which is not material parameters. On the other
hand, the simulated behavior is too stiff compared with the experimental results when the
displacement is small (stick), which cannot be controlled as material parameter since the
value should be enough large: The limitation is determined by the penalty formulation. In
addition, since the Mohr-Coulomb model cannot model softening, the simulation is stiffer
than the experiment at the post-slip part.
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Figure 4.14: Relationship between horizontal displacement of root and interfacial shear stress for
each stress condition.

The Mohr-Coulomb model is precisely satisfied as illustrated in the relationship between
the normal and the frictional stresses in Fig. 4.15, since the stress point lies on the criterion
while the root slips. Furthermore, the maximum frictional stresses are also identical to those
of the experiments. Hence, it is indicated that the friction and the cohesion of root-soil
interfaces can be consistently expressed through the use of the NTS approach. Overall, the
above results indicate that the numerical method can accurately predict the cohesion and the
friction of root-soil interfaces and that the predicted stress-displacement curves are similar
to the experimental results. Therefore, the current approach is capable of estimating the
mechanical behavior and the shear strength of root-soil interfaces in, at least, geometrically
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simple cases.
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Figure 4.15: Relationship between normal stresses on root-soil interfaces and interfacial shear
stress of experiment and current simulation.

4.5 Experiment and simulation of 2-D lodging problem

4.5.1 Motivation and background

This section simulates the 2-D lodging problem, which is a pile-loading tests for roots under
2-D condition. The lodging tests are usually conducted under 3-D condition as presented
by Berry et al. (2003) and utilized for many cases (Berry et al., 2004; Baker et al., 2014),
however, for simplicitys sake, this section conducts similar tests under a 2-D condition by
using a thin soil box.
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4.5.2 In-situ lodging experiment

There are two reasons to use the 2-D approximation in the present section. It is worth not-
ing that the current experiment is not perfectly 2-D condition since the shape of roots is
not rectangular but a round shape. Although the 2-D simulation is approximation of 3-D
simulations it has some important benefits. The primary benefit is that the computational
and experimental cost is far littler than 3-D simulations, thereby, more investigations can
be done. Such the results of 2-D simulation will also contribute to understand root-soil me-
chanical interactions. Another reason of using 2-D simulation is that it is conventional that
the 2-D simulation is used for validating the fundamental behavior of numerical simulation
when the simulation is applied for unconventional use. For instance, numerous numerical
simulation of root-soil interaction are modeled in terms of 2-D (Baker et al., 2014). Since
the present thesis focuses on the applicability of the NTS scheme for root-soil interactions,
the 3-D investigation is remained for future studies.

The soil is filled into the thin soil box as shown in Fig. 4.16. The soil box is consists of
front/back acrylic panels and wood spacers. The width of the gap between the two panels
is 1.0 mm, which is almost the same as the diameter of the primary roots of soybean as
mentioned below. Therefore, the growth of the roots can be observed without disturbing
soils. The soil is filled as following procedure: Before putting the soil into the soil box, the
box is laid down, and the front panel is detached. Then, the soil is uniformly pasted on the
back panel, the thickness of which is also 1.0 mm. It is worth noting that the acrylic panels
are so smooth that the soil can easily slips on them and the friction between the soil and
the panel is very small. After that, the front panel is attached, and the soil box is erected.
A Germplasm of soybean is planted on the soil box and is grown for 96 hours under 25
Celsius degrees as seen in Fig. 4.16. A variety of the soybean used in the test, UA4805, is
the same variety as the previous experiments and the diameter of the primary root of that
variety is about 1.0 mm, which is almost the same as the gap of the soil box. The seed is
germinated on a wet tissue for 48 hours under 25 Celsius degrees until the length of the
primary root reaches 5.0 mm. After the germination, the soybean is planted on the upper
and middle side of the soil box. The soybean is grown for 96 hours until the primary leaf
expands and, during that, the wood spacer is kept wet to prevent drying of the soil.

Description of setup of presented 2-D lodging experiment: (a) Soybean plant is grown
under artificial condition for 96 h and (b) Root is pulled from left side and reaction force is
recorded by load-cell.

The soybean root is pulled to the left side of Fig. 4.16 and both displacement (mm)
and reaction force (N) is recorded during the test. Prior to the test, the shoot of the soybean
plant is cut off before the loading test to measure the pure reaction force of root. The loading
speed is 0.1 mm/min and the total displacement is 2.0 mm, at which slip and separation in
the root-soil interfaces are appeared and the rhizosphere is globally deformed. In order to
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Day 1 Day 2 Day 3 Day 4

(a)

(b)

To loadcell 1.0 cm

Figure 4.16: Description of setup of presented 2-D lodging experiment: (a) Soybean plant is grown
under artificial condition for 96 h and (b) Root is pulled from left side and reaction force is recorded
by load-cell.
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measure the reaction force, an extremely sensitive force gauge (LUX-B-50N-ID, KYOWA)
is adopted since the reaction force are supposed to be very small, less than 50.0 N.

After the test, the root is carefully put back to its initial position and softly washed out
by using a spray and the root morphology is scanned by using a digital camera (Fig. 4.17).
It is difficult to accurately scan the root morphology before the experiment since fine soil
particles covers considerable part of the root. Thereby, the root morphology is scanned
after the loading process as following: First, the soil box is raid and front panel is detached.
Second, the impression of the root on the soil is traced to figure out the initial position.
Third, the root is softly and slowly put back to its initial position, sprayed to wash out the
soil particles and scanned by using a camera.

4.5.3 Mesh generation and boundary conditions for simulation

The mesh for the FE analysis is generated by using Python Imaging Library (PIL) and
Gmsh as following way. First, the scanned data (Fig. 4.17) is painted in different color
for the root and the soil as shown in Fig. 4.17. Then the posterized image is filtered by
using a Laplacian filter implemented by PIL to get pixels on the outlines of both the root
and the soil. The outline of the root and the soil is traced by connecting these pixels and
unnecessary pixels are cut out to reduce the data-size. This outline is exported as .geo
format of Gmsh that is an open-source software for pre-post-processing for FEM analysis.
Gmesh generates mesh for FEM analysis from .geo format as can be seen in Fig. 4.17,
where the Delauney triangulation algorithm is utilized in this case. The mesh of the root
and the soil are generated separately as this figure, and put into same field as shown in
Fig. 4.17. As can be seen in Fig. 4.17, the root architecture is precisely reconstructed
into a 2-D root model for the simulation: The number of nodes are 10,348, the number
of elements are 10,000 and the number of NTS elements are about 500. Compared to the
LE approach, the current approach is more accurately expressing the root morphology by
using such the high-resolution mesh. Furthermore, the separation and slip are evaluated in
500 locations, which cannot be performed by using NTN approach. Boundary conditions
are seen in Fig. 4.17. The left and right sides of the soil domain is fixed for the horizontal
direction and the bottom of the soil domain is fixed for the vertical direction to realize the
similar conditions as experiment. On the root domain, a horizontal displacement is loaded
towards left sides over 2.0 mm, which is the same condition as the experiment. The total
displacement is loaded over 50 time-steps to get accurate solutions. For both of the root and
the soil domain, the material parameters are given as mentioned in the previous section.

79



(a) (b)

(c)

(d)

Figure 4.17: Proposed technique to generate high-quality mesh from image data using Python
Imaging Library (PIL) and Gmsh: (a) Scanned image of root system, (b) Postarized image of (a),
(c) Mesh obtained using PIL and Gmsh, and (d) Mesh of root-soil system where root/soil meshes
are merged into a field.
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4.5.4 Results of 2-D lodging simulation

The relationship between displacement and reaction force is plotted in Fig. 4.18, where the
simulation is quantitatively similar to the experiment. The horizontal axis is the horizontal
displacement of the root and the vertical axis is the reaction force at each time. The profiles
of simulation is the almost same as the experimental one when the displacement is less than
1.3 mm. The gap between the simulation and the experiment opens at the displacement
is 1.0 mm, however, the difference is still no more than 15 %. This results suggests that
the NTS approach can simulate 2-D root-soil contact problem with high accuracy. Fig.
4.19 and Fig. 4.20 show contour plots of deviatoric stress and deformation, respectively,
during the analysis. It visualizes that the propagation of deviatoric stress from the root to
the soil and shows that the deviatoric stress firstly propagates to top-left of the soil and
secondary goes to the bottom sides along the primary and the secondary root. It indicates
that the morphology of the root, in this case, especially primary roots, affect the direction
and attitude of the propagation. Above all, the NTS approach with FEM is successfully
applied to simulate the 2-D lodging problem and visualize the stress field and deformation
of rooted soil.
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Figure 4.18: Comparison of experiment and simulation in relationship between horizontal displace-
ment and reaction force.
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Figure 4.19: Contour plot of deviatoric stress when displacement is (a) 0.04 mm, (b) 0.4 mm, (c)
0.8 mm, (d) 1.2 mm, (e) 1.6 mm, and (f) 2.0 mm
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(a) (b) (c)

Figure 4.20: Deformation when displacement is (a) 0.0 mm, (b) 1.0 mm, and (c) 2.0 mm.
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4.6 Summary

This chapter presents an implementation and applications of NTS approach to solve 2-
D deformation problem for root-soil systems. According to the results and discussions,
following conclusions have been drawn.

1. Contact/separation are implemented based on NTS approach and stick/slip are im-
plemented by carefully-chosen model for root-soil contact problems. As for the slip
criterion the Mohr-Coulomb model is adopted for slip criterion, which has been ex-
perimentally validated by current investigations (Tomobe et al., 2016, Ji et al., 2018).
The slip is integrated over time-steps and the backward Euler scheme is used, which
is analogous to the return-mapping algorithm of the plasticity theory.

2. A simple and novel pairing algorithm for NTS elements are presented to avoid the
non-uniqueness problem for NTS pairing, which is necessitated by the geometrical
non-linearity of the root-soil contact problems. The problem is a critical issue in the
root-soil contact problems since it often causes non-uniqueness of the solution for
geometrically complex contact problems.

3. The analysis of a pullout problem examined the applicability of the current approach
for practical problems on root-soil contacts. The simulation was compared with the
experiment of Tomobe et al. (2016) since the current approach utilized the Mohr-
Coulomb model to implement the friction and the cohesion and it is compatible with
their modeling. In particular, the following points were considered in this problem:
(1) the cohesion is taken into account, whereas it is ignored in the press-fit problem,
and (2) the root undergoes large sliding along the soil mass, and the stress profiles
are compared the experimental values. The results showed that the current method
can provide reasonable predictions for the profiles of the pullout response. Further-
more, the shear strength on the root-soil interfaces is precisely predicted, which indi-
cates that both the friction and the cohesion are appropriately calculated in the current
scheme.

4. A novel pre-processing technique for 2-D root-soil systems is also presented for gen-
erating high-quality mesh of roots and soils by using PIL and Gmsh. This technique
generates meshes from scanned data of roots and soils by using PIL, which is image-
processing library of python and Gmsh, which is an open-source software for model-
ing and meshing for FEM

5. A 2-D lodging problem is numerically simulated to demonstrate the application of
the current approach to lodging problems, which are examples of plant-scale prob-
lems. The results were compared with those measured by a lodging experiment. The
experiment was conducted using the protocol that was developed by Shimada et al.
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(2002) and Berry et al. (2003) and utilized for many cases (Berry et al., 2004; Berry
et al., 2014; Wu and Ma, 2016). The results indicate that the numerical method can
provide realistic and detailed stress mapping of lodging problems and that such in-
terfacial behavior as the separation, the contact, and the sliding are observed. This
information will aid in the understanding of the mechanical interaction between roots
and soils. As for the accuracy of the prediction, the numerical simulation is consistent
with the experiment, while the horizontal displacement is relatively small. Although
the prediction is not quantitatively identical to the experiment, in cases where the de-
formation is relatively large, it is suggested that the error can be reduced by utilizing
more detailed constitutive models or mesh models for soils and roots. Further studies
are to be performed to increase the accuracy in largely deformed cases and to apply
the current method to large-scale problems like landslides and surface erosions.
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Chapter 5

Constitutive Model for Shear Strength of
Root-Soil Interface Under Dynamic Suction
Condition

5.1 Introduction

The wet-dry conditions are the primary factor determining the shear strength of rooted
soils, therefore, the hydro-mechanical properties of rooted soils have been investigated for
decades. Earlier researches focus on the shear strength of rooted soils by using in-situ direct
shear tests (Endo, 1980; Abe and Ziemer, 1991) conducted in vegetated slopes. The results
suggest that the Mohr-Coulomb (MC) model can describe the shear strength of rooted soils
and the root reinforcement appears in the apparent cohesion. For instance, Fan et al. (2009)
and Ni et al. (2018) report that the increase of the suction can enhance the apparent cohesion
of rooted soils; they explain that the soil domains are divided and covered by root fibers
and the roots protect soil domains from water penetration. Although these experimental
observations provide some simple mechanical models of shear strength of rooted soils under
changing hydro-mechanical conditions, further investigations are to be conducted to provide
an accurate prediction of the shear strength of rooted soils, which can be used for design
and maintenance of vegetated slopes. (Giadrossich et al., 2017).

Previous investigations assume that the decline of shear strength of rooted soil due to
high water content is mainly caused by the loss of shear strength of soil domains, and not by
that of roots or root-soil interfaces (Ng et al., 2013; Song et al., 2017): Thereby, the effect of
wet-dry conditions for shear strength of root-soil interfaces are ignored. As presented by Ng
et al. (2013), the plant-induced suction caused by evapotranspiration and water-absorption
of plants is the primary cause of root reinforcement. Such the plant activities decrease the
water content of soils and hence increases the shear strength of soils. The other well-known
factor is that the root changes hydraulic conductivity of soils and it can keep water content
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of soils low; Song et al. (2017) present that this factor is also critical. Both discussions are
based on the hypothesis that the decline of shear strength of rooted soil due to high water
content is mainly caused by the loss of shear strength of soil domains in rooted soils. Here,
a question remains whether the effect of wet-dry conditions for shear strength of root-soil
interfaces can also be the critical factor or not; since roots have large interface areas between
soils.

Since rooted soils consist of roots and soils, the hydro-mechanical response of the root-
soil interfaces, especially the shear strength of root-soil interfaces and suction, can also
have a significant role for bulk shear strength of rooted soils under changing hydraulic
conditions. It has been quite challenging to evaluate the shear strength of root-soil interfaces
by using existing methods, but recent studies have proposed novel methodology to measure
the friction and the cohesion of the interfaces and achieved the modeling. Mickovski et
al. (2010), Schwarz at al. (2011) and Tomobe et al. (2016, 2019) develop pullout tests
to estimate the shear strength of the root-soil interfaces and show that the Mohr-Coulomb
model can be utilized to model the shear strength of root-soil interfaces. However, few
models are still presented that models that predict the shear strength of root-soil interfaces
under different soil pressure with dynamic suction conditions.
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Table 5.1: Structure and overview of the chapters 5 and 6

Soil Pressure Suction Both

Experiment
and model

Tomobe et al.
(2016; 2019)
: Chapter 5

Novel apparatus
:Chapter 5

MCV model
: Chapter 5

Simulation
MCV-NTS approach
: Chapter 6

MCV-NTS for
dynamic suction condition
: Chapter 6

This chapter and the next chapter aims to propose a series of a consistent method to
measure, model, and predict the shear strength of root-soil interfaces under changing soil-
pressure and changing suction based on the pullout tests of Tomobe et al., (2016, 2019),
Mohr-Coulomb model, and Vilar model (Vilar, 2006). Fig. 5.1 visualizes major driving
factors of shear strength of root-soil interfaces; soil pressure and suction. Friction in-
creases as the increase of soil pressure and cohesion of root-soil interfaces are increased
under high-suction conditions. The soil-pressure-induced friction is measured and modeled
by Tomobe et al., (2016; 2019), however, the suction-induced cohesion is not measured
nor modeled (Table 5.1). Further, few models are proposed to predict both of the friction
and cohesion. In this chapter, Sections 2 and 3 shows experiments to measure the friction
and suction-induced cohesion, respectively; Although Section 2 just summarizes and intro-
duces the pullout tests of Tomobe et al., (2016), it is explained in detail since the chapter
is closely related to a proposed experiment of Section 3 and numerical simulation of Sec-
tion 5. Section 3 proposes a novel pullout test to measure the suction-induced cohesion of
root-soil interfaces. From the results of Sections 2 and 3, the shear strength of root-soil
interfaces are consists of friction and cohesion; friction is modeled by the MC model as
seen in Section 2 and cohesion is modeled by the Vilar model which is visible in Section 3.
Section 4 combines the Mohr-Coulomb (MC) model and Vilar model as Mohr-Coulomb-
Vilar (MCV) model, and the MCV model is implemented into numerical simulation based
on the Node-To-Segment (NTS) method which can accurately model the geometry of the
root-soil interfaces within the framework of Finite Element Method (FEM). Afterward, the
conclusion is stated in Section 5.

5.1.1 Summary of the materials and methodology

The tested soil and roots are sampled at experimental field of Kyoto University in Sakyo-ku,
Kyoto City, Japan (35◦01′56.9”N 135◦47′00.4”E).Two types of pullout tests are conducted;
pressure-controlled tests and suction-controlled tests.The pressure-controlled test is con-
ducted for measuring the relationship between shear displacement and shear stress under
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Figure 5.1: Schematic view of two major driving factors of shear strength of root-soil interface;
soil pressure-induced friction (left) and suction-induced cohesion (right). Friction increases as
the increase of soil pressure, and cohesion of root-soil interface is increased under high-suction
conditions.
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changing soil pressures, which is expected to be modeled by Mohr-Coulomb model.The
suction-controlled test is conducted for measuring the relationship between shear displace-
ment and shear stress under changing soil suction, which is expected to be modeled by
Vilar model.The constitutive relationship of root-soil interfaces is modeled by combining
MC model and Vilar model, which is called MCV model in this thesis. Both of the pullout
tests are simulated by using MCV model, which is stated in latter sections.

5.2 Pressure-controlled pullout test

This section summarize the results of pressure-controlled pullout tests presented in Chapter
3 and gives new explanations from the viewpoint of MCV model to utilize the results for the
validation of the MCV model in this chapter. Table 5.2 shows the dry density and the water
content of the soil; these are measured after the experiments. For all cases, the original dry
density is 0.97 g/cm3 and the water content is 31.5 %. After the experiment, the dry density
is 0.96 g/cm3 to 0.98 g/cm3, which is almost the same as the original value. The water
content is also not changed significantly. From these results, the mechanical properties of
soils are not changed significantly during the experiment since the soil pressure is extremely
small.

The relationship between shear displacement and shear stress for under different normal
stress is visible in Fig. 5.2. For all cases, shear stress is proportional to the shear displace-
ment when the shear displacement is less than 4.0 mm. The shear stress starts declining
as shear displacement reaches around 4.0 mm to 7.0 mm and reaches the maximum shear
stress. After the peak shear stress is observed, the shear stress keeps almost the same value
over 2.0 mm to 5.0 mm. The relationship between normal stress and maximum shear stress
is shown in Fig. 5.3. It is indicated that the maximum shear stress is proportional to the
normal stress (R2 = 0.98). The intercept of the line is 3.14 kPa and the frictional coefficient
is around 0.60. This relationship is consistent with the well-known Mohr-Coulomb’s model
and the coefficients are consistent with the frictional coefficient, hence, it shows that the
frictional coefficient between the root and the soil is 0.60. From the standpoint of MCV
model, it is considered that the cohesion of 3.14 kPa represents the suction-induced cohe-
sion of the root-soil interface under given water condition. Further, it is also assumed that
the frictional coefficient of 0.60 is not changed when the suction of root-soil interface is
changed.
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Table 5.2: Material properties of soil sample

Soil particle density (g/cm3) 2.67
Dry soil density (g/cm3) 1.28
Water content (%) 31.5
Maximum root diameter (mm) 0.74
minimum root diameter (mm) 0.68
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Figure 5.2: Relationship between shear displacement and shear stress measured by pressure-
controlled pull-out tests for mean normal pressure of root-soil interface 1.7, 3.6 6.1 and 8.3 kPa,
respectively.
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Figure 5.3: Relationship between normal stress and shear strength of root-soil interface measured
by pressure-controlled pull-out tests: Mohr-Coulomb criterion is applicable to the slip criterion.

5.3 Suction-controlled pullout test

5.3.1 Apparatus and procedure

The objective of the experiment is to measure the shear properties of root-soil interfaces
under prescribed suction. For this purpose, a novel pull-out apparatus is developed, which
consists of a soil box, a vacuum pump, a root extractor, and a display server (Fig. 5.4).
The soil box, the root extractor, and the display server are the same as the pull-out appara-
tus of Tomobe et al. (2016), by contrast, a vacuum pump (DIK-9230 Automatic Pressure
Controller, DAIKI RIKA KOGYO, JAPAN) is newly installed to control the suction of the
soil box. The vacuum pump is capable of keeping pressure from 0 kPa to -30.0 kPa, the
performance of which is satisfactory for this experiment.

The root specimens are sampled from a barley plant (Hordeum vulgare L.) cultivated in
Kyoto city, JAPAN (35 ◦ 01’57.2"N, 135 ◦ 47’00.4"E) in 2015, which is the same material
as ones of Tomobe et al. (2016). Each root is straight, smooth and has roughly the constant
diameters. The soil is sampled from the surface layer (0 to -15 cm) of the cultivated field
after the sampling of the root; at the same time, the undisturbed soil samples are collected
for measuring the bulk density, the water content, grain size analysis, and the density of
the soil particles, where the soil properties are the same as the Chapter 3. The soil is
categorized into sandy silt according to the method of classification of geo-materials for
engineering purposes (JGS 0051-2009).

The procedure of the experiment is visible in Fig. 5.5. Before the experiment, the root
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hole is filled up by grease which stops water, and the drain tube, the porous stone, and the
soil box are carefully saturated with water. After the process, the root and the soil are put
into the soil box, the dry bulk density of which is equal to one of the sampling points. Then,
the pump vacuums the water at a prescribed pressure and the water starts to move from soil
specimen to the cylinder until the equilibrium is achieved. The equilibrium is checked by
measuring the water level in the cylinder. During the process, a thin plastic cover is put on
the soil specimen to prevent drying.

After the equilibrium is achieved, the root is slowly (less than 0.1 mm/min) pulled out
from the soil box by the root extractor illustrated in Fig. (5.4); the reaction force and the
horizontal displacement are measured until the shear stress reaches the peak strength. This
reaction force is measured by a load cell (LUX-B-50N-ID, KYOWA ELECTRONIC IN-
STRUCTION, JAPAN) and the displacement is recorded by using the displacement gauge
(DDP-20A, Tokyo Sokki Kenkyujo, JAPAN). Above process is repeated for six cases under
different suction conditions: 0.5 kPa, 4.4 kPa, 5.8 kPa, 8.8 kPa, 22.0 kPa, and 28.0 kPa.
These suctions are chosen since the possible maximum suction realized by the apparatus is
28.0 kPa under automorphic pressure, and it ranges from water-saturated conditions to field
water capacity.

The profile of the shear stress in the root-soil interfaces is computed by dividing the total
pull-out force by the surface area of the root segment. Hence, the shear stress is computed
as explained in CHapter 3. It is worth noting that the simple relationship can be used only
when the diameter of the root segment is almost constant and the branch roots are not
present, therefore, the root segment is sampled from a straight root with no branch and root
hair is not observed at the root segment.

Furthermore, the relationship between suction and the shear strength is plotted to eval-
uate the shear reinforcement in the root-soil interfaces due to the suction, which is nec-
essary to model the suction-induced cohesion so that the effect of suction is implemented
in numerical schemes such as FEM. A similar relationship has been obtained in the cases
of soil-soil interfaces and geotextile-soil interfaces and the models are available for FEM
analysis, however, it has not been measured or modeled for root-soil interfaces. This thesis
models the strength-suction curve based on the formulation of Vilar (2006); it has been uti-
lized for modeling the suction-induced cohesion in the unsaturated soils, the detail which is
explained below with the results.

5.3.2 Results and formulation based on Vilar’s model

The profiles of the shear stress of each experimental case are measured by using the pull-
out tests, which is seen in Fig. 5.6. The curves show that the shear stresses increase with
the increase of the displacement for all experiments and soon approach asymptotically to
the maximum shear stress. This process is described in more detail as following; the shear
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Figure 5.4: Apparatus for suction-controlled pull-out tests: Suction is loaded by left-hand-side
vacuum pump and no soil pressure is loaded.
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(1) Root is installed (2) Saturated soil is filled

(3) Suction is loaded by 

vaccuming water

・・・　

Case 1

Suction : 0.5 kPa

Case 2

Suction : 4.4 kPa

Case 6

Suction : 28.0 kPa

(4) Root is pulled out

Figure 5.5: Procedure of suction-controlled pull-out tests: (1) a straight root is installed into a empty
soil-box, (2) water-saturated soil is filled into the soil-box, (3) prescribed suctions are loaded for
case 1 to case 6, where the soil suction are 0.5, 4.4, 5.8, 8.8, 22.0, and 28.0 kPa, respectively. (4)
The root is pulled out from the soil and reaction force is measured.
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stresses initially increase by constant rates for the displacement is 0.0 to 5.0 mm, and then
keeping almost the constant values when the displacement is 5.0 mm to 18.0 mm. After the
shear stresses reach the shear strength, the roots globally slip and the stresses decrease mod-
erately (Cases (a), (b) and (c)) or rapidly (Cases (d), (e) and (f)). Compared with the curve
of Case (a), the angles and the peaks of the curves in other cases are significantly large,
and the suction-induced cohesion in the root-soil interfaces are significantly increased from
0 kPa to 25 kPa while the suction increases from 0.0 kPa to 28.0 kPa. The relationship
between the maximum shear stress and the suction is seen in Fig. 5.7. The shear strength
increases with the increase of the suction during the suction are smaller than 10.0 kPa; sub-
sequently, the shear strength becomes almost the constant value. Similar responses have
been observed for geotextile-soil interfaces (Jotisankasa and Rurgchaisri, 2018) and soil-
soil interfaces (Song et al., 2017), however, to the knowledge of the authors, the current
results are first of its kind for root-soil interfaces. As can be seen in Fig. 5.8, this sec-
tion applies the model of Vilar (2006) to model the relationship between suction and shear
strength of root-soil interfaces. The model is written as

τ = c+
s

a · s+ b
(5.1)

where τ is the shear strength of the root-soil interfaces, s is the suction, c is cohesion, and a
and b are model parameters. The model is chosen for three reasons: (1) it is indicated that
the mechanism of the suction-induced reinforcements of soil-soil interfaces which are often
modeled by the Vilar model, and the root-soil interfaces are similar as described in Fig. 5.9.
This illustrates the hypothetical structure of the soil-soil and the root-soil interaction under
the unsaturated condition. As is well known, the surface water can generate the apparent
cohesion between soil particles as seen in the left, therefore, the same phenomena must
occur in root-soil interfaces, (2) the model is capable of expressing the nonlinear properties
by using the possible simplest function, and (3) in the other methods such as Fredlund et
al. (1996), the effective angle of friction should be same as the friction angle relative to
suction, however, in this case, the frictional angle estimated from the relationship between
suction and shear strength is 68 degrees, which is significantly greater than one measured
based by frictional tests (Tomobe et al., 2016). Similar differences are reported by Likos
et al. (2018) in soil-soil interfaces under low-pressure conditions. They point out that the
dilation of the strength development may cause the phenomenon, and that further studies
are to be done to reveal the mechanism. The result of the curve fitting is presented in Fig.
5.8 and the parameters a and b are shown in Table 5.3, which can precisely express the
suction-induced cohesion. In this result, the normal stresses are considered to be zero since
the normal pressure on the root-soil interfaces is negligibly small in during the experiment.
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Table 5.3: Model parameters of roots, soils and root-soil interfaces

Young’s
modulus
(kPa)

Poisson’s ratio
Penalty
parameter
(kPa/m)

Frictional
coefficient

a b

Root 60000.0 0.35 - - - -
Soil 6038.9 0.35 - - - -
Root-soil
interface

- - 50000.0 0.60 0.191 0.00343
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Figure 5.6: Relationship between shear displacement and shear stress measured by -controlled
pull-out tests for suctions of root-soil interface 0.5, 4.4, 5.8, 8.8, 22.0, and 28.0 kPa, respectively.

98



 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

S
h
ea

r 
st

re
n
g
th

 (
k
P

a)

Suction  (kPa)

Shear strength is

sensitive with suction

Maximum shear strength

induced by suction

Figure 5.7: Relationship between suction and shear strength of root-soil interface measured by
suction-controlled pull-out tests.

 0

 10

 20

 30

 0  10  20  30

Matric suction s (kPa)

S
u
ct

io
n
-i

n
d
u

ce
d

 c
o

h
es

io
n

 c
s 

(k
P

a)

a= 1.91×10-1

b= 3.43×10-2

c= 0.00

 

R2=0.784

a + b s

s
cs=c +

Figure 5.8: Parameter fitting of Vilar model for the Relationship between suction and shear strength
of root-soil interface.

99



Pore water

Suction-induced cohesion 

in contact interface

Figure 5.9: Schematics of root-soil interface and soil-soil interface

5.4 Constitutive Model of shear strength of root-soil interface
under changing pressure/suction

5.4.1 MCV model

The last section utilizes the Vilar model along with Mohr-Coulomb model to model the
suction-induced cohesion of root-soil interfaces under different suction/stress conditions:
This subsection defines the model as MCV model, in which the shear strength of root-soil
interfaces are expressed as

τmax = c+ µ · σN +
s

a · s+ b
(5.2)

where τmax is shear strength, µ is frictional coefficient and σN is soil pressure. The frictional
coefficient is measured by conventional pullout tests, for instance, the frictional coefficient
of the root-soil interfaces is 0.60 according to Section 2 and Tomobe et al. (2016). Fig. 5.10
maps the shear strength under different soil pressure and suction and the box illustrates the
possible condition under the practical situations. Here, the soil pressure is supposed to be
caused by the soil pressure in grasslands and cultivated field, the value of which is less than
10 kPa since the depth of the rhizosphere is less than 1.0 meters. In such cases, as displayed,
the shear strength is mainly determined by suction in these results, which suggests that the
suction prevents slips at interfaces between roots and cohesive soils.
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Figure 5.10: Critical state surface of root-soil interface based on Mohr-Coulomb-Vilar model.

5.4.2 Implementation of MCV model based on NTS approach

The model of the shear strength in the root-soil interfaces is numerically implemented by
using the NTS approach (Wriggers 2006) within the framework of FEM to apply the exper-
imental results for the prediction of the risk of landslides in the presence of vegetation. This
subsection summarizes the NTS approach in terms of root-soil contact problems and then
proposes the implementation of the suction-induced reinforcement in root-soil interfaces.
Recently, the FEM has been applied for predicting the mechanical behavior of rooted soils,
which provides accurate analysis for root-soil interaction by using realistic root morphol-
ogy. In this method, both roots and soils are discretized into finite elements as depicted
in Fig. 5.11, and the root-soil interfaces are installed by using some strategies such as
Node-To-Node (NTN) approach or Line Elements (LE) scheme. However, developing the
precise implementation of the root-soil interfaces still has been a challenging problem. This
subsection applies the NTS approach to implement the friction and the suction-induced co-
hesion into the FEM analysis. Here, the NTS approach is the widely-used method to express
the mechanical interactions between deformable bodies in numerous engineering problems
(Wriggers, 2006). It consists of one node on a body and a surface element on the other body
as seen in the Chapter 2. The approach is capable of expressing both slip and separation
in root-soil interfaces, which cannot be done by using conventional methods as NTN or LE
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methods. The governing equation and the discretization of the contact problems between
roots and soils can be described as the following: Let us consider that a root and a soil mass
are in contact and the contact surface is identified as illustrated in Chapter 2. Under the
condition, the governing equation for the displacement field is given by the virtual work
equation seen in Eq. (5.3).

δW =

(∫
Ω
σ · ∇δudΩ−

∫
Ω
f · udΩ−

∫
Γ
t · udΓ

)r

+(∫
Ω
σ · ∇δudΩ−

∫
Ω
f · udΩ−

∫
Γ
t · udΓ

)s

+ δW rs = 0 (5.3)

Within Eq. (5.3), δW denotes the total virtual work, superscript r, s, and rs denotes the
root, the soil and the interfaces, respectively, σ is the Cauchy stress tensor, δu and ∇δu are
the virtual displacement and its gradient with respect to the current configuration, f is the
gravitational force and t is the traction forces. The last term denotes the virtual work of the
contact surface, which is explicitly expressed as Eq. (5.4);

δW rs =

∫
tN · δgNdΓ +

∫
tT · δgTdΓ (5.4)

where tN and tT are the normal/shear stress, gN is the gap vector from the soil surface to
the closest point on the root surface and gT is the tangential displacement from the initial
contact point. Further, a penalty parameter ϵ is introduced in order to prevent unnatural
overlaps between roots and soils;

tN = ϵ · gN (5.5)

Hence, the contact pressure is proportional to the degree of overlaps: the overlaps theo-
retically become zero in case that the penalty parameter is enough large. The terms in the
first and the second parentheses within Eq. (5.3) are discretized by using finite elements and
the last term is discretized by using the NTS elements, thereby, the discretized equations
are expressed by Eq. (5.6),

δW =
ne∑
I=1

δud(I) ·Rd(I) +
nc∑
I=1

δuc(I) ·Rc(I) = 0 (5.6)

in which ne is the number of finite elements for both the root and the soil mass, nc denotes
the number of NTS elements in the contact interfaces, δud(I) and δuc(I) are variations of
the discretized displacement vectors for the bodies and the contact interfaces. Rd(I) is the
residual vector for the domain, the derivation of which is presented by Wriggers (2006)
and Hashiguchi and Yamakawa (2011). Rc(I) is the residual vectors and the derivation is
exhibited in detail by Wriggers (2006) and Zavarise and Lorenzis (2009). Since Eq. (5.6)
is nonlinear for the displacement field, the Newton‘s method are employed as the solving
algorithm. The algorithm is presented in Fig. (5.12).
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Figure 5.11: Comparison among contact elements used in current and previous studies.
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Figure 5.12: Solution algorithm for current numerical simulation based on FEM and CCM.
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5.4.3 Solution algorithm

This subsection proposes a method to use MCV model in terms of NTS method summarized
in Section 4. In Eq. (5.4), the tangential gap is decomposed into two parts, stick and slip;

gT = gstickT + gslipT (5.7)

Here, gT is tangential gap between two material points on the contact surfaces, gstickT is
elastic part of the gap and gslipT is the plastic part. The shear stress tT takes the form of Eq.
(5.8).

tT = ϵ · gstickT = ϵ ·
(
gT − gslipT

)
(5.8)

This is derived by a natural assumption that the shear stress is caused by stored energy on
the interface and the slip decays the stored energy, hence, it decreases the shear stress. By
introducing the penalty method, the shear stress increases with the increase of tangential gap
until the stress is smaller than the frictional strength. Based on the model of the friction and
the suction-induced cohesion under unsaturated conditions, the slip criterion of the root-soil
interfaces can be calculated as follows:

f = ∥tT∥ − c− µ · ∥tN∥ − s

a · s+ b
(5.9)

In case that f is positive, the increment of the slip ġslipT is updated by the flow rule as shown
in Eq. (5.10),

ġslipT = λ̇
∂f

∂tT
(5.10)

where λ̇ is the increment of the plastic multiplier. Eqs. (5.8) − (5.10) are analogous to those
of elasto-plasticity theory (Wriggers, 2006) and it enforces a constraint that the direction of
the slip has to be identical to the direction of shear stress. The increment of the slip ġslipT is
integrated by employing the backward Euler scheme, Eq. (5.10) is written as

gslipT (tn+1)− gslipT (tn)

∆t
= λ̇

∂f (tn+1)

∂ttrT (tn+1)
(5.11)

where tn and tn+1 indicate current and next time-step, respectively. Substituting Eq. (5.9)
into Eq. (5.11) we obtain Eq. (5.12).

λ̇ =
∥ttrT (tn+1) ∥ −

(
µ · ϵ · ∥gN∥ − s

a·s+b

)
ϵ ·∆t

(5.12)

Therefore, the slip and shear stress is updated by Eq. (14).

ġslipT =
∥ttrT (tn+1) ∥ −

(
µ · ϵ · ∥gN∥ − s

a·s+b

)
ϵ ·∆t

∂f

∂ttrT
(5.13)

Eqs. (5.8), (5.9) and (5.13) are utilized in the solution algorithm as depicted in Fig. (5.12).
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5.5 Summary

The current chapter proposes the MCV model with the NTS approach, and the MCV model
is capable of expressing both friction and suction-induced cohesion. The following conclu-
sions are remarked from the results in this chapter. A novel pull-out apparatus is developed
for measuring the suction-induced cohesion of root-soil interfaces. The results show that
the suction-induced cohesion increases with the increase of suctions during the suction are
in the range of 0 to 10 kPa, and it reaches 25 kPa., which is larger than the contribution
of friction under low-confirming conditions as the topsoils of grasslands or slopes. Both
of the suction-induced cohesion and friction are modeled by using the MCV model, which
is a combination of Mohr-Coulombs slip criterion as a friction model and the Vilar model
(Vilar, 2006) for suction-induced cohesion. The model is capable of reproducing the shear
strength of root-soil interfaces as a function of normal stress and suction. The MCV model
is implemented by using the NTS approach (Wriggers, 2006), which is the first of its kind
to the best knowledge of the authors. The MCV model is introduced as a slip criterion, and
the return-mapping scheme updates total slip. The slip criterion has both suction and soil
pressure as variables, therefore, the shear stress of the root-soil interfaces are affected by
both hydraulic and mechanical conditions, and such models have not been used for root-soil
contact problems.
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Chapter 6

Numerical Simulation of Shear Behavior of
Root-Soil Interface Under Dynamic Suction
Condition

6.1 Introduction

The present chapter demonstrates the applicability and accuracy of the MCV-NTS approach
that is displayed in the last chapter. For this purpose, this chapter provides two numerical
simulations. First, the pressure-controlled pull-out tests and suction-controlled pull-out
tests are simulated, the experiments of which is shown in the previous chapter. The aim
of present simulations is to validate the accuracy and stability of the MCV-NTS approach,
under dynamic suction conditions. Furthermore, the applicability of the MCV-NTS ap-
proach under dynamic suction condition is tested by simulating pulled-out roots under dry-
to-wet conditions for different soil pressure conditions. This condition is consistent with
the rainfall events, therefore, more realistic conditions. The latter simulation focuses on the
accuracy and stability of the present model.

Both of the MCV-NTS formulation and the application to the root-soil contact problems
are first of its kind. Sections 2 and 3 validate the MCV-NTS by solving the numerical
simulation of pressure-controlled pull-out tests of Section 2 of the last chapter as well as
suction-controlled pull-out tests of Section 3 of the last chapter. Further, Section 4 conducts
a numerical experiment of pull-out behavior of straight roots under the dynamic change of
suction to validate the applicability of the MCV-NTS scheme. Section 5 summarizes the
discussions mentioned above.
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6.2 Numerical simulation of pressure-controlled pullout test

This section aims to validate the accuracy of the current numerical approach based on MCV
model and NTS method through the comparison with the experimental studies. The vali-
dation is consist of two parts: (1) numerical simulation of suction-controlled pullout test
(see Section 3) with constant soil pressure, and (2) pullout tests of Tomobe et al., (2016) in
which the soil pressure is changed and suction is constant.

6.2.1 Initial and boundary conditions

The schematics of the pullout tests are shown the Chapter 5, which is used. It is simulated
that a root (8.0 cm × 0.05 cm) is pulled out from the soil specimen (6.0 cm × 2.0cm)
towards the left sides under the prescribed normal pressure. This condition is consistent
with the pullout tests of barley shown in Chapter 3. Before the pullout process, the normal
pressure is loaded by enforcing downward displacement on the top of the soil, which is
consistent with the experimental condition. The suction is supposed to be constant for
each case and given as the environmental valuable since the specimen is small and the
evaporation of the soil water is carefully prevented in the experiments. For simplicity, the
analysis is conducted with plain strain condition with the unit depth (m), and the shear stress
(kPa) on the root-soil interfaces are computed by dividing the pullout forces (N) into the
left sides of the roots by the contact area (m2) of the specimen. Also, for the symmetry on
the horizontal line seen in the figure, only the lower half of the system is computed.

The numerical simulation of the pressure-controlled pullout tests is performed as fol-
lows: The normal pressure of 1.7, 3.6, 6.3, 8.1 kPa are loaded by prescribing the equivalent
displacement. The suction is not explicitly measured in the previous research, and only
the apparent cohesion is measured (3.14 kPa). Thereby, the value of suction is estimated
by using the MCV model and the parameters which are measured in Section 3. As a re-
sult, the suction is estimated as 0.27 kPa. For simplicity, this analysis uses the value for
all stress conditions and assumes that the suction is almost the same for the cases. The
mesh and boundary conditions are visible in Fig. 6.1 Both roots and soils are supposed to
be hyperplastic material, and the root-soil interfaces are governed by the MCV model seen
in Section 5. The hyperplastic constitutive equation presented by Vladimirov et al. (2008,
2010) is utilized for its simplicity since the current paper focuses on the interfacial behavior
and the deformation of roots and soils are relatively small. The material parameters of soils
are obtained by the consolidation process of the current pullout tests, and these of roots
are measured by the bending tests of soybean roots, which has similar mechanical behavior
with the barley roots utilized in the pressure-controlled pull-out tests. The Poissons ratio
of soil is taken by the relationship between the normal stress and vertical stress during the
pullout tests, and soils are supposed to be the same value for simplicity. The model param-
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eters are seen in Table 5.3, where the model parameters of the MCV model is consistent
with Section 3.

2.0 cm

6.0 cm

8.0 cm

0.05 cm

Root-soil interface

Root

Soil

Figure 6.1: Mesh and Boundary condition of numerical simulations for pull-out test in latter sec-
tions.

6.2.2 Results and discussion

Fig. 6.2 compares the profile of shear stress of the root-soil interfaces in simulations and
experiments of the pressure-controlled pullout tests. The simulations are the almost same
as the experiment for all stress conditions. Although the initial (displacement is 0 to 3
mm) angle of the displacement-stress curve of simulation is larger than the ones of the
experiment, the gap closes when slip starts (displacement is 3 mm to 8 mm). Therefore,
the MCV model and NTS approach are capable of simulating the slip in root-soil interfaces
under changing suction and soil pressure.

The contour of the deviatoric stress is visible in Fig 6.3 which is predicted by the simula-
tion. As can be seen, the deviatoric stress of soil domain increases with the increase of soil
pressure; this result is natural since it indicates that the shear stress of the root-soil interfaces
increases due to the soil pressure and hence roots and soils are mechanically connected.

Above all, the MCV model can reproduce the shear strength root-soil interfaces ob-
served by the experiment ass a function of normal stress and suction. The model can also
provide an accurate solution of the pullout tests under different conditions of suction, which
is the first of its kind to the best of our knowledge. Since the MCV model consistently ex-
presses the shear strength of root-soil interfaces under changing wet-dry conditions and
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allows large slip, it can apply to the large-deformation problems of rooted soil under chang-
ing hydro-mechanical conditions.
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Figure 6.2: Validation of simulation with comparison to experiments under pressure-controlled
condition, where the suction is not changed.

6.3 Numerical simulation of suction-controlled pullout test

The objective of this section is to validate the accuracy of the current numerical approach
based on the MCV model and NTS method through the comparison with the experimental
studies presented in Chapter 5. Since the MCV-NTS approach models shear strength of
root-soil interfaces under changing soil pressure and suction, the validation presented in
this section is consist of six suction conditions.
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Figure 6.3: Contour map of deviatoric stress of soil and root domains. Shear stress of soil domain
increases with the increase of soil pressure.

6.3.1 Mesh and boundary conditions

The mesh and boundary conditions of the suction-controlled pullout tests are shown in Fig.
6.1, which is common in all below cases. The lower half of the specimen is modeled and
each case simulates the process that a root (8.0 cm × 0.05 cm) is pulled out from the soil
specimen (6.0 cm × 2.0 cm) towards the left sides under the prescribed suction: The diam-
eter of the root in the numerical simulation is identical to the experimental conditions seen
in Chapter 5. Preliminary, initial conditions are prepared by uniform loading downward
displacement on the top of the soil domain. For simplicity, the analysis is also conducted
with plain strain condition and the shear stress on the root-soil interfaces is derived by di-
viding the pullout forces (N) on the left sides of the roots by the contact area (m2) of the
specimen as explained in Chapter 3. Both roots and soils are supposed to be hyperplastic
material, and the root-soil interfaces are governed by the MCV equation seen in Section
5. The hyperplastic constitutive equation presented by Vladimirov et al. (2008, 2010) is
utilized for its simplicity since the current paper focuses on the interfacial behavior and the
deformation of roots and soils are relatively small. The Young’s modulus of soil is obtained
by the unconfined compression tests (JIS A 1216) where the E50 value is utilized as Young’s
modulus, and these of roots are measured by the bending tests of soybean roots, which has
similar mechanical behavior with the barley roots. The Poissons ratio of soil is taken by the
relationship between normal stress and vertical stress during the pullout tests, and soils are
supposed to be the same value for simplicity. The model parameters are seen in Table 5.3,
where the model parameters of the MCV model is consistent with Section 3.

This chapter assumes that the suction of the root-soil interfaces is spatially uniform,
however, special considerations are necessary when the MCV-NTS is applied to situations
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where the suction is not spatially uniform. The suction is supposed to be constant all over
the interfaces since the root-soil interface is horizontal and the change of the soil water
content is carefully prevented in the presented experiments. If the MCV-NTS is applied for
more practical situations where the suction is in a spatially non-uniform, suction of root-
soil interfaces are to be determined consistently. One of the consistency condition is that the
consistency of the suction of root-soil interfaces with the suctions of root/soil domains in the
vicinities. Since the root and soil domains contacts in the interface, a unique suction should
be determined at the material points on the root-soil interfaces: it requires mathematical
constraints that minimize the gap of suction between root surfaces and soil surfaces at each
of the root-soil contact points. A possible solution for this problem is to introduce a penalty
method or Lagrange multiplier method to enforce the gap-minimizing constraint, which is
analogous to the thermal contact simulation (Wriggers, 2006) where the temperature gap
between two surfaces is successfully minimized.

The numerical simulation of the suction-controlled pullout tests is performed as follows:
The numerical simulation of the suction-controlled pullout tests are simulated as below:
The suction of 0.5, 4.4, 5.8, 8.8, 22.0, and 28.0 kPa are applied, and the normal pressure is
considered as 0 kPa. This condition is implemented by following; the top of the soil-mesh
is vertically fixed, and a slight penetration (0.01 mm) is given in the root-soil interfaces at
the initial condition. For simplicity, this analysis uses the value for all stress conditions and
assumes that the suction is almost the same for the cases.

6.3.2 Results and discussion

Fig 6.4 shows the relationship between displacement and shear strength for each suction:
(a) 0.5 kPa, (b) 4.4 kPa, (c) 5.8 kPa, (d) 8.8 kPa, (e) 22.0 kPa and (f) 28.0 kPa. Through all
cases, profiles of both simulations and experiments are quantitatively similar, and the shear
strength of the root-soil interfaces are almost the same. Consequently, the results suggest
that the MCV-NTS approach is capable of predicting the shear stress of root-soil interfaces
under changing suction.

Fig. 6.5 illustrates a contour map of deviatoric stress given by the numerical simulation
of pullout tests. From root to soil, propagation of deviatoric stress is cut off when the suction
is small enough (suction = 0.5 kPa). When the suction is 5.8 kPa, the deviatoric stress of
soil is not considered when the displacement is relatively small. However, it increases when
the displacement is large (> 2.0 mm). The deviatoric stress of soils in case that suction is
28.0 kPa is significantly large and continuously distributes across root-soil interfaces.

Although both contour maps of Figs. 6.3 and 6.5 are similar, an important difference
appears between them. In the case of Fig. 6.5, the contour lines of the deviatoric stress
are parallel with each other and symmetry concerning the center of the figure. By contrast,
the contour line of Fig. 6.3 is more complex and not symmetry. This difference can be
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explained as below: The suction-induced cohesion is independent with the stress field,
therefore, under small soil-pressure condition, the shear stress of root-soil interfaces are
uniformly distributed. On the other hand, the soil-pressure-induced friction depends upon
the stress field of both soils and roots and the deformation of the roots and soils at the right
sides are different from the left sides, thereby, the complexity and asymmetry are observed.

Above all, it is indicated that the MCV model can reproduce the shear strength root-
soil interfaces observed by the experiment as a function of normal stress and suction. The
model can also provide an accurate solution of the pullout tests under different conditions
of suction, which is the first of its kind to the best of our knowledge. Since the MCV model
consistently expresses the shear strength of root-soil interfaces under changing wet-dry con-
ditions and allows large slip, it can apply to the large-deformation problems of rooted soil
under changing hydro-mechanical conditions. The MCV-NTS approach is compatible with
any FEM schemes if one uses the linear elements such as triangular or rectangular elements.
Besides, since the NTS formulation is also presented for 3D analysis as well as 2D, it is ex-
pected that the MVC-NTS scheme can also be applicable for root-soil contact problems
under 3D conditions to simulate the deformation of rooted soils under prescribed suction
conditions.
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Figure 6.4: Validation of simulation with comparison to experiments under suction-controlled con-
dition, where the soil pressure is not changed.

6.4 Pullout resistance of root under changing pressure/suction
by MCV-NTS approach

The objective of this numerical experiment is to investigate the applicability of MCV-NTS
approach, where pull-out problems of roots from soils under dynamic suction conditions for
different soil pressure are simulated to test (1) whether the numerical simulation can con-
tinuously predict the shear stress of root-soil interfaces under dynamic suction conditions
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Figure 6.5: Contour map of deviatoric stress of soil and root domains. Shear stress of soil domain
increases with the increase of suction.
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or not, and (2) whether the simulation works under realistic and unconfined conditions of
shallow soil depth. The problem described in this section is designated to demonstrate the
pull-out behavior of roots from the soil as illustrated in Fig. 5.1 under more realistic condi-
tions than previous sections. The previous sections show that the current numerical method
can accurately predict the shear strength of the root-soil interface for different soil pres-
sures, and also predict the shear strength for different suctions. Each of these simulations
is validated through the comparison with the experiments, however, it remains still unclear
whether the current method can provide reasonable prediction through the dynamic change
of suction under different soil pressures or not. It is expected that the current method pro-
vides shear strength for each condition in every time based on the MCV model, however, the
solution may not converge when the suction-induced cohesion is frequently changed. There
is another question that the how stress field of soil is changed due to the dynamic change of
suction-induced cohesion; noting that the suction is fixed during the pull-out process in the
cases of previous sections.

6.4.1 Boundary conditions and suction control

From these standpoints, this section prepares three cases of simulations. The soil pressures
are equivalent to the soil depth of 30 cm, 60 cm, and 90 cm: These soil pressures are
computed from the bulk density (1.28 g/cm3) of the sampling site of soils (Table 5.3), and
loaded as pre-stress. For each case, a root is pulled out from soil for 1.6 cm, and the suction
is set at 28.0 kPa during the shear displacement is 0.0 cm to 0.6 cm, in which the roots
start slipping. The suction of 28.0 kPa is selected since (1) the simulation of drying process
is appropriate for evaluating the applicability of the MCV-NTS scheme since the suction
is dynamically changed, and (2) the suction-induced cohesion is almost maximized at the
suction in the present combination of roots and soils, hence, the suction can be significantly
declined. After the slip is observed, the suction is controlled so that the suction declines
from 28.0 kPa to 5.5 kPa during the shear displacement is 0.6 cm to 1.6 cm, where the roots
are slipping on the soils and the shear strength of root-soil interfaces declines as the shear
displacement increases. It is expected that the stress state of root-soil interfaces is inside of
the MCV slip surface at the initial condition and then moves on the MCV slip surface and
remains on the same point before the suction is changed; afterward, the stress state moves
along the MCV slip surface during the dynamic suction decline. The mesh and boundary
conditions are identical to Section 5 and the pre-stress is set so that the soil pressure is the
same as that of 0.3, 0.6 and 0.9 depth of the sampling site. The depth is utilized since the
roots are distributed in the 0.0 to 1.0 m depth in the sampling site and similar conditions are
reproduced in the simulation.
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6.4.2 Demonstration of pullout behavior under dry-to-wet condition

Fig. 6.6 shows the stress-path of the simulation for three cases; the Fig. 6.6(a) shows the
slip criterion of the MCV model which represents the shear strength for given soil pressure
and suction, and Fig. 6.6(b) and (c) display the pathway of the shear stress in the relation of
suction and soil pressure, respectively. Fig. 6.6 (d) presents that the soil pressure is mostly
fixed for each case and the suction is dynamically changed during the pull-out process. As
can be seen in the Fig, 6.6 (b), the stress state of root-soil interfaces is inside of the MCV
slip surface at initial condition and then moves on the MCV slip surface and remains on the
same point before the suction is changed; afterward, the stress state moves along hyperbolic
curve of MCV model during the dynamic suction decline, which consistent with the MCV
model. The shear strength in case of depth = 90 cm is greater than depth = 30 cm, which
visualizes the contribution of friction, amount of which is also consistent with the MCV
model and the pull-out experiments. According to Fig. 6.6 (c), the stress state of root-soil
interfaces is also inside of the MCV slip surface at initial condition and then also moves on
the MCV slip surface and remains on the same point before the suction is changed; after
the suction starts declining, the Mohr-Coulomb line shrinks due to the decline of suction-
induced cohesion, which is also consistent with the MCV model and suction-controlled
pull-out tests. The above relationship is described in Fig. 6.6 (a) and the profile of shear
stress are visualized with the MCV surface.

Fig. 6.7 visualizes the shear stress-displacement curve, suction-displacement curve, and
soil pressure-displacement curve: The stress contour of the deviatoric stress is also exhib-
ited. As the displacement is increased, the shear stress of the root-soil interfaces reaches the
shear strength which is defined by the MCV model. At the failure, which indicates the slip,
the displacement increases under the same shear stress. As can be seen, the shear stress
of the depth = 0.9 m is greater than that of the depth = 0.3 cm; the difference reflects the
contribution of friction-induced by soil pressure. The profile of soil pressure is shown in the
left bottom of the figure, where the soil pressure is kept at an almost constant value for each
case during the numerical experiment. When the displacement reaches 0.6 cm, the suction
is artificially reduced, which expresses that the root-soil interface is gradually moistened.
The decline of the suction lessens the suction-induced cohesion, which results in declines
of shear stress during the slip. The right side of the figure visualizes the contour map of
the deviatoric stress of both root and soil domains. The deviatoric stress of the bottom of
the soil domain is increased as the displacement increases from 0.01 cm to 0.20 cm, then
the stress contour keeps almost the same color during the displacement is 0.20 cm to 0.80
cm. Afterward, the zone of deviatoric stress ≥ 30.0 kPa shrinks as time passes, which is
due to the decline of the suction. Although a little oscillation of the solution is observed,
the degree of the oscillation is enough small from the standpoint of practical uses.

Another important point is seen in the topology of the contour of the deviatoric stress
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in Fig.6.7, where the profile of the contour is similar to the ones of the simulation of soil-
pressure-controlled pull-out tests, where the soil-pressure-induced friction is dominated. In
detail, the gradient of the contour is enhanced and more complex. This indicates that the
friction induces the spatial complexity of the stress field and the suction-induced cohesion
enhances the spatial complexity.

From these results, the NTS-MCV approach can provide a reasonable solution for root-
soil contact problems under dynamic change of suction for different soils. The results
indicate that the current approach can be applicable for root-soil contact problems and pro-
vides consistent solution based on the MCV model. The proposed approach enhances the
accuracy of the numerical simulation of deformation in rooted soils based on FE analysis
(Dupuy et al., 2007; Rahardjo et al, 2009; Mickovski et al., 2010).
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6.5 Summary

The current chapter presents that the MCV model and NTS approach can successfully sim-
ulate the deformation and the shear strength of rooted soils. The conclusion is drawn below.

The current simulation code is validated by simulating the pull-out tests under pressure-
controlled conditions and suction-controlled conditions. The results show that the current
model and implementation can accurately reproduce the relationship between shear stress
and displacement for both of the pressure-induced friction and the suction-induced cohe-
sion. The results also visualize the deviatoric stress under different suctions, and the results
suggest that the propagation of shear stress from the roots to the soils is cut off when the
suction is almost zero and it continuously proper gates as suction increases. It is an im-
portant suggestion since the distribution of the deviatoric stress can be changed due to the
presence of the suction-induced cohesion in the root-soil interfaces.

A numerical experiment of pulling-out of roots is performed to evaluate the applicabil-
ity to the dynamic suction conditions where the suction of root-soil interfaces is changed
during the pull-out process. The results indicate that the NTS-MCV approach can provide
reasonable solutions for root-soil contact problems under dynamic change of suction for
different soils. The results indicate that the current approach can be applicable for root-
soil contact problems and provides consistent solution based on the MCV model. Accurate
modeling shear strength of root-soil interfaces under changing soil pressure and suction
has been required to solve root-soil contact problems based on FEM (Dupuy et al., 2008;
Rahardjo et al, 2009; Mickovski et al., 2010), and proposed method consistently provides
a series of experiment, modeling, and implementation addressing with this problems by a
possible simplest way.
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Chapter 7

Concluding Remarks

7.1 Summary

This thesis proposes a series of experiments, constitutive models, and numerical approaches
to simulate the contact problem between roots and soils accurately. Chapter 2 proposes an
NTS-FEM formulation and a solution algorithm, where the CCM and the finite elasto-
plasticity is consistently combined. Chapter 3 presents an apparatus and a protocol to mea-
sure friction and cohesion of root-soil interfaces. The results show that the proposed meth-
ods can measure both of frictional coefficient and the cohesion of root-soil interfaces and
indicated that the elasto-plasticity and Mohr-Coulomb model is applicable for the stick-slip
phenomena of root-soil interfaces. This apparatus and procedure are utilized with the con-
tinuum model of Chapter 2, as shown in Chapter 4, in order to simulate the pull-out tests of
Chapter 3 and the lodging problem. Through the comparison between simulations and ex-
periments, it is suggested that the current method precisely simulate root-soil contact prob-
lems in both mesoscale and plant-scale ones. Chapter 5 and 6 extends the Mohr-Coulomb
model for expressing suction-induced cohesion and, for this purpose, a novel pull-out ap-
paratus is presented. The apparatus controls the suction of the root-soil interface. Hence,
the relationship between suction and suction-induced cohesion is measured. The results are
modeled by employing Vilar’s model (Vilar, 2006), and a numerical method for simulating
root-soil contact problem under dynamic suction conditions are presented by combining
the MCV model with the NTS approach. It is seen in the results that the proposed method
accurately reproduces suction-induced cohesion under dynamic suction conditions, and the
wet-to-dry condition is successfully expressed in root-soil contact simulations. It is worth
noting that the root-soil contact problems under dynamic suction conditions are not solved
in the previous researches Dupuy (2007) and Michovski (2011).
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7.2 Future study

Future studies will apply the experimental and numerical methods to predict the mechanical
strength and deformation behavior of rooted soil to utilize the root-induced reinforcement
for soils. As can be seen in Chapters 3 and 4, the present method only utilizes small speci-
mens to measure the material parameters. Therefore, it is not costly to perform experiments
and numerical analysis. Further, by using mesh-models created from root-generation al-
gorithms, such as L-systems, it is also possible to conduct root-soil contact analysis for
practical slope-stability problems. Although the computational costs are significant when
the proposed numerical scheme is utilized for slope-scale issues, it is possible to introduce
parallelization to accelerate simulations. Future studies will also conduct numerical sim-
ulations of lodging to find optimal root shapes to design root phenotypes for preventing
root lodging of cereals. The presented methods can accurately simulate the lodgings of
crops, as shown in Chapter 4. Hence, the next target will be the utilization of the modern
approach to design and selection in terms of breeding to minimize the lodging. The nu-
merical scheme will also useful for bio-inspired engineering to develop optimal designs of
pile-structures. Root morphology is considered to be optimized for supporting upper-gound
structures. However, it has been few applications of the morphology to pile structures. The
proposed scheme will be utilized for investigating the essence of the root-shapes and also
will apply the mechanism of the roots for optimal designs for geotechnical structures.
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