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1 Introduction

Determination of probabilistic solutions can enable engineers make more informed decisions in
practical inverse problems through point solutions and confidence intervals. Numerically, this
amounts to the estimation of a parameter vector that represents all the unknowns in the system
and the problem is known as a parameter identification problem. In this context, inversion is attempted
on two classes of parameters commonly encountered in geomechanics, spatial distribution (elastic
parameters, hydraulic conductivity etc.) parameters and geometrical (solid-void interface) parameters.
Probabilistic inversion has ordinarily been executed in a Bayesian sense through Markov Chain Monte
Carlo or MCMC algorithms. Owing to the pioneering work of Metropolis [6], the most famous
among this class of algorithms is the Metropolis Hastings algorithm. Central to the algorithm is an
aperiodic and irreducible transition kernel that maintains reversibility and guarantees invariance of
the underlying probability distribution. Under these conditions, the Ergodic Theorem guarantees
that the sample average converges to the true average of the parameters as the number of samples
goes to infinity. However, such algorithms have typically been plagued by poor acceptance rates, due
to the failure in designing proper proposal densities, a problem that is compounded further by the
concentration of measure as the dimensionality of the parameter vector increases. This forces the user
to use smaller proposal step sizes and the algorithm takes impractical amounts of time to explore the
invariant probability distribution.

Hamiltonian Monte Carlo (HMC) [7, 1] is a modern MCMC algorithm where deterministic
proposals are made through Hamiltonian dynamics. Such proposals (if calculated properly) yield
samples on level sets of probability and enable movement to distant regions in parameter space
at reasonable acceptance rates. This yields sampling efficiencies far superior to that observed
in conventional MCMC algorithms. However, an important component of numerically applied
Hamiltonian dynamics (Leapfrog method) is the gradient w.r.t the parameters, the evaluation of
which forms the computational bottleneck of HMC. The ability to compute this gradient and the
efficiency with which it can be computed, determine the practical usage of the algorithm. This forms
the motivation behind this thesis. In particular, three inversion problems are attempted in the HMC
framework:

1. Identification of spatial distribution of elastic modulus from elastic wave propagation data.
2. Explicit identification of solid-void interface parameters from elastic wave propagation data.
3. Simultaneous estimation of spatial distribution of hydraulic conductivity and piping zone

interface from seepage flow data.
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2 Hamiltonian Monte Carlo

The invariant density of the parameter vector 𝛉 ∈ R𝐾 given the observations y1:𝑛 = {y1, . . . ,y𝑛}, in
this thesis is of the form 𝑝 (𝛉|y1:𝑛), and is also known as the posterior and computed as

𝑝 (𝛉|y1:𝑛) =
𝑝 (y1:𝑛 |𝛉) 𝑝(𝛉)

𝑝 (y1:𝑛)
. (1)

The first term in the numerator represents the likelihood which itself can be calculated as 𝑝 (y1:𝑛 |𝛉) =∏𝑛
𝑘=1N (y𝑘 |Hx𝑘 (𝛉),R𝑘), for observation models of the form

y𝑘 = Hx𝑘 (𝛉) + r𝑘 . (2)

Here, x𝑘 ∈ R𝐷 is the state vector, H is the observation model matrix and y𝑘 ∈ R𝑚 are the observations
containing some Gaussian noise r𝑘 ∼ N (0,R𝑘). The second term is the prior density over the
parameters usually considered to be a Gaussian as 𝑝(𝛉) =N (𝛉|0,𝚺𝛉), where 𝚺𝛉 is the prior covariance
matrix. The sum of the negative log of the likelihood and the prior simplify computation and define a
term called Potential energy 𝜑(𝛉) : R𝐾 → R given as

𝜑(𝛉) ≡ − log 𝑝 (y1:𝑛 |𝛉) − log 𝑝(𝛉)

=

𝑛∑
𝑘=1

1
2
(y𝑘 −Hx𝑘 (𝛉))T R−1

𝑘 (y𝑘 −Hx𝑘 (𝛉)) +
1
2
𝛉T𝚺−1

𝛉 𝛉+ const.. (3)

Hamiltonian Monte Carlo starts with an augmentation of the parameter space 𝛉 ∈ R𝐾 with
auxiliary momentum variables p ∈ R𝐾 and the definition of a joint density

𝑝 (𝛉,p|y1:𝑛) = 𝑝 (p|𝛉,y1:𝑛) 𝑝 (𝛉|y1:𝑛) . (4)

The term 𝑝 (p|𝛉,y1:𝑛) is assumed to be Gaussian with a fixed covariance matrix M𝐻 such that
𝑝 (p|𝛉,y1:𝑛) = 𝑝(p) = N(p|0,M𝐻 ). The negative log from of Eqn. (4), then defines the Hamiltonian

𝐻 (𝛉,p) ≡ − log 𝑝(𝛉,p) = 𝐾𝐻 (p) +𝜑(𝛉), (5)

where 𝐾𝐻 (p) = − log 𝑝(p) is known as the Kinetic energy. The introduction of the Hamiltonian
allows for the definition of proposals through Hamiltonian dynamics which are numerically applied
through the leapfrog steps

p
(
𝑡 + 𝜖

2

)
= p(𝑡) − 𝜖

2
𝜕𝜑(𝛉(𝑡))
𝜕𝛉

(6)

𝛉(𝑡 + 𝜖) = 𝛉(𝑡) + 𝜖M−1
𝐻 p

(
𝑡 + 𝜖

2

)
(7)

p(𝑡 + 𝜖) = p
(
𝑡 + 𝜖

2

)
− 𝜖

2
𝜕𝜑(𝛉(𝑡 + 𝜖))

𝜕𝛉
. (8)

Reversible proposals are designed by applying the Leapfrog integrator for 𝐿 steps, each with
step size 𝜖 and then flipping the momentum at the end of the trajectory. This yields deterministic
proposal densities, which for transitions of the type (𝛉,p) = (𝛉0,p0) → (𝛉′,p′) = (𝛉𝐿 ,−p𝐿) are given
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as 𝑞 ((𝛉,p), (𝛉′,p′)) = 𝑞 ((𝛉0,p0), (𝛉𝐿 ,−p𝐿)) = 𝛿 (𝛉′−𝛉𝐿) 𝛿 (p′+p𝐿). This then yields acceptance
probabilities of the form

𝐴 ((𝛉,p), (𝛉′,p′)) = 𝐴 ((𝛉0,p0), (𝛉𝐿 ,−p𝐿)) = min
{
1,
𝑝 (𝛉𝐿 ,−p𝐿) 𝛿 (𝛉0 −𝛉0) 𝛿 (p0 −p0)
𝑝(𝛉0,p0)𝛿 (𝛉𝐿 −𝛉𝐿) 𝛿 (−p𝐿 +p𝐿)

}
= min {1,exp (−𝐻 (𝛉𝐿 ,−p𝐿) +𝐻 (𝛉0,p0))} . (9)

It is clear that 𝑞 ((𝛉𝐿 ,p𝐿) , (𝛉0,p0)) must be positive for this exercise to be meaningful. HMC
proposals which satisfy this property are highlighted in Section 4.

3 Adjoint HMC for elastic modulus estimation through elastodynamic
inversion

Consider the existence of a sample space Ω𝜔 and a bounded domain Ω ⊂ R𝑁 . In this section, the
spatial distribution of the elastic modulus 𝐸 (z,𝜔) : Ω×Ω𝜔 → R is considered as a random field,
with mean function 𝐸 (z) and symmetric, positive definite covariance function 𝐶 (z1,z2) defined on
Ω×Ω. Any meaningful discretization of the random field for computational purposes will result
in a high dimensional elastic modulus vector E = (𝐸 (z1) , . . . , 𝐸 (z𝑎))T such that 𝑎≫ 0. This poses
computational challenges to HMC, especially in gradient computation. As such, it is desired to define
an efficient update and is the main focus of this section.

3.1 Karhunen-Loève (KL) expansion and the Adjoint method

If 𝜆𝑞 and 𝚽𝑞 are the eigenvalues and eigenvectors corresponding to the covariance matrix C and
the eigen values are arranged so that 𝜆1 > 𝜆2 > . . . > 𝜆𝐾 , then the 𝐾-term KL expansion [4] for the
discretized random field E(𝜔) can be expressed as

E = E+
𝐾∑
𝑞=1

√
𝜆𝑞𝜃𝑞 (𝜔)𝚽𝑞, (10)

where, 𝚽𝑞 =
(
𝜙𝑞 (z1) , . . . , 𝜙𝑞 (z𝑎)

)
and 𝜃𝑞 (𝜔) is an unknown random variable with zero mean and

unit variance. When 𝐾 →∞, it can be shown that the KL expansion converges to the true random
field in a mean square sense. In most practical problems the eigen values decay exponentially and the
KL expansion can be truncated at 𝐾-terms such that 𝐾≪𝑎. This reduction in dimensionality of the
problem significantly speeds up HMC and limits the number of parameters w.r.t to which the gradient
needs to be calculated.

The spatially discretized governing equation for elastic wave propagation in the domain is the
usual second order ODE, which is now parameterized by the parameter vector 𝛉, i.e.

M¥u(𝑡) +C(𝛉) ¤u(𝑡) +K(𝛉)u(𝑡) = f (𝑡). (11)
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This equation is discretized in time by one-step [3] methods. A large class of implicit, unconditionally
stable time integration algorithms such as Newmark-𝛽, HHT-𝛼, CH-𝛼 etc. fall in this class and can be
written in a general form for state vectors m𝑘 = (u𝑘 , ¤u𝑘 , ¥u𝑘)T as

m𝑘 = L(𝛉)m𝑘−1 +F𝑘 (𝛉), 𝑘 ∈ {2, . . . , 𝑛}. (12)

L(𝛉) is the amplification matrix and F𝑘 (𝛉) contains contributions from the external loads f (𝑡).
It is further possible to improve computational efficiency by eliminating the repeated computations

of the state vector w.r.t to the parameter vector. This is achieved through the Adjoint method where an
adjoint variable is introduced into Eqn. (3) in the form

𝜑(𝜽) =
𝑛∑
𝑘=1

1
2
(y𝑘 −Hm𝑘 (𝛉))T R−1

𝑘 (y𝑘 −Hm𝑘 (𝛉)) +
1
2
𝛉T𝚺−1

𝛉 𝛉

+
𝑛∑
𝑘=2
𝛙T
𝑘 (m𝑘 −L(𝛉)m𝑘−1 −F𝑘 (𝛉)) . (13)

Taking a simple derivative w.r.t 𝛉 and collecting all coefficients of 𝜕m𝑘

𝜕𝜃𝑖
and making them go to zero

yield the adjoint equation

𝛙𝑘 = L(𝛉)T𝛙𝑘+1 +HTR−1
𝑘 (y𝑘 −Hm𝑘) , (14)

which must be solved along with

𝜕𝜑(𝛉)
𝜕𝜃𝑖

= −
𝑛∑
𝑘=2
𝛙T
𝑘

(
𝜕L(𝛉)
𝜕𝜃𝑖

m𝑘−1 +
𝜕F𝑘 (𝜽)
𝜕𝜃𝑖

)
+ 1

2

𝜕

(
𝛉T𝚺−1

𝛉 𝜽
)

𝜕𝜃𝑖
, (15)

to yield the gradient. This process eliminates the need to compute 𝜕m𝑘

𝜕𝜃𝑖
and further saves computation

time. The KL expansion and Adjoint method are incorporated into the HMC algorithm for parameter
estimation.

3.2 Numerical Implementation

A simple numerical example of estimation of elastic modulus in a rectangular domain (density = 2000
Kg/m3 and Poisson’s ratio = 0.25) from elastic wave propagation data measured at observation points
marked in black is shown in Fig. 1(a). The profile shown represents the target profile. The parameter
estimation problem is one over 200 parameters representing the elastic modulus of each element in
the domain. A Gaussian covariance kernel is chosen with known scale (𝜐 = 1012m2) and correlation
length (𝑙 = 4m) and is given as

𝐶
(
z𝑖 ,z 𝑗

)
= 𝜐 exp

(
−
��z𝑖 − z 𝑗

��2
2𝑙2

)
. (16)

The decay of the eigen values of the covariance matrix is shown in Fig. 1(b), based on which 𝐾 = 12
terms are chosen in the KL expansion. 10000 samples are drawn using the Adjoint HMC algorithm
and the first 1000 are discarded as burn-in samples, for three different starting points shown in Fig. 2.
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Fig. 1 (a) Discretized finite element domain showing variation of elastic modulus, observation points
and point of application of triangular load. (b) Decay of eigen values of the covariance matrix
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Fig. 2 Profiles of elastic modulus for (a) three starting points (left) and corresponding (b) Mean and
(c) Standard Deviation.
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Fig. 3 Comparison of the Direct Differentiation Method (DDM) and Adjoint Method (AM) in terms
of time taken for computation. Grey vertical bars represent the 5% and 95% quantiles, the yellow
vertical bar represents the median and the red ‘+’ sign represents the mean.

The mean from the three starting points shows a good match with the target distribution of elastic
modulus. In the left and right lower corners the estimation isn’t as accurate but this is highlighted in the
larger standard deviation observed in these regions. This shows the usefulness of getting a statistical
solution. The performance of the Adjoint Method is compared with the Direct Differentiation Method
(plain derivative of Eqn. (3)), where the Adjoint Method clearly outperforms the DDM and the
time taken for evaluation of gradients in the AM case is independent of the number of terms (𝐾)
considered.

4 Parameter update for solid-void interface detection through elasto-
dynamic inversion

The second inversion problem considers the explicit identification of solid-void interfaces parame-
terized by the vector 𝛉. Tomographic inversion studies based on identifying the spatial distribution
of parameters such as elastic modulus, shear wave velocity profile etc. are rarely able to identify
the exact location of interfaces and thereby accurately resolve the position of voids or cavities [9]
such as pipelines, tunnels, sinkholes, cracks etc. Hence, the problem is changed to one of explicitly
identifying the geometry of the interface. Inversion of this kind in an HMC framework requires the
definition of a new parameter update that satisfies the following three requirements

1. Proposal densities must be reversible.
2. Good mesh quality must be maintained during each parameter update.
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3. Update should not introduce any discontinuities ion the Hamiltonian and gradient computation
should be possible.

4.1 Novel parameter update

The update is derived for a general setting of a void/cavity Ω𝑣 ⊂ Ω where Ω ⊂ R𝑛𝑠𝑑 is the spatial
domain and 𝑛𝑠𝑑 is the number of spatial dimensions. Let the node coordinates formed from a
discretization of the solid domain Ω\Ω𝑣 with 𝑑 nodes, be represented as Z ∈ R𝑑×𝑛𝑠𝑑 , where Z =

(z1, . . . ,z𝑑)T and z 𝑗 =
(
𝑧1 𝑗 , . . . , 𝑧𝑛𝑠𝑑 𝑗

)
. This discretization also produces a set of node coordinates

Z𝑣 (𝛉) =
(
z𝑣1 (𝛉), . . . ,z𝑣𝑑̂ (𝛉)

)T
, where z𝑣𝑗 : R𝐾 → R𝑛𝑠𝑑 , on the solid-void interface Γ𝑣 , where 𝑑

represents the total number of nodes at the interface.

4.1.1 Reversible proposals

For an HMC parameter update of the form 𝛉(𝑡) → 𝛉(𝑡 + 𝜖), the associated solid-void interface nodal
coordinate update is given by Z𝑣 (𝛉(𝑡)) → Z𝑣 (𝛉(𝑡 + 𝜖)). This defines an update on the interface
nodes. The update on the interior nodes is defined from a fixed reference mesh with nodal coordinates
Z𝑟𝑒 𝑓

(
𝛉𝑟𝑒 𝑓

)
∈ R𝑑×𝑛𝑠𝑑 . The update on the interface nodes is now defined through a prescribed

displacement matrix

u𝑟𝑒 𝑓𝑣 = Z𝑣 (𝛉(𝑡 + 𝜖)) −Z𝑟𝑒 𝑓𝑣

(
𝛉𝑟𝑒 𝑓

)
. (17)

Clubbing all other prescribed displacements in the domain to get the total displacement matrix
u𝑟𝑒 𝑓 ∈ R𝑑×𝑛𝑠𝑑 and rearranging it as ũ𝑟𝑒 𝑓 ∈ R𝑑 where, 𝑑 = 𝑑×𝑛𝑠𝑑 , results in a prescribed displacement
problem on the interior nodes given by

ũ𝑟𝑒 𝑓
𝑖𝑛𝑡

= −
(
K𝑟𝑒 𝑓

𝑖𝑛𝑡

)−1
K𝑟𝑒 𝑓
𝑝𝑟𝑒 ũ𝑟𝑒 𝑓𝑝𝑟𝑒 . (18)

Here, ũ𝑟𝑒 𝑓
𝑖𝑛𝑡

refers to the displacement on the interior nodes, ũ𝑟𝑒 𝑓𝑝𝑟𝑒 the total prescribed displacements
and K𝑟𝑒 𝑓

𝑖𝑛𝑡
and K𝑟𝑒 𝑓

𝑝𝑟𝑒 represent the internal and prescribed degrees of freedom part of the global
stiffness matrix K𝑟𝑒 𝑓 on the reference mesh. The elemental reference mesh stiffness matrix is given
as

K𝑟𝑒 𝑓
𝑒 =

∫
Ω𝑒

B𝑟𝑒 𝑓
T
D𝑟𝑒 𝑓 B𝑟𝑒 𝑓

���𝑱𝑟𝑒 𝑓𝑒

��� 𝑡𝜌𝑑Ω𝑒, (19)

where all terms have their usual meanings. The complete mesh update is then given by

Z(𝛉(𝑡 + 𝜖)) = Z𝑟𝑒 𝑓
(
𝛉𝑟𝑒 𝑓

)
+u𝑟𝑒 𝑓 , (20)

and is shown in Fig. 4. Proposals of this kind are reversible and the deterministic reverse proposal
density 𝑞 ((𝛉(𝑡 +2𝜖),−p(𝑡 +2𝜖)) , (𝛉(𝑡),p(𝑡))) = 1.
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4.1.2 Mesh Moving Method

To eliminate anticipated mesh distortions in nodal coordinate updates from the reference mesh, a
Mesh Moving method [8] is used in which the elastic modulus on the reference domain 𝐸𝑟𝑒 𝑓𝑒 is scaled
as

Z
ref(θref)

Z(θ(t)) Z(θ(t+ϵ))

Z
ref(θref)

Z(θ(t+2ϵ))

Fig. 4 Reversible update of the current mesh updated from a reference mesh.

𝐸
𝑟𝑒 𝑓
𝑒 = 𝐸𝑒

©­­«
𝐽0���𝑱𝑟𝑒 𝑓𝑒

��� ª®®¬
𝜒

, (21)

where 𝐽0 is an arbitrary scaling parameter For 𝜒 = 1, this results in the dropping of the Jacobian in
Eqn. (19) and has the effect that small elements become more rigid and large elements deform more
freely. Placement of small elements near the void/cavity where large displacements are anticipated
then minimizes distortions in the domain.

4.1.3 Gradient computation

Gradients of the potential energy function 𝜑(𝛉) involve derivatives of the mass and stiffness matrices
𝜕M(𝛉)
𝜕𝛉 and 𝜕K(𝛉)

𝜕𝛉 . On an elemental level these can be calculated as

𝜕K𝑒

𝜕𝛉
=

∫
Ω𝑒

(
𝜕BT

𝜕𝛉
DB |𝑱𝑒 | +BTD

𝜕B
𝜕𝛉

|𝑱𝑒 | +BTDB
𝜕 |𝑱𝑒 |
𝜕𝛉

)
𝑡𝜌𝑑Ω𝑒, (22)

𝜕M𝑒

𝜕𝛉
=

∫
Ω𝑒

NTN
𝜕 |𝑱𝑒 |
𝜕𝛉

𝑡𝜌𝑑Ω𝑒, (23)

where K𝑒 and M𝑒 are the elemental stiffness and mass matrices respectively and other terms have
their usual meaning. The terms 𝜕B

𝜕𝛉 and 𝜕 |𝑱𝑒 |
𝜕𝛉 are evaluated with ideas from shape optimization [2]

and turn out to be functions of 𝜕Z(𝛉)
𝜕𝛉 which can readily be evaluated if 𝜕Z𝑣 (𝛉)

𝜕𝛉 is differentiable. This
defines a continuous reversible parameter update for HMC.
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4.2 Numerical implementation

The novel parameter update is tested on a simple numerical example of identification of a target ellipti-
cal cavity as shown in Fig. 5, parameterized as 𝛉 = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5]T =

[
𝑧center

1 , 𝑧center
2 , tan𝜙, 𝑏1, 𝑏2

]T
=

[5,5,1/
√

3,5,2]T where, 𝜙 = 30◦ is the angle of inclination (measured anticlockwise) of the major
axis with respect to the 𝑧1 axis and 𝑏1 and 𝑏2 are the lengths of the major and minor axis respectively.

15 m

12.5 m

Stiff Layer

Observation Points

1.563 m

intervals

1.75 m intervals

z2

z1

f(t)

Fig. 5 Mesh showing position, size and orientation of the target elliptical solid-void interface.

HMC analysis is carried out for 2000 steps, out of which the first 200 are eliminated as burn-in,
from the starting point 𝛉 = [8,5,2−

√
3,3,1]T (see Fig. 6(a)). An arbitrary reference mesh is chosen

with parameters 𝛉𝑟𝑒 𝑓 = [5,5,0,1,1]T in Fig. 6(b). The parameterization of the elliptical interface is
done such that the interface node coordinates matrix 𝑍𝑣 (𝛉) components can be defined as

z𝑣𝑗 (𝛉) =
©­«
𝜃1 + 𝜃4

2 cos𝛼𝑣𝑗 cos
(
tan−1 𝜃3

)
− 𝜃5

2 sin𝛼𝑣𝑗 sin
(
tan−1 𝜃3

)
𝜃2 + 𝜃4

2 cos𝛼𝑣𝑗 sin
(
tan−1 𝜃3

)
+ 𝜃5

2 sin𝛼𝑣𝑗 cos
(
tan−1 𝜃3

) ª®¬ . (24)

These equations are easily differentiable w.r.t 𝛉 and enable computation of 𝜕M(𝛉)
𝜕𝛉 and 𝜕K(𝛉)

𝜕𝛉 .
The mesh at the 2000th step of HMC is shown in Fig. 6(d). The good mesh quality is a clear

indicator of the good performance of the mesh moving method where 𝜒 was chosen to be equal to
1. Normalized bin counts show the statistical nature of the solution. Even though the mean solution
doesn’t match the target solution, the target solution is covered by the normalized bin counts indicating
that there is some probability for the target solution to occur.

9



(a) (b)

(c)

-2.5 0 2.5 5 7.5 10 12.5

-2.5

0

2.5

5

7.5

10

(d)

Fig. 6 (a) Initial and (b) Reference mesh for HMC. (c) Zoomed version of the fine mesh around the
elliptical solid-void interface. (d) Mesh at 2000th step of HMC.
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Fig. 7 Normalized bin counts (𝐽𝑏𝑖𝑛/𝐽𝑡𝑜𝑡𝑎𝑙) for 𝛉. 𝐽𝑏𝑖𝑛 and 𝐽𝑡𝑜𝑡𝑎𝑙 represent the number of samples in
a bin and the total number of samples respectively. Grey and blue lines represent the target and HMC
mean parameter values respectively.
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5 Exact and approximate implementations of HMC for simultaneous
estimation of spatial distribution of hydraulic conductivity and pip-
ing zone interface

The third inversion problem combines the aims of the previous two sections for simultaneous estima-
tion of spatial distribution of parameters and the interface of a domain. Specifically, the seepage flow
forward problem is considered in a domain containing a predefined piping zone as shown in Fig. 8.
The seepage flow experiment was performed by fixing the input hydraulic head at the top and the exit
head at the bottom of the domain consisting of Silica sand #5. Hydraulic head was recorded at the
observation points 2, . . . ,6 and discharge rate was measured at the exit after the seepage flow was
allowed to reach steady state. This process was repeated 14 times with increasing input hydraulic head
measured at point 1 on the top of the domain. The discretized governing equation for the problem is
given as

K(𝛉)h𝑘 = q𝑘 , (25)

where h𝑘 and q𝑘 ∈ R𝑑 are the global discretized hydraulic head vector and nodal flux vector respec-
tively and K is the global hydraulic conductivity matrix. The vector 𝛉 ∈ R𝐾 now contains both spatial
field and interface parameters, which can be updated in two ways: exact and approximate.
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23
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Sand

Water tank
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50
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θ9

θ10

0 27 32

Fig. 8 Actual test apparatus (left) and corresponding illustration showing positions of observation
points at which hydraulic head is recorded (middle) and piping zone dimensions (right). (unit: cms)

5.1 Exact parameter update

First the parameter vector is partitioned into two parts i.e. 𝛉 =
(1𝛉,2𝛉)T, where 1𝛉 ∈ R𝐾1 correspond

to the parameters defining the spatial distribution of hydraulic conductivity and 2𝛉 ∈ R𝐾2 to those
defining the solid-void interface. While the combination of the methods in the previous sections
would appear to be straightforward, a new complication arises due to the update of the domain at
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every step due to the update in the interface parameters. If the hydraulic conductivity is treated as a
random field on a domain Ω

(2𝛉) ⊂ R𝑁 , then the accompanying covariance kernel 𝑪Ω(2𝛉) defined on
Ω

(2𝛉) ×Ω
(2𝛉) is now a function of the interface parameters.

Dimensionality reduction through the 𝐾-term KL expansion will result in a discretized hydraulic
conductivity field k

(1𝛉, 2𝛉) ∈ R𝑎 given as

k
(

1𝛉, 2𝛉
)
= k+

𝐾1∑
𝑞=1

√
𝜆𝑞

(2𝛉)1𝜃𝑞𝚽𝑞
(

2𝛉
)
, (26)

where 𝚽𝑞
(2𝛉) = (

𝜙𝑞
(
z𝑐1

(2𝛉) ) , . . . , 𝜙𝑞 (
z𝑐𝑎

(2𝛉) ) )T are the eigen vectors and 𝜆𝑞
(2𝛉) are the eigen

values of the covariance matrix
(
𝑪

(2𝛉) ) computed on the domain Ω
(2𝛉) according to Eqn. (16). The

covariance matrix has to be updated at every step and eigen values and eigen vectors recomputed.
The gradient 𝜕𝜑 (𝛉)

𝜕𝛉 necessitates the computation of the gradient of the state vectors i.e. 𝜕m𝑘

𝜕𝛉 =(
𝜕h𝑘

𝜕𝛉 ,
𝜕q𝑘

𝜕𝛉

)T
. These can be obtained by a direct differentiation of Eqn. (15) given as

𝜕K
𝜕𝛉

h𝑘 +K
𝜕h𝑘
𝜕𝛉

=
𝜕q𝑘
𝜕𝛉

. (27)

Using standard boundary conditions in a seepage flow problem the equations can be solved for the
unknowns. The derivatives 𝜕K

𝜕𝛉 comprise of the derivatives 𝜕K
𝜕1𝛉

and 𝜕K
𝜕2𝛉

. Derivatives w.r.t to the field
parameters are given by

𝜕K𝑒

𝜕1𝛉
=

∫
Ω𝑒

GT 𝜕𝑘𝑒
(1𝛉)

𝜕1𝛉
G |𝑱𝑒 | 𝑡𝑑Ω𝑒, (28)

where, 𝑘𝑒 is the hydraulic conductivity of element 𝑒, G contains the derivatives of the elemental shape
functions and other terms have the usual meaning. Following from the KL expansion in Eqn. (26), it
is easy to compute the derivatives

𝜕k
𝜕1𝜃𝑞

=

√
𝜆𝑞

(2𝛉)𝚽𝑞 (
2𝛉

)
. (29)

The derivatives w.r.t the interface parameters are the same as mentioned in Section 4, with the exception
that the derivatives 𝜕k

𝜕2𝛉
now need to be considered. Using the same isoparametric formulation , the

derivatives are given by

𝜕K𝑒

𝜕2𝛉
=

∫
Ω𝑒

(
𝜕GT

𝜕2𝛉
𝑘𝑒G |𝑱𝑒 | +GT𝑘𝑒

𝜕G
𝜕2𝛉

|𝑱𝑒 | +GT𝑘𝑒G
𝜕 |𝑱𝑒 |
𝜕2𝛉

+GT 𝜕𝑘𝑒

𝜕2𝛉
G |𝑱𝑒 |

)
𝑡𝑑Ω𝑒 . (30)

Derivative of Eqn.(26), results in the following expression for 𝜕k
𝜕2𝛉

𝜕k(𝛉)
𝜕2𝛉

=

𝐾1∑
𝑞=1

(
1

2
√
𝜆𝑞

𝜕𝜆𝑞

𝜕2𝛉
𝚽𝑞 +

√
𝜆𝑞
𝜕𝚽𝑞
𝜕2𝛉

)
1𝜃𝑞 . (31)

This necessitates the computation of the gradients of the eigen values and eigen vectors of the
covariance matrix. These derivatives are given as [5]
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𝜕𝜆𝑞

𝜕2𝛉
=𝚽T

𝑞

𝜕𝑪Ω(2𝛉)
𝜕2𝛉

𝚽𝑞 ,
𝜕𝚽𝑞
𝜕2𝛉

=

(
𝜆𝑞I𝑎 −𝑪Ω(2𝛉)

)† 𝜕𝑪Ω(2𝛉)
𝜕2𝛉

𝚽𝑞, (32)

where the gradient of the eigen vectors requires the computation of the Moore-Penrose inverse

(represented by the dagger) of
(
𝜆𝑞I𝑎 −𝑪Ω(2𝛉)

)†
. Clearly the exact algorithm is expensive.

5.2 Inversion using experimental data

Inverse analysis is carried out where 10000 samples are drawn using the exact HMC algorithm and the
first 1000 samples are rejected as burn-in. For this case 𝐾1 = 8 such that 1𝛉 = (𝜃1, . . . , 𝜃8) while the
true piping zone interface is parameterized by 2𝛉 =

(2𝜃1,
2𝜃2

)
= (𝜃9, 𝜃10) = (0.05,0.15). The inversion

is carried out post an appropriate parameterization of the interface and the selection of an arbitrary
reference mesh. The center figure in Fig. 9 shows the true interface is estimated well and lies well
within the confidence intervals. Even the hydraulic conductivity is estimated well with confidence
intervals lying in the range of 0.07 to 0.11 cm/s which matches well with actual samples where
hydraulic conductivity lies in the range 0.10 to 0.17 cm/s. Comparison of simulated response using
HMC identified parameters and those obtained from experiment show good agreement as shown in
Fig. 10.

Fig. 9 Hydraulic conductivity profile of 0.01 (left) 0.5 (middle) and 0.99 (right) quantiles (Magnitudes
are in m/s). Interface corresponding to 0.01 and 0.99 quantiles (blue dash lines) enclosing the mean
interface (red solid line) is shown in the center figure. True interface is represented by the grey line.

5.3 Approximate parameter update

An approximate implementation of the algorithm was also attempted, where the covariance matrix
(𝑪Ω𝑏 ) is fixed and approximated from a bounding domain that encloses all possible realizations from
HMC. in this case, the hydraulic conductivity field is not a function of the interface parameters. Hence,
the eigen value problem doesn’t need to be solved at every step and the derivatives of the eigen values
and eigen vectors don’t need to be computed repeatedly. Comparison of the statistical performance of
the two algorithms: approximate and exact through the autocorrelation function is shown in Fig. 11.
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Surprisingly, the autocorrelations are almost the same for both cases, which naturally implies that the
approximate algorithm will be computationally more efficient than the exact algorithm.

(a) (b)

Fig. 10 Comparison of simulated response (shown in blue) and observed data (shown in grey) for (a)
Hydraulic head ℎ2, . . . , ℎ6 at manometers 2 to 6 and (b) Discharge rate 𝑞.
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Fig. 11 Autocorrelation of 𝜃1 (left) and the two interface parameters 𝜃9 (center) and 𝜃10 (right).

6 Conclusions

Three common inverse problems in geomechanics are solved in an HMC framework.
1. In the first problem, an Adjoint HMC algorithm is proposed that improves computational

efficiency by reducing the dimensionality of the problem through the KL expansion and by
eliminating the need to compute the gradients of large state vectors w.r.t parameters through the
Adjoint Method.

2. In the second problem, a new update that maintains reversibility, maintains a good mesh
quality and enables computation of gradients is proposed in an HMC framework for explicit
identification of solid-void interfaces.

3. In the third problem, the two methods are combined in an exact sense, where the eigen value
problem is solved and gradients are evaluated at every step of HMC. In this case the gradients
of the eigen values and eigen vectors need to be computed. In the approximate sense, the
covariance matrix is approximated from a fixed bounding domain and the eigen value problem
and its gradients don’t need to be evaluated. In this study, the approximate algorithm was found
to be more computationally efficient, however, this comment cannot be generalized yet.

14



References
[1] Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo. Physics

Letters B, 195(2):216–222.

[2] Haslinger, J. and Mäkinen, R. (2003). Introduction to Shape Optimization- Theory, Approximation,
and Computation. SIAM, Philadelphia.

[3] Hughes, T. J. (1987). The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Dover, New York.

[4] Loève, M. (1978). Probability Theory II. Springer-Verlag New York.

[5] Magnus, J. R. (1985). On differentiating eigenvalues and eigenvectors. Econometric Theory,
1(2):179–191.

[6] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics,
21(6):1087–1092.

[7] Neal, R. M. (2011). Handbook of Markov Chain Monte Carlo, chapter 5: MCMC Using
Hamiltonian Dynamics. CRC Press.

[8] Stein, K., Tezduyar, T., and Benney, R. (2003). Mesh Moving Techniques for Fluid-Structure
Interactions With Large Displacements. Journal of Applied Mechanics, 70:58–63.

[9] Xia, J., Chen, C., Li, P. H., and Lewis, M. J. (2004). Delineation of a collapse feature in a noisy
environment using a multichannel surface wave technique. Geotechnique, 54(1):17–27.

15


	1 Inverse analysis in geomechanical problems using Hamiltonian Monte Carlo
	1 Introduction
	2 Hamiltonian Monte Carlo
	3 Adjoint HMC for elastic modulus estimation through elastodynamic inversion
	3.1 Karhunen-Loève (KL) expansion and the Adjoint method
	3.2 Numerical Implementation

	4 Parameter update for solid-void interface detection through elastodynamic inversion
	4.1 Novel parameter update
	4.2 Numerical implementation

	5 Exact and approximate implementations of HMC for simultaneous estimation of spatial distribution of hydraulic conductivity and piping zone interface
	5.1 Exact parameter update
	5.2 Inversion using experimental data
	5.3 Approximate parameter update

	6 Conclusions

	2 References

