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In this thesis, we study regret analysis of a reinforcement learning on
constrained irreducible Markov Decision Processes (MDPs) with reset ac-
tion. In reinforcement learning(RL), a learner interacts with an environment
with trading off the exploration to collect information about the environment
and the exploitation of gathered information. To evaluate the performance of
RL algorithms on MDPs, the regret framework is one of typical frameworks
that have been studied ( Regret is the notion of the difference between the
gain of an optimal policy and accumulative reward of an algorithm). For
weakly-communicating MDPs, there have been many studies which analyze
the regret of specific algorithm (a weakly-communicating MDP is an MDP
which induces Markov-chain which has a single closed irreducible class and a
set of states which is transient under all stationary policies for some station-
ary policies)[1, 2, 3, 4]. Among these studies, common approaches can divide
rougly into the two directions: optimism in the face of uncertainty(OFU)
and posterior sampling. In the OFU approach, the learner has optimistic
estimates of the value function and executes the optimistic policy. On the
other hand, in the posterior sampling approach the learner has a Bayesian
distribution over MDPs and executes the optimal policy of a sampled MDP.
In this paper, we focus on the OFU approach. There are a lot of exten-
sions of MDPs, and one of them is Constrained MDPs(CMDPs). CMDP has
multiple reward functions, one of which corresponds to that of MDPs, and
the others correspond to constraints. A learner tries to learn a policy which
satisfies all constraints of the CMDP and gets more accumulative reward
of objective reward function. For irreducible CMDPs (the word irreducible
means that for any deterministic policy, Markov-chain induced by the pol-
icy and CMDP is irreducible), we can use linear programming problem to
compute optimal stationary policies. This means that the solution of the
linear programming problem corresponds to stationary policy one to one. In
this thesis, we extend the regret framework to constrained case and study
CMDPs with reset action through this extended regret framework. We in-
troduce an algorithm, Constrained-UCRL, which is motivated by UCRL2
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algorithm[1]. Constrained-UCRL uses confidence intervals like UCRL2, and
solves a linear programming problem to compute policy instead of extended
value iteration in UCRL2. We show that Constrained-UCRL achieves regret
bounds Õ(SA
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4 ) up to logarithmic factors with high probability for both

the gain and the constraint violations.

Section 2 presents the preliminary of this thesis. We describe the defini-
tion of MDP, policy, and other related notion. Also we describe the corre-
sponding definition in the case of CMDP.

Section 3 presents the description of Constrained-UCRL algorithm. As
we mentioned above, Constrained-UCRL is motivated by UCRL2 algorithm,
the algorithm which is shown to have sublinear regret bounds with high
probability for weakly-communicating MDPs. The main difference between
Constrained-UCRL and UCRL2 is the way to compute optimistic policy.
UCRL2 uses extended value iteration to compute it. However, in CMDP
settings, we face the difficulties in the execution of (extended) value iteration
due to the existence of multiple rewards which need to consider simultane-
ously. Then instead of (extended) value iteration, Constrained-UCRL uses
the linear programming.

At first of Section 3, we mention the five assumptions in this thesis: Ir-
reducibility of MDPs/CMDPs, deterministic rewards, the existence of reset
action for CMDPs, satisfiability of CMDPs, and the given information to the
learner. Then we describe the pseudo-code of Constrained-UCRL, and state
the main theorem which show that Constrained-UCRL algorithm has sublin-
ear regret bounds with high probability for both the gain and the constraint
violations. In MDP settings, sublinear regret (bound) is the condition which
indicates that an algorithm behaves like the optimal policy after sufficient
timesteps. This theorem implies that there is an algorithm that learn some
kinds of CMDPs practically like the case of weakly-communicating MDPs.

Section 4 is the preparation of Section 5. In this section, we show the
relationship between the linear programming problem in the pseudo-code
of Constrained-UCRL algorithm and the execution policy. To compute the
execution policy, we take three steps: modifying confidence interval, solv-
ing a linear programming problem corresponds to modified confidence in-
terval, modifying the reset probability (the probabilty of selecting the reset
action) of computed policy. The purpose of modifying confidence interval
is to limit the interval which includes irreducible CMDPs only. Due to this
modification, we can connect the modified confidence interval with the linear
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programming problem for an irreducible CMDP. Though we do not get the
linear programming problem corresponds to the modified confidence inter-
val, we can get it through introducing new variables. After solving the linear
programming problem, if there is no solution of the linear programming prob-
lem, then Constrained-UCRL algorithm terminates and returns false, which
means that Constrained-UCRL fail to learn true CMDP. Otherwise, through
computing over the solution of the problem we get an optimistic policy of
modified confidence interval. Indeed, we take the other step, modifying com-
puted policy, to get small bias span through control the least probability of
selecting reset action in modified policy. Bias span is the span of bias vector,
where bias vector denotes the state-dependent accumulative rewards. Since
in irreducible MDPs and CMDPs the gain of a stationary policy becomes to
state-independent, the effect of bias becomes smaller and smaller with think-
ing of expected average behavior. But, in Constrained-UCRL algorithm, we
change policy at the start of each episode so that we need to consider the
effect of bias.

Section 5 presents the proof of the main theorem. This analysis is mainly
followed in a way of the regret analysis of UCRL2. We evaluate the stochas-
tic upper bound of T -step accumulative regret which corresponds to i-th
constraint for specific i, t. This evaluation is separated into three parts: eval-
uation between the gain of true optimal policy on true CMDP and that of es-
timated policy on estimated CMDP, evaluation between the gain of estimated
policy on estimated CMDP and that on true CMDP, evaluation between the
gain of estimated policy on true CMDP and the actual accumulative reward
during execution of Constrained-UCRL. In the first evaluation, we use the
result of optimism of estimated policy in modified confidence interval. In
the second evaluation, we use the small bias span of estimated policy and
CMDP, and the upper bound of L1-deviation of transition probability func-
tion against true CMDP. In the third evaluation, we use Azuma-Hoeffding
Inequality[5, 6], which stochastically evaluates the sum of random variables
which compose a martingale-difference sequence. On the other hand, we eval-
uate the upper bound of the probability that Constrained-UCRL algorithm
terminates until timestep T , which means Constrained-UCRL algorithm fail
to learn true CMDP. Putting the result of these analyses together, we show
that the theorem holds.

Section 6 concludes this thesis.

The contribution of this thesis is summarized as follows. At first, we

3



give a way to extend the regret framework for the non-constrained case to
the constrained case. This extended regret framework matches the original
framework in the case that there is no constraint. Then, we show the analysis
of Constrained-UCRL algorithm with this extended regret framework. The
main theorem shows that Constrained-UCRL algorithm has sublinear regret
bounds with high probability for both the gain and the constraint violations.
This implies that there is an algorithm that learn some kinds of CMDPs
practically like the case of weakly-communicating MDPs.
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