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An orthogonal polynomial sequence is a sequence of polynomials such that any
two different polynomials in this sequence are orthogonal to each other under certain
linear functional. Let L be a linear functional from R[x] to R. The orthogonal
polynomial sequence {pn(x)}∞n=0 related to the linear functional L are defined upon
the following conditions:

L[pn(x)pm(x)] = hnδm,n, hn ̸= 0, (1a)
deg(pn(x)) = n, (1b)

where δm,n is Kronecker’s delta, δn,n = 1 and δm,n = 0,∀m ̸= n. The most widely
used orthogonal polynomials are the classical orthogonal polynomials, which are
characterized as eigenfunctions of certain second-order differential or difference op-
erators. In this thesis we study several generalizations of the classical orthogonal
polynomials. A common feature shared by these generalizations is that their degree
sequences do not include all the non-negative integers, which means the condition
(1b) is not satisfied. These generalizations are polynomial eigenfunctions of certain
generalized operators which are self-adjoint. It was known that orthogonality can be
implied by the self-adjoint condition. However, it is difficult to determined the re-
lated self-adjoint operator if it has polynomial eigenfunctions where gaps are allowed
in the degree sequences.

In chapter 1, the history background and the definitions as well as the rich ap-
plications of the classical orthogonal polynomials are introduced. An important
property called duality which reads as the equivalence of a three-term recurrence
relation and an eigenvalue equation satisfied by the classical orthogonal polynomials
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is illustrated with a simple example. Generalizing the eigenvalue equation is a key
in deriving the generalizations of the classical orthogonal polynomials.

In chapter 2, we give a brief review on the exceptional extensions of the very clas-
sical orthogonal polynomials, which are polynomial eigenfunction of a second-order
differential operator. The exceptional orthogonal polynomials are good examples
where gaps are allowed in the degree sequences. Extensive studies have been de-
voted to the exceptional orthogonal polynomials satisfying a second-order differential
equation, which are classified as the Hermite, Laguerre, and Jacobi type. We clarify
the relationship between an electrostatic model and the zeros of these exceptional
orthogonal polynomials. We show that the energy function of the electrostatic model
attains its maximum value at the zeros of the exceptional orthogonal polynomials
under some sufficient conditions.

In chapter 3, we construct an exceptional extension of the Bannai-Ito polyno-
mials, which are polynomial eigenfunction of the Dunkl-type difference operator. A
powerful method in the construction of these exceptional polynomials is called the
Darboux transformation. We generalize the Darboux transformation to a first-order
Dunkl-type difference operator. From this generalized Darboux transformation we
are able to derive the exceptional Bannai-Ito operators. We also give more general
results on the intertwining relations regarding the multiple-step exceptional Bannai-
Ito operator, and derived their eigenfunctions. We construct the 1-step exceptional
Bannai-Ito polynomials and show that they are orthogonal with respect to a dis-
crete measure on the exceptional Bannai-Ito grid. Interestingly enough, the degree
sequences of the exceptional Bannai-Ito polynomials demonstrate different rules com-
pared with all the known 1-step exceptional orthogonal polynomials. The positivity
of the weight functions related to these 1-step exceptional Bannai-Ito polynomials is
also considered, and we provide several sufficient conditions with respect to certain
parameters.

In chapter 4, we introduced and characterized orthogonal functions that we have
called Dunkl-supersymmetric. These functions are eigenfunctions of a class of Dunkl-
type differential operators that can be cast within supersymmetric quantum mechan-
ics. A significant feature of these orthogonal function families is that they do not
involve polynomials of all degrees but are rather organized in pairs of polynomials
both of the same degree (where the examples in terms of the Jacobi polynomials may
be viewed as polynomials in some special variables). The connection with supersym-
metric quantum mechanics has been exploited to obtain a number of Dunkl-SUSY
orthogonal functions from exactly solvable problems. Informed by these results we
could offer a general characterization of the Dunkl-SUSY orthogonal polynomials
and could exhibit as well their recurrence relations.
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