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Chapter 1

Introduction

In this thesis we study several generalizations of the classical orthogonal polynomials (COP). These
generalizations include the exceptional orthogonal polynomials (XOP), the Dunkl-supersymmetric or-
thogonal functions and orthogonal polynomials whose degree sequence is 0,2,2,4,4, . . .. A common
feature shared by these generalizations when they appear as polynomials is that the degree sequence
of them are not a set where all the non-negative integers are included. Here we say a polynomial p(x)
is of degree n if the highest degree of the variable x is n. Specifically, let us consider a (finite or in-
finite) sequence of polynomials {Pn(x)} that satisfy certain orthogonality, denote the degree sequence
of {Pn(x)} by S, and let N0 = {0,1,2, . . .}. For the orthogonal polynomials we shall consider in this
thesis, one always has

S= N0\C, (1.0.1)

where the set C ⊂ N can be finite or infinite. The significance of studying these generalizations of
COP is self-evident once the readers come to realize the great theoretical value and rich applications
of COP. We would like to invite the readers to follow us into this short but pleasing journey playing
with generalizations of COP.

1.1 Classical orthogonal polynomials

1.1.1 History and definitions

First, we shall quickly review the history of the orthogonal polynomials (OP) in general. The origin
of OP goes back to the theory of continued fractions studied by Stieltjes in the late nineteenth century
[72]. Over the past hundred years, voluminous achievements on the theory and applications of OP
have been contributed by a great number of outstanding mathematicians, to name a few, Markov,
Padé, Hamburger, Hausdorff, Carleman, Perron, Szegö [10, 34, 35, 53, 61, 62, 74]. Especially, after
the publication of Szegö’s famous treatise on the theory of OP, increasing interest has been attracted
to this subject. The basic general theory of OP was further developed by Chihara in his well-known
book [12], where many necessary background materials are also included.

Along with the development of the theories of OP, it has been widely applied to many different
branches of mathematics and physics, such as special functions, integrable systems, approximation
theory, numerical analysis, random matrix, quantum mechanics and combinatorial theory. In addition,
the theories developed upon that of OP furnish comparatively general and instructive illustrations of
certain situations in the theory of orthogonal systems. Recently, some of these polynomials have been
shown to be of great significance in quantum informatics [7, 14, 43] and in machine learning [48, 71].

Now let us introduce the definition of OP. For a comprehensive review of the theory of OP, one
can refer to the special issues dedicated to such topics [12, 47, 74]. Let L be a linear functional from
R[x] to R. The orthogonal polynomial sequence (OPS) related to the functional L are defined as a
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sequence of polynomials {pn(x)}∞
n=0 satisfying the following conditions:

L [pn(x)pm(x)] = hnδm,n, hn ̸= 0, (1.1.1a)

deg(pn(x)) = n. (1.1.1b)

If in additional we also have hn = 1, n ≥ 0, then it will be called an orthonormal polynomial sequence.
For convenience, unless otherwise specified we will assume that the OPS mentioned in this thesis are

always monic (which means their leading coefficients in the variable is 1). An equivalent definition of
OPS was then provided by Favard [20] in 1935 as the existence of the three-term recurrence relations:

xpn(x) = pn+1(x)+an pn(x)+bn pn−1(x), p−1(x) = 0, (bn ̸= 0), n = 0,1,2, . . . (1.1.2)

Moreover, the OPS {pn(x)}∞
n=0 is called positive-definite if an is real and bn > 0. This characterization

of OPS is sometimes even more important since it relates OP to a tridiagonal matrix, which is usually
called a Jacobi matrix. This key feature is the starting point of many applications of OP. The Jacobi
matrix plays an important role in several areas including quantum theory, integrable systems, numerical
analysis, random matrices and antisymmetric simple exclusion process (ASEP) which are nowadays
extensively studied and investigated [4, 6, 11, 68, 78, 80].

Three well-known examples of OP, the Hermite, Laguerre and Jacobi (including the special cases
Tchebichef, Legendre, Gagenbauer) polynomials, have long been at the center of the studies of OP.
These three systems were called collectively the classical orthogonal polynomials (COP). In many
literatures the term “classical” means that the OP satisfy certain second-order differential equations

(A(x)∂ 2
x +B(x)∂x +C(x))pn(x) = 0, (1.1.3)

where ∂x =
d
dx , A(x) and B(x) are polynomials of degrees not exceeding 2 and 1, C(x) is constant.

These COP have many properties in common. One of them is that the derivative of pn(x) is a constant
times qn−1(x) where {pn(x)} is in one of these COP and {qn(x)} is also. These are the only sets of OP
with the property that their derivatives are also orthogonal.

Later, the concept of COP has also been extended to a discrete variable case and they are defined as
polynomials satisfying a second-order difference equation

(A(x)∆2
x +B(x)∆x +C(x))pn(x) = 0 (1.1.4)

or a second-order q-difference equation

(A(x)(∆q
x)

2 +B(x)∆q
x +C(x))pn(x) = 0, (1.1.5)

where ∆x is a difference operator defined by ∆x f (x) = f (x+1)− f (x) and ∆q
x is the q-difference oper-

ator defined by ∆q
x f (x) = ( f (qx)− f (x))/(q−1)x. The orthogonal polynomials which are solutions of

(1.1.3), (1.1.4) or (1.1.5) are characterized as the Askey scheme or the q-Askey scheme [57] and these
polynomials are explicitly written in terms of hypergeometric functions [22].

In the book of Koekoek and coworkers [44], the Hermite, Laguerre and Jacobi polynomials are
called “very classical orthogonal polynomials”, and (following Andrews & Askey [2]) the authors
called all families in the (q-)Askey scheme classical. The families in the (q-)Askey scheme have found
interpretations in various settings, for instance in the representation theory of specific Lie or finite or
quantum groups, in combinatorics and in probability theory. Some of the limits in the scheme could
also be brought over to limit relations of the structures where the polynomials were interpreted.

In this thesis we would like to follow the statement in Koekoek’s book, which means in what follows,
the term COP will always refer to all the members in the (q-)Askey scheme.
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1.2 Duality and classical orthogonal polynomials
As we have seen, classical orthogonal polynomials are always equipped with three-term recurrence
relations and a second-order equation simultaneously. This property is called duality. In the infinite-
dimensional case there are several possibilities for duality property. The “classical” duality means that
orthogonal polynomials pn(x) satisfy both the recurrence relation (1.1.2) and one of the second-order
equations (1.1.3), (1.1.4) and (1.1.5). In the finite-dimensional case, the duality can be understood with
the help of a Leonard pair. The relationship between a Leonard pair and orthogonal polynomials has
been explained explicitly in [75, 76]. In what follows, we would like to briefly introduce it.

Let V denote a vector space over a field K with finite positive dimension N+1. By definition, a pair
of linear operators X : V →V and Y : V →V form a Leonard pair if there exist two basis for V , say en
and dn, n = 0,1,2, . . . ,N, such that, on the one hand, with respect to the basis en, n = 0,1,2, . . . ,N, X
is diagonal and Y is tridiagonal:

Xen = λnen, Yen = ξn+1en+1 +ηnen +ξnen−1, n = 0,1,2, . . .N;

on the other hand, with respect to the basis dn, n = 0,1,2, . . . ,N, Y is diagonal and X is tridiagonal:

Y dn = µndn, Xdn = an+1dn+1 +bndn +andn−1, n = 0,1,2, . . .N

where an,ξn ̸= 0, n = 0,1, . . . ,N, and aN+1 = ξN+1 = 0. If there exist functions ωn and polynomials
ψn(x), n = 0,1, . . . ,N, such that the following expansions hold

es =
N

∑
n=0

√
ωsψn(λs)dn, dn =

N

∑
s=0

√
ωsψn(λs)es,

then ψn(x) are orthonormal polynomials defined by the three-term recurrence relation

xψn(x) = an+1ψn+1(x)+bnψn(x)+anψn−1(x), (1.2.1)

where ψ−1(x) = 0,ψ0(x) = 1. These polynomials are orthonormal with respect to the weights ωs

N

∑
s=0

ωsψn(λs)ψm(λs) = δnm. (1.2.2)

For readers who are not familiar with the above discussions we would like to give some explanations
on the calculations leading to (1.2.1) and (1.2.2). First, it follows from the expansion of es that

Xes =
N

∑
n=0

√
ωsψn(λs)Xdn =

N

∑
n=0

√
ωsψn(λs)(an+1dn+1 +bndn +andn−1),

while it also holds that

Xes = λsen =
N

∑
n=0

√
ωsψn(λs)λsdn.

By comparing the right-hand sides of these two equation one arrives (1.2.1). The orthogonality relation
(1.2.2) follows directly from the expansions:

dn =
N

∑
s=0

√
ωsψn(λs)

N

∑
m=0

√
ωsψm(λs)dm =

N

∑
m=0

(
N

∑
s=0

ωsψn(λs)ψm(λs)

)
dm.
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Again, if there exist functions ω̃n and polynomials χn(x), n = 0,1, . . . ,N, such that the (dual) expan-
sions hold

ds =
N

∑
n=0

√
ω̃sχn(µs)en, en =

N

∑
s=0

√
ω̃sχn(µs)ds,

then the (dual) polynomials χn(x) are orthonormal defined by the three-term recurrence relation

xχn(x) = ξn+1χn+1(x)+ηnχn(x)+ξnχn−1(x), (1.2.3)

where χ−1(x) = 0,χ0(x) = 1. They are orthogonal with respect to (dual) weights ω̃s

N

∑
s=0

ω̃sχn(µs)χm(µs) = δnm. (1.2.4)

Moreover, comparison between the two types of expansions of en, dn leads to the Leonard duality:

√
ωsψn(λs) =

√
ω̃nχs(µn). (1.2.5)

If we multiply
√

ω̃n/ωs in both sides of the recurrence relations (1.2.3) with n replaced by s and x = µn

µn
√

ω̃n/ωsχs(µn) = ξs+1
√

ω̃n/ωsχs+1(µn)+ηs
√

ω̃n/ωsχs(µn)+ξs
√

ω̃n/ωsχs−1(µn)

and then substitute the relation (1.2.5) into the above, it turns out that polynomials ψn(x) satisfy the
second-order difference equation

A(s)(ψn(λs+1)−ψn(λs))+B(s)(ψn(λs−1)−ψn(λs))+C(s)ψn(λs) = µnψn(λs)

where
A(s) = ξs+1

√
ωs+1/ωs, B(s) = ξs

√
ωs−1/ωs, C(s) = ηs +A(s)+B(s).

1.3 Algebraic representations
Bispectral pair is a generalization of Leonard pair. With the help of this concept, the polynomials in
the (q-)Askey scheme are related with very elegant algebras, among which the most general one is the
Askey-Wilson algebra (or Zhedanov algebra) [32, 87]. All the polynomials in the (q-)Askey scheme
can be realized by this algebra or its degenerations. The Askey-Wilson (AW(3)) algebra is defined as
the algebra with three generators X , Y and Z subject to the relations

[X ,Y ]q = Z, (1.3.1a)

[Y,Z]q = BX +A1Y +C1, (1.3.1b)

[Z,X ]q = BX +A2Y +C2, (1.3.1c)

where A1,A2,B,C1,C2 are complex constants, and [X ,Y ]q = XY − qY X is called q-mutator. Due to
simple q-mutation relations its representations, spectra, overlaps and other properties can be obtained
immediately [31]. Later, The Z3 form of the AW(3) algebra was also found [85]:

[X ,Y ]q = a3Z +w3, [Y,Z]q = a1X +w1, [Z,X ]q = a2Z +w2.

In case if a1a2a3 ̸= 0 it is possible to put a1 = a2 = a3 = 1, then there are four independent parameters:
ω1,ω2,ω3 and the value Q of the Casimir operator of this algebra. They correspond to the 4 parameters
of Askey-Wilson polynomials.
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When some parameters are zero then the Aksey-Wilson polynomials degenerate to other polynomi-
als from the (q-)Askey scheme. For example, put q =−1, the algebra

{X ,Y}= a3Z +w3, {Y,Z}= a1X +w1, {Z,X}= a2Z +w2,

describes the Bannai-Ito polynomials (which will appear in Chapter 3) [3, 79], where {X ,Y} = XY +
Y X is the anticommutator. In addition, if a1 = 0 then the degeneration corresponds to big −1 Jacobi
polynomials [84]. If a1 = ω1 = 0 then the degeneration corresponds to little −1 Jacobi polynomials
[82]. For more interesting results on the algebras related with COP one can refer to [5, 21, 30–32, 75,
76, 85, 87].

1.4 Outline of thesis
The main purpose of this thesis is to deepen the understanding of classical orthogonal polynomials by
studying their generalizations when dropping some restrictions on the degree sequence. Specifically,
we consider the generalizations where the degree sequence of such an orthogonal polynomial system
does not consist of all the nonnegative integers, i.e. gaps are allowed in their degree sequence.

This thesis unfolds as follows.
In chapter 2, we discuss about the electrostatic properties of zeros of exceptional extensions of the

very classical orthogonal polynomials. We first give a brief review on the exceptional extensions of
the very classical orthogonal polynomials. A powerful method in the construction of these exceptional
polynomials is called the Darboux transformation. After introducing these concepts, we investigate a
classical electrostatic problem related with the very classical orthogonal polynomials. This problem
can be solved by deriving the configuration where the maximum value of a special energy function is
obtained. We show that this energy function attains its maximum value at the zeros of some exceptional
orthogonal polynomials under certain conditions.

In chapter 3, we construct an exceptional extension of the Bannai-Ito polynomials. In this construc-
tion, we generalize the Darboux transformation to a first-order Dunkl-type difference operator. From
the generalized Darboux transformation we derive the exceptional Bannai-Ito operators which have
polynomial eigenfunctions of all but a finite number of degrees. We also give more general results
on the intertwining relations regarding the multiple-step exceptional Bannai-Ito operator, and derived
their eigenfunctions. A special class of eigenfunctions of the Bannai-Ito operator which are called the
quasi-polynomial eigenfunctions are also important in the construction of the exceptional Bannai-Ito
polynomials. A quasi-polynomial eigenfunction consists of a gauge factor and a polynomial part. We
show that there are 8 classes of gauge factors by comparing the coefficients of the conjugated Bannai-
Ito operator and those of the Bannai-Ito operator. Then we construct the 1-step exceptional Bannai-Ito
polynomials and show that they are orthogonal with respect to a discrete measure on the exceptional
Bannai-Ito grid. Interestingly enough, the degree sequences of the exceptional Bannai-Ito polynomials
demonstrate different rules compared with all the known 1-step XOPs. The positivity of the weight
functions related to these 1-step exceptional Bannai-Ito polynomials is also considered, and we provide
several sufficient conditions with respect to certain parameters.

In chapter 4, we introduced and characterized orthogonal functions that we have called Dunkl-
supersymmetric. These functions are eigenfunctions of a class of Dunkl-type differential operators that
can be cast within Supersymmetric Quantum Mechanics. This investigation has built and expanded
upon the analysis in [65] where two examples had been studied. A significant feature of these orthog-
onal function families is that they do not involve polynomials of all degrees but are rather organized in
pairs of polynomials both of the same degree (where the examples in terms of the Jacobi polynomials
may be viewed as polynomials in another variable) . The connection with Supersymmetric Quantum
Mechanics has been exploited to obtain a number of Dunkl-SUSY orthogonal functions from exactly
solvable problems. Informed by these results we could offer a general characterization of the Dunkl-
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SUSY OPs and could exhibit as well their recurrence relations. It would be of interest to relate the
families of OPs that have been obtained as q =−1 limits of q-orthogonal polynomials [51,79,82,84].
A challenging project for the future would be to undertake the study of multivariate supersymmetric
polynomials.

In chapter 5, we give summary and plans of future works.
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Chapter 2

Exceptional extensions of the very

classical orthogonal polynomials and their

electrostatic properties

2.1 Darboux transformation
The last decade has witnessed exciting developments in a new class of generalization of COP, which
were given a kindly confusing name, the “exceptional” orthogonal polynomials (XOP). It is necessary
to remark that the XOP are a generalization of the COP, since they have the latter as a special case.
Here we say a polynomial Pn(x) is of degree n if the highest degree of its variable is n. In most cases the
XOP have “gaps” in their degree sequences, i.e. there are a finite number of missing degrees in their
polynomial sequences (while the degree sequences of very COP are {0,1,2, . . .}). Extensive interest
have been devoted to many aspects of the theory of XOP. See, for instance, [25] for the introduction of
the exceptional flag which gives birth to XOP, and [24,26,69,77] for a systematic way of constructing
XOP satisfying 2nd-order differential equations (or 2nd-order difference equations in [16–18]), as well
as [23] for a complete classification of the (continuous) XOP.

In the construction of XOPs, the Darboux transformation (DT) plays an important role. It was further
clarified that multiple-step or higher order DTs lead to XOPs labelled by multi-indices [27,29,59]. The
1-step (rational) DT was conducted on a 2nd-order differential operator T = p(x)Dxx +q(x)Dx + r(x)
and acts as T 7→ T (1):

T = B ◦A +λ , T (1) = A ◦B+λ , (2.1.1)

where A , B are 1st-order differential operators [26]. An immediate consequence of (2.1.1) can be
derived as the following intertwining relations

A ◦T = T (1) ◦A , T ◦B = B ◦T (1),

which imply that the eigenvalue problem T [y] = λy is equivalent to T (1)[y(1)] = λy(1) where y(1) =
A [y]. Thus with a well selected “seed solution” ϕ such that T [ϕ ] = µϕ and A [ϕ ] = 0, it simply
deletes degrees in the eigenfunction sequence {y(1)} of the Darboux transformed operator T (1).

In the above we described a rough image of a 1-step (rational) DT. Let us introduce the basic knowl-
edge about DT in more details adopting the notations of [23]. Given a second-order differential oper-
ator T = p(x)∂ 2

x +q(x)∂x + r(x), let ϕ(x) be an eigenfunctions of T such that

T [ϕ ](x) = λϕ(x),

where p(x),q(x),r(x) are rational functions, λ is the corresponding eigenvalue.

7



Definition 2.1.1. A rational factorization of T is a relation of the form

T = BA+λ ,

where A,B are first-order differential operators. Given a rational factorization, we call the second-
order differential operator T̂ defined by

T̂ = AB+λ

the partner operator of T and say that T 7→ T̂ is a rational Darboux transformation.

It is easy to see that T , T̂ are related by the following intertwining relations

AT = T̂ A, T B = BT̂ ,

which imply that the eigenvalue equation T [ϕ ] = λϕ is equivalent to the eigenvalue equation T̂ [ϕ̂ ] =
λ ϕ̂ where ϕ̂ = A[ϕ ]. Specifically, we denote the first-order differential operators A,B by

A = b(∂x −u), B = b̂(∂x − û),

where b, b̂,u, û are non-zero rational functions satisfying

b̂b = p, û+u =− q
p
+

b′

b
,

and a Ricatti equation
p(u′+u2)+qu+ r = λ .

From the definition of T , T̂ and the way they are being factorized, it follows immediately that:

Proposition 2.1.1. Given two second-order differential operators T , T̂ :

T = p∂ 2
x +q∂x + r, T̂ = p̂∂ 2

x + q̂∂x + r̂,

if T , T̂ are related by a rational Darboux transformation, then their coefficients satisfy

p̂ = p,

q̂ = q+ p′− 2b′

b
p,

r̂ = r+q′+up′− b′

b
(q+ p′)+

(
2
(b′

b

)2 − b′′

b
+2u′

)
p.

If we let ϕ0 be a solution of A[y] = 0, consequently, u = ϕ ′
0/ϕ0, then there exist a constant λ0 such

that
T = BA+λ0, T [ϕ0] = λ0ϕ0

which means that ϕ0 is an eigenfunction of T with respect to the eigenvalue λ0. Let {ϕα}α∈I be the set
of eigenfunctions of T such that

T [ϕα ] = λα ϕα , α ∈ I.

For the partner operator of T defined by T̂ = AB+λ0, its eigenfunctions can be given by

ϕ̂α =


b

pωϕ0
, if A[ϕα ] = 0

A[ϕα ], otherwise

(2.1.2)

(2.1.3)

8



where ω is given by ω = e
∫ q−p′

p . In fact, if A[ϕα ] = 0, then

T̂ [ϕ̂α ] = AB[ϕ̂α ]+λ0ϕ̂α = λ0ϕ̂α

since B[ϕ̂α ] = 0, and, if A[ϕα ] ̸= 0, then

T̂ [A[ϕα ]] = ABA[ϕα ]+λ0ϕ̂α = A[(λα −λ0)ϕα ]+λ0ϕ̂α = λα ϕ̂α .

Hence the rational Darboux transformation

(T,{ϕα}) 7→ (T̂ ,{ϕ̂α})

is an isospectral transformation:
T̂ [ϕ̂α ] = λα ϕ̂α , ∀α ∈ I.

Next we consider iterated rational Darboux transformations.

Definition 2.1.2. Let T , T̂ be second-order differential operators with rational coefficients. We say
that T and T̂ are gauge-equivalent if there exist a complex-valued rational function σ such that

σT = T̂ σ ,

where σ is referred as the gauge-factor. And say that T̂ is Darboux connected to T if there exists a
differential operator L such that

LT = T̂ L.

In particular, gauge-equivalent operators are Darboux connected since they are related by a zeroth-
order intertwining relation. The relations between coefficients of gauge-equivalent operators T , T̂ can
be obtained from straight-forward computations:

p̂ = p,

q̂ = q− 2σ ′

σ
p,

r̂ = r− σ ′

σ
q+
(

2
(σ ′

σ
)2 − σ ′′

σ

)
p.

Proposition 2.1.2. Two second-order differential operators with rational coefficients T , T̂ are Dar-
boux connected if and only if they are either gauge-equivalent, or they are connected by a factorization
chain, i.e., there exist second-order differential operators Ti with T0 = T and Tn = T̂ such that

Ti = BiAi +λi, i = 0,1, . . . ,n−1
Ti+1 = AiBi +λi,

where Ai,Bi are first-order differential opeartors, λi are constants, i = 0,1, . . . ,n−1.

In fact, the existence of factorization chain between T and T̂ can be demonstrated as the follow-
ing sequence of eigenvalue equations which are indeed the iterated utilization of rational Darboux
transformations

T [ϕ0] = T0[ϕ0] = λ0ϕ0,

T1[ϕ1] = λ1ϕ1, T1[ϕ̂0] = λ0ϕ̂0,

T2[ϕ2] = λ2ϕ2, T2[ϕ̂1] = λ1ϕ̂1,

...
T̂ [ϕn] = Tn[ϕ̂n−1] = λn−1ϕ̂n−1.
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For simplicity of computation, here we assume that λ0, λ1, · · · , λn−1 are distinct numbers. First, we find
a seed solution of T0[ϕ (0)] = λ (0)ϕ (0) (λ (0) ̸= λ0), let A0 = b0(∂x −ϕ ′(0)/ϕ (0)). Notice that A0[ϕ0] ̸= 0,
denote ϕ̂0 = A0[ϕ0] then we get T1[ϕ̂0] = λ0ϕ̂0. Let A1 = b1(∂x − ϕ̂ ′

0/ϕ̂0), A1[ϕ1] ̸= 0 and ϕ̂1 = A1[ϕ1] =

b1(ϕ ′
1−ϕ1ϕ̂ ′

0/ϕ̂0) = b1Wr[ϕ̂0,ϕ1]/ϕ̂0, here Wr represents the Wronskian type determinant. In the same
way we will find that A2 = b2(∂x − ϕ̂ ′

1/ϕ̂1) and ϕ̂2 = A2[ϕ2] = b2(ϕ ′
2 − ϕ2ϕ̂ ′

1/ϕ̂1) = b2Wr[ϕ̂1,ϕ2]/ϕ̂1.
Continue this procedure, it turns out that

ϕ̂n−1 =
bn−1

ϕ̂n−2
Wr[ϕ̂n−2,ϕn−1].

In the case where b0 = b1 = · · ·= bn−1 = 1, it follows inductively

ϕ̂n−1 =
Wr[ϕ (0),ϕ (1), . . . ,ϕ (n−1),ϕ (n)]

Wr[ϕ (0),ϕ (1), . . . ,ϕ (n−1)]
,

here ϕ (i), i = 0,1, . . . ,n are different eigenfunctions of T0.
Till now we have shown how exceptional polynomial sequence can be obtained by a rational Dar-

boux transformation and iterated rational Darboux transformations. The operator related to exceptional
polynomial sequences are called the exceptional operators.

Definition 2.1.3. A second-order differential operator T is exceptional if T has polynomial eigen-
functions for all but finitely many degrees. Specifically, there exists a finite set of natural numbers
{k1, . . . ,km} ⊂ N such that for all k /∈ {k1, . . . ,km}, there exists a polynomial yk of degree k satisfying
the following eigenvalue equation:

T [yk] = λkyk, λk ∈ C,

while no such polynomials exists if k ∈ {k1, . . . ,km}. Such a polynomial system is called the exceptional
orthogonal polynomial system, where k1, . . . ,km are the exceptional degrees, and m is the codimension.

The following theorem implies that every exceptional operator is Darboux connected to a classical
operator.

Theorem 2.1.1 (M. Garcı́a-Ferrero, D. Gómez-Ullate and R. Milson [23]). Every exceptional orthog-
onal polynomial system can be obtained by applying a finite sequence of Darboux transformations to
a classical orthogonal polynomial system.

Note that this theorem was only proved for the “very classical orthogonal polynomials” (the Hermite,
Laguerre and Jacobi polynomials), it may not hold true for all the COP but still has great instructions
for deriving exceptional extensions of COP.

2.2 Exceptional extensions of the very classical orthogonal

polynomials
In this section we will introduce the definition and properties of exceptional extensions of the very
classical orthogonal polynomials. First, we quickly review some properties of the very classical or-
thogonal polynomials. The eigenvalue equation of the very classical orthogonal polynomials can be
rewritten as the well known Sturm-Liouville type equation

(P(x)y′(x))′+R(x)y(x) = λω(x)y(x),

where P(x) = ω(x)p(x), R(x) = ω(x)r(x). The weight function ω(x) satisfies the Pearson equation(
p(x)w(x)

)′
= q(x)w(x) (2.2.1)
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and the conditions

p(x)w(x)xk = 0, k ∈ N (2.2.2)

on the boundary of the interval I.
Denote P the ring of polynomials. Let us introduce the definition of the exceptional extensions of

the very classical orthogonal polynomials [23].

Definition 2.2.1. (Exceptional orthogonal polynomials)
A sequence of polynomials {yk(x)}k∈N/{k1,··· ,km} is called a sequence of exceptional orthogonal poly-
nomials if

(1) the yk’s are the eigenfunctions of a second-order differential operator T , T = p∂ 2
x + q∂x + r,

where p, q, r are rational functions on x;
(2) there is an open interval I ∈ R such that

(1-a) the associated weight function w(x), as given in (2.2.1), is single valued, and integrable
on I, and moreover,

(1-b) all moments are finite, i.e.∫
I
x jω(x)dx < ∞, j ∈ N/{k1, · · · ,km};

(1-b) y(x)p(x)ω(x)→ 0 at the endpoints of I for every polynomial y ∈ P .
(3) the vector space span {yk : k /∈ {k1, · · · ,km}} is dense in the weighted Hilbert space

L2(ω(x)dx, I).

The weight functions associated with these exceptional polynomials turn out to the those of the classi-
cal ones over the square of a polynomial [23].

Theorem 2.2.1. The weight function ω(x) of XOP has the form

ω̂(x) =
ω(x)
η2(x)

,

where η(x) is a real-valued polynomial which is non-vanishing on I, ω(x) is the weight function of a
classical orthogonal polynomial system.

Remark 2.2.1. Note that all the zeros of η(x) lie outside I by assumption (2) in the Definition 2.2.1.
If an exceptional orthogonal polynomial system has polynomials for all degrees (i.e. m = 0), then
it defines a classical orthogonal polynomial system, which up to an affine transformation must be
Hermite, Laguerre or Jacobi polynomials.

Specifically, the second-order differential equations satisfied by the three types exceptional orthog-
onal polynomials are given by [16–18]

H ′′
n (x)−2

(
x+

η ′
H(x)

ηH(x)

)
H ′

n(x)+
(

η ′′
H(x)

ηH(x)
+2x

η ′
H(x)

ηH(x)
+2n−2k−2uH

F

)
Hn(x) = 0, (2.2.3)

xL′′
n(x)+

(
α + k′+1− x−2x

η ′
L(x)

ηL(x)

)
L′

n(x)

+

(
x

η ′′
L (x)

ηL(x)
+(x−α − k′)

η ′
L(x)

ηL(x)
+n− k1 −uL

F

)
Ln(x) = 0, α >−1,k′ > 0,

(2.2.4)
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(1− x2)P′′
n (x)+

(
β −α −2k′2 − (α +β +2k′1 +2)x−2(1− x2)

η ′
J(x)

ηJ(x)

)
P′

n(x)

+

(
(1− x2)

η ′′
L (x)

ηL(x)
+
[
α −β +2k′2 +(2k′1 +α +β )x

]η ′
J(x)

ηJ(x)
+λ (n−uJ

F )−λ (k′1)
)

Pn(x) = 0,

α,β >−1,k′1 + k′2 > 0,
(2.2.5)

where Hn(x), Ln(x), Pn(x) denote exceptional Hermite, Laguerre, Jacobi polynomials of degree n,
respectively. ηH(x), ηL(x), ηJ(x) are polynomials whose degrees coincide with the codimension of
the related XOPS, α , β , k, k′, k1, k′1, k′2, uH

F , uL
F , uJ

F are certain constants and λ (x) is a real-valued
function, we shall omit the details about these functions and constants here for the convenience of
discussion.

2.3 Stieltjes-Calogero type relations
There are many literatures considering the Stieltjes-Calogero type relations for zeros of orthogonal
polynomials, the most famous result among which was obtained by T. J. Stieltjes [73] as follow

n

∑
k=1,k ̸= j

1
x j − xk

= x j,

where x1, x2, · · · , xn are zeros of Hermite polynomial of degree n. Stieltjes noted that this result implies
an appealing interpretation of the location of zeros of Hermite polynomials as equilibrium positions
of a simple one-dimensional n-particle problem. Moreover, He obtained similar relations for zeros
of Laguerre and Jacobi polynomials thereafter. Interest in such kind of relations was revived by the
work of Calogero and co-workers on integrable many-body systems [1, 8, 9]. Since then substantial
efforts have been made on finding the Stieltjes-Calogero type relations for the purpose of revealing the
relationship between zeros of polynomial systems and certain many-body systems.

To the best of the author’s knowledge, the existing most generic method of obtaining this kind of
relations was described in [67]. We apply this method to give some nontrivial results in the proceeding
part. Let

Sm, j :=
n

∑
k=1,k ̸= j

1
(x j − xk)m ,

if it satisfies that
n

∑
k=1,k ̸= j

1
(x j − xk)m = f (x j),

where f (x j) is a rational function about x j, then the above formula is called a Stieltjes-Calogero type
relation.

Consider an n-th order differential equation，
n

∑
i=0

Ai(x)y(n−i)(x) = f (x), (2.3.1)

where Ai(x) and f (x) belong to C∞(−∞,∞)．Suppose that (2.6) has a monic polynomial solution y(x)
with simple roots:

y(x) =
n

∏
i=1

(x− xi),

12



then let y j(x) be defined as y(x) = (x− x j)y j(x), i.e.

y j(x) =
n

∏
i=1,i̸= j

(x− xi).

It follows that
y(r)(x j) = ry(r−1)

j (x j), r ≥ 1,

so that (2.3.1) becomes, after division by y′(x) and evaluation at x = x j，

n−1

∑
i=0

(n− i)Ai(x j)
y(n−i−1)

j (x j)

y j(x j)
=

f (x j)

y′(x j)
. (2.3.2)

S1, j can easily be obtained by observing the right hand side of the following formula

S1, j =
y′j(x)

y j(x)

∣∣
x=x j

thus the other terms immediately follow by differentiating at x = x j(y′j(x)

y j(x)

)(s)∣∣
x=x j

= (−1)ss!Ss+1, j, s = 0,1,2, · · · .

In light of the above formula Sr, j(r = 2,3, · · · ) can be derived by analyzing a new function Zr(x)

Zr(x) :=
y(r)j (x)

y j(x)

where Zr(x) satisfies a recurrence relation

Zr+1(x) = Z′
r(x)+Z1(x)Zr(x),

and the initial condition
Z1(x j) = S1, j.

Immediately we can rewrite (2.3.2) as

n−1

∑
i=0

(n− i)Ai(x j)Zn−i−1(x j) =
f (x j)

y′(x j)
. (2.3.3)

In the case of exceptional orthogonal polynomials, a second-order differential equation with rational
coefficients was satisfied

p(x)y′′(x)+q(x)y′(x)+ r(x)y(x) = λy(x), (2.3.4)

one can easily obtain

S1, j =−
q(x j)

2p(x j)
, (2.3.5)

S2, j =
2[p′(x j)+q(x j)]S1, j +[q′(x j)+ r(x j)]

3p(x j)
+S2

1, j, (2.3.6)

S3, j =− 1
8p(x j)

{
3[2p′(x j)+q(x j)][S2

1, j −S2, j]+

2[p′′(x j)+2q′(x j)+ r(x j)]S1, j

}
+

3
2

S1, jS2, j −
1
2

S3
1, j, (2.3.7)
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and S4, j, S5, j, · · · , by inductively calculating Zr(x), r = 2,3, · · · , and differentiating on both sides of
(2.3.4).

Making use of the above method, we obtain the following properties on the zeros of exceptional or-
thogonal polynomials according to the second-order differential equations (2.2.3), (2.2.4) and (2.2.5).

Let x1, · · · , xn denote the n zeros of the exceptional Hermite polynomial of degree n, then the
Stieltjes-Calogero type relations of x1, · · · , xn follow

S1, j = x j +
η ′

H(x j)

ηH(x j)
,

S2, j =
2
3
(n−1− k−uH

F )− 1
3

[
x2

j +
η ′′

H(x j)

ηH(x j)
−
(

η ′
H(x j)

ηH(x j)

)2]
,

S3, j =
1
2

x j.

Let x1, · · · , xn denote the n zeros of the exceptional Laguerre polynomial of degree n, then the
Stieltjes-Calogero type relations of x1, · · · , xn follow

S1, j =−
α +1+ k′− x j

2x j
+

η ′
L(x j)

ηL(x j)
,

S2, j =− 1
12

{
(α +1+ k′)(α +5+ k′)

x2
j

−
2(2n+α +1+ k′−2k′1 −2uL

F +2 η ′
L(x j)

ηL(x j)
)

x j

+1+4
η ′′

L (x j)

ηL(x j)
−4
(

η ′
L(x j)

ηL(x j)

)2}
.

Let x1, · · · , xn denote the n zeros of the exceptional Jacobi polynomial of degree n, then the Stieltjes-
Calogero type relations of x1, · · · , xn follow

S1, j =−
α −β +2k′2 +(α +β +2+2k′1)x j

2(1− x2
j)

+
η ′

J(x j)

ηJ(x j)
.

Remark 2.3.1. Only the first several terms of these relations are listed here, the other terms, which
tend to be more complicated (although some special terms may have elegant forms like S3, j for the zeros
of exceptional Hermite polynomials), can be easily computed using this method. Notice that in the case
of classical orthogonal polynomials all the terms containing k, k′, k1, k′1, k′2, ua

F , η ′
a(x j)/ηa(x j) and

η ′′
a (x j)/ηa(x j) (a = H,L,J) disappear automatically.

2.4 The electrostatic properties of zeros of the exceptional

extensions of the very classical polynomials
The zeros of the exceptional extensions of the very classical polynomials can be divided into two
groups: regular zeros which lie in the domain of orthogonality, and exceptional zeros (usually com-
plex) which lie in the exterior of the domain. A conjecture considering the location of zeros of these
exceptional orthogonal polynomials was drafted as follow:

Conjection 2.4.1 (A. B. Kuijlaars and R. Milson, [49]). The regular zeros of exceptional orthogo-
nal polynomials have the same asymptotic behavior as the zeros of their classical counterpart. The
exceptional zeros converge to the zeros of the denominator polynomial η(x).

Moreover, properties like the location and asymptotic behavior of zeros of exceptional Hermite
polynomials are described by A. B. Kuijlaars and R. Milson [49], of exceptional Laguerre and Jacobi
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polynomials by C. L. Ho, R. Sasaki [36] and D. Gómez-Ullate, M. Garcı́a-Ferrero, R. Milson [28].
It concludes that the zeros of exceptional orthogonal polynomials usually share similar properties as
their classical counterparts, especially for the regular zeros.

Below we revisit an energy problem by making use of properties of exceptional orthogonal polyno-
mials. Considering the maximum of the following energy function

Tω(x1, · · · ,xn) =
n

∏
j=1

ω(x j) ∏
1≤i< j≤n

|xi − x j|2, (2.4.1)

where the n points x1, · · · , xn lie on a compact set E. In the case of ω(x) = 1, I. Schur showed that
the maximum of Tω is obtained at the zeros of certain orthogonal polynomials [70]. If ω(x) takes a
classical weight, namely with Hermite weight ω(x) = e−x2

, with Laguerre weights ωα(x) = xα e−x,
with Jacobi weights ωα,β (x) = (1− x)α(1+ x)β , then the maximum of Tω is attained at the zeros
of orthogonal polynomials corresponding to ω , ωα−1, ωα−1,β−1, respectively [37]. Results for the
zeros of general orthogonal polynomials can be found in [40]. In addition, Á. P. Horváth proved that
the set of regular zeros of exceptional Hermite polynomials is the solution of the maximum problem
with respect to the weight ω̂(x)P2

m(x), where ω̂(x) is the weight of exceptional Hermite polynomials,
Pm(x) is a polynomial whose zeros are the exceptional zeros of an exceptional Hermite polynomial of
codimension m [38]. Similar results have also been reported in the cases of the so-called Xm-Laguerre
polynomials and Xm-Jacobi polynomials [39].

Remark 2.4.1. As is pointed out in [40], Tω is called an energy function in light of its potential
theoretic background. In fact, taking the logarithm in (1.1), the maximization problem of (1.1) is
equivalent to the minimization problem of the following function

− ln
(
Tω
)
=

n

∑
j=1

ln
1

ω(xi)
+ ∑

1≤i< j≤n
ln

1
|xi − x j|2

.

The second summation in the right-hand side can be interpreted as the energy of a system of n like-
charged particles located at the points {xi}n

i=1, where the repelling force between two particles is
proportional to the reciprocal of the square of the distance between them. The first summation refers
to the total external potential of this system. Thus, − ln

(
Tω
)

is the total energy of this n-particle
system.

In what follows, we investigate the maximum of the energy function (2.4.1) with respect to ω(x) =
ω̂(x)p(x), where p(x) is the coefficient of the following second-order differential equation satisfied by
the exceptional orthogonal polynomials with respect to ω̂(x)

p(x)y′′(x)+q(x)y′(x)+ r(x)y(x) = λy(x), (2.4.2)

the prime denotes derivative with respect to x, y′(x) = dy(x)/dx.
Before proving the main result of this section we shall introduce some lemmas.

Lemma 2.4.1. An Hermitian strictly diagonally dominant matrix with real positive diagonal entries
is positive definite.

Proof. Let A denote an Hermitian strictly diagonally dominant matrix with real positive diagonal en-
tries, then it follows from the Gershgorin circle theorem that all the eigenvalues of A are positive,
which implies that A is positive definite.

Lemma 2.4.2 (Uniqueness of the maximum point of Tω ). Let ω(x) be a non-nagative, continuous
weight on I ⊂ R such that lnω(x) is concave, i.e. (lnω(x))′′ ≤ 0, ∀x ∈ I, then the maximum point of
Tω is unique.
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Proof. Assume that {ai}n
i=1 and {bi}n

i=1 are maximum points of Tω enumerated in increasing order, let
ci = (ai +bi)/2. We consider the value of Tω at the point {ci}n

i=1. Rewrite Tω as

Tω(x1, · · · ,xn) =
n

∏
j=1

ω(x j) ∏
1≤i< j≤n

|xi − x j|2 = ∏
1≤i< j≤n

|xi − x j|2[ω(xi)ω(x j)]
4

n(n−1) ,

then because of the ordering of the points {ai}n
i=1, {bi}n

i=1 and the log-concavity of ω(x), we have

ln
(
|ci − c j|2(ω(ci)ω(c j))

4
n(n−1)

)
= ln |ci − c j|2 +

4
n(n−1)

(lnω(ci)+ lnω(c j))

= ln
(
|
ai −a j

2
|+ |

bi −b j

2
|
)2

+
4

n(n−1)
[

lnω(
ai +bi

2
)+ lnω(

a j +b j

2
)
]

≥ ln |ai −a j||bi −b j|+
2

n(n−1)
(lnω(ai)+ lnω(bi)+ lnω(a j)+ lnω(b j))

=
1
2

ln
(
|ai −a j|2(ω(ai)ω(a j))

4
n(n−1)

)
+

1
2

ln
(
|bi −b j|2(ω(bi)ω(b j))

4
n(n−1)

)
where the arithmetic-geometric mean inequality was used, and the equality holds if and only if ai = bi,
i = 1, · · · ,n, which establishes the uniqueness.

As pointed out in [81], Stieltjes showed that (when ω(x) is a classical weight) − lnTω(x1, · · · ,xn)
attains a minimum when x1, · · · , xn are the zeros of the corresponding classical orthogonal polynomial.
However, Stieljes did not explicitly show that this position is a minimum (even though he explicitly
mentions that it is a minimum). Here we reformulate these results as the following theorem and give
an explicit proof.

Theorem 2.4.1. Let ω(x) = ω̂(x)p(x), where ω̂(x) takes a classical weight, p(x) is the coefficient in
(2.4.2), namely, ω(x) = e−x2

for Hermite polynomials, or ω(x) = x · xα e−x for Laguerre polynomials,
or ω(x) = (1− x2) · (1− x)α(1+ x)β for Jacobi polynomials. Then in the domain I with respect to
ω̂(x), the energy function Tω attains its maximum at the set of zeros of the corresponding orthogonal
polynomials.

Proof. Let x1, · · · , xn denote the zeros of a classical orthogonal polynomial of degree n with respect to
the weight ω̂(x) (with η(x) = 1). By differentiating lnTω(y1, · · · ,yn) in yi, i = 1,2, . . . ,n, we have

∂ lnTω(y1, · · · ,yn)

∂yi
=
(ω ′

ω
)
(yi)+

n

∑
k=1,k ̸=i

2
yi − yk

,

=
ω̂ ′(yi)

ω̂(yi)
+

p′(yi)

p(yi)
+

n

∑
k=1,k ̸=i

2
yi − yk

,

It follows from Pearson equation (2.2.1) and the Stieltjes-Calogero type relation (2.3.5) that

ω̂ ′(x)
ω̂(x)

+
p′(x)
p(x)

=
q(x)
p(x)

, S1,i =
n

∑
k=1,k ̸=i

1
xi − xk

=− q(xi)

2p(xi)
.

which imply that
∂ lnTω(x1, · · · ,xn)

∂xi
= 0.
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Thus, X = (x1, · · · ,xn) is a critical point of the energy function Tω , which means Tω has a local ex-
tremum at X . Next we consider the Hessian matrix H of (− lnTω), if H is positive definite at X , then
Tω has a local maximum at X . The off-diagonal and diagonal elements of H are given by

Hi j =
∂ 2(− ln(Tω(y1, · · · ,yn)))

∂yi∂y j
=− 2

(yi − y j)2 , i ̸= j

Hii =
∂ 2(− ln(Tω(y1, · · · ,yn)))

∂y2
i

=
(
− ω ′

ω
)′
(yi)+

n

∑
j=1, j ̸=i

2
(yi − y j)2

=
q(yi)p′(yi)− p(yi)q′(yi)

p(yi)2 +
n

∑
j=1, j ̸=i

2
(yi − y j)2 .

Since q(x)p′(x)− p(x)q′(x)> 0, ∀x ∈ R, it follows that H is Hermitian, strictly diagonally dominant,
and has real positive diagonal entries, thus H is positive definite. This means that Tω has a maximum
value at the point (x1, · · · ,xn). In fact, q(x)p′(x)− p(x)q′(x)> 0 is always true in the case of classical
orthogonal polynomials. Denote the left hand side of the inequality by F(x). For Hermite polynomials,
p(x) = 1,q(x) = −2x, F(x) = 2 > 0; for Laguerre polynomials, p(x) = x,q(x) = α + 1− x, F(x) =
α + 1 > 0 (since α > −1); for Jacobi polynomials, p(x) = 1 − x2,q(x) = β − α − (α + β + 2)x,
F(x) = (α +β +2)(1+ x2)− (β −α)2x > 0 (since α,β >−1).

The uniqueness of the maximum point follows from the fact that each weight ω(x) is log-concave in
the related domain I. Moreover, Tω tends to zero at the boundary of the domain related to ω̂(x), thus
it attains a unique maximum at (x1, · · · ,xn).

Note that the zeros of classical orthogonal polynomials are all real, simple and distinct [74, chapter
6.2], which guarantees that Tω dose not vanish at these zeros. However, the exceptional orthogonal
polynomials have complex zeros and were conjectured to have simple zeros except possibly for the
zeros at z = 0 [49]. Here we assume an exceptional orthogonal polynomial Pn+m(z) of degree n+m
has n+m simple zeros , and we denote the set consisting of these zeros by

Z = {z1, · · · ,zn,zn+1, · · · ,zn+m}

where z1 = x1, · · · , zn = xn are the n real zeros and zn+1 = xn+1 + iµ1, · · · , zn+m = xn+m + iµm are the
m complex zeros. Here we consider the function Tω(Y ) := Tω(y1, · · · ,yn,yn+1 + iµ1, · · · ,yn+m + iµm)
with n+m real variables. Tω(Y ) is a complex-valued function as long as m ≥ 1, so we check the
maximum value of |Tω(Y )|2 = Tω(Y )Tω(Y ) instead. First, rewrite Tω(Y ) as

Tω(Y ) =
n

∏
i=1

ω(yi) ·
m

∏
j=1

ω(yn+ j + iµ j) · ∏
1≤i< j≤n

|yi − y j|2 · ∏
1≤k<l≤m

|yn+k + iµk − (yn+l + iµl)|2

· ∏
1≤s≤n
1≤t≤m

|ys − (yn+t + iµt)|2,

then we have

|Tω(Y )|2 =
n

∏
i=1

ω2(yi) ·
m

∏
j=1

ω(yn+ j + iµ j)ω(yn+ j − iµ j) · ∏
1≤i< j≤n

|yi − y j|4

· ∏
1≤k<l≤m

|(yn+k − yn+l)
2 +(µk −µl)

2|2 · ∏
1≤s≤n
1≤t≤m

|(ys − yn+t)
2 +µ2

t )|2.
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For 1 ≤ i ≤ n, we have
∂ ln |Tω(Y )|2

∂yi
= 2

ω ′(yi)

ω(yi)
+

n

∑
j=1, j ̸=i

4
yi − y j

+
m

∑
t=1

4(yi − yn+t)

(yi − yn+t)2 +µ2
t
,

= 2
ω ′(yi)

ω(yi)
+

n

∑
j=1, j ̸=i

4
yi − y j

+
m

∑
t=1

4
yi − (yn+t + iµt)

−
m

∑
t=1

4iµt

(yi − yn+t)2 +µ2
t
.

Notice that the sum of the first three terms on the right-hand side of the last equation equals 0 at the
point (x1, · · · ,xn+m) due to (2.2.1) and (2.3.4). This together with the fact that the left-hand side of
the above equations is real implies that

m

∑
t=1

µt

(xi − xn+t)2 +µ2
t
= 0. (2.4.3)

For n+1 ≤ i ≤ n+m, we have

∂ ln |Tω(Y )|2

∂yi
=

ω ′(yi + iµi−n)

ω(yi + iµi−n)
+

ω ′(yi − iµi−n)

ω(yi − iµi−n)
+

m

∑
l=1,l ̸=i−n

4(yi − yn+l)

(yi − yn+l)2 +(µi−n −µl)2 +
n

∑
s=1

4(yi − ys)

(yi − ys)2 +µ2
i−n

= 2
ω ′(yi + iµi−n)

ω(yi + iµi−n)
+

m

∑
l=1,l ̸=i−n

4
(yi + iµi−n)− (yn+l + iµl)

+
n

∑
s=1

4
(yi + iµi−n)− ys

+
ω ′(yi − iµi−n)

ω(yi − iµi−n)
− ω ′(yi + iµi−n)

ω(yi + iµi−n)
+

m

∑
l=1,l ̸=i−n

4i(µi−n −µl)

(yi − yn+l)2 +(µi−n −µl)2 +
n

∑
s=1

4iµi−n

(yi − ys)2 +µ2
i−n

.

Again, we find that the sum of the first three terms on the right-hand side of the last equation equals 0
at the point (x1, · · · ,xn+m), thus implies

ω ′(xi − iµi−n)

ω(xi − iµi−n)
− ω ′(xi + iµi−n)

ω(xi + iµi−n)
+

m

∑
l=1,l ̸=i−n

4i(µi−n −µl)

(xi − xn+l)2 +(µi−n −µl)2 +
n

∑
s=1

4iµi−n

(xi − xs)2 +µ2
i−n

= 0.

(2.4.4)

Therefore we have shown that (x1, · · · ,xn+m) is a critical point of |Tω(Y )|2.
The Hessian matrix H of (− ln |Tω(Y )|2) has four types off-diagonal elements and two types diago-

nal elements:

Hi j =− 4
(yi − y j)2 , 1 ≤ i ≤ n,1 ≤ j ≤ n, i ̸= j,

Hi j =−
4[(yi − y j)

2 −µ2
j−n]

[(yi − y j)2 +µ2
j−n]

2 , 1 ≤ i ≤ n,n+1 ≤ j ≤ n+m,

Hi j =−
4[(yi − y j)

2 −µ2
i−n]

[(yi − y j)2 +µ2
i−n]

2 , n+1 ≤ i ≤ n+m,1 ≤ j ≤ n,

Hi j =−
4[(yi − y j)

2 − (µi−n −µ j−n)
2]

[(yi − y j)2 +(µi−n −µ j−n)2]2
, n+1 ≤ i ≤ n+m,n+1 ≤ j ≤ n+m, i ̸= j,
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and

Hii =

(
− 2ω ′(yi)

ω(yi)

)′
+

n

∑
j=1, j ̸=i

4
(yi − y j)2 +

m

∑
t=1

4[(yi − yn+t)
2 −µ2

t ]

[(yi − yn+t)2 +µ2
t ]

2 , 1 ≤ i ≤ n,

Hii =

(
− ω ′(yi + iµi−n)

ω(yi + iµi−n)

)′
+

(
− ω ′(yi − iµi−n)

ω(yi − iµi−n)

)′
+

m

∑
l=1,l ̸=i

4[(yi − yn+l)
2 − (µi−n −µl)

2]

[(yi − yn+l)2 +(µi−n −µl)2]2

+
n

∑
s=1

4[(yi − ys)
2 −µ2

i−n]

[(yi − ys)2 +µ2
i−n]

2 , n+1 ≤ i ≤ n+m.

In order to find the condition for H to be positive definite, the following should be satisfied

Hii > 0 and Hii >
n+m

∑
j=1, j ̸=i

|Hi j|, 1 ≤ i ≤ n+m,

which is equivalent to

Hii >
n+m

∑
j=1, j ̸=i

|Hi j|, 1 ≤ i ≤ n+m.

For 1 ≤ i ≤ n, we have

Hii −
n+m

∑
j=1, j ̸=i

|Hi j|=
(
− 2ω ′(yi)

ω(yi)

)′
+

m

∑
t=1

4[(yi − yn+t)
2 −µ2

t ]

[(yi − yn+t)2 +µ2
t ]

2 −
m

∑
t=1

∣∣∣∣4[(yi − yn+t)
2 −µ2

t ]

[(yi − yn+t)2 +µ2
t ]

2

∣∣∣∣
=

(
− 2ω ′(yi)

ω(yi)

)′
+

m

∑
t=1

[
4

(yi − yn+t)2 +µ2
t
− 8µ2

t

[(yi − yn+t)2 +µ2
t ]

2

]

−
m

∑
t=1

∣∣∣∣ 4
(yi − yn+t)2 +µ2

t
− 8µ2

t

[(yi − yn+t)2 +µ2
t ]

2

∣∣∣∣
≥
(
− 2ω ′(yi)

ω(yi)

)′
−

m

∑
t=1

16µ2
t

[(yi − yn+t)2 +µ2
t ]

2

≥
(
− 2ω ′(yi)

ω(yi)

)′
−

m

∑
t=1

4
(yi − yn+t)2 ,

for n+1 ≤ i ≤ n+m, we have

Hii−
n+m

∑
j=1, j ̸=i

|Hi j|=
(
− ω ′(yi + iµi−n)

ω(yi + iµi−n)

)′
+

(
− ω ′(yi − iµi−n)

ω(yi − iµi−n)

)′
+

m

∑
l=1,l ̸=i−n

4[(yi − yn+l)
2 − (µi−n −µl)

2]

[(yi − yn+l)2 +(µi−n −µl)2]2

+
n

∑
s=1

4[(yi − ys)
2 −µ2

i−n]

[(yi − ys)2 +µ2
i−n]

2 −
m

∑
l=1,l ̸=i−n

∣∣∣∣4[(yi − yn+l)
2 − (µi−n −µl)

2]

[(yi − yn+l)2 +(µi−n −µl)2]2

∣∣∣∣− n

∑
s=1

∣∣∣∣4[(yi − ys)
2 −µ2

i−n]

[(yi − ys)2 +µ2
i−n]

2

∣∣∣∣
≥
(
− ω ′(yi + iµi−n)

ω(yi + iµi−n)

)′
+

(
− ω ′(yi − iµi−n)

ω(yi − iµi−n)

)′
−

m

∑
l=1,l ̸=i−n

4
(yi − yn+l)2 −

n

∑
s=1

4
(yi − ys)2

=

(
− ω ′(yi + iµi−n)

ω(yi + iµi−n)

)′
+

(
− ω ′(yi − iµi−n)

ω(yi − iµi−n)

)′
−

n+m

∑
j=1, j ̸=i

4
(yi − y j)2 .
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The above inequalities imply that if(
− 2ω ′(xi)

ω(xi)

)′
>

n+m

∑
j=n+1, j ̸=i

4
(xi − x j)2 (2.4.5)

and (
− ω ′(xi + iµi−n)

ω(xi + iµi−n)

)′
+

(
− ω ′(xi − iµi−n)

ω(xi − iµi−n)

)′
>

n+m

∑
j=1, j ̸=i

4
(xi − x j)2 (2.4.6)

hold, then |Tω(Y )|2 has a (local) maximum value at X = (x1, · · · ,xn,xn+1, · · · ,xn+m). According to
these discussions below we provide a sufficient condition for |Tω(Y )|2 to obtain its maximum value at
the point X .

Theorem 2.4.2. Let ω(x) = ω̂(x)p(x), where ω̂(x) takes an exceptional weight, p(x) is the coefficient
in (2.4.2), namely, ω(x)= e−x2

/η2
H(x) for exceptional Hermite polynomials, or ω(x)= x ·xα e−x/η2

L(x)
for exceptional Laguerre polynomials, or ω(x) = (1− x2) · (1− x)α(1+ x)β/η2

J (x) for exceptional
Jacobi polynomials. Let Pn+m(x) be an exceptional polynomial of degree n+m corresponding to the
weight ω̂(x). Assume that the zeros of Pn+m(x) are all simple, and denote xi, i = 1,2, . . . ,n+m, the
the real parts of the zeros of Pn+m(x). If the denominators ηH(x), ηL(x), ηJ(x) satisfy the following
conditions (

lnηα(x)
)′′

+ kα ≥ 0, x ∈ I, (2.4.7)(
lnηα(x)

)′′|x=zi + kα >
n+m

∑
j=n+1, j ̸=i

1
(xi − x j)2 , 1 ≤ i ≤ n+m, (2.4.8)

then in the domain I with respect to ω̂(x), the real-valued function |Tω(Y )|2 attains its maximum value
at X, where the subscript α can be replaced by H, L, J, respectively, kH = 1, kL = kJ = 0.

Proof. Till now it has been known that if (2.4.5) and (2.4.6) are satisfied then |Tω(Y )|2 has a (local)
maximum value at X . The uniqueness requires that (lnω(x))′′ = (q(x)/p(x))′ ≤ 0, ∀x ∈ I, provided
the information of p(x), q(x) are given in (2.2.3), (2.2.4), (2.2.5), respectively, we check case by case
using the same notations as we did in the proof of Theorem 4.3. Assuming it satisfies that(

lnηH(x)
)′′

+1 ≥ 0, x ∈ (−∞,∞), (2.4.9)(
lnηL(x)

)′′ ≥ 0, x ∈ (0,∞), (2.4.10)(
lnηJ(x)

)′′ ≥ 0, x ∈ (−1,1), (2.4.11)

then for exceptional Hermite polynomials, it holds that

F(x) = 2+2
(

lnηH(x)
)′′ ≥ 0,

as well as for exceptional Laguerre polynomials (α >−1,k′ > 0) we have

F(x) = α + k′+1+2x2( lnηL(x)
)′′ ≥ 0,

and for exceptional Jacobi polynomials (α,β >−1,k′1 + k′2 > 0) we have

F(x) = (α +β +2k′1 +2)(1+ x2)− (β −α −2k′2)2x+2(1− x2)2( lnηJ(x)
)′′ ≥ 0.
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Moreover, since it holds respectively for the weight functions of exceptional Hermite, Laguerre, Jacobi
polynomial that

(
− ω ′(x)

ω(x)

)′
=


2+2

(
lnηH(x)

)′′
,

α+k′+1
x2 +2

(
lnηL(x)

)′′
> 2
(

lnηL(x)
)′′
,

(α+β+2k′1+2)(1+x2)−(β−α−2k′2)2x
(1−x2)2 +2

(
lnηJ(x)

)′′
> 2
(

lnηJ(x)
)′′
,

we then rewrite (2.4.5) and (2.4.6) into the following conditions which can be implied by (2.4.8):
1+
(

lnηH(xi)
)′′(

lnηL(xi)
)′′(

lnηJ(xi)
)′′ >

n+m

∑
j=n+1, j ̸=i

1
(xi − x j)2 , 1 ≤ i ≤ n (2.4.12)

and
2+
(

lnηH(xi + iµi−n)
)′′

+
(

lnηH(xi − iµi−n)
)′′(

lnηL(xi + iµi−n)
)′′

+
(

lnηL(xi − iµi−n)
)′′(

lnηJ(xi + iµi−n)
)′′

+
(

lnηJ(xi − iµi−n)
)′′ >

n+m

∑
j=1, j ̸=i

2
(xi − x j)2 , n+1 ≤ i ≤ n+m. (2.4.13)

Recall that ω(x) decays quickly at the boundary, thus |Tω(Y )|2 tends to zero at the boundary. Con-
cludingly, |Tω(Y )|2 has a unique maximum at X if (2.4.7), (2.4.8) are satisfied.

Notice that in the equations (2.4.3) and (2.4.4) we have

µt

(xi − xn+t)2 +µ2
t
=

1
2i

[
1

(xi − xn+t)− iµt
− 1

(xi − xn+t)+ iµt

]
,

and
4i(µi−n −µl)

(xi − xn+l)2 +(µi−n −µl)2 = 2
[

1
(xi − xn+l)− i(µi−n −µl)

− 1
(xi − xn+l)+ i(µi−n −µl)

]
,

4iµi−n

(xi − xs)2 +µ2
i−n

= 2
[

1
(xi − xs)− iµi−n

− 1
(xi − xs)+ iµi−n

]
,

which lead to the following result.

Corollary 2.4.1. If an exceptional orthogonal polynomial Pn+m(z) has n+m simple zeros consisting
of n real zeros and m complex zeros:

z1 = x1, . . . ,zn = xn,zn+1 = xn+1 + iµ1, . . . ,zn+m = xn+m + iµm,

where xi ∈ R, i = 1, . . . ,n+m, µ j ∈ R, j = 1, . . . ,m, then it holds that

m

∑
t=1

1
(xi − xn+t)+ iµt

=
m

∑
t=1

1
(xi − xn+t)− iµt

, 1 ≤ i ≤ n, (2.4.14)

and

ω ′(xi + iµi−n)

ω(xi + iµi−n)
+

m

∑
l=1,l ̸=i−n

2
(xi − xn+l)+ i(µi−n −µl)

+
n

∑
s=1

2
(xi − xs)+ iµi−n

(2.4.15)

=
ω ′(xi − iµi−n)

ω(xi − iµi−n)
+

m

∑
l=1,l ̸=i−n

2
(xi − xn+l)− i(µi−n −µl)

+
n

∑
s=1

2
(xi − xs)− iµi−n

, n+1 ≤ i ≤ n+m.
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In particular, notice that

ω ′(xi + iµi−n)

ω(xi + iµi−n)
=

ω̂ ′(xi + iµi−n)

ω̂(xi + iµi−n)
+

p′(xi + iµi−n)

p(xi + iµi−n)
=−2S1,i,

it follows that the left-hand side of (2.4.15) is 0, consequently implies

ω ′(xi − iµi−n)

ω(xi − iµi−n)
+

m

∑
l=1,l ̸=i−n

2
(xi − xn+l)− i(µi−n −µl)

+
n

∑
s=1

2
(xi − xs)− iµi−n

= 0, n+1 ≤ i ≤ n+m.

2.4.1 Examples

Here we provide some examples which give evidence for our main result considering the case of
exceptional Hermite polynomials. The exceptional Hermite polynomials are defined upon Wronskian
determinants whose entries are Hermite polynomials according to a double partition [24]. Let λ =
(λ1, · · · ,λr) be a non-decreasing sequence of non-negative integers

0 ≤ λ1 ≤ λ2 ≤ ·· · ≤ λr,

we call λ a double (or even) partition if r is even and λ2i−1 = λ2i, i = 1, · · · ,r/2. The exceptional
Hermite polynomials with respect to λ are defined as

H(λ )
n = Wr[Hλ1 ,Hλ2+1, · · · ,Hλr+r−1,Hn−|λ |+r], n−|λ |+ r ∈ N\{λ1,λ2 +1, · · · ,λr + r−1},

where Wr denotes the Wronskian determinant, H j is the jth Hermite polynomial and |λ |=∑r
i λi. From

this definition it is clear that degH(λ )
n (z) = n. Recall from table 1 the weight function of exceptional

Hermite polynomials is ω̂H(z) = e−z2
/η2

H(z), where we can now give ηH as

ηH := η(λ )
H = Wr[Hλ1 ,Hλ2+1, · · · ,Hλr+r−1].

It is known that ηH has no zeros on the real line when λ is a double partition [24], hence ω̂H is a well-
defined weight function on the real line. Since degηH = |λ |, ηH has |λ | complex zeros. According to
theorem 2.3 of [49], if all the zeors of H(λ )

n are simple then the exceptional (complex) zeros converge
to the zeros of ηH .

The problem described in the introduction is to find the maximum value of

Tω(x1, · · · ,xn) =
n

∏
j=1

ω(x j) ∏
1≤i< j≤n

|xi − x j|2,

where ω = ω̂ p, specifically ω(x) = e−x2
/η2

H(x) in the current case. Let Z = {z1, · · · ,zn} be the set of
zeros of H(λ )

n (z). In order to check whether |Tω | has a maximum value at Z or not, let us define

f (z) =
∣∣∣∣Tω(z1 + z, · · · ,zn + z)

Tω(z1, · · · ,zn)

∣∣∣∣,
for different partition λ we observe the value of f (z) around z = 0.

Example 2.4.1. When λ = (1,1,1,1), ηH = Wr[H1,H2,H3,H4], the associated exceptional Hermite
polynomials are

H(λ )
n = Wr[H1,H2,H3,H4,Hn], n /∈ {1,2,3,4}.
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Let n = 8, then H(λ )
n (z) has 4 complex zeros and 4 real zeros, Z = {z1, · · · ,z8}. Numerical results show

that z = 0 is a saddle point of f (z) when z ∈ C (since Tω(z1 + z, · · · ,zn + z) is a holomorphic function,
according to the maximum modulus principle the modulus |Tω(z1+ z, · · · ,zn+ z)| cannot exhibit a true
local maximum within the domain). Nevertheless, if z ∈ R, f (z) attains its maximum at z = 0.

Example 2.4.2. For λ = (1,1,3,3), ηH = Wr[H1,H2,H5,H6], the associated exceptional Hermite
polynomials are

H(λ )
n = Wr[H1,H2,H5,H6,Hn−4], n−4 /∈ {1,2,5,6}.

Let n = 8, then H(λ )
n (z) has 6 complex zeros and 2 real zeros, Z = {z1, · · · ,z8}. Again, it follows

numerically that z = 0 is a saddle point of f (z) when z ∈ C and a maximum point of f (z) if z ∈ R.

Remark 2.4.2. The above two examples show that in some cases Z is a saddle point of |Tω | while
at the same time a maximum point of |Tω | if all the imaginary parts of zi’s are fixed. However, this
phenomenon does not arise for all cases.

Example 2.4.3. For λ = (2,2,3,3), ηH = Wr[H2,H3,H5,H6], the associated exceptional Hermite
polynomials are

H(λ )
n = Wr[H2,H3,H5,H6,Hn−6], n /∈ {2,3,5,6}.

Let n = 10, then H(λ )
n (z) has 8 complex zeros and 2 real zeros, Z = {z1, · · · ,z10}. In this case one

can observe from the numerical simulation of f (z) that z = 0 is neither a maximum point nor a saddle
point of f (z), hence |Tω | has no maximum at Z.
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Chapter 3

Exceptional Bannai-Ito polynomials

In this chapter, we derive the exceptional extensions of the Bannai-Ito polynomials.

3.1 Bannai-Ito polynomials
First, let us introduce the definition and some basic properties of the Bannai-Ito polynomials. The
Bannai-Ito polynomials, originally introduced in [3], are recently classified as a new kind of “classical”
orthogonal polynomials [79] since they are identified to be the eigenfunctions of the difference operator

H = α(x)(R− I)+β (x)(T R− I). (3.1.1)

H is a Dunkl shift operator, where R is the reflection operator, T is the forward shift operator, and I is
the identity operator acting as

R[ f (x)] = f (−x), T [ f (x)] = f (x+1), I[ f (x)] = f (x).

Throughout this paper the operators R, T and I only influence x, for example, R[ f (x+1)] = f (−x+1)
not f (−x−1), and T [ f (−x)] = f (−x−1) not f (−x+1). It is known that the Dunkl shift operator has
polynomial eigenfunctions of all degrees if and only if its coefficients are given by

α(x) =
(x−ρ1)(x−ρ2)

−2x
, β (x) =

(x− r1 +1/2)(x− r2 +1/2)
2x+1

, (3.1.2)

where r1, r2, ρ1, ρ2 are real numbers. In this setting the Dunkl shift operator is called the Bannai-Ito
operator. The eigenfunctions of the Bannai-Ito operator are the Bannai-Ito polynomials Bn(x),

H[Bn(x)] = α(x)(Bn(−x)−Bn(x))+β (x)(Bn(−x−1)−Bn(x)) = λnBn(x),

where Bn(x) is of degree n, and the eigenvalues are given by

λn =


n
2
, if n is even,

r1 + r2 −ρ1 −ρ2 −
n+1

2
, if n is odd.

(3.1.3)

(3.1.4)

One should notice that the Bannai-Ito polynomials are defined upon four parameters, i.e. Bn(x) :=
Bn(x;ρ1,ρ2,r1,r2), we use the former for simplicity.

The Bannai-Ito polynomials are discrete orthogonal polynomials. They are orthogonal with respect
to a discrete, positive measure of weight function ω(x) on the Bannai-Ito grid {xs}N−1

s=0 :

N−1

∑
s=0

ω(xs)Bn(xs)Bm(xs) = hnδnm (hn > 0; 0 ≤ n,m < N),

where xs (s = 0,1, . . . ,N −1) are the simple roots of BN(x) [79].
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3.2 Generalized Darboux transformation of Dunkl shift operator
It has been addressed before that the DT is one of the most powerful tools for constructing XOPs. The
rational DTs (or the Darboux-Crum transformations) factorize a second-order differential or difference
operator into two first-order differential or difference operators, hence the exceptional operator can be
obtained by exchanging the two 1st-order operators. Unfortunately, in our case the Dunkl shift operator
is a 1st-order difference operator, which makes it difficult to apply the rational DTs directly. In this
section we present a generalized DT of the Dunkl shift operator, and then give exceptional Bannai-Ito
operators explicitly.

Consider the eigenvalue problem of the Dunkl shift operator

H[ϕ(x)] = α(x)(R− I)[ϕ(x)]+β (x)(T R− I)[ϕ(x)] = µϕ(x),

where α(x), β (x) are functions in x. Then we choose an eigenfunction ϕ(x) (not necessarily to be
polynomial) of H as a seed solution and let

χ(x) = (I −R)[ϕ(x)] = ϕ(x)−ϕ(−x), (3.2.1)
χ̃(x) = (I +T R)[β (−x−1)ϕ(x)] = β (−x−1)ϕ(x)+β (x)ϕ(−x−1). (3.2.2)

The functions χ(x) and χ̃(x) satisfy the following properties

χ(−x) =−χ(x), χ̃(−x−1) = χ̃(x),

and the eigenvalue problem H[ϕ(x)] = µϕ(x) can be written as

−α(x)χ(x)+ χ̃(x) = (µ +β (x)+β (−x−1))ϕ(x). (3.2.3)

Substituting x by −x−1, the above equation becomes

−α(−x−1)χ(−x−1)+ χ̃(x) = (µ +β (−x−1)+β (x))ϕ(−x−1), (3.2.4)

the operation (3.2.3) ·β (−x−1)+(3.2.4) ·β (x) then implies

α(x)β (−x−1)χ(x)+α(−x−1)β (x)χ(−x−1)+µχ̃(x) = 0. (3.2.5)

After substituting x by −x in (3.2.3) and then subtracting the result by (3.2.3) we have

χ̃(−x)− χ̃(x) =−χ(x)(µ +α(x)+α(−x)+β (x)+β (−x−1)), (3.2.6)

which holds under the condition

β (−x)+β (x−1) = β (x)+β (−x−1). (3.2.7)

The properties of χ(x) and χ̃(x) are very important, as well as the equations (3.2.3), (3.2.4), (3.2.5),
(3.2.6) and the condition (3.2.7), which will be used frequently in the DT with respect to the Dunkl
shift operator H.

Now we define the operator

Fϕ =
1

χ(x)
(R− I)+

1
χ̃(x)

(T R+ I)β (−x−1) (3.2.8)

such that Fϕ [ϕ(x)] = 0. It is easily seen that if the intertwining relation

Fϕ ◦H = H(1) ◦Fϕ (3.2.9)
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holds for a new Dunkl shift operator H(1), then for any eigenfunction ψ(x) (̸= ϕ(x)) of H with eigen-
value ν ( ̸= µ)), one has

H(1)[Fϕ [ψ(x)]
]
= Fϕ ◦H[ψ(x)] = ν ·Fϕ [ψ(x)].

The equation with respect to the most left and the most right terms means that Fϕ [ψ(x)] is the eigen-
function of H(1) with eigenvalue ν . Before deriving the explicit expression of the operator H(1) we
first give the following lemma for the convenience of calculation.

Lemma 3.2.1. The operators R, T and I satisfy

RR = I, T RT R = I, RT RT = I.

Moreover, for any function f (x), it holds that

(R− I) f (x)(R− I) = ( f (x)+ f (−x))(I −R),

(T R+ I) f (x)(T R+ I) = ( f (x)+ f (−x−1))(T R+ I),

(T R+ I) f (x)(T R− I) = ( f (x)− f (−x−1))(T R− I),

(T R− I) f (x)(T R+ I) = ( f (−x−1)− f (x))(T R+ I),

(R− I) f (x)(T R− I) = f (−x)RT R− f (x)T R− f (−x)R+ f (x)I,

(R− I) f (x)(T R+ I) = f (−x)RT R− f (x)T R+ f (−x)R− f (x)I,

(T R− I) f (x)(R− I) = f (−x−1)T − f (−x−1)T R− f (x)R+ f (x)I,

(T R+ I) f (x)(R− I) = f (−x−1)T − f (−x−1)T R+ f (x)R− f (x)I.

The above formulas follow from the definitions of R, T , I and elementary calculations, thus we may
omit the proof.

Using the formulas in Lemma 3.2.1 we are able to derive the explicit expression of the operator H(1)

from (3.2.9). Denote the coefficients of H(1) by α(1)(x), β (1)(x) and γ(1)(x):

H(1) = α(1)(x)(R− I)+β (1)(x)(T R− I)+ γ(1)(x).

Proposition 3.2.1. The Dunkl shift operator H(1) which satisfies (3.2.9) with Fϕ given by (3.2.8) is

H(1) =
χ̃(−x)
χ(x)

(R− I)+
α(−x−1)β (x)χ(−x−1)

χ̃(x)
(T R− I)+

χ̃(−x)− χ̃(x)
χ(x)

. (3.2.10)

Proof. We derive H(1) directly from (3.2.9). According Lemma 2.1, the left-hand side of (3.2.9) is

Fϕ ◦H =
β (−x)
χ(x)

RT R+
β (x)α(−x−1)

χ̃(x)
T −

(
β (x)α(−x−1)

χ̃(x)
+

β (x)
χ(x)

)
T R

+

(
β (−x−1)α(x)

χ̃(x)
− α(x)+α(−x)+β (−x)

χ(x)

)
R

−
(

β (−x−1)α(x)
χ̃(x)

− α(x)+α(−x)+β (x)
χ(x)

)
I,

and the right-hand side of (3.2.9) is

H(1) ◦Fϕ =
α(1)(x)β (−x)

χ̃(−x)
RT R+

β (1)(x)
χ(−x−1)

T −
(
(α(1)(x)− γ(1)(x))β (x)

χ̃(x)
+

β (1)(x)
χ(−x−1)

)
T R
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+

(
α(1)(x)β (x−1)

χ̃(−x)
+

γ(1)(x)−β (1)(x)
χ(x)

)
R

+

(
(γ(1)(x)−α(1)(x))β (−x−1)

χ̃(x)
+

β (1)(x)− γ(1)(x)
χ(x)

)
I.

Then by comparing the coefficients of the operators RT R, T , T R, R and I one has

α(1)(x) =
χ̃(−x)
χ(x)

, β (1)(x) =
α(−x−1)β (x)χ(−x−1)

χ̃(x)
, (3.2.11)

γ(1)(x) =
χ̃(−x)− χ̃(x)

χ(x)
=−(µ +α(x)+α(−x)+β (x)+β (−x−1)), (3.2.12)

where the second equation in (3.2.12) follows from (3.2.6).

If we add the intertwining relation H ◦Bϕ = Bϕ ◦H(1) where Bϕ is also a Dunkl shift operator,
then it will be given by (we rearranged it for the convenience of checking (3.2.14) and (3.2.15))

Bϕ = α(x)(R− I)χ̃(x)+(T R+ I)α(x)β (−x−1)χ(x). (3.2.13)

Further calculations imply that if the condition (3.2.7) holds then the products of Fϕ and Bϕ can be
expressed in terms of H and H(1), respectively:

Bϕ ◦Fϕ = (H −µ)◦ (H +β (x)+β (−x−1)), (3.2.14)

Fϕ ◦Bϕ = (H(1)−µ)◦ (H(1)+β (x)+β (−x−1)). (3.2.15)

The above equations can be considered as a generalized DT of the Dunkl shift operator H, and H(1) is
the 1-step Darboux transformed Dunkl shift operator.

Remark 3.2.1. In order to make sure that this generalized DT can be applied on H(1) in the same
manner as before, the coefficients α(1)(x), β (1)(x) and γ(1)(x) should satisfy the same properties as
those of H. Again, we denote the 2-step Darboux transformed Dunkl shift operator by H(2) with the
form

H(2) = α(2)(x)(R− I)+β (2)(x)(T R− I)+ γ(2)(x),

and similarly with (3.2.8) we define the operator

F (2) =
1

χ(2)(x)
(R− I)+

1
χ̃(2)(x)

(T R+ I)β (1)(−x−1),

where χ(2)(x) = (I −R)[ϕ (2)
2 (x)], χ̃(2)(x) = (I +T R)[β (1)(−x−1)ϕ (2)

2 (x)], ϕ (2)
2 (x) is the second-step

seed solution which is an eigenfunction of H(1) with eigenvalue µ2: ϕ (2)
2 (x) = Fϕ [ϕ

(1)
2 (x)] (we may

denote Fϕ by F (1) and the first-step seed solution ϕ(x) by ϕ (1)
1 (x) such that ϕ (2)

2 (x) = F (1)[ϕ (1)
2 (x)],

ϕ (1)
2 (x) ̸= ϕ (1)

1 (x)). Then it again follows from the following intertwining relation

F (2) ◦H(1) = H(2) ◦F (2)

that

α(2)(x) =
χ̃(2)(−x)
χ(2)(x)

, β (2)(x) =
α(1)(−x−1)β (1)(x)χ(2)(−x−1)

χ̃(2)(x)
,
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and

γ(2)(x) =
χ̃(2)(−x)− χ̃(2)(x)

χ(2)(x)
+ γ(1)(−x−1) =

χ̃(2)(−x)− χ̃(2)(x)
χ(2)(x)

+ γ(1)(−x)

=
χ̃(2)(−x)− χ̃(2)(x)

χ(2)(x)
+ γ(1)(x).

The three expressions of γ(2)(x) imply γ(1)(−x−1)= γ(1)(−x)= γ(1)(x), which further requires α(x)+
α(−x) = α(−x−1)+α(x+1) and (3.2.7) according to (3.2.12). In the second and the third equation
with respect to γ(2)(x) we have assumed that β (1)(x) satisfies the condition (3.2.7). Note that these
three expressions did not appear in the calculation of γ(1)(x) since γ(0)(x) = 0 in H. Therefore, by
repeating this procedure we can conclude as follow.

Lemma 3.2.2. Denote the n-step Darboux transformed Dunkl shift operator by H(n) (n= 1,2, . . .) with
the form

H(n) = α(n)(x)(R− I)+β (n)(x)(T R− I)+ γ(n)(x). (3.2.16)

If the condition

α(x)+α(−x) = α(−x−1)+α(x+1) (3.2.17)

and (3.2.7) are satisfied, then the generalized DT can be applied on each H(n) (n = 1,2, . . .) in the
same manner as we did on H.

Proof. By repeating the procedure in Remark 3.2.1 one finds that the conditions

α(n)(x)+α(n)(−x) = α(n)(−x−1)+α(n)(x+1), (3.2.18)

β (n)(−x)+β (n)(x−1) = β (n)(x)+β (n)(−x−1), (3.2.19)

γ(n)(−x−1) = γ(n)(−x) = γ(n)(x). (3.2.20)

are sufficient for deriving the coefficients α(n+1)(x), β (n+1)(x), γ(n+1)(x). On the other hand, from the
calculations of H(1) and H(2) it is easy to conclude that for n = 1,2, . . .,

α(n)(x) =
χ̃(n)(−x)
χ(n)(x)

, β (n)(x) =
α(n−1)(−x−1)β (n−1)(x)χ(n)(−x−1)

χ̃(n)(x)
, (3.2.21)

γ(n)(x) =−(µ(n)+α(n−1)(x)+α(n−1)(−x)+β (n−1)(x)+β (n−1)(−x−1)) (3.2.22)

where the properties χ(n)(−x) =−χ(n)(x), χ̃(n)(−x−1) = χ̃(n)(x) always hold. Then inductively one
can see that the conditions (3.2.18), (3.2.19), (3.2.20) hold for n = 1,2, . . . if (3.2.17) and (3.2.7) are
satisfied.

Let us notice that the conditions (3.2.17) and (3.2.7) are already satisfied by the coefficients of the
Bannai-Ito operator, thus a multiple-step DT can be performed on the Bannai-Ito operator smoothly.
In the next subsection, we will derive the 1-step exceptional Bannai-Ito operator and the correspond-
ing eigenfunctions. Some important expressions about the eigenfunctions of the n-step exceptional
Bannai-Ito operator will also be given thereafter.
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3.2.1 Generalized Darboux transformation of the Bannai-Ito operator

If H is a Bannai-Ito operator where α(x), β (x) are defined by (3.1.2), then H(1) can be called the 1-step
exceptional Bannai-Ito operator. In this case, it holds that

α(x)+α(−x) = ρ1 +ρ2 := α, β (x)+β (−x−1) =−(r1 + r2) :=−β , (3.2.23)

hence

γ(1)(x) =−(µ +α(x)+α(−x)+β (x)+β (−x−1)) =−(µ +α −β ). (3.2.24)

Therefore, the 1-step exceptional Bannai-Ito operator becomes

H(1) =
χ̃(−x)
χ(x)

(R− I)+
α(−x−1)β (x)χ(−x−1)

χ̃(x)
(T R− I)− (µ +α −β ). (3.2.25)

For normalization purpose we may rewrite the operators Fϕ , Bϕ and H(1) into

F̂ϕ = r(x)Fϕ , B̂ϕ = Bϕ r−1(x), Ĥ(1) = r(x)H(1)r−1(x), (3.2.26)

where r(x) is a decoupling coefficient whose explicit expression will be given in Lemma 3.4.1.
Adopting the notations of [77] here we may call F̂ϕ a “dressing” operator and B̂ϕ an “undressing”

operator in view of their acting as dressing and undressing of a superscript (1):

ψ(1)(x) :=


F̂ϕ [ψ(x)], if F̂ϕ [ψ(x)] ̸= 0

σ(x)r(x)
χ̃(x)χ(x)α(x)ω(x)

, otherwise

(3.2.27)

(3.2.28)

B̂ϕ [ψ(1)(x)] = (ν −µ)(ν −β )ψ(x),

where σ(x) satisfies σ(x+ 1) = σ(x) and σ(−x) = −σ(x), for example, σ(x) = sin(2πx), and ω(x)
is the weight function associated with the Bannai-Ito operator H. It can be easily checked by using the
results in Section 3.4 (Lemma 3.4.3) that

Ĥ(1)
[

σ(x)r(x)
χ̃(x)χ(x)α(x)ω(x)

]
= µ

σ(x)r(x)
χ̃(x)χ(x)α(x)ω(x)

, (3.2.29)

thus ψ(1)(x) is the eigenfunction of the normalized 1-step exceptional Bannai-Ito operator Ĥ(1). There-
fore, the DT

(H,{ψ(x)}) 7→ (Ĥ(1),{ψ(1)(x)})

is an isospectral transformation:

H[ψ(x)] = νψ(x), Ĥ(1)[ψ(1)(x)] = νψ(1)(x).

In fact, the equation (3.2.29) is equivalent with

H(1)
[

σ(x)
χ̃(x)χ(x)α(x)ω(x)

]
= µ

σ(x)
χ̃(x)χ(x)α(x)ω(x)

(3.2.30)
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in view of (3.2.26). Here we briefly check (3.2.30) using the expression (3.2.10).

H(1)
[

σ(x)
χ̃(x)χ(x)α(x)ω(x)

]
=

χ̃(−x)
χ(x)

(
1

χ̃(−x)
− 1

χ̃(x)

)
σ(x)

χ(x)α(x)ω(x)
+

χ̃(−x)− χ̃(x)
χ(x)

σ(x)
χ̃(x)χ(x)α(x)ω(x)

+
α(−x−1)β (x)χ(−x−1)

χ̃(x)

(
−β (−x−1)

χ(−x−1)α(−x−1)
− β (x)

χ(x)α(x)

)
σ(x)

χ̃(x)β (x)ω(x)

=
σ(x)

χ̃(x)ω(x)

(
−β (−x−1)

χ̃(x)
− β (x)α(−x−1)χ(−x−1)

χ̃(x)χ(x)α(x)

)

=
σ(x)

χ̃(x)ω(x)

(
− β (−x−1)α(x)χ(x)+β (x)α(−x−1)χ(−x−1)

χ̃(x)χ(x)α(x)

)
.

In the first equation, the properties χ(−x) =−χ(x), χ̃(−x−1) = χ̃(x), σ(−x) =−σ(x), σ(−x−1) =
σ(−x)=−σ(x) and (3.4.18), (3.4.19) in Lemma 4.7 have been used. Then the first 2 terms in the right-
hand side of the first equation annihilate immediately, the third term can be simplified as the right-hand
side of the second equation. Finally, with the help of (3.2.5) we arrive at (3.2.30).

In the same way it turns out that (see (3.2.13))

Bϕ

[
σ(x)

χ̃(x)χ(x)α(x)ω(x)

]
= 0, (3.2.31)

since

(R− I)
[

σ(x)
χ(x)α(x)ω(x)

]
= 0, (T R+ I)

[
β (−x−1)σ(x)

χ̃(x)ω(x)

]
= 0

hold for the same properties as we listed in the previous paragraph.
To summarize the above results we give the following theorem which serves as the formulation of

the generalized Darboux transformation for the Bannai-Ito operator.

Theorem 3.2.1. The 1-step exceptional Bannai-Ito operator H(1) and the Bannai-Ito operator H sat-
isfy the following intertwining relations:

Fϕ ◦H = H(1) ◦Fϕ , H ◦Bϕ = Bϕ ◦H(1) (3.2.32)

where Fϕ , Bϕ are both Dunkl shift operators (see (3.2.8), (3.2.13)). The operator Fϕ satisfies the
condition Fϕ [ϕ(x)] = 0, where ϕ(x) is an eigenfunction of H called a seed solution. Moreover, the
products of Fϕ and Bϕ can be expressed in terms of H and H(1):

Bϕ ◦Fϕ = (H −µ)◦ (H −β ), (3.2.33)

Fϕ ◦Bϕ = (H(1)−µ)◦ (H(1)−β ). (3.2.34)

The relations (3.2.33), (3.2.34) follow from (3.2.14), (3.2.15) and (3.2.23).

Later in Section 3.4 we will show that with a well selected seed solution ϕ(x) and the related de-
coupling coefficient r(x), the 1-step Darboux transformed eigenfunctions {F̂ϕ [Bn(x)]} (Bn(x) are the
Bannai-Ito polynomials) possess the “exceptional” feature (gaps in their degree sequences) and are
orthogonal with respect to a discrete measure on the exceptional Bannai-Ito grid.

As an immediate result of the intertwining relations (3.2.32), we have

H ◦ (Bϕ ◦Fϕ ) = (Bϕ ◦Fϕ )◦H,

(Fϕ ◦Bϕ )◦H(1) = H(1) ◦ (Fϕ ◦Bϕ ),
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which indicate that H and H(1) are commutable with (Bϕ ◦Fϕ ) and (Fϕ ◦Bϕ ), respectively. In a
more generic setting, if we denote H by H(0), and the exceptional operator obtained after n steps of
DT by H(n) as we did before, while the same notations adopting to the operators F (n) and B(n) with
F (1) = Fϕ , B(1) = Bϕ , then we can give the intertwining relations with respect to the multiple-step
Darboux transformed Bannai-Ito operators.

Corollary 3.2.1. The exceptional Bannai-Ito operator H(n+1) and the Bannai-Ito operator H(0) satisfy
the following intertwining relations for n = 1,2, . . .,

(F (n) ◦ · · · ◦F (1))◦H(0) = H(n+1) ◦ (F (n) ◦ · · · ◦F (1)), (3.2.35)

H(0) ◦ (B(1) ◦ · · · ◦B(n)) = (B(1) ◦ · · · ◦B(n))◦H(n+1). (3.2.36)

Proof. This corollary follows inductively from the construction of the multiple-step exceptional
Bannai-Ito operators H(n) (n = 1,2, . . .). According to Theorem 3.2.1 we know that the exceptional
Bannai-Ito operators H(1), H(2), H(3), . . . can be obtained through the following intertwining relations

F (1) ◦H(0) = H(1) ◦F (1), H(0) ◦B(1) = B(1) ◦H(1),

F (2) ◦H(1) = H(2) ◦F (2), H(1) ◦B(2) = B(2) ◦H(2),

F (3) ◦H(2) = H(3) ◦F (3), H(2) ◦B(3) = B(3) ◦H(3),

...

By applying F (2) on the left-hand side of the first equation and then rewriting the result using the third
equation we have

F (2) ◦F (1) ◦H(0) = F (2) ◦H(1) ◦F (1) = H(2) ◦F (2) ◦F (1).

Similarly, by applying B(2) on the right-hand side of the second equation and then rewriting the result
using the fourth equation we have

H(0) ◦B(1) ◦B(2) = B(1) ◦H(1) ◦B(2) = B(1) ◦B(2) ◦H(2).

Repeating this procedure finally one will arrive at (3.2.35) and (3.2.36).

Again, we can deduce

H(0) ◦ (B(1) ◦ · · · ◦B(n))◦ (F (n) ◦ · · · ◦F (1)) = (B(1) ◦ · · · ◦B(n))◦ (F (n) ◦ · · · ◦F (1))◦H(0),

(F (n) ◦ · · · ◦F (1))◦ (B(1) ◦ · · · ◦B(n))◦H(n+1) = H(n+1) ◦ (F (n) ◦ · · · ◦F (1))◦ (B(1) ◦ · · · ◦B(n)),

which indicate that H and H(n+1) are commutable with (B(1) ◦ · · · ◦B(n)) ◦ (F (n) ◦ · · · ◦F (1)) and
(F (n) ◦ · · · ◦F (1))◦ (B(1) ◦ · · · ◦B(n)), respectively.

3.2.2 Determinant expression of multiple-step exceptional eigenfunctions

From the intertwining relations in Corollary 3.2.1 one knows that the eigenfunctions of the n-step
exceptional Bannai-Ito operator H(n) can be given by

ϕ (n)
m (x) = F (n−1) ◦ · · · ◦F (1)[ϕ (1)

m (x)] (n ≥ 1), (3.2.37)

31



where ϕ (1)
m (x) is an eigenfunction of H(0) (or H, the original Bannai-Ito operator) with eigenvalue µm.

Please do not mistake ϕ (k)
m (x) and ϕ (k)

n (x) by the eigenfunctions of order m and order n, here we use
the subscripts m, n only to indicate they are different. Recall that

F (n) =
1

χ(n)(x)
(R− I)+

1
χ̃(n)(x)

(T R+ I)β (n−1)(−x−1), (3.2.38)

where β (n)(x) is given by (3.2.21), and

χ(n)(x) := χ(n)
n (x) = (I −R)[ϕ (n)

n (x)], (3.2.39)

χ̃(n)(x) := χ̃(n)
n (x) = (I +T R)[β (n−1)(−x−1)ϕ (n)

n (x)]. (3.2.40)

Namely, the left-hand sides of (3.2.1) and (3.2.2) are represented by χ(1)(x) and χ̃(1)(x), ϕ (n)
n (x) is the

nth-step seed solution:

H(n−1)[ϕ (n)
n (x)] = µnϕ (n)

n (x), ϕ (n)
n (x) = F (n−1)[ϕ (n−1)

n (x)]. (3.2.41)

For the simplicity of calculation we introduce the following notations (whose special cases are (3.2.39)
and (3.2.40))

χ(n)
m (x) = (I −R)[ϕ (n)

m (x)], χ̃(n)
m (x) = (I +T R)[β (n−1)(−x−1)ϕ (n)

m (x)]. (3.2.42)

It then follows from the definition that, for n ≥ 2 we have

χ(n)
m (x) =

χ̃(n−1)
m (x)

χ̃(n−1)(x)
− χ̃(n−1)

m (−x)
χ̃(n−1)(−x)

, (3.2.43)

and

χ̃(n)
m (x) = (µm −µn−1)

χ̃(n−1)
m (x)

χ̃(n−1)(x)
, (3.2.44)

where the expression

ϕ (n)
m (x) = F (n−1)[ϕ (n−1)

m (x)] =
χ̃(n−1)

m (x)
χ̃(n−1)(x)

− χ(n−1)
m (x)

χ(n−1)(x)
(3.2.45)

and the eigenvalue equation of ϕ (n−1)
m (x) (specifically, the (n− 1)-step version of (3.2.5)) have been

used for deriving (3.2.43) and (3.2.44).
As it has been shown in [16–18, 24, 29, 59], multiple-step exceptional orthogonal polynomials can

be expressed in Wronskian determinants whose entries are the classical orthogonal polynomials and
their derivatives. Similarly, in the exceptional Bannai-Ito case, for example, the eigenfunctions of the
1-step exceptional Bannai-Ito operator H(1) are the following determinant.

ϕ (2)
m (x) =

1
χ̃(1)(x)χ(1)(x)

∣∣∣∣∣χ̃(1)
m (x) χ(1)

m (x)
χ̃(1)(x) χ(1)(x)

∣∣∣∣∣
For the eigenfunctions of the n-step exceptional Bannai-Ito operator H(n) (n ≥ 2), we show in the next
theorem that they can always be expressed in a 3×3 determinant.
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Theorem 3.2.2. The eigenfunctions of the n-th step exceptional Bannai-Ito operator H(n) (n ≥ 2) can
be expressed as the 3×3 determinant

ϕ (n+1)
m (x) =

n−2

∏
j=1

(µm −µ j)

(µn −µ j)

∣∣∣∣∣∣∣
µmχ̃(1)

m (x) χ̃(1)
m (x) χ̃(1)

m (−x)
µnχ̃(1)

n (x) χ̃(1)
n (x) χ̃(1)

n (−x)
µn−1χ̃(1)

n−1(x) χ̃(1)
n−1(x) χ̃(1)

n−1(−x)

∣∣∣∣∣∣∣ (3.2.46)

·
[
(µn −µn−1)χ̃

(1)
n (x)

∣∣∣∣∣ χ̃(1)
n (x) χ̃(1)

n (−x)
χ̃(1)

n−1(x) χ̃(1)
n−1(−x)

∣∣∣∣∣
]−1

where µn is the eigenvalue of ϕ (1)
n (x) : H[ϕ (1)

n (x)] = µnϕ (1)
n (x), and

χ̃(1)
n (x) = β (−x−1)ϕ (1)

n (x)+β (x)ϕ (1)
n (−x−1).

Proof. First, it is easily seen from (3.2.43) and (3.2.44) that, for n ≥ 2 we have

χ̃(n)
m (x) =

n−1
∏
j=1

(µm −µ j)

n−2
∏

k=1
(µn−1 −µk)

χ̃(1)
m (x)

χ̃(1)
n−1(x)

, χ(n)
m (x) =

n−2
∏
j=1

(µm −µ j)

n−2
∏

k=1
(µn−1 −µk)

(
χ̃(1)

m (x)

χ̃(1)
n−1(x)

− χ̃(1)
m (−x)

χ̃(1)
n−1(−x)

)
.

Then from (3.2.45) it follows that

ϕ (n+1)
m (x) =

χ̃(n)
m (x)

χ̃(n)(x)
− χ(n)

m (x)
χ(n)(x)

=
n−1

∏
j=1

(µm −µ j)

(µn −µ j)

χ̃(1)
m (x)

χ̃(1)
n (x)

−
n−2

∏
j=1

(µm −µ j)

(µn −µ j)

χ̃(1)
m (x)χ̃(1)

n−1(−x)− χ̃(1)
m (−x)χ̃(1)

n−1(x)

χ̃(1)
n (x)χ̃(1)

n−1(−x)− χ̃(1)
n (−x)χ̃(1)

n−1(x)

=
n−2

∏
j=1

(µm −µ j)

(µn −µ j)

[
(µm −µn−1)χ̃

(1)
m (x)

(µn −µn−1)χ̃
(1)
n (x)

−
χ̃(1)

m (x)χ̃(1)
n−1(−x)− χ̃(1)

m (−x)χ̃(1)
n−1(x)

χ̃(1)
n (x)χ̃(1)

n−1(−x)− χ̃(1)
n (−x)χ̃(1)

n−1(x)

]
.

Finally, the formula in the square brackets can be rewritten into∣∣∣∣∣∣∣
µmχ̃(1)

m (x) χ̃(1)
m (x) χ̃(1)

m (−x)
µnχ̃(1)

n (x) χ̃(1)
n (x) χ̃(1)

n (−x)
µn−1χ̃(1)

n−1(x) χ̃(1)
n−1(x) χ̃(1)

n−1(−x)

∣∣∣∣∣∣∣ ·
[
(µn −µn−1)χ̃

(1)
n (x)

∣∣∣∣∣ χ̃(1)
n (x) χ̃(1)

n (−x)
χ̃(1)

n−1(x) χ̃(1)
n−1(−x)

∣∣∣∣∣
]−1

.

Let us observe the right-hand side of (3.2.46), ϕ (n+1)
m (x) vanishes if m = i for i = 1,2, . . . ,n. The

cases m = n and m = n−1 are due to the 3×3 determinant part, while the cases m ∈ {1,2, . . . ,n−2}
are due to the prefactor ∏n−2

j=1(µm − µ j). In this way, there are in total n eigenfunctions been deleted
from the eigenfunction sequence of the n-step exceptional Bannai-Ito operator H(n).
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3.3 Quasi-polynomial eigenfunctions of Bannai-Ito operator
In this section we consider a special class of eigenfunctions of the Bannai-Ito operator, which are
called quasi-polynomial eigenfunctions. A quasi-polynomial eigenfunction is the product of a gauge
factor and a polynomial part:

H[ξ (x)p(x)] = λξ (x)p(x),

where ξ (x) is a function in x and p(x) is a polynomial in x, λ is the corresponding eigenvalue. The
Bannai-Ito operator may have several sequences of quasi-polynomial eigenfunctions. From these
quasi-polynomial eigenfunctions, in the next section, we will choose the seed solutions of the DT.
This plays an important role in the construction of exceptional Bannai-Ito polynomials.

From the definition of the quasi-polynomial eigenfunction, we will derive all possible gauge factors
ξ (x). First, let us consider the conjugated operator H̃ = ξ−1Hξ :

H̃ =
1

ξ (x)

[
α(x)(R− I)ξ (x)+β (x)(T R− I)ξ (x)

]
= α(x)

ξ (−x)
ξ (x)

(R− I)+β (x)
ξ (−x−1)

ξ (x)
(T R− I)+α(x)

[
ξ (−x)
ξ (x)

−1
]
+β (x)

[
ξ (−x−1)

ξ (x)
−1
]
.

The operator H̃ has polynomial eigenfunctions if and only if H̃ is also a Bannai-Ito operator, i.e. there
exist real numbers ρ ′

1, ρ ′
2, r′1, r′2 and ρ ′′

1 , ρ ′′
2 , r′′1 , r′′2 such that both (3.3.1) and one of (3.3.2), (3.3.3)

are satisfied

α(x)
[

ξ (−x)
ξ (x)

−1
]
+β (x)

[
ξ (−x−1)

ξ (x)
−1
]
= const. (3.3.1)

α(x)
ξ (−x)
ξ (x)

=
(x−ρ ′

1)(x−ρ ′
2)

−2x
, β (x)

ξ (−x−1)
ξ (x)

=
(x− r′1 +

1
2 )(x− r′2 +

1
2 )

2x+1
, (3.3.2)

α(x)
ξ (−x)
ξ (x)

=
(x−ρ ′′

1 )(x−ρ ′′
2 )

2x
, β (x)

ξ (−x−1)
ξ (x)

=−
(x− r′′1 +

1
2 )(x− r′′2 +

1
2 )

2x+1
. (3.3.3)

Further calculations lead to the following lemma.

Lemma 3.3.1. Let H = α(x)(R− I)+ β (x)(T R− I) be a Bannai-Ito operator, then the conjugated
operator H̃ = ξ−1Hξ has polynomial eigenfunctions if and only if ξ (x) satisfies

ξ (−x)
ξ (x)

=
(x−ρ ′

1)(x−ρ ′
2)

(x−ρ1)(x−ρ2)
,

ξ (−x−1)
ξ (x)

=
(x− r′1 +

1
2 )(x− r′2 +

1
2 )

(x− r1 +
1
2 )(x− r2 +

1
2 )
, (3.3.4)

where ρ ′
1ρ ′

2 = ρ1ρ2 and r′1r′2 = r1r2; or ξ (x) satisfies

ξ (−x)
ξ (x)

=− (x−ρ ′′
1 )(x−ρ ′′

2 )

(x−ρ1)(x−ρ2)
,

ξ (−x−1)
ξ (x)

=−
(x− r′′1 +

1
2 )(x− r′′2 +

1
2 )

(x− r1 +
1
2 )(x− r2 +

1
2 )

, (3.3.5)

where ρ ′′
1 ρ ′′

2 =−ρ1ρ2 and r′′1 r′′2 =−r1r2.

Proof. It is easily seen that (3.3.4) and (3.3.5) follow from (3.3.2) and (3.3.3), respectively. Thus,
(3.3.1) can be rewritten into

const.=
(x−ρ ′

1)(x−ρ ′
2)− (x−ρ1)(x−ρ2)

−2x
+

(x− r′1 +
1
2 )(x− r′2 +

1
2 )− (x− r1 +

1
2 )(x− r2 +

1
2 )

2x+1

=−ρ1 +ρ2 −ρ ′
1 −ρ ′

2
2

+
r1 + r2 − r′1 − r′2

2
− ρ ′

1ρ ′
2 −ρ1ρ2

2x
+

r′1r′2 − r1r2

2x+1
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which implies ρ ′
1ρ ′

2 −ρ1ρ2 = 0 and r′1r′2 − r1r2 = 0; or

const.=
(x−ρ ′′

1 )(x−ρ ′′
2 )+(x−ρ1)(x−ρ2)

2x
−

(x− r′′1 +
1
2 )(x− r′′2 +

1
2 )+(x− r1 +

1
2 )(x− r2 +

1
2 )

2x+1

=−ρ1 +ρ2 +ρ ′′
1 +ρ ′′

2
2

+
r1 + r2 + r′′1 + r′′2

2
− 1

2
+

ρ ′′
1 ρ ′′

2 +ρ1ρ2

2x
− r′′1 r′′2 + r1r2

2x+1

which implies ρ ′′
1 ρ ′′

2 +ρ1ρ2 = 0 and r′′1 r′′2 + r1r2 = 0.

It then follows that there are both 4 sets of parameterizations (σ1, σ2, σ3, σ4) for ρ ′
1, ρ ′

2, r′1, r′2 and
ρ ′′

1 , ρ ′′
2 , r′′1 , r′′2 (σ5, σ6, σ7, σ8):

σ1 = {ρ1,ρ2,r1,r2}, σ2 = {−ρ1,−ρ2,−r1,−r2},

σ3 = {−ρ1,−ρ2,r1,r2}, σ4 = {ρ1,ρ2,−r1,−r2},

σ5 = {−ρ1,ρ2,−r1,r2}, σ6 = {ρ1,−ρ2,r1,−r2},

σ7 = {ρ1,−ρ2,−r1,r2}, σ8 = {−ρ1,ρ2,r1,−r2}.

Remark 3.3.1. One may ask why there are only 8 sets of parameterizations, for example, the condition
ρ ′

1ρ ′
2 = ρ1ρ2 leads to ρ ′

1 = kρ1 and ρ ′
2 = ρ2/k where k can be any real number. We will show that the

conditions (3.3.4) and (3.3.5) imply that only the choices k =±1 are allowed. In fact, if we let ρ ′
1 = kρ1

and ρ ′
2 = ρ2/k, then the first equation of (3.3.4) can be rewritten into

ξ (−x)
ξ (x)

=
(x− kρ1)(x−ρ2/k)
(x−ρ1)(x−ρ2)

, (3.3.6)

which becomes the next equation with x replaced by −x

ξ (x)
ξ (−x)

=
(x+ kρ1)(x+ρ2/k)
(x+ρ1)(x+ρ2)

. (3.3.7)

Then we have

1 =
ξ (−x)
ξ (x)

· ξ (x)
ξ (−x)

=
(x− kρ1)(x−ρ2/k)
(x−ρ1)(x−ρ2)

· (x+ kρ1)(x+ρ2/k)
(x+ρ1)(x+ρ2)

=
(x2 − k2ρ2

1 )(x
2 −ρ2

2/k2)

(x2 −ρ2
1 )(x

2 −ρ2
2 )

.

The above equation have 4 solutions: k2 = 1 and k2 = ρ2
2/ρ2

1 . However, the former two solutions
lead to (ρ ′

1,ρ ′
2) = (ρ1,ρ2) or (−ρ1,−ρ2) while the latter two solutions lead to (ρ ′

1,ρ ′
2) = (ρ2,ρ1) or

(−ρ2,−ρ1). One should notice that nothing changes if we exchange ρ ′
1 with ρ ′

2 (ρ ′′
1 with ρ ′′

2 ) or r′1 with
r′2 (r′′1 with r′′2 ) due to the symmetry of the right-hand sides of (3.3.2) ((3.3.3)). In fact, the solutions
k2 = ρ2

2/ρ2
1 lead to the same gauge factors as the solutions k2 = 1. Therefore, we drop the solutions

k2 = ρ2
2/ρ2

1 and keep k2 = 1. This reasoning can also be applied to the remaining cases. In this way
we conclude that there are in total 8 cases of parameterizations. These parameterizations correspond
to the following 8 classes of quasi-polynomial eigenfunctions.
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Theorem 3.3.1. The Bannai-Ito operator has 8 sequences of quasi-polynomial eigenfunctions:
{ξd(x)p(d)m (x)}∞

m=0, d ∈ {1,2, . . . ,8}. The 8 gauge factors are

ξ1(x) = 1,

ξ2(x) =
Γ(1/2+ r1 + x)Γ(1/2+ r1 − x)Γ(1/2+ r2 + x)Γ(1/2+ r2 − x)

Γ(ρ1 − x)Γ(1+ρ1 + x)Γ(ρ2 − x)Γ(1+ρ2 + x)
,

ξ3(x) =
1

Γ(ρ1 − x)Γ(1+ρ1 + x)Γ(ρ2 − x)Γ(1+ρ2 + x)
,

ξ4(x) = Γ(1/2+ r1 + x)Γ(1/2+ r1 − x)Γ(1/2+ r2 + x)Γ(1/2+ r2 − x) ,

ξ5(x) =
Γ(1/2+ r1 + x)Γ(1/2+ r1 − x)[

Γ(ρ1 − x)Γ(1+ρ1 + x)
,

ξ6(x) =
Γ(1/2+ r2 + x)Γ(1/2+ r2 − x)

Γ(ρ2 − x)Γ(1+ρ2 + x)
,

ξ7(x) =
Γ(1/2+ r1 + x)Γ(1/2+ r1 − x)

Γ(ρ2 − x)Γ(1+ρ2 + x)
,

ξ8(x) =
Γ(1/2+ r2 + x)Γ(1/2+ r2 − x)

Γ(ρ1 − x)Γ(1+ρ1 + x)
.

And the polynomials p(d)m (x) = Bn(x;σd) for m ∈ {0,1,2, . . .}, d ∈ {1,2, . . . ,8}. Moreover, the eigen-
values of the quasi-polynomial eigenfunctions {ξd(x)p(d)m (x)} are

µd = µd,m =

{
λm(σd)+Cd , if d ∈ {1,2,3,4},
−λm(σd)+Cd , if d ∈ {5,6,7,8},

(3.3.8)

where λm(σd) is the eigenvalue of the Bannai-Ito polynomial Bm(x) (refers to (3.1.3), (3.1.4)) with
parameters given by σd , and the definition of the constant Cd is

Cd =


−ρ1 +ρ2 −ρ ′

1 −ρ ′
2

2
+

r1 + r2 − r′1 − r′2
2

, if {ρ ′
1,ρ ′

2,r
′
1,r

′
2}= σd and d ∈ {1,2,3,4},

−ρ1 +ρ2 +ρ ′′
1 +ρ ′′

2
2

+
r1 + r2 + r′′1 + r′′2 −1

2
, if {ρ ′′

1 ,ρ ′′
2 ,r

′′
1 ,r

′′
2}= σd and d ∈ {5,6,7,8}.

Proof. Here we derive the above quasi-polynomial eigenfunctions using Lemma 3.3.1. Notice that
ξ (−x)/ξ (−x−1) = F(x) leads to ξ (x+1)/ξ (x) = F(−x−1) if one substitute x by −x−1, hence it
is convenient to construct the gauge factors with the help of the Gamma function.

In the first case we have ξ1(x+1)/ξ1(x) = 1, which implies ξ1(x) is a constant.
In the second case we have

ξ2(x+1)
ξ2(x)

=
(x−ρ1 +1)(x−ρ2 +1)(x+ r1 +1/2)(x+ r2 +1/2)
(x+ρ1 +1)(x+ρ2 +1)(x− r1 +1/2)(x− r2 +1/2)

.

Recall that Γ(x+1)/Γ(x) = x, we can express ξ2(x) in terms of the Gamma functions

ξ2(x) = c2(x)
Γ(x−ρ1 +1)Γ(x−ρ2 +1)Γ(x+ r1 +1/2)Γ(x+ r2 +1/2)
Γ(x+ρ1 +1)Γ(x+ρ2 +1)Γ(x− r1 +1/2)Γ(x− r2 +1/2)

,

where c2(x) is periodic function of period 1, c2(x+1) = c2(x). The fact that ξ2(x) must be an eigen-
function of H implies that c2(x) cannot be a constant. If we let

c2(x) =
sin[π(x−ρ1 +1)]sin[π(x−ρ2 +1)]

sin[π(x− r1 +1/2)]sin[π(x− r2 +1/2)]
,
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then the following expression of ξ2(x) satisfies H[ξ2(x)] = (r1 + r2 −ρ1 −ρ2)ξ2(x).

ξ2(x) =
Γ(x+ r1 +1/2)Γ(−x+ r1 +1/2)Γ(x+ r2 +1/2)Γ(−x+ r2 +1/2)

Γ(x+ρ1 +1)Γ(−x+ρ1)Γ(x+ρ2 +1)Γ(−x+ρ2)

In the derivation of the above expression of ξ2(x), Euler’s reflection formula

Γ(x)Γ(1− x) = π/sin(πx), x /∈ Z

has been used (assuming x−ρ1 +1, x−ρ2 +1, x− r1 +1/2, x− r2 +1/2 /∈ Z).
The remaining ξk(x)’s can be obtained in the same way by choosing suitable periodic function c(x)’s

and applying Euler’s reflection formula. We shall assume that the restriction x /∈ Z is always satisfied
wherever Euler’s reflection formula was applied. This is not difficult since ρ1,ρ2,r1,r2 can be any real
numbers.

According to (3.3.1), (3.3.2), (3.3.3) and Lemma 3.3.1, it is easily seen that the conjugated operator

H̃ =

{
H(σd)+Cd , if d ∈ {1,2,3,4},
−H(σd)+Cd , if d ∈ {5,6,7,8},

thus p(d)n (x) = Bn(x;σd) and (3.3.8) follow immediately.

3.4 Exceptional Bannai-Ito polynomials
Using the results of Section 3.2 and Section 3.3, we are now able to construct the exceptional Bannai-
Ito polynomials. We first show that there are missing degrees in the constructed exceptional Bannai-Ito
polynomial sequences. Notably their missing degrees demonstrate different rules compared with the
known 1-step XOPs. And then we prove that the exceptional Bannai-Ito polynomials are orthogonal
with respect to a discrete measure on the exceptional Bannai-Ito grid.

Define an index set D = {1,2, . . . ,8}×Z≥0. For the sake of simplicity, we assume that for any
index d = (d,m) ∈ D, a quasi-polynomial eigenfunction ϕd(x) = ξd(x)p(d)m (x) is uniquely determined
upon the constant multiplier. Last but not least, we assume that the Bannai-Ito polynomials mentioned
in this paper are always monic (i.e. the coefficient of the highest order term is 1), hence p(d)n (x) are
always monic too. One could refer to Theorem 3.3.1.

Now we take a quasi-polynomial eigenfunction ϕd(x) with d = (d,m) as a seed solution and show
that the Darboux transformed eigenfunction F̂ϕd [Bn(x)] is just the exceptional Bannai-Ito polynomial
we want. Firstly, a well selected decoupling coefficient r(x) is essential.

Lemma 3.4.1. Assume that the decoupling coefficient r(x) is given by

r(x) = χ̃(x)χ(x)
ηd(x)
xξd(x)

, (3.4.1)

where ηd(x) is the polynomial of lowest degree such that

ξd(−x)
ξd(x)

=
ηd(−x)
ηd(x)

.

Then the Darboux transformed eigenfunction

F̂ϕd [Bn(x)] =
r(x)

χ(x)χ̃(x)

∣∣∣∣ (I −R)[ϕd(x)] (I −R)[Bn(x)]
(I +T R)[β (−x−1)ϕd(x)] (I +T R)[β (−x−1)Bn(x)]

∣∣∣∣
is a polynomial.
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Proof. Given the seed solution ϕd(x) = ξd(x)p(d)m (x) whose eigenvalue is µd, we have

χ(x)χ̃(x)
r(x)

F̂ϕd [Bn(x)] = (ϕd(x)−ϕd(−x))(β (−x−1)Bn(x)+β (x)Bn(−x−1))

−(Bn(x)−Bn(−x))(β (−x−1)ϕd(x)+β (x)ϕd(−x−1))

= (ϕd(x)−ϕd(−x))[(λn +β (x)+β (−x−1))Bn(x)+α(x)(Bn(x)−Bn(−x))]

−(Bn(x)−Bn(−x))[(µd +β (x)+β (−x−1))ϕd(x)+α(x)(ϕd(x)−ϕd(−x))]

= (λn +β (x)+β (−x−1))Bn(x)(ϕd(x)−ϕd(−x))

−(µd +β (x)+β (−x−1))ϕd(x)(Bn(x)−Bn(−x))

=
xξd(x)
ηd(x)

[
(λn +β (x)+β (−x−1))Bn(x)

(ηd(x)p(d)m (x)−ηd(−x)p(d)m (−x)
x

)
−(µd +β (x)+β (−x−1))ηd(x)p(d)m (x)

(Bn(x)−Bn(−x)
x

)]
,

where the second equation follows from equation (3.2.3) which can be used as

β (−x−1)ϕd(x)+β (x)ϕd(−x−1) = (µd +β (x)+β (−x−1))ϕd(x)+α(x)(ϕd(x)−ϕd(−x)),

β (−x−1)Bn(x)+β (x)Bn(−x−1) = (λn +β (x)+β (−x−1))Bn(x)+α(x)(Bn(x)−Bn(−x)).

The third equation is obtained after the elimination of

α(x)(Bn(x)−Bn(−x))(ϕd(x)−ϕd(−x)).

Finally, by introducing the polynomial ηd(x) we arrive at the fourth equation. Notice that the function
in the square brackets is just the desired polynomial. Therefore, the decoupling coefficient should be

r(x) = χ̃(x)χ(x)
ηd(x)
xξd(x)

.

Here we give all the functions ηd(x) explicitly for later convenience. This list is obtained via Lemma
3.3.1,

η1(x) = 1, η2(x) = (x−ρ1)(x−ρ2),
η3(x) = (x−ρ1)(x−ρ2), η4(x) = 1,
η5(x) = (x−ρ1), η6(x) = (x−ρ2),
η7(x) = (x−ρ2), η8(x) = (x−ρ1).

With r(x) given by Lemma 3.4.1, let B(1)
d,n(x) = F̂ϕd [Bn(x)], then {B(1)

d,n(x)} are the polynomial eigen-

functions of Ĥ(1): Ĥ(1)[B(1)
d,n(x)] = λnB(1)

d,n(x) (λn ̸= µd). In what follows, we give an analysis of the

degree of B(1)
d,n(x) and show that there are missing degrees in their polynomial sequences. From the

proof of Lemma 3.4.1, we have

B(1)
d,n(x) = (λn −β )

(
ηd(x)p(d)m (x)−ηd(−x)p(d)m (−x)

x

)
Bn(x) (3.4.2)

−(µd −β )
(

Bn(x)−Bn(−x)
x

)
ηd(x)p(d)m (x),

where the constant β =−(β (x)+β (−x−1)) = r1 + r2 (refers to (3.2.22)).
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Remark 3.4.1. Note that µ4,0 = r1+r2 = β (refers to (3.3.8)), in this case the polynomials B(1)
4,0,n(x) =

0 for n = 0,1,2, . . ., which implies that d = (4,0) cannot be chosen as the index of a seed solution.

In order to see the degree of B(1)
d,n(x), let

Bn(x) = xn +an−1xn−1 + · · · (3.4.3)

then from Theorem 3.3.1 we have

p(d)n (x) = Bn(x;σd) = xn +an−1(σd)xn−1 + · · ·

where ai(σd) (i = 0,1, . . . ,n− 1) are the coefficients with respect to the parameterization σd . For
d = 1, . . . ,8, denote the degree of ηd(x) by κd such that ηd(x) = xκd +b(d)κd−1xκd−1 + · · · . Then

ηd(x)p(d)m (x) = xm+κd +(am−1(σd)+b(d)κd−1)x
m+κd−1 + · · · , (3.4.4)

where κd = 0 for d ∈ {1,4}; κd = 2 for d ∈ {2,3}; and κd = 1 for d ∈ {5,6,7,8}.

Proposition 3.4.1. Let S be the set of degrees of {B(1)
d,n(x)}, where the index d ∈ D\{(1,n),(4,0)}. If

the conditions (4.14) and (4.15) are satisfied, then we have

• for m is odd,
• d = 1 : S = {m−1,m,m+1, · · · ,2m−2,2m, · · ·};
• d = 4 : S = {m−1,m,m+1,m+2,m+3, · · ·};
• d = 2,3 : S = {m+1,m+2,m+3,m+4,m+5, · · ·};
• d = 5,6,7,8 : S = {m−1,m+1,m+1,m+3,m+3, · · ·};

• for m is even,
• d = 1 : S = {m−2,m,m, · · · ,2m−4,2m−4,2m−2,2m,2m, · · ·};
• d = 4 : S = {m−2,m,m,m+2,m+2, · · ·};
• d = 2,3 : S = {m,m+2,m+2,m+4,m+4, · · ·};
• d = 5,6,7,8 : S = {m,m+1,m+2,m+3,m+4, · · ·}.

Proof. According to (3.4.3) and (3.4.4), the right-hand side of (3.4.2) can be expanded as

B(1)
d,n(x)= (λn−β )[xm+κd−1+(−x)m+κd−1+(am−1(σd)+bκd−1)(xm+κd−2+(−x)m+κd−2)+· · · ](xn+an−1xn−1+· · ·)

−(µd−β )[xn−1+(−x)n−1+an−1(xn−2+(−x)n−2)+· · · ][xm+κd +(am−1(σd)+bκd−1)xm+κd−1+· · · ]

= (λn −β )[xm+κd−1 +(−x)m+κd−1 +(am−1(σd)+bκd−1)(xm+κd−2 +(−x)m+κd−2)]xn

−(µd −β )[xn−1 +(−x)n−1 +an−1(xn−2 +(−x)n−2)]xm+κd + · · · .

Note that xk +(−x)k = 2xk if k is even, otherwise xk +(−x)k = 0. The degree of B(1)
d,n(x) depends on

the parities of m+κd and n. Specifically, the leading term of B(1)
d,n(x) is given by:

B(1)
d,n(x) =



2(λn −β )xn+m+κd−1 + · · · , if m+κd is odd and n is even,

2(λn −µd)xn+m+κd−1 + · · · , if m+κd is odd and n is odd,

2Cd,m,nxn+m+κd−2 + · · · , if m+κd is even and n is even,

−2(µd −β )xn+m+κd−1 + · · · , if m+κd is even and n is odd,
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where Cn,m,d = (λn −β )(am−1(σd)+ b(d)κd−1)− (µd −β )an−1. Recall that in the case d = 1, the seed

solution is ϕ(1,m) = Bm(x), thus B(1)
d,n(x) = 0 for d = 1, n = m since F̂ϕ(1,m)

[Bm(x)] = 0. In the other

cases if we assume that the coefficient of the leading term of B(1)
d,n(x) is always non-zero, i.e.

λn −β ̸= 0, if n is even, (3.4.5)
µd −β ̸= 0, if d ∈ {1,2,3,4} and m is even; or d ∈ {5,6,7,8} and m is odd, (3.4.6)
λn −µd ̸= 0, if d ∈ {1,2,3,4},m is odd and n is odd; (3.4.7)

or d ∈ {5,6,7,8},m is even and n is odd,
Cd,m,n ̸= 0, if d ∈ {1,2,3,4},m is even and n is even; (3.4.8)

or d ∈ {5,6,7,8},m is odd and n is even,

are satisfied, then for the degree of B(1)
d,n(x) we have

deg(B(1)
d,n(x)) =

{
n+m+κd −1, if m+κd is odd; or m+κd is even and n is odd,
n+m+κd −2, if m+κd is even and n is even.

(3.4.9)
(3.4.10)

By analyzing the parity of m and n, it turns out that (3.4.9) leads to the first three cases for m is odd
and the last case for m is even, while (3.4.10) leads to the other cases in Proposition 3.4.1.

Finally, let us consider under which conditions will (3.4.5)-(3.4.8) be satisfied. It follows from
(3.1.3), (3.1.4) and (3.2.23) that

λn −β =

{
n/2− (r1 + r2), if n is even,

−(ρ1 +ρ2)− (n+1)/2, if n is odd,

(3.4.11)

(3.4.12)

thus (3.4.5) holds under the condition

r1 + r2 /∈ Z. (3.4.13)

In Section 3.6 we list the explicit expressions for µd−β , λn−µd and Cd,m,n in the corresponding cases.
From (3.6.1)-(3.6.24) we can see that (3.4.6)-(3.4.8) are satisfied under the conditions

r1 + r2, ρ1 +ρ2, r1 + r2 +ρ1 +ρ2, r1 + r2 −ρ1 −ρ2 /∈ Z, (3.4.14)

r1 − r2 −ρ1 +ρ2 +1
2

,
r1 − r2 +ρ1 −ρ2 +1

2
, ri−ρ j +

1
2
, ri+ρ j +

1
2
/∈Z, i, j ∈ {1,2}, (3.4.15)

and the index d = (d,m) /∈ {(1,n),(4,0)}.

Remark 3.4.2. As we addressed in the proof of Proposition 3.4.1, in both cases d = 1 there are missing
degrees (2m−1 and 2m−2, respectively) in the degree sequence of {B(1)

d,n(x)} when n = m, since the
seed solutions ϕ(1,m) = Bm(x) and the trivial eigenfunctions F̂ϕ(1,m)

[Bm(x)] = 0. On the other hand, the
nontrivial eigenfunction given by (3.2.28) becomes

ϕ (1)
d (x) =

σ(x)r(x)
χ̃(x)χ(x)α(x)ω(x)

=
σ(x)ηd(x)

xα(x)ω(x)ξd(x)
.

Here we may choose σ(x) = xα(x)ω(x)ξ1(x)/η1(x). With this choice it holds that σ(x+ 1) = σ(x)
and σ(−x) = −σ(x), then ϕ (1)

d (x) = ηd(x)ξ1(x)/η1(x)ξd(x), such that only when d = 1 the nontriv-

ial eigenfunction ϕ (1)
d (x) is a polynomial and ϕ (1)

(1,m)
(x) = 1. This eigenfunction should be added to
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the sequence {B(1)
(1,m),n(x)}, hence the polynomial sequence starts from degree 0. However, for the

convenience of later discussion, we will not include this term into the XBI polynomial sequence.

Notice that in each case there are missing degrees in the degree sequence S, and the degrees of
{B(1)

d,n(x)} demonstrate exactly opposite features regarding the parity of m. Specifically, in the first
three cases when m is odd and the in the last case when m is even, S behaves similarly as the known
1-step XOPs, where S is cofinite (the complement of S is finite). However, in the other cases S is
not cofinite and only contains even degrees. This fact implies that in these cases, the normalized 1-
step exceptional Bannai-Ito operator Ĥ(1) only has even-order eigenpolynomials, and there are two
different series of these eigenpolynomials. It would be better to say that the eigenpolynomials of odd
degrees are not been deleted but are just replaced by the ones of even degrees. For example, in the case
m = 2 and d ∈ {2,3}, the degree set of {B(1)

d,n(x)} is S = {2,4,4,6,6, . . .}. The polynomials B(1)
d,n(x)

are different from each other even when they have the same degree, and by no exception they are
orthogonal according to Theorem 4.11.

The feature that S is not cofinite naturally conflicts with the definition of XOPs which satisfy a
second-order differential (difference) equation. This is not surprising, the constraint that S should be
cofinite is just the consequence of the way XOPs in [16–18, 23–27, 69] are presented, the reflection
operator R has not appeared in their eigenvalue equations. Taking this opportunity, we would like to
modify the definition of XOPs as the generalization of COPs where the only condition to be removed is
that it contains polynomials of all degrees. By this means, the XOPs are characterized by orthogonality
and forming the polynomial eigenfunctions of certain differential (difference) operators. From now on,
we call {B(1)

d,n(x)} the 1-step exceptional Bannai-Ito (XBI) polynomials.

Proposition 3.4.2. The exceptional Bannai-Ito polynomials B(1)
d,n(x) can be expressed as the linear

combination of the Bannai-Ito polynomials Bn(x) and Bn(−x)−Bn(x),

B(1)
d,n(x) =C(1)

d,n(x)Bn(x)+C(2)
d (x)(Bn(x)−Bn(−x)),

where

C(1)
d,n(x) = (λn −β )

(
ϕ̂ (0)

d (x)− ϕ̂ (0)
d (−x)

x

)
, C(2)

d (x) =−(µd −β )
ϕ̂ (0)

d (x)
x

,

and ϕ̂ (0)
d (x) is the normalized seed solution which is a polynomial:

ϕ̂ (0)
d (x) = ηd(x)p(d)m (x) = ϕd(x)

ηd(x)
ξd(x)

. (3.4.16)

Proof. The above result follows directly from (3.4.2).

Corollary 3.4.1. The exceptional Bannai-Ito polynomials B(1)
d,n(x) satisfy

B(1)
d,n(x)−B(1)

d,n(−x) =
1
x
(λn −µd)(ϕ̂

(0)
d (x)− ϕ̂ (0)

d (−x))(Bn(x)−Bn(−x)). (3.4.17)

Proof. From Proposition 4.5, we have

B(1)
d,n(x)−B(1)

d,n(−x) =C(1)
d,n(x)Bn(x)−C(1)

d,n(−x)Bn(−x)

+(C(2)
d (x)+C(2)

d (−x))(Bn(−x)−Bn(x)).
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Since C(1)
d,n(x) =C(1)

d,n(−x), it turns out that

B(1)
d,n(x)−B(1)

d,n(−x) = (C(1)
d,n(x)+C(2)

d (x)+C(2)
d (−x))(Bn(−x)−Bn(x))

=
1
x
(λn −µd)(ϕ̂

(0)
d (x)− ϕ̂ (0)

d (−x))(Bn(−x)−Bn(x)).

3.4.1 Orthogonality

A finite difference operator L is said to be symmetric with respect to an inner product ⟨,⟩ω(x) if it satis-
fies ⟨L[p(x)],q(x)⟩ω(x) = ⟨p(x),L[q(x)]⟩ω(x) for any functions p(x) and q(x), where the inner product
is defined by ⟨p(x),q(x)⟩ω(x) = ∑x∈χ ω(x)p(x)q(x). It is known from the Lemma 2.4 of [16] that if a
difference operator is symmetric with respect to an inner product ⟨,⟩ω(x), then its eigenfunctions are
orthogonal with respect to ω(x).

Assume that the operator L has polynomial eigenfunctions {pn(x)}

L [pn(x)] = λn pn(x) (λn ̸= λm,n ̸= m),

the linearity of the inner product ⟨,⟩ω(x) implies

⟨L [pn(x)], pm(x)⟩ω(x) = λn⟨pn(x), pm(x)⟩ω(x),

⟨pn(x),L [pm(x)]⟩ω(x) = λm⟨pn(x), pm(x)⟩ω(x).

Then if L is symmetric with respect to ⟨,⟩ω(x), it holds that

⟨pn(x), pm(x)⟩ω(x) = 0 (n ̸= m),

which demonstrate the orthogonality of {pn(x)} with respect to ω(x). In light of this conclusion we
need first to derive the conditions for L to be symmetric.

Lemma 3.4.2. Let ω(x) be a weight function supported on a countable set χ ⊂R. L is a Dunkl shift
operator of the form L = F(x)R+G(x)T R+C(x). Assume that the functions F(x), G(x) and ω(x)
satisfy the following relations

ω(x)F(x) = ω(−x)F(−x), (3.4.18)
ω(x)G(x) = ω(−x−1)G(−x−1), (3.4.19)

for x ∈ R, and the boundary conditions

F(x) = 0 for x ∈ χ\(−χ), (3.4.20)
G(x) = 0 for x ∈ χ\(−χ −1), (3.4.21)

then L is symmetric with respect to ω(x). Here we denote by −χ and −χ − 1 the sets −χ = {−x :
x ∈ χ} and −χ −1 = {−x−1 : x ∈ χ}, respectively.

Proof. According to the conditions, it holds for any functions p(x) and q(x) that

∑
x∈χ

ω(x)F(x)p(−x)q(x) = ∑
x∈−χ

ω(−x)F(−x)p(x)q(−x)

= ∑
x∈(−χ)∩χ

ω(x)F(x)p(x)q(−x) = ∑
x∈χ

ω(x)F(x)p(x)q(−x),
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and
∑
x∈χ

ω(x)G(x)p(−x−1)q(x) = ∑
x∈(−χ−1)

ω(−x−1)G(−x−1)p(x)q(−x−1)

= ∑
x∈(−χ−1)∩χ

ω(x)G(x)p(x)q(−x−1) = ∑
x∈χ

ω(x)G(x)p(x)q(−x−1).

These equations imply that

∑
x∈χ

ω(x)
[
F(x)p(−x)+G(x)p(−x−1)

]
q(x) = ∑

x∈χ
ω(x)p(x)

[
F(x)q(−x)+G(x)q(−x−1)

]
.

The above equation is equivalent to ⟨L [p(x)],q(x)⟩ω(x) = ⟨p(x),L [q(x)]⟩ω(x), thus L is symmetric
with respect to ω(x).

Lemma 3.4.3. Assume that ω(x) is the weight function associated with a Dunkl-shift operator L =
F(x)R+G(x)T R+C(x) such that (3.4.18), (3.4.19), (3.4.20) and (3.4.21) hold, then it satisfies

ω(x+1)
ω(x)

=
F(−x−1)G(x)

F(x+1)G(−x−1)
.

Proof. The equations

ω(x)F(x) = ω(−x)F(−x), ω(x)G(x) = ω(−x−1)G(−x−1)

imply that
ω(−x)

ω(−x−1)
=

F(x)G(−x−1)
F(−x)G(x)

,

after substituting x by −x−1 then we get the desired result.

Now we are able to give the weight functions of the exceptional Bannai-Ito operator by using the
properties of the Gamma function as we did in Section 3.3. However, it takes less steps if the relation-
ship between the weight functions of the exceptional Bannai-Ito operator and the Bannai-Ito operator
is available, since the weight functions of the Bannai-Ito polynomials are already known in [79]. Be-
low we give the weight function of the exceptional Bannai-Ito polynomials {B(1)

d,n(x)} and show their
orthogonality explicitly. These results can be extended to the multiple-step exceptional Bannai-Ito
polynomials.

Theorem 3.4.1. Let ω̂(1)(x) be the weight function associated with the exceptional Bannai-Ito opera-
tor Ĥ(1), and ω(x) be the weight function of the Bannai-Ito operator H, then it holds that

ω̂(1)(x) = c(x)
χ̃(x)χ(x)α(x)

r2(x)
ω(x), (3.4.22)

where c(x) is a 1-periodic function c(x+1) = c(x), and it satisfies c(−x) = c(x).

Proof. According to (3.2.25), (3.2.26), the normalized 1-step exceptional Bannai-Ito operator is

Ĥ(1) =
r(x)χ̃(−x)
r(−x)χ(x)

(R− I)+
r(x)α(−x−1)β (x)χ(−x−1)

r(−x−1)χ̃(x)
(T R− I)

+
α(−x−1)β (x)χ(−x−1)

χ̃(x)

(
r(x)

r(−x−1)
−1
)
.
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Then from Lemma 3.4.3, we have

ω̂(1)(x+1)
ω̂(1)(x)

=
χ̃(x+1)χ(x+1)r2(x)α(−x−1)β (x)

χ̃(x)χ(x)r2(x+1)α(x)β (−x−1)
=

χ̃(x+1)χ(x+1)r2(x)α(x+1)ω(x+1)
χ̃(x)χ(x)r2(x+1)α(x)ω(x)

,

hence

ω̂(1)(x) = c(x)
χ̃(x)χ(x)α(x)ω(x)

r2(x)
,

where c(x) is a periodic function of period 1, c(x+ 1) = c(x). Moreover, if we check the relations
(3.4.18) and (3.4.19) with respect to the coefficients of Ĥ(1), it turns out that

c(−x) = c(x), c(−x−1) = c(x).

Notice that c(−x−1) = c(x) follows from the conditions c(x+1) = c(x) and c(−x) = c(x), thus only
the latter two conditions are essential. In view of these properties, it may sometimes be convenient to
choose c(x) as a constant.

It remains to derive the exceptional Bannai-Ito grid (from the simple roots of exceptional Bannai-
Ito polynomials), which varies in the choice of the seed solution. It is known that the Bannai-Ito
polynomials have simple and distinct real roots [79] as the other COPs do [74]. Specifically, when n is
odd, if we assume that r2 = ρ2 +n/2, then the Bannai-Ito polynomial Bn(x) has n simple roots given
by

ρ2, −ρ2 −1, ρ2 +1, · · · , −ρ2 −
n−1

2
, ρ2 +

n−1
2

;

when n is even, assume that ρ1 =−ρ2 −n/2, then the n simple roots of Bn(x) are

ρ2, −ρ2 −1, ρ2 +1, −ρ2 −2, · · · , ρ2 +
n−2

2
, −ρ2 −

n
2
.

These roots can be rewritten into a more elegant form which was called the Bannai-Ito grid: xs =
−1/4+(−1)s(x0 + s/2+1/4) (s = 0,1, . . . ,n−1) with x0 = ρ2.

Remark 3.4.3. Note that in the case when n is odd there are 4 possible conditions: ri − ρ j = n/2,
i, j = 1,2, where we just restrict with the condition r2 = ρ2 +n/2 for the sake of simplicity. And in the
case when n is even there are also 2 possible conditions: ρ1 +ρ2 = −n/2 and r1 + r2 = n/2, for the
same reason we restrict with the condition ρ1 +ρ2 = −n/2. More details about Bannai-Ito grid can
be found in [79].

It then follows from Proposition 3.4.2 and the above results that B(1)
d,n(x) = Qd,n(x)Bn(x), where

Qd,n(x) =


C(1)

d,n(x)+2xC(2)
d (x)/(x−ρ2), if n odd and r2 = ρ2 +

n
2
,

C(1)
d,n(x)+nxC(2)

d (x)/((x−ρ2)(x+ρ2 +
n
2
)), if n even and ρ1 =−ρ2 −

n
2
.

Note that C(1)
d,n(x) is a polynomial in x, 2xC(2)

d (x)/(x − ρ2) is a polynomial for d = 1,2,5,6, and

nxC(2)
d (x)/(x− ρ2)(x+ ρ2 +

n
2 ) is a polynomial for d = 1,2. In these cases, the roots of Bn(x) be-

long to the simple roots of B(1)
d,n(x). In other cases only a part of the former belong to the latter.

Let χ(1)
d be the set whose elements come from the exceptional Bannai-Ito grid, thus these elements

are the simple roots of B(1)
d,N(x). For simplicity’s sake, we rewrite the normalized exceptional Bannai-

Ito operator into
Ĥ(1) = α̂(1)(x)(R− I)+ β̂ (1)(x)(T R− I)+ γ̂(1)(x),
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and consider the eigenvalue equation Ĥ(1)[B(1)
d,N(x)] = λNB(1)

d,N(x). Assume that x(1)s ∈ χ(1)
d , then this

eigenvalue equation becomes

α̂(1)(x(1)s )B(1)
d,N(−x(1)s )+ β̂ (1)(x(1)s )B(1)

d,N(−x(1)s −1) = 0.

If x(1)s ∈ χ(1)
d \(−χ(1)

d ) and x(1)s ∈ χ(1)
d ∩ (−χ(1)

d −1), which means B(1)
d,N(−x(1)s ) ̸= 0 and B(1)

d,N(−x(1)s −
1) = 0, then α̂(1)(x(1)s ) = 0. On the other hand, if x(1)s ∈ χ(1)

d \(−χ(1)
d − 1) and x(1)s ∈ χ(1)

d ∩ (−χ(1)
d ),

which means B(1)
d,N(−x(1)s − 1) ̸= 0 and B(1)

d,N(−x(1)s ) = 0, then β̂ (1)(x(1)s ) = 0. Using these results to-
gether with the boundary conditions in Lemma 3.4.2, we can conclude that

χ(1)
d \(−χ(1)

d )⊆ χ(1)
d ∩ (−χ(1)

d −1), χ(1)
d \(−χ(1)

d −1)⊆ χ(1)
d ∩ (−χ(1)

d ),

hence χ(1)
d = χ(1)

d ∩ (−χ(1)
d )∩ (−χ(1)

d − 1) + χ(1)
d \(−χ(1)

d ) + χ(1)
d \(−χ(1)

d − 1). The first set in the
right-hand side consists of part of the roots of BN(x), while the remaining 2 sets can be obtained from
the simple roots of α̂(1)(x) and β̂ (1)(x).

Theorem 3.4.2. The exceptional Bannai-Ito polynomials {B(1)
d,n(x)} satisfy the discrete orthogonality

relation

∑
x∈χ(1)

d

ω̂(1)(x)B(1)
d,n(x)B

(1)
d,m(x) = h(1)d,nδnm (0 ≤ n,m < N), (3.4.23)

where h(1)d,n is constant. If N is odd and r2 = ρ2 +N/2,

d = 1,5 : χ(1)
d = {x1, . . . ,xN−1}, d = 2,6 : χ(1)

d = {x0, . . . ,xN},

d = 3,7 : χ(1)
d = {x0, . . . ,xN−1}, d = 4,8 : χ(1)

d = {x1, . . . ,xN};

if N is even and ρ1 =−ρ2 −N/2,

d = 1,4 : χ(1)
d = {x1, . . . ,xN−2}, d = 2,3 : χ(1)

d = {x0, . . . ,xN−1},

d = 5,8 : χ(1)
d = {x1, . . . ,xN−1}, d = 6,7 : χ(1)

d = {x0, . . . ,xN−2},

where xs =−1/4+(−1)s(ρ2 + s/2+1/4).

Remark 3.4.4. It should be noted that the weight ω̂(1)(xs) is not always positive. From the formula
(3.4.22) we know that the positivity of ω̂(1)(xs) depends on that of χ̃(xs)χ(xs)α(xs)/r2(xs). In fact,
we can choose a positive 1-periodic function c(x), besides, the Bannai-Ito weight ω(xs) is positive by
construction [79]. Let us rewrite this expression into

χ̃(x)χ(x)α(x)
r2(x)

=
x2ξ 2

d (x)α(x)
η2

d (x)χ̃(x)χ(x)

=
x

ηd(x)p(d)m (x)−ηd(−x)p(d)m (−x)
· xα(x)

ηd(x)
(
β (−x−1)p(d)m (x)+β (x) ξd(−x−1)

ξd(x)
p(d)m (−x−1)

) .
It is convenient to discuss the positivity of Ed(x) := E(1)

d (x)E(2)
d (x)E(3)

d (x) instead:

E(1)
d (x) :=

xα(x)
ηd(x)

, E(2)
d (x) :=

ηd(x)p(d)m (x)−ηd(−x)p(d)m (−x)
x

,
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E(3)
d (x) := β (−x−1)p(d)m (x)+β (x)

ξd(−x−1)
ξd(x)

p(d)m (−x−1).

That is, the positivity of the weight ω̂(1)(xs) is equivalent with that of Ed(xs). Consider the case m = 1,
N is odd and r2 = ρ2 +N/2, the expressions of Ed(x) follow as:

E1,1(x) = (x−ρ1)(x−ρ2)

[
(x+

1
2
)2 +

(ρ1 +
1
2 )(ρ2 +

1
2 )− (ρ1 +ρ2 +1)r1

2r1 −2ρ1 +N −2
N (3.4.24)

+
ρ2(2ρ2 +1)(2ρ1 +1)− r1(2ρ2(2ρ2 +1)− (2ρ1 +1))

2(2r1 −2ρ1 +N −2)

]
,

E2,1(x) = (x+ r1 +
1
2
)(x+ρ2 +

N +1
2

)

[
x2 +

ρ1ρ2 − (r1 +
1
2 )(ρ1 +ρ2)

2r1 −2ρ1 +N +2
N (3.4.25)

+
ρ1(2ρ2(2ρ2 +1)− (2r1 +1))−ρ2(2ρ2 +1)(2r1 +1)

2(2r1 −2ρ1 +N +2)
,

E3,1(x) =
[

x2 +
ρ1ρ2 +(r1 − 1

2 )(ρ1 +ρ2)

2r1 +2ρ1 +4ρ2 +N −2
N (3.4.26)

+
ρ1((4ρ2 −1)(ρ2 +2r1 −1)−ρ2)+ρ2(2ρ2 −1)(2r1 −1)

2(2r1 +2ρ1 +4ρ2 +N −2)

]
·
[
(x+

1
2
)2 +

(ρ1 − 1
2 )(ρ2 − 1

2 )+ r1(ρ1 +ρ2 −1)
2r1 +2ρ1 +4ρ2 +N −2

N

+
r1((4ρ2 −1)(ρ2 +2ρ1 −1)−ρ2)+ρ2(2ρ2 −1)(2ρ1 −1)

2(2r1 +2ρ1 +4ρ2 +N −2)

]
,

E4,1(x) = (x−ρ1)(x−ρ2)(x+ r1 +
1
2
)(x+ρ2 +

N +1
2

), (3.4.27)

E5,1(x) =
(N −1)(2ρ1 +2ρ2 +N −1)2(2r1 −2ρ1 +1)

4(2ρ1 −2r1 +N −2)2 (x−ρ2)(x+ r1 +
1
2
), (3.4.28)

E6,1(x) =
(N +1)(2r1 +2ρ2 −1)2(2r1 −2ρ1 −1)

4(2ρ1 −2r1 +N +2)2 (x−ρ1)(x+ρ2 +
N +1

2
), (3.4.29)

E7,1(x) =
(4ρ2 +N −1)2(2r1 −2ρ2 +1)(2ρ2 −2ρ1 +N −1)

4(4ρ2 −2ρ1 −2r1 +N −2)2 (x−ρ1)(x+ r1 +
1
2
), (3.4.30)

E8,1(x) =
(2r1 +2ρ1 −1)2(2r1 −2ρ2 −1)(2ρ2 −2ρ1 +N +1)

4(4ρ2 −2ρ1 −2r1 +N +2)2 (x−ρ2)(x+ρ2+
N +1

2
). (3.4.31)

It is not difficult to derive some sufficient conditions for Ed,1(x) > 0, where x ∈ χ(1)
d,1 . Let us take the

case d = 3 for an example, from (3.4.26) we know that E3,1(x)> 0 if

ρ1ρ2 +(r1 − 1
2 )(ρ1 +ρ2)

2r1 +2ρ1 +4ρ2 +N −2
N +

ρ1((4ρ2 −1)(ρ2 +2r1 −1)−ρ2)+ρ2(2ρ2 −1)(2r1 −1)
2(2r1 +2ρ1 +4ρ2 +N −2)

and

(ρ1 − 1
2 )(ρ2 − 1

2 )+ r1(ρ1 +ρ2 −1)
2r1 +2ρ1 +4ρ2 +N −2

N +
r1((4ρ2 −1)(ρ2 +2ρ1 −1)−ρ2)+ρ2(2ρ2 −1)(2ρ1 −1)

2(2r1 +2ρ1 +4ρ2 +N −2)

are both positive. These conditions are immediately satisfied if we assume that

r1,ρ1,ρ2 >
1
2
. (3.4.32)
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For the other cases, we list some sufficient conditions below. These conditions are obtained similarly
by observing the right-hand sides of (3.4.24), (3.4.25), and (3.4.27)-(3.4.31).

d = 1 :0 < r1 <
(ρ1 +

1
2 )(ρ2 +

1
2 )

ρ1 +ρ2 +1
,−1

2
< ρ1 < ρ2 +1 and ρ2 >−1

2
;

d = 2 :
N −3

2
< r1 <

N −2
2

,ρ1 < 0 and − 1
2
< ρ2 < r1 −

N −2
2

;

d = 4 :r1 >
N −3

2
,ρ1 <

1
2

and ρ2 >−1
2

;

d = 5 :−1 < r1 < 0,ρ1 < r1 +
1
2

and ρ2 >−1
2

;

d = 6 :r1 >−N −3
4

,ρ1 < ρ2 and − N +1
4

< ρ2 <−N −1
4

;

d = 7 :r1 > 0,−1
2
< ρ1 < ρ2 and r1 −

1
2
< ρ2 < r1 +

1
2

;

d = 8 :r1 > ρ2 +
1
2
,ρ1 < ρ2 +

N +1
2

and − N +3
4

< ρ2 <−N −1
4

.

Example 3.4.1. In this example we demonstrate the orthogonality of the exceptional Bannai-Ito
polynomials explicitly. Consider the case d = (3,1), where the seed solution is given by ϕ(3,1) =
ξ3(x)p(3)1 (x) = ξ3(x)B1(x;−ρ1,−ρ2,r1,r2), and its eigenvalue is µ(3,1) = r1 + r2 − 1. According to
Proposition 3.4.2, we can give the related exceptional Bannai-Ito polynomials:

B(1)
(3,1),n(x) = (λn −β )

ϕ̂ (0)
(3,1)(x)− ϕ̂ (0)

(3,1)(−x)

x
Bn(x)− (µ(3,1)−β )

ϕ̂ (0)
(3,1)(x)

x
(Bn(x)−Bn(−x)),

where ϕ̂ (0)
(3,1)(x) = η3(x)p(3,1)1 (x) = (x−ρ1)(x−ρ2)B1(x;−ρ1,−ρ2,r1,r2). Assume that N is odd and

r2 = ρ2 +
N
2 , then χ(1)

(3,1) = {ρ2,−ρ2 − 1,ρ2 + 1, · · · ,−ρ2 − N−1
2 ,ρ2 +

N−1
2 } is the corresponding ex-

ceptional Bannai-Ito grid. The discrete orthogonality (3.4.23) holds for the weight function

ω̂(1)(x) =
sin(2πx)Γ(x− r1 +

1
2 )Γ(−x− r1 +

1
2 )Γ(x+ρ1 +1)Γ(−x+ρ1)

Γ(x+ r2 +
1
2 )Γ(−x+ r2 +

1
2 )Γ(x−ρ2 +1)Γ(−x−ρ2)y1(x)y2(x)

,

where y1(x), y2(x) are the polynomials

y1(x) = (r1 + r2 +ρ1 +ρ2 −1)x2 + r1ρ1ρ2 + r2ρ1ρ2 + r1r2ρ1 + r1r2ρ2 −ρ1ρ2

− r1ρ1 + r1ρ2 + r2ρ1 + r2ρ2

2
+

ρ1 +ρ2

4
,

y2(x) = (r1 + r2 +ρ1 +ρ2 −1)x2 +(r1 + r2 +ρ1 +ρ2 −1)x+ r1ρ1ρ2 + r2ρ1ρ2 + r1r2ρ1 + r1r2ρ2

−r1r2 −
r1ρ1 + r1ρ2 + r2ρ1 + r2ρ2 − r1 − r2

2
+

ρ1 +ρ2 −1
4

.

The orthogonality constant in the right-hand side of (3.4.23) is given by h(1)
(3,1),n = h(1)

(3,1),0u(1)1 · · ·u(1)n ,

where h(1)
(3,1),0 = ∑x∈χ(1)

(3,1)
ω̂(1)(x)B(1)

(3,1),0(x)
2, and

u(1)n =


−n(2r1 +2ρ2 +N −n)2(2r1 −2ρ1 +N −n)(2r1 +2ρ2 +N −n−2)

8(2r1 −2ρ1 +N −2n)2(ρ1 +ρ2 +
n
2 −1)

, if n is even,

2(N −n)(2r1 −2ρ1 −n)(2r1 −2ρ2 −n)(ρ1 +ρ2 +
n−1

2 )(ρ1 +ρ2 +
n+1

2 )(ρ1 −ρ2 − N−n
2 )

(2r1 −2ρ1 +N −2n)2(2r1 +2ρ2 +N −n+1)(2r1 +2ρ2 +N −n−1)
, if n is odd.
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3.5 Some notes on the generalized Darboux transformation
This paper starts from the original idea that exceptional Dunkl shift operators can be obtained from
the intertwining relations which always appear in the Darboux transformations. We call this method
a generalized Darboux transformation (on first-order difference operators). After the 1-step and the
multiple-step exceptional Dunkl shift operators being successfully obtained through this method, we
are able to give the exceptional Bannai-Ito operators with the restriction on certain coefficients. Espe-
cially, in this paper we mainly focus on the 1-step exceptional Bannai-Ito polynomials, which form the
eigenpolynomials of the normalized 1-step exceptional Bannai-Ito operator.

In this generalized Darboux transformation the crucial role is played by the operator Fϕ which
annihilates the seed solution ϕ(x). In fact, we should realize that the choice of the operator Fϕ in
Section 3.2 is not unique. The only restriction we have used is that Fϕ is also a Dunkl shift operator.
Without loss of generality, we may define F as

F =− R− I + f1(x)
ϕ(−x)−ϕ(x)+ f1(x)ϕ(x)

+
T R− I + f2(x)

ϕ(−x−1)−ϕ(x)+ f2(x)ϕ(x)
(3.5.1)

such that F [ϕ(x)] = 0, and correspondingly,

χ(x) = ϕ(x)−ϕ(−x)− f1(x)ϕ(x), χ̃(x) = ϕ(−x−1)−ϕ(x)+ f2(x)ϕ(x).

In the case regarding Fϕ , we have let

f1(x) = 0, f2(x) = (β (−x−1)+β (x))/β (x). (3.5.2)

Recall that the 1-step exceptional Dunkl shift operator has the form

H(1) = α(1)(x)(R− I)+β (1)(x)(T R− I)+ γ(1)(x),

then from the intertwining relation F ◦H = H(1) ◦F one can obtain the coefficients of H(1) by com-
paring the coefficients of the operators RT R, T , T R, R, I appeared in each side. Specifically, from the
coefficients of RT R and T we have

α(1)(x) =
β (−x)[ϕ(x−1)−ϕ(−x)+ f2(−x)ϕ(−x)]

ϕ(x)−ϕ(−x)− f1(x)ϕ(x)
, (3.5.3)

β (1)(x) =
α(−x−1)[ϕ(−x−1)−ϕ(x+1)− f1(−x−1)ϕ(−x−1)]

ϕ(−x−1)−ϕ(x)+ f2(x)ϕ(x)
. (3.5.4)

After substituting (3.5.3), (3.5.4) into the remaining three equations with respect to the coefficients
of T R, R, I we can derive three different expressions of γ(1)(x) (which are omitted in view of their
length). Of course, these three expressions of γ(1)(x) must be equal to each other, hence one can derive
the restrictions regarding f1(x) and f2(x) from this fact. However, this is not an easy task as it seems
to be, since the equations with respect to γ(1)(x) are complicated and difficult to solve. Three other
feasible cases we have found are:

f1(x) = 0, f2(x) = 0; (3.5.5)
f1(x) = (α(−x)+α(x))/α(x), f2(x) = 0; (3.5.6)
f1(x) = (α(−x)+α(x))/α(x), f2(x) = (β (−x−1)+β (x))/β (x). (3.5.7)

As for the general cases of f1(x) and f2(x), we shall leave it as an open problem for the readers of
interest.
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If one look at the 1-step exceptional eigenfunction F [Bn(x)], the following two expressions can be
obtained similarly as we did in the proof of Lemma 3.4.1:

β (x)χ(x)χ̃(x)F [Bn(x)] = (λn +α(x) f1(x)+β (x) f2(x))Bn(x)(ϕ(−x)−ϕ(x))
−(µ +α(x) f1(x)+β (x) f2(x))ϕ(x)(Bn(−x)−Bn(x))

+(λn −µ) f1(x)Bn(x)ϕ(x),
α(x)χ(x)χ̃(x)F [Bn(x)] = (µ +α(x) f1(x)+β (x) f2(x))ϕ(x)(Bn(−x−1)−Bn(x))

−(λn +α(x) f1(x)+β (x) f2(x))Bn(x)(ϕ(−x−1)−ϕ(x))
+(µ −λn) f2(x)Bn(x)ϕ(x).

Recall that for the coefficients α(x), β (x) of the Bannai-Ito operator, α(−x) + α(x) and β (−x −
1) + β (x) are both constants (see (3.2.23)), hence α(x) f1(x) + β (x) f2(x) is always constant in the
four cases with respect to (3.5.2), (3.5.5)-(3.5.7). Thus, one can derive 1-step exceptional Bannai-Ito
polynomials from the normalizations of these expressions. It turns out (3.5.2), (3.5.5)-(3.5.7) actually
lead to different exceptional polynomials. Discussions on the orthogonality with respect to (3.5.5)-
(3.5.7) can be made in the same manner as that of (3.5.2). In view of this fact, there are more than one
type of exceptional Bannai-Ito polynomials. This is the nontrivial aspect of our “generalized” Darboux
transformation, due to the non-uniqueness of F .

3.6 Supplymentary data
For readers’ convenience, we list some data for the coefficients µd,m −β , λn −µd,m and Cd,m,n, which
have been used in the proof of Proposition 3.4.1.

For m is even, we have

µ1,m −β =
m
2
− r1 − r2, (3.6.1)

µ2,m −β =
m
2
−ρ1 −ρ2, (3.6.2)

µ3,m −β =
m
2
− r1 − r2 −ρ1 −ρ2, (3.6.3)

µ4,m −β =
m
2
, (3.6.4)

for m is odd, we have

µ5,m −β =
m
2
− r2 −ρ1, (3.6.5)

µ6,m −β =
m
2
− r1 −ρ2, (3.6.6)

µ7,m −β =
m
2
− r2 −ρ2, (3.6.7)

µ8,m −β =
m
2
− r1 −ρ1. (3.6.8)
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For m is odd and n is odd, we have

λn −µ1,m =
m−n

2
, (3.6.9)

λn −µ2,m = r1 + r2 −ρ1 −ρ2 +
m−n

2
, (3.6.10)

λn −µ3,m =−ρ1 −ρ2 +
m−n

2
, (3.6.11)

λn −µ4,m = r1 + r2 +
m−n

2
, (3.6.12)

for m is even and n is odd, we have

λn −µ5,m = r1 −ρ1 +
m−n

2
, (3.6.13)

λn −µ6,m = r2 −ρ2 +
m−n

2
, (3.6.14)

λn −µ7,m = r1 −ρ2 +
m−n

2
, (3.6.15)

λn −µ8,m = r2 −ρ1 +
m−n

2
. (3.6.16)

For m is even and n is even, we have

C1,m,n =−
(r1 + r2 − m

2 )(r1 + r2 − n
2 )(

m−n
2 )(r1 + r2 −ρ1 −ρ2)

(r1 + r2 −ρ1 −ρ2 −m)(r1 + r2 −ρ1 −ρ2 −n)
, (3.6.17)

C2,m,n =
(ρ1 +ρ2 − m

2 )(r1 + r2 − n
2 )(r1 + r2 −ρ1 −ρ2 +

m−n
2 )(r1 + r2 −ρ1 −ρ2)

(r1 + r2 −ρ1 −ρ2 +m)(r1 + r2 −ρ1 −ρ2 −n)
, (3.6.18)

C3,m,n =
(r1 + r2 +ρ1 +ρ2 − m

2 )(r1 + r2 − n
2 )(ρ1 +ρ2 − m−n

2 )(r1 + r2 −ρ1 −ρ2)

(r1 + r2 +ρ1 +ρ2 −m)(r1 + r2 −ρ1 −ρ2 −n)
, (3.6.19)

C4,m,n =
(−m

2 )(r1 + r2 − n
2 )(r1 + r2 +

m−n
2 )(r1 + r2 −ρ1 −ρ2)

(r1 + r2 +ρ1 +ρ2 +m)(r1 + r2 −ρ1 −ρ2 −n)
, (3.6.20)

for m is odd and n is even, we have

C5,m,n =
(r2 +ρ1 − m

2 )(r1 + r2 − n
2 )(r1 −ρ1 +

m−n
2 )(r1 + r2 −ρ1 −ρ2)

(r1 − r2 −ρ1 +ρ2 +m)(r1 + r2 −ρ1 −ρ2 −n)
, (3.6.21)

C6,m,n =−
(r1 +ρ2 − m

2 )(r1 + r2 − n
2 )(r2 −ρ2 +

m−n
2 )(r1 + r2 −ρ1 −ρ2)

(r1 − r2 −ρ1 +ρ2 −m)(r1 + r2 −ρ1 −ρ2 −n)
, (3.6.22)

C7,m,n =
(r2 +ρ2 − m

2 )(r1 + r2 − n
2 )(r1 −ρ2 +

m−n
2 )(r1 + r2 −ρ1 −ρ2)

(r1 − r2 +ρ1 −ρ2 +m)(r1 + r2 −ρ1 −ρ2 −n)
, (3.6.23)

C8,m,n =−
(r1 +ρ1 − m

2 )(r1 + r2 − n
2 )(r2 −ρ1 +

m−n
2 )(r1 + r2 −ρ1 −ρ2)

(r1 − r2 +ρ1 −ρ2 −m)(r1 + r2 −ρ1 −ρ2 −n)
. (3.6.24)
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Chapter 4

Dunkl-Supersymmetric orthogonal

functions

In this chapter, we introduce a new type of orthogonal functions related with the theory of supersym-
metry.

4.1 A supersymmetric quantum mechanics model with Dunkl-type

supercharges
Supersymmetric quantum mechanics (SUSY QM) has been useful in the study of exactly solvable
quantum mechanical models [13, 86]. In [65], the authors presented supersymmetric quantum me-
chanical models in one dimension involving differential operators of Dunkl-type (see also [63, 64]).
In this realization, the reflection operator appears in both the supersymmetric Hamiltonian and the
supercharge. The wave functions for two such systems have been obtained in [65] and seen to define
orthogonal polynomials that are themselves expressed in terms of Hermite and little -1 Jacobi polyno-
mials respectively. We here propose to pursue the exploration of the orthogonal functions that occur
as eigenfunctions of such Dunkl-type supercharges,specifically of the operator

L = ∂xR+ v(x), (4.1.1)

where v(−x) =−v(x), R is the reflection operator acts on the variable x, R f (x) = f (−x).
A Hamiltonian H is said to be supersymmetric if there are supercharges Q, Q† such that the follow-

ing superalgebra relations are satisfied

[Q,H] = 0, [Q†,H] = 0, H = {Q,Q†}. (4.1.2)

The brackets [, ] and {,} are called the commutator and the anticommutator, respectively:

[A,B] = AB−BA, {A,B}= AB+BA.

If the supercharge Q is self-adjoint, i.e., Q† = Q, it follows from (4.1.2) that the H = 2Q2, and the
model is said to be N = 1/2 supersymmetric. Realizations of N = 1/2 supersymmetric systems have
been obtained in [65] by taking the supercharge as the following Dunkl-type differential operator:

Q = 2−
1
2 (∂xR+u(x)R+ v(x)), (4.1.3)

where u(x) is even, v(x) is odd (i.e., u(−x) = u(x), v(−x) = −v(x)), and the operator R is the reflec-
tion operator which acts on x as R f (x) = f (−x). It is clear that Q is self-adjoint, Q† = Q, and the
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Hamiltonian H is then

H =−∂ 2
x +(u2(x)+ v2(x)+u′(x))− v′(x)R. (4.1.4)

Notice that if u(x) = 0, then the supercharge Q and the Hamiltonian H become

Q = 2−
1
2 (∂xR+ v(x)), H =−∂ 2

x + v2(x)− v′(x)R, (4.1.5)

and they satisfy

{Q,R}= 0, [H,R] = 0. (4.1.6)

The assumption that v(x) is odd is essential for the relations (4.1.6) to be achieved. Consequently,
these relations together with (4.1.2) imply that, for Q and H given in (4.1.5):

(a) the operators Q and H share the same eigenfunctions: Qψ(x) = νψ(x), Hψ(x) = Eψ(x), where
E = 2ν2;

(b) their eigenfunctions appear in pairs ψ(x),ψ(−x):

Qψ(x) = νψ(x), Qψ(−x) =−νψ(−x);

Hψ(x) = Eψ(x), Hψ(−x) = Eψ(−x). (4.1.7)

We shall focus on models described by (4.1.5) in this chapter and will assume that the operator L
is non-degenerate, i.e., all that eigenvalues of L are distinct. For results on the eigenvalue problem
related with the most general first-order Dunkl-type differential operator

L = F0(x)+F1(x)R+G0(x)∂x +G1(x)∂xR

with arbitrary functions F0(x), F1(x), G0(x), G1(x) one can refer to [83].

4.2 The eigenvalue problem of a Hamiltonian with reflection
In this section, we give an analysis on the eigenvalue problem related to the Hamiltonian

H =−∂ 2
x + v2(x)− v′(x)R (4.2.1)

where v(x) is odd, v(−x) = −v(x). First, let us notice that H can be rewritten into the following two
Hamiltonians

H1 =−∂ 2
x + v2(x)− v′(x) :=−∂ 2

x +V1(x),

H2 =−∂ 2
x + v2(x)+ v′(x) :=−∂ 2

x +V2(x),
(4.2.2)

by restricting H on even or odd functions, respectively. In this way, we can avoid coping with the
reflection R directly. The potentials V1(x) and V2(x) are even under the assumption that v(x) is odd,
and the relation V2(x) = V1(x) + 2v′(x) holds. In this case the function v(x) plays the role of the
superpotential, the potentials V1(x) and V2(x) are known as a pair of supersymmetric partner potentials
[13].

In view of the property (4.1.7), let us assume that H has a discrete sequence of eigenfunctions:

Hψn(x) = Enψn(x), n = 0,±1,±2, . . .
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where E0 = 0, E−n = En, ψ−n(x) = ψn(−x), n = 1,2, . . .. If we apply the decompositions

ψ±n(x) = en(x)±on(x), (4.2.3)

where en(x) and on(x) are the even and odd components of ψ±n(x), respectively, then the eigenvalue
equation of H can be rewritten into

Hψ±n(x) = H1en(x)±H2on(x) = En(en(x)±on(x))

which lead to the following eigenvalue equations

H1en(x) = Enen(x), H2on(x) = Enon(x). (4.2.4)

Lemma 4.2.1. If there exist a sequence of eigenfunctions of H1 which are all even and a sequence
of eigenfunctions of H2 which are all odd, and their eigenvalues satisfy the condition (4.2.5), then the
eigenfunctions of H can be expressed as linear combinations of those of H1 and H2.

Proof. Denote the eigenfunctions and eigenvalues of H1 and H2 by ψ(1)
n (x), E(1)

n and ψ(2)
n (x), E(2)

n ,
respectively. Let ψ(1)

N(n)(x) be the even eigenfunctions of H1 and ψ(2)
M(n)(x) be the odd eigenfunctions of

H2, where the indices N(n) and M(n) are both increasing, namely,

0 ≤ N(0)< N(1)< · · · ; 0 ≤ M(0)< M(1)< · · · .

Then, by defining
en(x) =C(e)ψ(1)

N(n)(x), on(x) =C(o)ψ(2)
M(n)(x)

with arbitrary constants C(e), C(o) which are not identically zero, and imposing the condition

E(1)
N(n) = E(2)

M(n) (4.2.5)

one can solve the eigenvalue problem of H as follow:

ψn(x) =C(e)ψ(1)
N(n)(x)+C(o)ψ(2)

M(n)(x), En = E(1)
N(n) = E(2)

M(n). (4.2.6)

Remark 4.2.1. Recall that the eigenvalue problem of the operator H1 (H2) on some interval (a,b) with
boundary conditions is a Sturm-Liouville problem. For example, the eigenvalue problem

H ϕ(x) = (−∂ 2
x +V (x))ϕ(x) = λϕ(x), x ∈ (a,b)

caϕ(a)+daϕ ′(a) = 0,

cbϕ(b)+dbϕ ′(b) = 0

is a regular Sturm-Liouville problem. According to the Sturm-Liouville theory, if V (x) is continuous
and regular in (a,b) , then

(1) Eigenvalues of the operator H are real, simple and non-degenerate (eigenvalues of differ-
ent eigenfunctions are distinct, λm ̸= λn, ∀m ̸= n). Further, the eigenvalues form an infinite
sequence, and can be ordered according to increasing magnitude so that λ0 < λ1 < · · · and
limn→∞ λn = ∞.
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(2) The eigenfunctions of H are orthogonal:∫ b

a
ϕm(x)ϕn(x)dx = 0, m ̸= n.

Remark 4.2.2. Since the reflection R is involved in H, the range of the coordinate x must be invariant
under R, namely, it should be (−a,a) (a can be finite or infinite). Thus, the range of the coordinate x
in H1 and H2 should both be (−a,a). From the construction of H1 and H2 it is easily seen that once H1
satisfies this condition, then the same holds for H2. We shall distinguish the following two cases: (A)
a “genuine” (−a,a) model and (B) two copies of (0,a) model. Note that the potential V1(x) (V2(x)) is
even here.

In case (A), let us consider the operator H1 on (−a,a). Assume that H1 has an infinite sequence of
eigenfunctions, H1ψ(1)

n (x) = E(1)
n ψ(1)

n (x) (n = 0,1, . . .) with 0 = E0 < E1 < · · · , then the eigenfunctions
and eigenvalues of H2 follow from the relations (4.3.1) and (4.3.2) automatically. Thus those of H can
be derived using Lemma 4.2.1.

In case (B), let us consider the operator H1 on (0,a). In this case, we assume that the potentials
V1(x), v(x) are singular at x = 0, and H1 has an infinite sequence of eigenfunctions, H1ψ(1)

n (x) =
E(1)

n ψ(1)
n (x) (n = 0,1,2, . . .) with 0 = E0 < E1 < · · · . In particular, we assume that ψ(1)

n (x) satisfies
ψ(1)

n (0) = (ψ(1)
n )′(0) = 0. Define the Hamiltonian H̃1 of a new model on (−a,a) by H̃1 = H1, which is

singular at x = 0. We will see in Section 4.3 that H1 can be factorized as H1 = A†A, where A and its
conjugation A† are first order differential operators, thus by defining the operators Ã and Ã† of new
model on (−a,a) as Ã = A and Ã† = A†, we have H̃ = Ã†Ã. Let us define ψ̃(1)

n (x) on (−a,a) as follows:

ψ̃(1)
2n (x) =

{
ψ(1)

n (x) (0 ≤ x < a)

ψ(1)
n (−x) (−a < x < 0)

, ψ̃(1)
2n+1(x) =

{
ψ(1)

n (x) (0 ≤ x < a)

−ψ(1)
n (−x) (−a < x < 0)

(4.2.7)

which satisfy

ψ̃(1)
n (−x) = (−1)nψ̃(1)

n (x). (4.2.8)

Then we have
H̃1ψ̃(1)

n (x) = Ẽnψ̃(1)
n (x), Ẽ2n = Ẽ2n+1 = En (n ≥ 0).

The energy eigenvalues are doubly degenerate, which is allowed by the singularity of x = 0. The
eigenfunctions ψ̃(1)

2n (x) and ψ̃(1)
2m+1(x) are orthogonal:

∫ a
−a ψ̃(1)

2n (x)ψ̃(1)
2m+1(x)dx = 0. Again, using the

relations (4.3.1), (4.3.2) and Lemma 4.2.1 one can obtain the eigenfunctions and eigenvaules of H.

4.3 Supersymmetric quantum mechanics and shape invariant even

potentials
In the theory of SUSY QM [13], the Hamiltonians H1 and H2 can be factorized as follow:

H1 = A†A+E(1)
0 , H2 = AA† +E(1)

0 ,

where A† is the conjugation of A,

A = ∂x + v(x), A† =−∂x + v(x).
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If we consider the unbroken SUSY where the ground state energy is zero, namely, E(1)
0 = 0, then

we can choose v(x) =−(lnψ(1)
0 (x))′ such that Hψ(1)

0 (x) = A†Aψ(1)
0 (x) = 0. This follows from the fact

that A annihilates the ground state wave function ψ(1)
0 (x).

Again, let us denote the eigenfunctions and eigenvalues of H1 and H2 by ψ(1)
n (x), E(1)

n and ψ(2)
n (x),

E(2)
n , respectively. They satisfy the equations

H1ψ(1)
n (x) = A†Aψ(1)

n (x) = E(1)
n ψ(1)

n (x), H2Aψ(1)
n (x) = AA†Aψ(1)

n (x) = E(1)
n Aψ(1)

n (x),

H2ψ(2)
n (x) = AA†ψ(2)

n (x) = E(2)
n ψ(2)

n (x), H1A†ψ(2)
n (x) = A†AA†ψ(2)

n (x) = E(2)
n A†ψ(2)

n (x),

from which it follows that

E(2)
n = E(1)

n+1, E(1)
0 = 0, (4.3.1)

ψ(2)
n (x) = (C(1)

n )−1Aψ(1)
n+1(x), (4.3.2)

ψ(1)
n+1(x) = (C(2)

n+1)
−1A†ψ(2)

n (x), (4.3.3)

where the coefficients C(1)
n and C(2)

n satisfy the condition C(1)
n C(2)

n+1 = E(1)
n+1. Note that the relations

(4.3.2), (4.3.3) and the definitions of A,A† imply that ψ(1)
n+1(x) and ψ(2)

n (x) have different parity, namely,

if ψ(1)
n+1(x) is even, then ψ(2)

n (x) is odd; if ψ(1)
n+1(x) is odd, then ψ(2)

n (x) is even.

In what follows we adopt the assumption in the proof of Lemma 4.2.1 that ψ(1)
N(n)(x) are even and

ψ(2)
M(n)(x) are odd for n = 0,1, . . .. This can be achieved through some minor trick. (In fact, if ψ(1)

n (x)

and ψ(2)
n (x) do not have definite parity, we can redefine them by

ψ̃(1)
n (x) :=

1
2
(ψ(1)

n (x)+ψ(1)
n (−x)), ψ̃(2)

n (x) :=
1
2
(ψ(2)

n (x)−ψ(2)
n (−x))

which are still eigenfunctions of H1 and H2 with eigenvalues E(1)
n and E(2)

n , respectively. This is
because ψ(1)

n (−x) and ψ(2)
n (−x) are also eigenfunctions of H1 and H2 with eigenvalues E(1)

n and E(2)
n ,

respectively. Obviously, the new defined eigenfunctions are even and odd, respectively.)
If we let v(x) in the operator L be defined by v(x) = −(lnψ(1)

0 (x))′, then the operators A and A†

turn out to be the restrictions of L on even and odd functions, respectively. It follows that

L ψ(1)
N(n)(x) = Aψ(1)

N(n)(x) =C(1)
N(n)−1ψ(2)

N(n)−1(x), (4.3.4)

L ψ(2)
M(n)(x) = A†ψ(2)

M(n)(x) =C(2)
M(n)+1ψ(1)

M(n)+1(x). (4.3.5)

From these relations we can derive the eigenfunctions of L .

Lemma 4.3.1. Let C(1)
N(n)−1 =C(2)

N(n) =
√

E(1)
N(n), n = 0,1, . . ., and

ψ(2)
N(n)−1(x) =

(√
E(1)

N(n)

)−1

Aψ(1)
N(n)(x). (4.3.6)

If we further assume that M(n) = N(n)− 1, n = 0,1, . . ., then the eigenvalue problem L ψ±n(x) =
λ±nψ±n(x) can be solved as follow:

ψ±n(x) = ψ(1)
N(n)(x)±ψ(2)

N(n)−1(x), λ±n =±
√

E(1)
N(n). (4.3.7)
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Proof. The condition M(n) = N(n)− 1 is equivalent with (4.2.5) in view of the relation (4.3.1), then
it follows from Lemma 4.2.1 that the eigenfunctions of H as well as those of L can be expressed in
terms of the linear combination of ψ(1)

n (x) and ψ(2)
n (x). Using this condition and the relations (4.3.4),

(4.3.5) one can easily check the following eigenvalue equations

L

(
ψ(1)

N(n)(x)±
√

C(1)
N(n)−1/C(2)

N(n)ψ
(2)
N(n)−1(x)

)
=±

√
E(1)

N(n)

(
ψ(1)

N(n)(x)±
√

C(1)
N(n)−1/C(2)

N(n)ψ
(2)
N(n)−1(x)

)
.

Then (4.3.7) follows immediately from the assumption C(1)
N(n)−1 =C(2)

N(n) =
√

E(1)
N(n).

4.3.1 Shape invariant even potentials

It is now clear that once the even potentials V1(x),V2(x) and their corresponding eigenfunctions and
eigenvalues are known, then the eigenfunctions and eigenvalues of L with v(x) given by the superpo-
tential related to V1(x),V2(x) follow automatically from Lemma 4.3.1.

A good class of potentials are the shape invariant potentials which satisfy the condition

V2(x;a1) =V1(x;a2)+R(a1), (4.3.8)

where a1 is a set of parameters, a2 is a translation of a1, and it follows that

R(a1) =V2(x;a1)−V1(x;a2) =V1(x;a1)−V1(x;a2)+2v′(x;a1).

Unless otherwise stated, for any function f (x) appear later we default f (x) stands for f (x;a1), in
other words, a1 and a2 must appear simultaneously. The condition (4.3.8) implies that

H2ψ(1)
m (x;a2) = [E(1)

m (a2)+R(a1)]ψ
(1)
m (x;a2).

By comparing this with the eigenvalue equation H2ψ(2)
n (x;a1) = E(2)

n (a1)ψ
(2)
n (x;a1) we can conclude

that if E(2)
n (a1) = E(1)

m (a2)+R(a1) holds for some indices m and n, then

ψ(2)
n (x;a1) ∝ ψ(1)

m (x;a2). (4.3.9)

In particular, if m = n, then (4.3.9) becomes (4.3.12) and it means that the eigenfunctions of H1 and
H2 coincide through a translation on certain parameters. Fortunately, it turns out that this is true for all
the examples we shall consider in this paper (see Remark 4.3.1). Combining the relations (4.3.6) and
(4.3.12), then we have

ψ(2)
N(n)−1(x;a1) =

(√
E(1)

N(n)(a1)

)−1

Aψ(1)
N(n)(x;a1) ∝ ψ(1)

N(n)−1(x;a2). (4.3.10)

Recall that ψ(2)
N(n)−1(x;a1) is odd and ψ(1)

N(n)(x;a1) is even, thus ψ(1)
N(n)−1(x;a1) is odd too since the

translation on the parameter(s) a1 does not change the parity in x. So ψ(1)
n (x) is symmetric:

ψ(1)
n (−x) = (−1)nψ(1)

n (x). (4.3.11)

And ψ(2)
n (x) should also be symmetric due to the relation (4.3.2).

A list of shape invariant potentials and of the corresponding wavefunctions related with supersym-
metric quantum mechanics is presented in [13] (Table 4.1). We can readily obtain from this table the
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even potentials by putting restrictions on certain parameters. The results are given in Table 1 (which
is split in two parts). Specifically, the examples of shifted oscillator, Scarf II or Rosen-Morse II
(hyperbolic) and Scarf I potentials belong to case (A) in Remark 4.2.2 while the examples of 3d os-
cillator, generalized Pöschl-Teller and Pöschl-Teller potentials belong to case (B). For convenience
we shall call them the type (A) examples and the type (B) examples, respectively.

Remark 4.3.1. From Table 1 one can see that in all the examples the relation

E(1)
n (a2)+R(a1) = E(2)

n (a1),

holds, which leads to

ψ(2)
n (x;a1) ∝ ψ(1)

n (x;a2). (4.3.12)

The above relation together with Lemma 4.3.1 implies that the eigenfunctions of L with v(x) given by
the superpotential in Table 4.1 can be written as:

ψ±n(x;a1) = ψ(1)
N(n)(x;a1)±ψ(2)

N(n)−1(x;a1) = ψ(1)
N(n)(x;a1)±C̃nψ(1)

N(n)−1(x;a2), (4.3.13)

where it follows from (4.3.10) that

C̃n =

(√
E(1)

N(n)(a1)

)−1 Aψ(1)
N(n)(x;a1)

ψ(1)
N(n)−1(x;a2)

. (4.3.14)

Recall that the indices N(n), n = 0,1, . . ., are chosen in such a way that ψ(1)
N(n)(x) are even and

ψ(1)
N(n)−1(x) are odd. Since the Hermite polynomials Hn(x) are symmetric, and the Jacobi polynomials

P(α,β )
n (x) are symmetric when α = β , we observe in Table 1 that all the eigenfunctions of the type

(A) examples (the first three examples) are symmetric, and those of the type (B) examples can be
constructed as symmetric functions using the method (4.2.7) introduced in Remark 4.2.2. Then it turns
out that N(n) = 2n, n = 0,1, . . ., and (4.3.13) reads

ψ±n(x;a1) = ψ(1)
2n (x;a1)±C̃nψ(1)

2n−1(x;a2). (4.3.15)

To summarize, we provide a list of these eigenfunctions in Table 4.2. For the explicit definitions and
properties of these classical orthogonal polynomials (Hermite, Laguerre and Jacobi polynomials) one
can refer to Section 4.6.

4.4 Dunkl-SUSY orthogonal functions in terms of classical

orthogonal polynomials
In this section we shall give some examples of Dunkl-SUSY orthogonal functions explicitly. Before
that we may apply a gauge transformation on the operator L as follow:

Y := (ψ(1)
0 (x))−1L ψ(1)

0 (x) = ∂xR+ v(x)(I −R). (4.4.1)

The eigenfunctions of the new operator Y are Qn(x) = (ψ(1)
0 (x))−1ψ(1)

n (x) (n = 0,1, . . .). We will show
that these eigenfunctions also satisfy certain orthogonality relations, that will deem giving them the
name of Dunkl-Supersymmetric (Dunkl-SUSY) orthogonal functions.

57



Table 4.1 Shape invariant even potentials derived from [13] (Table 4.1), where the parameters a1
and a2 are related by a translation a2 = a1 +α . Here we replaced the parameter ω in [13] with
ω = 2s2 for our convenience. Unless specified explicitly otherwise, the parameters A,B,α,s, l are
all taken ≥ 0, and the range of potentials is −∞ ≤ x ≤ ∞, 0 ≤ r ≤ ∞.

Name of potential v(x) V1(x;a1) y ψ(1)
n (y)

shifted oscillator s2x s2(s2x2 −1) sx e−
1
2 y2

Hn(y)

Scarf II or
Rosen-Morse II A tanh(αx) A2 −A(A+α)sech2(αx) sinh(αx) in(y2 +1)−

A
2α

(hyperbolic) ·P(− A
α − 1

2 ,−
A
α − 1

2 )
n (iy)

Scarf I A tan(αx) −A2 +A(A−α)sec2(αx) sin(αx) (1− y2)
A

2α

(trigonometric) (− π
2α ≤ x ≤ π

2α ) ·P( A
α − 1

2 ,
A
α − 1

2 )
n (y)

3d oscillator s2r− l+1
r s4r2 + l(l+1)

r2 − (2l +3)s2 s2r2 y
l+1

2 e−
y
2 L

l+ 1
2

n (y)

generalized Acoth(αr)−Bcosech(αr) A2 +(B2 +A2 +Aα)cosech2(αr) cosh(αr) (y−1)
B−A
2α (y+1)−

A+B
2α

Pöschl-Teller (A < B) −B(2A+α)coth(αr)cosech(αr) ·P( B−A
α − 1

2 ,−
A+B

α − 1
2 )

n (y)

Pöschl-Teller A tan(αr)−Bcot(αr) −(A+B)2 +A(A−α)sec2(αr) cos(2αr) (1− y)
B

2α (1+ y)
A

2α

(A,B > 0, 0 < r < π
2α ) +B(B−α)cosec2(αr) ·P( B

α − 1
2 ,

A
α − 1

2 )(y)

Name of
potential

a1 a2 E(1)
n (a1) E(2)

n (a1) E(1)
m (a2)+R(a1)

shifted
oscillator s s 2ns2 2(n+1)s2 2(m+1)s2

Scarf II or
Rosen-Morse II A A−α 2nAα −n2α2 2(n+1)Aα − (n+1)2α2 2(m+1)Aα − (m+1)2α2

(hyperbolic)

Scarf I
(trigonometric) A A+α 2nAα +n2α2 2(n+1)Aα +(n+1)2α2 2(m+1)Aα +(m+1)2α2

3d oscillator l l +1 4ns2 4(n+1)s2 4(m+1)s2

generalized
Pöschl-Teller A A−α 2nAα −n2α2 2(n+1)Aα − (n+1)2α2 2(m+1)Aα − (m+1)2α2

Pöschl-Teller A,B A+α,B+
α

4nα(A+B+
nα)

4(n+1)α(A+B+(n+
1)α)

4(m+1)α(A+B+(m+
1)α)

The weight function ω(x) associated with the operator Y satisfies to [13, 51]

ω ′(x)
ω(x)

=−2v(x) = 2
ψ ′

0(x)
ψ0(x)

and hence ω(x) = (ψ(1)
0 (x))2. Therefore the orthogonality relation of {Qn(x)}n=0,±1,±2,... are∫

I
(ψ(1)

0 (x))2Qn(x)Qm(x)dx = 0, n ̸= m, (4.4.2)

where the interval I will be determined from the weight function (ψ(1)
0 (x))2.

With an eye to presenting a model-independent description of Dunkl-SUSY orthogonal functions,
we now extract from Table 4.2 the following families of such orthogonal functions that are defined in
terms of classical orthogonal polynomials. We assume that all the Hermite, Laguerre, Jacobi polyno-
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Table 4.2 Eigenfunctions of the operator L = ∂xR+ v(x) with v(x) given by the superpotentials in table 1.

v(x) C̃n ψ±n(x)

s2x 2
√

n e−
1
2 s2x2

[H2n(sx)±C̃nH2n−1(sx)]

A tanh(αx) 1
2

√
A−nα

nα
(−1)n cosh(αx)−

A
α [P

(− A
α − 1

2 ),−
A
α − 1

2 )
2n (isinh(αx))

∓C̃nicosh(αx)P
(− A

α + 1
2 ),−

A
α + 1

2 )
2n−1 (isinh(αx))]

A tan(αx) 1
2

√
A+nα

nα |cos(αx)| A
α [P

( A
α − 1

2 ,
A
α − 1

2 )
2n (sin(αx))±C̃n|cos(αx)|P( A

α + 1
2 ,

A
α + 1

2 )
2n−1 (sin(αx)]

s2r− l+1
r − 1√

n |sr|l+1e−
1
2 s2r2

[L
(l+ 1

2 )
n (s2r2)±C̃nsrL

(l+ 3
2 )

n−1 (s2r2)]

Acoth(αr) 1
2

√
2A−nα

nα
(cosh(αr)−1)

B−A
2α (cosh(αr)+1)−

B+A
2α [P

( B−A
α − 1

2 ,−
B+A

α − 1
2 )

n (cosh(αr)

−Bcosech(αr) ±C̃n sinh(αr)P
( B−A

α + 1
2 ,−

B+A
α + 1

2 )
n−1 (cosh(αr)]

A tan(αr) 1
2

√
A+B+nα

nα
(1− cos(2αr))

B
2α (1+ cos(2αr))

A
2α [P

( B
α − 1

2 ,
A
α − 1

2 )
n (cos(2αr))

−Bcot(αr) ±C̃n sin(2αr)P
( B

α + 1
2 ,

A
α + 1

2 )
n (cos(2αr))]

mials (Ĥn(x), L̂(α)
n (x), P̂(α,β )

n (x)) involved are orthonormal:∫ ∞

−∞
Ĥm(x)Ĥn(x)dx = δm,n,

∫ ∞

0
L̂(α)

m (x)L̂(α)
n (x)dx = δm,n,

∫ 1

−1
P̂(α,β )

m (x)P̂(α,β )
n (x)dx = δm,n.

Specifically, let Hn(x), L(α)
n (x), P(α,β )

n (x) be defined as in Section 4.6, then

Ĥn(x) = (2nn!
√

π)−
1
2 Hn(x), L̂(α)

n (x) =
(

Γ(n+α +1)
n!

)− 1
2

L(α)
n (x),

P̂(α,β )
n (x) =

(
2α+β+1Γ(α +n+1)Γ(β +n+1)

n!Γ(α +β +n+1)(α +β +2n+1)

)− 1
2

P(α,β )
n (x).

Now we are ready to provide the following examples of Dunkl-SUSY orthogonal functions.

• Dunkl-SUSY orthogonal functions in terms of the orthonormal Hermite polynomials Ĥn(x),
which is related with the shifted oscillator potential:

Q(H)
±n (x) =

1√
2

(
Ĥ2n(sx)± Ĥ2n−1(sx)

)
, n ≥ 1, Q(H)

0 (x) = 1, (4.4.3)

Y = ∂xR+ s2x, Y Q(H)
±n (x) =±

√
E2nQ(H)

±n (x), En = 2ns2, (4.4.4)∫ ∞

−∞
e−s2x2

Q(H)
n (x)Q(H)

m (x)dx = δnm, m,n ∈ Z. (4.4.5)

• Dunkl-SUSY orthogonal functions in terms of the orthonormal Laguerre polynomials L̂(α)
n (x),

which is related with the 3d oscillator potential (l + 1
2 → α):

Q(L)
±n(x) =

1√
2

(
L̂(α)

n (s2x2)∓ xL̂(α+1)
n−1 (s2x2)

)
, n ≥ 1, Q(L)

0 (x) = 1, (4.4.6)

Y = ∂xR+ s2x− α +1/2
x

, Y Q(L)
±n(x) =±

√
EnQ(L)

±n(x), En = 4ns2, (4.4.7)∫ ∞

−∞
e−s2x2 |sx|2α+1Q(L)

n (x)Q(L)
m (x)dx = δnm, m,n ∈ Z. (4.4.8)
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(In fact, the above example returns to the example of the Hermite case when α = − 1
2 , this is

due to the relations 4.6.1 and 4.6.2. It is also obvious from the eigenvalue equation of Y .)
• Dunkl-SUSY orthogonal functions in terms of the orthonormal Jacobi polynomials P̂(α,β )

n (x):
the example related with the Scarf II or Rosen-Morse II (hyperbolic) potential,

Q(J,1)
±n (x) =

(−1)n
√

2

(
P̂
(− A

α − 1
2 ,−

A
α − 1

2 )
2n (isinh(αx))±cosh(x)P̂

(− A
α + 1

2 ,−
A
α + 1

2 )
2n−1 (isinh(αx))

)
, n ≥ 1,

(4.4.9)

Y = ∂xR+A tanh(αx), Y Q(J,1)
±n (x) =±

√
E2nQ(J,.1)

±n (x), En = 2nAα −n2α2, (4.4.10)∫ iπ
2α

− iπ
2α

|cosh(αx)|−
A
α Q(J,1)

n (x)Q(J,1)
m (x)dx = δnm, m,n ∈ Z; (4.4.11)

the example related with the Scarf I (trigonometric) potential,

Q(J,2)
±n (x) =

1√
2

(
P̂
( A

α − 1
2 ,

A
α − 1

2 )
2n (sin(αx))± cos(αx)P̂

( A
α + 1

2 ,
A
α + 1

2 )
2n−1 (sin(αx))

)
, n ≥ 1, (4.4.12)

Y = ∂xR+A tan(αx), Y Q(J,2)
±n (x) =±

√
E2nQ(J,2)

±n (x), En = 2nAα +n2α2, (4.4.13)∫ π
2α

− π
2α

|cos(αx)|−
A
α Q(J,2)

n (x)Q(J,2)
m (x)dx = δnm, m,n ∈ Z; (4.4.14)

the example related with the generalized Pöschl-Teller potential (A < B),

Q(J,3)
±n (x) =

1√
2

(
P̂
( B−A

α − 1
2 ,−

B+A
α − 1

2 )
n (cosh(αx))∓ isinh(αx)P̂

( B−A
α + 1

2 ,−
B+A

α + 1
2 )

n−1 (cosh(αx))
)
, n≥ 1,

(4.4.15)

Y = ∂xR+Acoth(αx)−Bcosech(αx),

Y Q(J,3)
±n (x) =±

√
EnQ(J,3)

±n (x), En = 2nAα −n2α2, (4.4.16)

∫ iπ
α

− iπ
α

(cosh(αr)−1)
B−A
2α (cosh(αr)+1)−

B+A
2α Q(J,3)

n (x)Q(J,3)
m (x)dx = δnm, m,n ∈Z; (4.4.17)

the example related with the Pöschl-Teller potential (A,B > 0),

Q(J,4)
±n (x) =

1√
2

(
P̂
( B

α − 1
2 ,

A
α − 1

2 )
n (cos(2αx))± sin(2αx)P̂

( B
α + 1

2 ,
A
α + 1

2 )
n−1 (cos(2αx))

)
, n ≥ 1,

(4.4.18)

Y = ∂xR+A tan(αx)−Bcot(αx),

Y Q(J,4)
±n (x) =±

√
EnQ(J,4)

±n (x), En = 4nα(A+B+nα), (4.4.19)∫ π
2α

− π
2α

(1− cos(2αx))
B
α (1+ cos(2αx))

A
α Q(J,4)

n (x)Q(J,2)
m (x)dx = δnm, m,n ∈ Z, (4.4.20)

and Q(J,i)
±0 (x) = 1, i = 1,2,3,4.
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4.5 The recurrence relation of the Dunkl-supersymmetric

orthogonal polynomials
Notice that in the previous section the examples of Dunkl-SUSY orthogonal functions in terms of
the Hermite polynomials and the Laguerre polynomials are also polynomials, we call them Dunkl-
supersymmetric orthogonal polynomials (Dunkl-SUSY OPs). Using these examples we shall identify
the main properties of these polynomials so as to offer in this section a characterization which is more
intrinsic. The most fundamental features of the Dunkl-SUSY OPs can be identified as:

(A) For all positive and negative integers n, the polynomial system {Qn(x)}n=0,±1,±2,... satisfy an
orthogonality relation,∫

I
Qn(x)Qm(x)ω(x)dx = hnδn,m, (n,m = . . . ,−1,0,1, . . .);

(B) The polynomial Q−n(x) with negative index has the same degree as the polynomial Qn(x) with
positive index,

Q−n(x) := R[Qn(x)] = Qn(−x). (n = 1,2, . . .);

(C) {Qn(x)} are the polynomial parts of the eigenfunctions of a Dunkl-type differential operator of
the form

L = ∂xR+ v(x), (v(−x) =−v(x)).

Let us now address the question of what can be said about the polynomial system {Qn(x)}n=0,±1,±2,...
satisfying the conditions (A) and (B) if it is not assumed that they satisfy an eigenvalue equation. The
answer to this question is given by the following theorem. Without loss of generality, from now on we
take Qn(x) monic, i.e., with the coefficient of the highest degree term in x equal to 1.

Theorem 4.5.1. A necessary and sufficient condition for the existence of a polynomial system
{Qn(x)}n=0,±1,±2,... which satisfies the conditions (A) and (B) is that Qn(x) are expressed as

Qn(x) = S2n(x)+anS2n−1(x),

Q−n(x) = S2n(x)−anS2n−1(x),
n = 1,2, . . . (4.5.1)

with Q0(x) = 1, where the coefficients an depend on the polynomials Sn(x) (see (4.5.9)), and with
{Sn(x)}n=0,1,2... a monic symmetric orthogonal polynomial system:

Sn(−x) = (−1)nSn(x),
∫

I
Sn(x)Sm(x)ω(x)dx = knδn,m.

Proof. The sufficiency is straightforward. If (4.5.1) holds, then it immediately follows that Q−n(x) =
Qn(−x), thus (B) is satisfied. For all nonnegative integers n,m, we have∫

I
Qn(x)Qm(x)ω(x)dx =

∫
I
(S2n(x)+anS2n−1(x))(S2m(x)+amS2m−1(x))ω(x)dx

= (k2n +anamk2n−1)δn,m +amk2nδ2n,2m−1 +ank2n−1δ2n−1,2m

= (k2n +anamk2n−1)δn,m,∫
I
Qn(x)Q−m(x)ω(x)dx =

∫
I
(S2n(x)+anS2n−1(x))(S2m(x)−amS2m−1(x))ω(x)dx

= (k2n −anamk2n−1)δn,m −amk2nδ2n,2m−1 +ank2n−1δ2n−1,2m

= (k2n −anamk2n−1)δn,m,
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∫
I
Q−n(x)Q−m(x)ω(x)dx =

∫
I
(S2n(x)−anS2n−1(x))(S2m(x)−amS2m−1(x))ω(x)dx

= (k2n +anamk2n−1)δn,m −amk2nδ2n,2m−1 −ank2n−1δ2n−1,2m

= (k2n +anamk2n−1)δn,m.

Therefore, condition (A) is also satisfied. Besides, from the first and the third equation we also have

hn = h−n = k2n +a2
nk2n−1. (4.5.2)

As for the necessity, suppose that {Qn(x)}n=0,±1,±2,... satisfies the conditions (A) and (B). For n =
1,2, . . ., Qn(x) can be expressed as Qn(x) = en(x)+ on(x), where en(x) and on(x) are even and odd
polynomials, respectively. Then from condition (B) we have Q−n(x) = en(x)−on(x), while condition
(A) implies that for any positive integers n ̸= m, one has the relations

0 = ⟨Qn,Qm⟩= ⟨en,em⟩+ ⟨en,om⟩+ ⟨on,em⟩+ ⟨on,om⟩, (4.5.3)

0 = ⟨Qn,Q−m⟩= ⟨en,em⟩−⟨en,om⟩+ ⟨on,em⟩−⟨on,om⟩, (4.5.4)

0 = ⟨Q−n,Qm⟩= ⟨en,em⟩+ ⟨en,om⟩−⟨on,em⟩−⟨on,om⟩, (4.5.5)

0 = ⟨Q−n,Q−m⟩= ⟨en,em⟩−⟨en,om⟩−⟨on,em⟩+ ⟨on,om⟩, (4.5.6)

which together lead to

⟨en,em⟩= ⟨en,om⟩= ⟨on,em⟩= ⟨on,om⟩= 0, (4.5.7)

where the inner product ⟨ f ,g⟩=
∫

I f (x)g(x)ω(x)dx. Note that (4.5.4) and (4.5.5) also hold for n = m,
which implies that

⟨en,en⟩= ⟨on,on⟩. (4.5.8)

The relations (4.5.7) and (4.5.8) mean that the polynomials {en(x),on(x)}n=0,1,2,... form an orthogonal
polynomial system, more exactly, in view of the parities of en(x) and on(x), they form a symmetric
orthogonal polynomial system:

en(x) = S2n(x), on(x) = anS2n−1(x),

where the coefficients an can be obtained from (4.5.8) and are:

an =

√
⟨S2n(x),S2n(x)⟩

⟨S2n−1(x),S2n−1(x)⟩
=

√
k2n

k2n−1
, (n = 1,2, . . .). (4.5.9)

Note that the subscripts in S2n(x) and S2n−1(x) do not necessarily represent the corresponding degrees.
We have hence shown that the conditions (A) and (B) lead to expression (4.5.1), thus proving necessity.

Theorem 4.5.1 provides a general presentation of the Dunkl-SUSY OPs. Conversely, if we are
given a set of OPs satisfying the conditions (A) and (B), we can always recover the corresponding set
of symmetric OPs Sn(x).

Moreover, according to the relations (4.5.2) and (4.5.9), the orthogonality constant of the polynomi-
als defined by (4.5.1) turn out to be

hn = h−n = 2k2n, (n = 1,2, . . .) (4.5.10)

and h0 = k0, where kn are the orthogonality constant of {Sn(x)}n=0,1,2,....
The recurrence relations can be given as follow.
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Theorem 4.5.2. Let the monic symmetric OPs {Sn(x)}n=0,1,2,... defined by the three-term recurrence
relation:

Sn(x) = xSn−1(x)− γnSn−2(x), (n = 1,2, . . .)

with S−1(x) = 0, S0(x) = 1, then the monic polynomial system {Qn(x)}n=0,±1,±2,... defined by (4.5.1)
satisfies the recurrence relations:

Qn+1(x) =
1
2

[
x2 +(an+1 −

γ2n+1

an
)x− γ2n+2 −

γ2n+1an+1

an

]
Qn(x)

+
1
2

[
x2 +(an+1 +

γ2n+1

an
)x− γ2n+2 +

γ2n+1an+1

an

]
Q−n(x),

n = 1,2, . . . (4.5.11)

Q−(n+1)(x) =
1
2

[
x2 − (an+1 +

γ2n+1

an
)x− γ2n+2 +

γ2n+1an+1

an

]
Qn(x)

+
1
2

[
x2 − (an+1 −

γ2n+1

an
)x− γ2n+2 −

γ2n+1an+1

an

]
Q−n(x).

n = 1,2, . . . (4.5.12)

with Q0(x) = 1.

Proof. First, it follows from (4.5.1) that

S2n(x) =
Qn(x)+Q−n(x)

2
, S2n−1(x) =

Qn(x)−Q−n(x)
2an

. (4.5.13)

By definition, we have

Qn+1(x) = S2n+2(x)+an+1S2n+1(x) = (x+an+1)S2n+1(x)− γ2n+2S2n(x)

= (x+an+1)(xS2n(x)− γ2n+1S2n−1)− γ2n+2S2n(x)

= (x2 +an+1x− γ2n+2)S2n(x)− γ2n+1(x+an+1)S2n−1,

where the three-term recurrence relation of {Sn(x)} has been used twice. Substituting (4.5.13) into the
above then leads to

2Qn+1(x) = (x2 +an+1x− γ2n+2)(Qn(x)+Q−n(x))−
γ2n+1

an
(x+an+1)(Qn(x)−Q−n(x))

=

[
x2 +(an+1 −

γ2n+1

an
)x− γ2n+2 −

γ2n+1an+1

an

]
Qn(x)

+

[
x2 +(an+1 +

γ2n+1

an
)x− γ2n+2 +

γ2n+1an+1

an

]
Q−n(x),

from which we obtain (4.5.11). The relation (4.5.12) is obtained in the same manner.

Note that the polynomials in the set {Qn(x)}n=0,±1,±2,... can be ordered as follows

Q0(x), Q1(x), Q−1(x), · · · , Qn(x), Q−n(x), · · ·

since Qn(x) and Q−n(x) have the same degree. This means that the relations (4.5.11) and (4.5.12) can
be viewed as the three-term recurrence relations of {Qn(x)}n=0,±1,±2,....
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4.6 Supplymentary data
Hermite polynomials

• The Hermite polynomials are orthogonal on the interval (−∞,∞) with respect to the weight
function e−x2

. They satisfy the orthogonality relations:∫ ∞

−∞
Hm(x)Hn(x)e−x2

dx = 2nn!
√

πδmn

where Hn(x) is the Hermite polynomial of degree n, δmn is Kronecher’s delta.
• Three term recurrence relations:

Hn(x) = 2xHn−1(x)−2(n−1)Hn−2(x), n ≥ 1, H0(x) = 1.

Laguerre polynomials

• The Laguerre polynomials are orthogonal over [0,∞) with respect to the weight function xα e−x.
They satisfy the orthogonality relations:∫ ∞

0
L(α)

m (x)L(α)
n (x)xα e−xdx =

Γ(n+α +1)
n!

δmn

where L(α)
n (x) is the Laguerre polynomial of degree n.

• Three term recurrence relations:

L(α)
n (x) =

2n−1+α − x
n

L(α)
n−1(x)−

n−1+α
n

L(α)
n−2(x), n ≥ 1, L(α)

0 (x) = 1.

• Relation to Hermite polynomials:

H2n(x) = (−1)n22nn!L(−1/2)
n (x2), (4.6.1)

H2n+1(x) = (−1)n22n+1n!xL(1/2)
n (x2). (4.6.2)

Jacobi polynomials

• The Jacobi polynomials are orthogonal on the interval (−1,1) with respect to the weight func-
tion (1− x)α(1+ x)β . They satisfy the orthogonality relations:

∫ ∞

−∞
P(α,β )

m (x)P(α,β )
n (x)(1− x)α(1+ x)β dx =

2α+β+1Γ(α +n+1)Γ(β +n+1)
n!Γ(α +β +n+1)(α +β +2n+1)

δmn

where P(α,β )
n (x) is the Jacobi polynomial of degree n, and α,β >−1.

• Three term recurrence relations:

P(α,β )
n (x) =

[
(2n+α +β −1)(2n+α +β )

2n(n+α +β )
x− (β 2 −α2)(2n+α +β −1)

2n(n+α +β )(2n+α +β −2)

]
P(α,β )

n−1 (x)

−2(n+α −1)(n+β −1)(2n+α +β )
2n(n+α +β )(2n+α +β −2)

P(α,β )
n−2 (x), n ≥ 1 P(α,β )

0 (x) = 1.
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Chapter 5

Summary and future works

We discussed several generalizations of the classical orthogonal polynomials and their properties. Let
us briefly summarize the main results we have presented in this thesis and then discuss some ideas on
the future works of this research.

5.1 Summary
In chapter 1, the history background and the definitions as well as the rich applications of the clas-
sical orthogonal polynomials are introduced. An important property called duality which reads as
the equivalence of a three-term recurrence relation and an eigenvalue equation satisfied by the clas-
sical orthogonal polynomials is illustrated. Generalizing the eigenvalue equation is a key in deriving
the generalizations of the classical orthogonal polynomials. In chapter 2, we studied the electrostatic
properties of the zeros of exceptional extensions of the very classical orthogonal polynomials. We have
shown that the maximum value of the modulus of a special energy function is attained on the zeros of
exceptional extensions of the very classical orthogonal polynomials under certain conditions. In chap-
ter 3, we established an exceptional extension of the Bannai-Ito polynomials. Interestingly enough, the
degree sequences of these exceptional Bannai-Ito polynomials demonstrate different rules compared
with those of the exceptional extensions of the very classical orthogonal polynomials, that is, there
are cases where the degree sequence is consist of even integers only. In chapter 4, we introduced and
characterized orthogonal functions that we have called Dunkl-supersymmetric. These functions are
eigenfunctions of a class of Dunkl-type differential operators that can be cast within supersymmetric
quantum mechanics. A significant feature of these orthogonal function families is that they do not
involve polynomials of all degrees but are rather organized in pairs of polynomials both of the same
degree (where the examples in terms of the Jacobi polynomials may be viewed as polynomials in cer-
tain special variables). The connection with supersymmetric quantum mechanics has been exploited
to obtain a number of Dunkl-supersymmetric orthogonal functions from exactly solvable problems.
Informed by these results we could offer a general characterization of the Dunkl-supersymmetric or-
thogonal polynomials and could exhibit as well their recurrence relations.

5.2 Future works
As we have already mentioned, there are examples in the exceptional Bannai-Ito polynomials and the
Dunkl-supersymmetric orthogonal polynomials that their degree sequences are consist of even integers
only, for instance, {0,2,2,4,4,6,6, . . .}. These examples have seldom been mentioned in the literature
as far as we know. Therefore, it is of great interest to study this type of orthogonal polynomials in
general. In what follows, we would like to provide some results on this proceeding research which
also gives a rough image of our future works.
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Consider a general eigenvalue problem

LPn(x) = λnPn(x), n = 0,1,2, . . .

where the eigenfunctions Pn(x) are polynomials. If a bounded operator L is self-adjoint and nondegen-
erate (i.e. λn ̸= λm,∀n ≠ m), then its eigenfunctions Pn(x), n = 0,1,2, . . ., are orthogonal with respect
to certain weight function. To the end we assume that L is self-adjoint and nondegenerate.

Definition 5.2.1. A sequence of polynomials {Pn(x)}n=0,1,2,... is called orthogonal polynomials se-
quence of single-parity degrees (OPSPD) if they are orthogonal with respect to certain linear func-
tional L

L [Pm(x)Pn(x)] = hnδm,n, hn ̸= 0

and the degree sequence of {Pn(x)}n=0,1,2,... is consist of even or odd integers only.

If {Pn(x)}n=0,1,2,... is a finite polynomial sequence which satisfies the conditions in Definition 5.2.1,
then it is called a finite OPSPD. If hn > 0 for i = 0,1,2, . . ., then the OPSPD is called positive definite.

A simple approach towards the construction of OPSPD is based on observations of how the operator
L acts on the monomials, 1,x,x2, . . .. Denote the degree sequence of the polynomial eigenfunctions of
L by SL. For convenience, here we call the polynomial eigenfunctions of a self-adjoint operator L type
I OPSPD if SL = {0,2,2,4,4, . . .}. The other cases of OPSPD and their classifications will be leave as
open problems. The following lemma concludes a sufficient condition for the existence of the type I
OPSPD.

Lemma 5.2.1. Let L be a linear operator on a Hilbert space. Suppose that L maps every monomial xi,
i = 0,1,2, . . ., to a polynomial of degree 2⌈ i

2⌉ (the nearest even number ≥ i), namely, Lx0 = k0,0 and

Lx2i−1 =
2i

∑
j=0

k2i−1, jx j, Lx2i =
2i

∑
j=0

k2i, jx j, i = 1,2, . . . (5.2.1)

where ki, j’s are constants and k2i−1,2i,k2i,2i ̸= 0, ∀i = 1,2, . . .. Let

∆m = (k2m,2m − k2m−1,2m−1)
2 +4k2m,2m−1k2m−1,2m, (5.2.2)

if ∆m > 0 for m = 1,2, . . ., then L has polynomial eigenfunctions whose degree sequence is SL =
{0,2,2,4,4, . . .}.

Proof. Assume that Pn(x) = ∑n
i=0 an,ixi is a polynomial eigenfunction of L, then we have

λnPn(x) = LPn(x) =
n

∑
i=0

an,i

2⌈ i
2 ⌉

∑
j=0

ki, jx j =
2⌈ n

2 ⌉

∑
j=0

n

∑
i=max(0,2⌈ j

2 ⌉−1)

an,iki, jx j,

which can be written as

2⌈ n
2 ⌉

∑
j=0

 n

∑
i=max(0,2⌈ j

2 ⌉−1)

an,iki, j

x j =
n

∑
j=0

λnan, jx j. (5.2.3)

Here n must be even such that 2⌈ n
2⌉= n. Let n = 2m, then (5.2.3) is equivalent with

2m

∑
i=max(0,2⌈ j

2 ⌉−1)

a2m,iki, j = λ2ma2m, j, j = 0,1, . . . ,2m. (5.2.4)
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For convenience, we assume that P2m(x) is monic (a2m,2m = 1) and a2m,2m−1 ̸= 0. It follows from the
last two equations in (5.2.4) which read as

(λ2m − k2m−1,2m−1)a2m,2m−1 = k2m,2m−1a2m,2m,

(λ2m − k2m,2m)a2m,2m = k2m−1,2ma2m,2m−1,

that λ2m is the solution of the following equation

λ 2
2m − (k2m,2m + k2m−1,2m−1)λ2m + k2m,2mk2m−1,2m−1 − k2m,2m−1k2m−1,2m = 0. (5.2.5)

The discriminant of this equation is (5.2.2). If ∆m > 0, then there exists two solutions for the equation
(5.2.5), say λ2m and λ−2m, which satisfy

λ2m +λ−2m = k2m,2m + k2m−1,2m−1, (5.2.6)

and

λ2mλ−2m = k2m,2mk2m−1,2m−1 − k2m,2m−1k2m−1,2m. (5.2.7)

The other coefficients of P2m(x) then can be derived inductively from (5.2.4) under the assumption that
the denominators involved are not zero:

a2m,2m−2l−1 = [(λ2m − k2m−2l,2m−2l)(λ2m − k2m−2l−1,2m−2l−1)− k2m−2l−1,2m−2lk2m−2l,2m−2l−1]
−1

·
2m

∑
i=2m−2l+1

a2m,i [(λ2m − k2m−2l,2m−2l)ki,2m−2l−1 + k2m−2l,2m−2l−1ki,2m−2l] , l = 0, . . . ,m−1,

a2m,2m−2l = [(λ2m − k2m−2l,2m−2l)(λ2m − k2m−2l−1,2m−2l−1)− k2m−2l−1,2m−2lk2m−2l,2m−2l−1]
−1

·
2m

∑
i=2m−2l+1

a2m,i [(λ2m − k2m−2l−1,2m−2l−1)ki,2m−2l + k2m−2l−1,2m−2lki,2m−2l−1] , l = 1, . . . ,m−1,

and

a2m,0 =
1

λ2m − k0,0

2m

∑
i=1

a2m,iki,0.

5.2.1 Algebraic Heun operators and the construction of type I OPSPD

The algebraic Heun (AH) operators come from the duality of COP. They can be constructed using the
bispectral pair of operators related with COP. It is known that the AH operators are the most general
operators that map any polynomial of degree n into a polynomial of degree n+1 [33]. Let us consider
the case where L maps the monomials 1,x,x2,x3,x4, . . . into polynomials of degrees 0,2,2,4,4, . . .,
respectively. Since L raises the degree of every odd monomial by 1 and preserves the degrees of every
even monomial, we can make use of the AH operators by defining

L[xn] :=
(1+(−1)n)

2
H[xn]+

(1− (−1)n)

2
W [xn], (5.2.8)
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where H is a linear operator that maps xn to a polynomial of degree n and W is an AH operator. In
fact, (5.2.8) can be realized with the help of the reflection operator R (R( f (x)) = f (−x)). Let

L =
1
2
(H +W )+

1
2
(H −W )R, (5.2.9)

then (5.2.8) holds immediately.
By choosing H as the spectral operator related to certain COP {Qn(x)}n=0,1,2,... and W as the corre-

sponding AH operator, one can make use of the theories of COP and their generalizations. Let us take
the Bannai-Ito case for an example. Recall that the Bannai-Ito polynomials are eigenfunctions of the
operator

LBI =
(x−ρ1)(x−ρ2)

−2x
(R− I)+

(x− r1 +1/2)(x− r2 +1/2)
2x+1

(T R− I), (5.2.10)

where T is the shift operator, I is the identity, T f (x) = f (x+1), I f (x) = f (x).
The algebraic Heun Bannai-Ito (AHBI) operator can be given by

W = τ1XY + τ2Y X + τ3X + τ4Y + τ0, (5.2.11)

where τi, i = 0, . . . ,4, are real coefficients. The operators X ,Y are generators of the Bannai-Ito algebra:

{X ,Y}= Z +ω3, {Y,Z}= X +ω1, {X ,Z}= Y +ω2, (5.2.12)

where ωi, i = 1,2,3 are constants [79]. Specifically,

X = 2LBI +(ρ1 +ρ2 − r1 − r2 +
1
2
), Y = x,

ω1 = 4r2r1 +4ρ2ρ1, ω2 =−2r1
2 −2r2

2 +2ρ1
2 +2ρ2

2, ω3 =−4r2r1 +4ρ2ρ1.

Let H = X , then it follows from (5.2.9) that

2L =W |τ3=τ3+1 −W |τ3=τ3−1R.

For generic parameters τi, i = 0, . . . ,4, the operator L involves T R, I,R and T . However, the shift
operator T is not self-adjoint, here we set some conditions to annihilate T in L. Let τ1 = τ2,τ3 = τ2+1,
then we write L as L0:

L0 =CL1(x)T R+CL2(x)R+CL3(x)I, (5.2.13)

where

CL1(x) =
(2x−2r2 +1)(2x−2r1 +1)

2x+1
,

CL2(x)=
−4(τ2 + τ4 +1)x2 +4((2r1r2 −2ρ1ρ2 +ρ1 +ρ2)τ2 −2τ0 − τ4 +4ρ1 +4ρ2)x−8(τ2 +

1
2 )ρ1ρ2)

2x
,

CL3(x) = 2(τ2 + τ4)x−4r1r2τ2 +4ρ1ρ2τ2 −2ρ1τ2 −2τ2ρ2 + τ0 +
τ4

2
+

2(1+2τ2)ρ1ρ2

x
− 4r2r1

2x+1
.

The operator L0 acts on the monomials as:

L0[x2m] = (2ρ1 +2ρ2 −2r1 −2r2 +4m+1)x2m + · · · ,
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L0[x2m−1] = 4(τ2 + τ4)x2m+

((8ρ1ρ2 −8r1r2 −4ρ1 −4ρ2)τ2 +2r1 +2r2 −2ρ1 −2ρ2 +2τ0 + τ4 − (4m−1))x2m−1 + · · · ,

thus the following condition must be satisfied so that L0 maps the monomials to polynomials of degree
0,2,2,4,4, . . .,

2ρ1 +2ρ2 −2r1 −2r2 ̸=−(4m+1), m = 0,1,2, . . . ,

τ2 + τ4 ̸= 0. (5.2.14)

Suppose that L0 possesses polynomial eigenfunctions with distinct eigenvalues,

L0P±2m = λ±2mP±2m, m = 0,1,2, . . . ,

then it follows from the relation (5.2.6) that

λ2m +λ−2m = (8ρ1ρ2 −8r1r2 −4ρ1 −4ρ2)τ2 +2τ0 + τ4 +2, m = 0,1,2, . . . . (5.2.15)

5.2.2 A generalization of the Bannai-Ito algebra

Let YL := ax+b and XL := cL0 +d with

a = 4b, d =

((
2ρ1 +2ρ2 −4ρ1ρ2 +4r1r2 +

1
2

)
τ2 − τ0

)
c.

It turns out that XL,YL satisfy the following anticommutation relations:

{XL,YL}=C1Y 2
L +ZL +K3, (5.2.16)

{YL,ZL}=C2XL +K1, (5.2.17)

{ZL,XL}=C3XL +C4Y 2
L +C5YL +K2, (5.2.18)

where

C1 =
c
b
(τ2+τ4), C2 = 4b2, C3 = 4bc(τ2+τ4), C4 =−c2

b
(τ2+τ4)(τ2+τ4+2), C5 = c2(τ2+τ4+2)2,

K3 =−bc(τ2 + τ4 −32ρ1ρ2τ2 −16ρ1ρ2 +16r1r2),

K1 = 32b2c(2ρ1ρ2τ2 +ρ1ρ2 + r1r2),

K2 = bc2(64r1
2r2

2τ2
2−128τ2

2r1r2ρ1ρ2+64ρ1
2ρ2

2τ2
2+64r1r2ρ1τ2

2+64r1r2ρ2τ2
2−64ρ1

2ρ2τ2
2−

64ρ1ρ2
2τ2

2 +64r1r2ρ1τ2 +64r1r2ρ2τ2 −32r1r2τ0τ2 −16τ2r1r2τ4 −64ρ1
2ρ2τ2 +16ρ1

2τ2
2−

64ρ1ρ2
2τ2+32ρ1ρ2τ0τ2−16ρ1ρ2τ2τ4+16ρ2

2τ2
2+16r2r1τ2+16r1r2τ4+32τ2ρ1

2−16ρ1ρ2τ2−

16ρ1ρ2τ4 −16ρ1τ0τ2 −8τ2ρ1τ4 +32ρ2
2τ2 −16ρ2τ0τ2 −8τ2ρ2τ4 −16r1

2 −16r2
2 +16ρ1

2−

16ρ1τ0 −8ρ1τ4 +16ρ2
2 −16τ0ρ2 −8ρ2τ4 +4τ0

2 +4τ4τ0 − τ2
2 −2τ2τ4 −2τ2 −2τ4).

The algebra generated by XL,YL and ZL subject to the relations (5.2.16)-(5.2.18) can be considered a
generalization of the Bannai-Ito algebra. In fact, if one choose the parameters τ2 = τ4 = 0,τ0 = 0 and

69



b = c = 1/2, then this algebra is exactly the Bannai-Ito algebra (5.2.12). This fact also addresses the
necessity of the condition (5.2.14) in this scheme.

The Casimir operator QL commuting with all the generator XL,YL,ZL of this algebra has the form:

QL =C2X2
L +C5Y 2

L +Z2
L +C2C4YL −C3ZL, (5.2.19)

which acts as a constant in this realization:

QL = 16b2c2(2ρ2
1 +2ρ2

2 +2r2
1 +2r2

2 −
1
4
)+2b(K2 +16bc2(r2

1 + r2
2 −ρ2

1 −ρ2
2 ))−

b2c2(τ2 + τ4)(64r1r2 +3(τ2 + τ4)).

From the anticommutation relations (5.2.16)-(5.2.18) one can also rewrite QL as follow:

QL = (
√

C5YL +ZL −
C3

2
)2 +C2X2

L −C2
√

C5XL −
√

C5K1 −
C2

3
4
. (5.2.20)

Let us introduce the operator by the following formula,

J1 = (YL +N1ZL +M1)(XL + k1)+ t, (5.2.21)

where N1,M1,k1, t are constants.

Lemma 5.2.2. If these constants are defined by

N1 =−C1

C4
, M1 =

C1C3

2C4
, k1 =

C4

2C1
, t =−C3

4
− K3

2
+

C1

2C4
K2,

then we have

{J1,XL}=
1

N1
J1 = c(τ2 + τ4 +2)J1. (5.2.22)

The relation (5.2.22) follows from (5.2.16)-(5.2.18) through straightforward calculations. In later
discussions we will see that J1 is a ladder operator associated with L0. Note that it is the existence of
the Y 2

L -terms in (5.2.16) and (5.2.18) that causes the uniqueness of the constant N1 (while there are two
choices of N1 in the case of the ordinary Bannai-Ito algebra), hence there is only one ladder operator
of L0 in the form (5.2.21).

The operator J1 here shares similar properties with the ladder operator J+ in the ordinary Bannai-
Ito algebra [79]. The operator J1 annihilates any constant J1[1] = 0 and maps the monomials
x,x2,x3,x4, . . ., into polynomials of degrees 2,2,4,4, . . ., respectively.

Suppose that the operator L0 has an infinite sequence of polynomial eigenfunctions in the means:

L0P±2m(x) = λ±2mP±2m(x), m = 0,1,2, . . .

where λ±2m are distinct eigenvalues, and degP±2m(x) = 2m. Obviously, P±2m(x) are also eigenfunc-
tions of the operator XL:

XLP±2m(x) = µ±2mP±2m(x), m = 0,1,2, . . .

where

µ±2m = c
(

λ±2m +

(
2ρ1 +2ρ2 −4ρ1ρ2 +4r1r2 +

1
2

)
τ2 − τ0

)
. (5.2.23)
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It then follows from the relation (5.2.22) that P̂±2m(x) = J1P±2m(x) are again eigenfunctions of the
operator XL with the eigenvalues

µ̂±2m = c
(
−λ±2m −

(
2ρ1 +2ρ2 −4ρ1ρ2 +4r1r2 −

1
2

)
τ2 + τ4 + τ0 +2

)
.

Substitute the relation (5.2.15) into the right-hand side then it turns out

µ̂±2m = c
(

λ∓2m +

(
2ρ1 +2ρ2 −4ρ1ρ2 +4r1r2 +

1
2

)
τ2 − τ0

)
= µ∓2m, (5.2.24)

which means that J1 acts on the eigenfunctions of L0 in the way that it exchanges P2m(x) with P−2m(x):

J1P2m(x) ∝ P−2m(x), J1P−2m(x) ∝ P2m(x).

As an immediate consequence of the relation (5.2.22), J2
1 commutes with the operator XL:

[XL,J2
1 ] = 0.

It follows from the anticommutation relations (5.2.16)-(5.2.18) that

(XL + k1)(YL +N1ZL +M1) =−(YL +N1ZL +M1)(XL + k1)−2t,

thus we can express J2
1 as

J2
1 =−(YL +N1ZL +M1)

2(XL + k1)
2 + t2.

Notice that N1 = (
√

C5)
−1 and M1

√
C5 =−C3/2, it then follows from (5.2.20) that J2

1 is a fourth-order
polynomial in XL:

J2
1 =− 1

C5

(
QL −C2X2

L +C2
√

C5XL +
√

C5K1 +
C2

3
4

)2

(XL + k1)
2 + t2.

We still want to find the ladder operators that transform P2m(x) (P−2m(x)) to their neighbors
P2(m−1)(x), P2(m+1)(x) (P−2(m−1)(x), P−2(m+1)(x)). However, we are not able to obtain these ladder
operators at the present stage. We will leave this to our future works.

According to numerical analysis we have the following conjectures.

Conjection 5.2.1. Assume that the condition in Lemma 5.2.1. is satisfied by the operator L0, and the
polynomial eigenfunctions {P±2m}m=0,1,2... of L0 are monic, then they satisfy the following recurrence
relations:

P2(m+1)(x) = (x2 +a2mx+b2m)
P2m(x)+P−2m(x)

2
+ c2m(P2m(x)−P−2m(x))+

d2m
P2(m−1)(x)+P−(2m−1)(x)

2
+ e2m(P2m−1(x)−P−(2m−1)(x)),

P−(2m+1)(x) = (x2 +a−2mx+b−2m)
P2m(x)+P−2m(x)

2
+ c−2m(P2m(x)−P−2m(x))+

d−2m
P2m−1(x)+P−(2m−1)(x)

2
+ e−2m(P2m−1(x)−P−(2m−1)(x)),

where the (a2m,a−2m)’s are a pair of solutions of a quadratic equation.

Conjection 5.2.2. The above conjecture holds for all the type I OPSPD.
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[33] F. A. Grünbaum, L. Vinet and A. Zhedanov, Algebraic Heun operator and band-time limiting,

Commun. Math. Phys., 364(3) (2018) 1041-1068.
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