THREE-TERM MACHIN-TYPE FORMULAE

TOMOHIRO YAMADA*

Abstract

We shall show that there exist only finitely many nondegenerate three-term Machin-type formulae and give explicit upper bounds for the sizes of variables.

1. Introduction

The Machin's formula

$$
\begin{equation*}
4 \arctan \frac{1}{5}-\arctan \frac{1}{239}=\frac{\pi}{4}, \tag{1}
\end{equation*}
$$

is well known and have been used to calculate approximate values of π. Analogous formulae $\arctan (1 / 2)+\arctan (1 / 3)=\pi / 4,2 \arctan (1 / 2)-\arctan (1 / 7)=\pi / 4$ and $2 \arctan (1 / 3)-\arctan (1 / 7)=\pi / 4$, which are also well known, were attributed to Euler, Hutton and Hermann, respectively. But according to Tweddle [11], these formulae also seem to have been found by Machin.

Several three-term formulae such as $8 \arctan (1 / 10)-\arctan (1 / 239)-4 \arctan (1 / 515)=$ $\pi / 4$ due to Simson in 1723 (see [11]) and $12 \arctan (1 / 18)+8 \arctan (1 / 57)-$ $5 \arctan (1 / 239)=\frac{\pi}{4}$ due to Gauss in 1863 also have been known.

More generally, an n-terms Machin-type formula is defined to be an identity of the form

$$
\begin{equation*}
y_{1} \arctan \frac{1}{x_{1}}+y_{2} \arctan \frac{1}{x_{2}}+\cdots+y_{n} \arctan \frac{1}{x_{n}}=\frac{r \pi}{4} \tag{2}
\end{equation*}
$$

with integers $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ and $r \neq 0$.
Theoretical studies of Machin-type formulae have begun with a series of works of Størmer', who proved that the four formulae mentioned above are all twoterm ones in 1895 [8] and gave a necessary and sufficient condition for given integers $x_{1}, x_{2}, \ldots, x_{n}>1$ to have a Machin-type formula (2) and 102 threeterm ones in 1896 [9]. Størmer asked for other three-term Machin-type formulae and questioned whether there exist infinitely many ones or not. Up to now the only known other nontrivial (i.e. not derived from the three formulae given above) three-term formulae are $5 \arctan (1 / 2)+2 \arctan (1 / 53)+\arctan (1 / 4443)=$ $3 \pi / 4,5 \arctan (1 / 3)-2 \arctan (1 / 53)-\arctan (1 / 4443)=\pi / 2$ and $5 \arctan (1 / 7)+$ $4 \arctan (1 / 53)+2 \arctan (1 / 4443)=\pi / 4$. [12] attributes these formulae to Wrench

[^0][14] although these formulae cannot be found there. We note that the second and the third formulae follow from the first formula using $\arctan (1 / 2)+\arctan (1 / 3)=$ $\pi / 4$ and $2 \arctan (1 / 2)-\arctan (1 / 7)=\pi / 4$ respectively.

The purpose of this paper is to answer to Størmer's other question in negative. We shall show that there exist only finitely many three-term Machin-type formulae which does not arise from a linear combinations of three two-term formulae.

Størmer's criterion is essentially as follows: For given integers $x_{1}, x_{2}, \ldots, x_{n}>$ 1, (2) holds for some integers $y_{1}, y_{2}, \ldots, y_{n}$ and $r \neq 0$ if and only if there exist integers $s_{i, j}(i=1,2, \ldots, n, j=1,2, \ldots, n-1)$ and Gaussian integers $\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$ such that

$$
\begin{equation*}
\left[\frac{x_{i}+\sqrt{-1}}{x_{i}-\sqrt{-1}}\right]=\left[\frac{\eta_{1}}{\bar{\eta}_{1}}\right]^{ \pm s_{i, 1}}\left[\frac{\eta_{2}}{\bar{\eta}_{2}}\right]^{ \pm s_{i, 2}} \cdots\left[\frac{\eta_{n-1}}{\bar{\eta}_{n-1}}\right]^{ \pm s_{i, n-1}} \tag{3}
\end{equation*}
$$

for $i=1,2, \ldots, n$.
Writing $m_{j}=\eta_{j} \bar{\eta}_{j}$ for $j=1,2, \ldots, n-1$, this condition can be reformulated as follows: there exist nonnegative integers $s_{i, j}(i=1,2, \ldots, n, j=1,2, \ldots, n)$ with $0 \leq s_{i, n} \leq 1$ such that the equation

$$
\begin{equation*}
x_{i}^{2}+1=2^{s_{i, n}} m_{1}^{s_{i, 1}} m_{2}^{s_{i, 2}} \cdots m_{n-1}^{s_{i, n-1}} \tag{4}
\end{equation*}
$$

holds for $i=1,2, \ldots n$ and, additionally, $x_{i} \equiv \pm x_{j}\left(\bmod m_{k}\right)$ for three indices i, j, k with $x_{i}^{2}+1 \equiv x_{j}^{2}+1 \equiv 0\left(\bmod m_{k}\right)$.

Thus, for given three integers $x_{1}, x_{2}, x_{3}>1$, there exist nonzero integers $y_{1}, y_{2}, \ldots, y_{n}$ and r such that a three-term Machin-type formula

$$
\begin{equation*}
y_{1} \arctan \frac{1}{x_{1}}+y_{2} \arctan \frac{1}{x_{2}}+y_{3} \arctan \frac{1}{x_{3}}=\frac{r \pi}{4} \tag{5}
\end{equation*}
$$

holds if and only if there exist integers $k_{i}, l_{i}(i=1,2,3)$ and Gaussian integers η_{1}, η_{2} such that

$$
\begin{equation*}
\left[\frac{x_{i}+\sqrt{-1}}{x_{i}-\sqrt{-1}}\right]=\left[\frac{\eta_{1}}{\bar{\eta}_{1}}\right]^{ \pm k_{i}}\left[\frac{\eta_{2}}{\bar{\eta}_{2}}\right]^{ \pm l_{i}} \tag{6}
\end{equation*}
$$

holds for $i=1,2,3$ or, equivalently, writing $m_{j}=\eta_{j} \bar{\eta}_{j}$ for $j=1,2, \ldots, n-1$ and choosing $v_{i} \in\{0,1\}$ appropriately, the equation

$$
\begin{equation*}
x_{i}^{2}+1=2^{v_{i}} m_{1}^{k_{i}} m_{2}^{l_{i}} \tag{7}
\end{equation*}
$$

holds for $i=1,2,3$ and, additionally, $x_{i} \equiv \pm x_{i^{\prime}}\left(\bmod m_{j}\right)$ for two indices i, i^{\prime} with $x_{i}^{2}+1 \equiv x_{i^{\prime}}^{2}+1 \equiv 0\left(\bmod m_{j}\right)$. Furthermore, (6) implies (5) with $y_{1}=$ $\pm k_{2} l_{3} \pm k_{3} l_{2}, y_{2}= \pm k_{3} l_{1} \pm k_{1} l_{3}$ and $y_{3}= \pm k_{1} l_{2} \pm k_{2} l_{1}$ with appropriate choices of signs.

Now we shall state our result in more detail.
Theorem 1.1. Assume that $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ and r are nonzero integers with $x_{1}, x_{2}, x_{3}>1$ and $\left\{x_{1}, x_{2}, x_{3}\right\} \neq\{2,3,7\}$ satisfying (5) and $m_{1}, m_{2}, s_{i}, k_{i}, l_{i}(i=$ $1,2,3)$ are corresponding integers with $m_{2}>m_{1}>0$ satisfying (7).
I. If $x_{i}^{2}+1 \geq m_{2}$ for $i=1,2,3$, then $m_{1}<m_{2}<5.19 \cdot 10^{39}$, $x_{i}<\exp (9.726$. 10^{11}) and $\left|y_{i}\right|<2 K L<5.656 \cdot 10^{19}$.
II. If $x_{i}^{2}+1<m_{2}$ for some i, then $m_{1}<4.14 \cdot 10^{81}, m_{2}<\exp (9964497.86)<$ $2.7261 \times 10^{4327526}, x_{i}<\exp \left(3.18 \cdot 10^{20}\right)$ and $y_{i}<2.7 \cdot 10^{31}$.

We use a lower bound for linear forms in three logarithms in order to obtain upper bounds for exponents k_{i} 's and l_{i} 's in terms of m_{1}, m_{2}.

These upper bounds themselves do not give finiteness of m_{1} and m_{2}. However, noting that $r \neq 0$, which gives $\left|\sum_{i} y_{i} \arctan \left(1 / x_{i}\right)\right| \geq \pi / 4$, the first case can be easily settled using these upper bounds. In order to settle the second case, we additionally need an upper bound m_{2} in terms of m_{1}. This can be done using a lower bound for a quantity of the form $y \arctan (1 / x)-r \pi / 2$, which gives a linear form of two logarithms.
(4) can be seen as a special case of the generalized Ramanujan-Nagell equation

$$
\begin{equation*}
x^{2}+A x+B=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}} \tag{8}
\end{equation*}
$$

where A and B are given integers with $A^{2}-4 B \neq 0$ and $p_{1}, p_{2}, \ldots, p_{n}$ are given primes. Evertse [2] proved that (8) has at most $3 \cdot 7^{4 n+6}$ solutions. In the case $n=2$, the author [15] reduced Evertse's bound $3 \cdot 7^{14}$ to 63 .

On the other hand, our result does not give an upper bound for numbers of solutions

$$
\begin{equation*}
x^{2}+1=2^{s} p_{1}^{k} p_{2}^{l} \tag{9}
\end{equation*}
$$

since the case $r=0$ is not considered. Indeed, Størmer [9] implicitly pointed out that, if $x^{2}+1=a y$, then

$$
\begin{equation*}
\arctan \frac{1}{a z-x}-\arctan \frac{1}{a z+a-x}=\arctan \frac{1}{a z(z+1)-(2 z+1) x+y} . \tag{10}
\end{equation*}
$$

Størmer [10] showed that (9) has at most one solution with each fixed combination of parities of s_{i}, k_{i}, l_{i} with zero and nonzero-even distinguished. Although there exist 18 combinations $(0|1,0| 1|2,0| 1 \mid 2)$, all-even combinations can clearly be excluded and therefore (9) has at most 14 solutions totally.

2. Preliminaries

In this section, we introduce some notation and some basic facts.
For integers N composed of prime factors $\equiv 1(\bmod 4)$, we define $\widehat{\log } N=$ $\log N$ if $N \geq 13$ and $\widehat{\log } 5=4 \arctan (1 / 2)$. If we decompose $N=\eta \bar{\eta}$ in Gaussian integers, then $\log (\eta / \bar{\eta}) \leq(\widehat{\log } N) / 2$. We write $\gamma(N)=\widehat{\log } N / \log N . \gamma(5)=$ $1.1523 \cdots$ and $\gamma(N)=1$ for $N \geq 13$.

Moreover, we define $\widetilde{\log } N$ by $\widetilde{\log } N=\max \{\log N,(1 / 2.648)+\max 4 \arg (\eta / \bar{\eta}) / \log N\}$, where the inner maximum is taken over all decompositions $N=\eta \bar{\eta}$ with $|\arg \eta|<$
$\pi / 4$. We write $\delta(N)=\widetilde{\log } N / \log N$. We see that $\delta(N)=1$ when $N>22685$ and there exist exactly 401 integers N such that $\delta(N)>1$.

For any gaussian integer η, we have an associate η^{\prime} of η such that $-\pi / 4<$ $\arg \eta^{\prime}<\pi / 4$ and therefore $-\pi / 2<\arg \eta^{\prime} / \overline{\eta^{\prime}}<\pi / 2$.

We call a formula (2) to be degenerate if

$$
\begin{equation*}
\sum_{i \in S} y_{i}^{\prime} \arctan \frac{1}{x_{i}}=\frac{r^{\prime} \pi}{4} \tag{11}
\end{equation*}
$$

for some proper subset S of $\{1,2, \ldots, n\}$ and integers $y_{i}^{\prime}(i \in S)$ and r^{\prime} which may be zero but not all zero.

From Størmer's result in [8] on two-term Machin-type formulae, the degenerate case only occurs in $\left\{x_{1}, x_{2}, x_{3}\right\}=\{2,3,7\}$.

3. A Lower bound for linear forms of three logarithms

Our argument depends on a lower bound for linear forms of three logarithms. Results in Mignotte's a kit on linear forms in three logarithms[6] are rather technical but still worthful to use for the purpose of improving our upper bounds. Proposition 5.2 of [6] applied to the Gaussian rationals gives the following result.
Lemma 3.1. Let α_{1}, α_{2} and α_{3} be three Gaussian rationals $\neq 1$ with absolute value one and assume that the three numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are multiplicatively independent or two of these numbers are multiplicatively independent and the third one is a root of unity, i.e. -1 or $\pm \sqrt{-1}$. Let b_{1}, b_{2} and b_{3} be three coprime positive rational integers and

$$
\begin{equation*}
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}-b_{3} \log \alpha_{3} \tag{12}
\end{equation*}
$$

where the logarithm of each α_{i} can be arbitrarily determined as long as

$$
\begin{equation*}
b_{2}\left|\log \alpha_{2}\right|=b_{1}\left|\log \alpha_{1}\right|+b_{3}\left|\log \alpha_{3}\right| \pm|\Lambda| \tag{13}
\end{equation*}
$$

We put $d_{1}=\operatorname{gcd}\left(b_{1}, b_{2}\right), d_{2}=\operatorname{gcd}\left(b_{2}, b_{3}\right), b_{2}=d_{1} b_{2}^{\prime}=d_{3} b_{2}^{\prime \prime}$. Let $w_{i}=$ $\left|\log \alpha_{i}\right|=\left|\arg \alpha_{i}\right|$ for each $i=1,2,3, a_{1}, a_{2}$ and a_{3} be real numbers such that $a_{i} \geq \max \left\{4,5.296 w_{i}+2 h\left(\alpha_{i}\right)\right\}$ for each $i=1,2,3$ and $\Omega=a_{1} a_{2} a_{3} \geq 100$. Furthermore, put

$$
\begin{equation*}
b^{\prime}=\left(\frac{b_{1}^{\prime}}{a_{2}}+\frac{b_{2}^{\prime}}{a_{1}}\right)\left(\frac{b_{3}^{\prime \prime}}{a_{2}}+\frac{b_{2}^{\prime \prime}}{a_{3}}\right) \tag{14}
\end{equation*}
$$

and $\log B=\max \left\{0.882+\log b^{\prime}, 10\right\}$.
Then, either one of the following holds.
A. The estimate

$$
\begin{equation*}
\log |\Lambda|>-790.95 \Omega \log ^{2} B \tag{15}
\end{equation*}
$$

holds.
B. There exist two nonzero rational integers r_{0} and s_{0} such that $r_{0} b_{2}=s_{0} b_{1}$ with $\left|r_{0}\right| \leq 5.61 a_{2} \log ^{1 / 3} B$ and $\left|s_{0}\right| \leq 5.61 a_{1} \log ^{1 / 3} B$.
C. There exist four rational integers r_{1}, s_{1}, t_{1} and t_{2} with $r_{1} s_{1} \neq 0$ such that

$$
\begin{equation*}
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} b_{2} t_{2}, \operatorname{gcd}\left(r_{1}, t_{1}\right)=\operatorname{gcd}\left(s_{1}, t_{2}\right)=1 \tag{16}
\end{equation*}
$$

$$
\left|r_{1} s_{1}\right| \leq 5.61 \delta a_{3} \log ^{1 / 3} B,\left|s_{1} t_{1}\right| \leq 5.61 \delta a_{1} \log ^{1 / 3} B,\left|r_{1} t_{2}\right| \leq 5.61 \delta a_{2} \log ^{1 / 3} B
$$

where $\delta=\operatorname{gcd}\left(r_{1}, s_{1}\right)$. Moreover, when $t_{1}=0$ we can take $r_{1}=1$ and then $t_{2}=0$ we can take $s_{1}=1$.

This result is nonsymmetric for three logarithms and, in order to make each b_{i} positive, we should arrange the order of logarithms. Thus, the application of this result requires a fair amount of computations with many branches of cases.

For convenience, we write h_{i} for $h\left(\alpha_{i}\right)$. For our purpose, we apply Lemma 3.1 to linear forms of two logarithms and $\pi \sqrt{i} / 2=\log \sqrt{-1}$. In this special case, we may assume that (i) $\log \alpha_{2}=\pi / 2$ or (ii) $\log \alpha_{3}=\pi / 2$ by exchanging (α_{1}, b_{1}) and $\left(\alpha_{3}, b_{3}\right)$. Thus, there exist six cases: A. i, A. ii, B. i, B. ii, C. i, C. ii.

In Case A, (15) gives a desired lower bounds. In cases B and C, we can reduce Λ into a linear form of two logarithms and apply results of [3]. Here, we shall discuss only in the case C. i.

We put $r_{1}=\delta r_{0}, s_{1}=\delta s_{0}$, which immediately yields that $\operatorname{gcd}\left(r_{0}, s_{0}\right)=1$. Dividing (16) by δ, we have

$$
\begin{equation*}
s_{0} t_{1} b_{1}+r_{0} t_{2} b_{2}+\delta r_{0} s_{0} b_{3}=0 \tag{18}
\end{equation*}
$$

From this, we see that r_{0} divides b_{1} and s_{0} divides b_{2}. Put $b_{1}=r_{0} u_{1}, b_{2}=s_{0} u_{2}$. Dividing (18) by $r_{0} s_{0}$, we have

$$
\begin{equation*}
t_{1} u_{1}+t_{2} u_{2}+\delta b_{3}=0 \tag{19}
\end{equation*}
$$

Now we obtain

$$
\begin{equation*}
\delta \Lambda=u_{2} \log \alpha_{5}-u_{1} \log \alpha_{6} \tag{20}
\end{equation*}
$$

where $\alpha_{5}=\alpha_{2}^{s_{1}} \alpha_{3}^{t_{2}}, \alpha_{6}=\alpha_{1}^{r_{1}} \alpha_{3}^{-t_{1}}$. Moreover,

$$
\begin{equation*}
\left|s_{0} t_{1}\right| \leq 5.61 a_{1} \log ^{1 / 3} B,\left|r_{0} t_{2}\right| \leq 5.61 a_{2} \log ^{1 / 3} B,\left|\delta r_{0} s_{0}\right| \leq 5.61 a_{3} \log ^{1 / 3} B \tag{21}
\end{equation*}
$$

Taking

$$
a_{5}=\max \left\{\left|t_{2}\right| h_{3},\left|t_{2}\right| w_{3}+\frac{\left|s_{1}\right| \pi}{2}\right\}, a_{6}=\max \left\{\left|r_{1}\right| h_{1}+\left|t_{1}\right| h_{3},\left|r_{1}\right| w_{1}+\left|t_{1}\right| w_{3}\right\}
$$

and

$$
b^{\prime \prime}=\frac{\left|u_{1}\right|}{a_{5}}+\frac{\left|u_{2}\right|}{a_{6}} \leq \frac{b_{1}}{\left|s_{0}\right| a_{5}}+\frac{b_{2}}{\left|s_{0}\right| a_{6}}
$$

Corollaire 1 of [3] gives

$$
\begin{equation*}
\log |\delta \Lambda| \geq-30.9 \max \left\{\log ^{2} b^{\prime \prime}, 441\right\} a_{5} a_{6} \tag{22}
\end{equation*}
$$

Table 1. Constants in (24)

Case	C	μ_{1}	μ_{2}	μ	ν_{1}	ν_{2}	β	τ
A, i	$28962 f_{1}\left(m_{1}, m_{2}\right)$	1	1	2	$1 / 2$	$1 / 2$	$\frac{1}{\log m_{1}}+\frac{1}{5.296 \pi}$	2.351
A, ii	$28962 f_{1}\left(m_{1}, m_{2}\right)$	1	1	2	0	$1 / 2$	$\sqrt{\frac{1}{2.648 \pi}+\frac{1}{\log m_{1}}}$	2.393
B, i	$460.63 f_{3}\left(m_{1}, m_{2}\right)$	1	1	$7 / 3$	$1 / 2$	$1 / 2$	$\frac{1}{\log m_{1}}+\frac{1}{5.296 \pi}$	4.574
				0	0	2	3.967	
B, ii	$127.408 f_{4}\left(m_{1}, m_{2}\right)$	1	1	$7 / 3$	0	$1 / 2$	$\sqrt{\frac{1}{2.648 \pi}+\frac{1}{\log m_{1}}}$	4.902
					1	126.844	2.838	
C, i	$6631 g_{5}\left(m_{1}, m_{2}\right)$	1	2	$8 / 3$	$1 / 2$	$3 / 2$	$\frac{1}{\log m_{1}}+\frac{1}{5.296 \pi}$	4.529
					1	$\pi / 2+2$	4.025	
C, ii	$27574 \delta\left(m_{1}\right) \delta\left(m_{2}\right)$	1	1	$8 / 3$	0	$1 / 2$	$\sqrt{\frac{1}{2.648 \pi}+\frac{1}{\log m_{1}}}$	4.475
					0	2	4.006	

4. Upper bounds for exponents

In this section, we shall prove upper bounds for exponents in (6) or, equivalently, (7).

Lemma 4.1. Let η_{1} and η_{2} be Gaussian integers with $-\pi / 2<\arg \eta_{i} / \bar{\eta}_{i}<\pi / 2$ and $m_{i}=\eta_{i} \bar{\eta}_{i}>1$ for $i=1,2$ with $m_{2}>m_{1}$ both odd.

We set

$$
\begin{gathered}
f_{1}\left(m_{1}, m_{2}\right)=\left(1+\frac{5.296 \pi}{\log m_{1}}\right)\left(1+\frac{5.296 \pi}{\log m_{2}}\right), \\
f_{3}\left(m_{1}, m_{2}\right)=\max \left\{\delta\left(m_{1}\right), \gamma\left(m_{1}\right) \delta\left(m_{2}\right)\right\}, \\
f_{4}\left(m_{1}, m_{2}\right) \\
=\frac{1}{2}\left(\left(1+\frac{5.296 \theta_{1}}{\log m_{1}}\right)\left(1+\frac{10.98 \theta_{2}}{\log m_{2}}\right)+\left(1+\frac{10.98 \theta_{1}}{\log m_{1}}\right)\left(1+\frac{5.296 \theta_{2}}{\log m_{2}}\right)\right), \\
f_{5}\left(m_{1}, m_{2}\right)=1+\frac{2.648 \pi\left(\widehat{\left.\log m_{1}+\log m_{2}\right)}\right.}{\widehat{\log m_{1} \log m_{2}}}
\end{gathered}
$$

and

$$
g_{5}\left(m_{1}, m_{2}\right)=f_{5}\left(m_{1}, m_{2}\right) \gamma\left(m_{1}\right) \delta\left(m_{2}\right) .
$$

If x, e_{1}, e_{2} are nonnegative integers such that

$$
\begin{equation*}
\left[\frac{x+\sqrt{-1}}{x-\sqrt{-1}}\right]=\left[\frac{\eta_{1}}{\bar{\eta}_{1}}\right]^{ \pm e_{1}}\left[\frac{\eta_{2}}{\bar{\eta}_{2}}\right]^{ \pm e_{2}} \tag{23}
\end{equation*}
$$

then we have

$$
\begin{equation*}
e_{1} \log m_{1}+e_{2} \log m_{2}<2 \tau C \log ^{\mu_{1}} m_{1} \log ^{\mu_{2}} m_{2} \log ^{\mu} Y \tag{24}
\end{equation*}
$$

with $\left(C, \mu_{1}, \mu_{2}, \mu, \nu_{1}, \nu_{2}, \beta, \tau\right)$ taken from one of ten rows in Table 1 and $Y=$ $2 C \beta \log ^{\nu_{1}} m_{1} \log ^{\nu_{2}} m_{2}$.

Proof. From the result of [4], $x^{2}+1=m^{t}$ with $x>0, t>1$ has no solution. Théorème 8 of [10] shows that $x^{2}+1=2 m^{t}$, then t must be a power of two. By Ljunggren's result [5], the only integer solution of $x^{2}+1=2 m^{4}$ with $x, m>1$ is $(x, m)=(239,13)$ (Easier proofs of Ljunggren's result have been obtained by Steiner and Tzanakis [7] and Wolfskill [13]). Thus, we may assume that $e_{1} e_{2} \neq 0$ since $e_{i}=0$ implies that $e_{3-i}=1,2$ or 4 . Furthermore, we may assume that $m_{1}^{e_{1}} m_{2}^{e_{2}}>10^{20}$.

We can decompose $m_{i}=\eta_{i} \bar{\eta}_{i}$ in a way such that $-\pi / 4<\arg \eta^{\prime}<\pi / 4$. We put $\xi_{i}=\eta_{i} / \bar{\eta}_{i}$ and write $\theta_{i}=\left|\arg \xi_{i}\right|=\left|\log \xi_{i}\right|$, so that $\theta_{i}<\pi / 2$.

Now $\Lambda=\log [(x+\sqrt{-1}) /(x-\sqrt{-1})]$ can be represented as a linear form of three logarithms

$$
\begin{equation*}
\Lambda= \pm e_{1} \log \xi_{1} \pm e_{2} \log \xi_{2} \pm \frac{e_{3} \pi \sqrt{-1}}{2} \tag{25}
\end{equation*}
$$

for an appropriate integer $e_{3} \geq 0$. Moreover, we can easily see that

$$
\begin{equation*}
\log |\Lambda|<-\log x<-\frac{e_{1} \log m_{1}+e_{2} \log m_{2}}{2}+10^{-9} \tag{26}
\end{equation*}
$$

Applying Lemma 3.1 and some technical argument in each of six cases, which are too complicated to describe here, we are led to 24 . This proves the lemma.

5. Proof of the Theorem

Let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ and r be integers with $x_{1}, x_{2}, x_{3}>1, r \neq 0$ satisfying (5) and $m_{1}, m_{2}, s_{i}, k_{i}, l_{i}(i=1,2,3)$ be corresponding integers, η_{1}, η_{2} be gaussian integers satisfying (6) and (7). We write $K=\max k_{i}$ and $L=\max l_{i}$. We may assume that $\left\{x_{1}, x_{2}, x_{3}\right\} \neq\{2,3,7\}$. From a note in the preliminaries, this implies that (5) is nondegenerate.

We have two cases: I. $x_{1}^{2}+1 \geq m_{2}$ and II. $x_{1}^{2}+1<m_{2}$.
Case I. In this case, $x_{i} \geq \sqrt{m_{2}-1}$ for $i=1,2,3$. Since (5) is nondegenerate, $u_{i}=0$ for at most one index i. In the case there exists such an index i, we may assume that $i=1$. Since $x_{2}^{2}+1 \equiv x_{3}^{2}+1 \equiv 0\left(\bmod m_{2}\right)$, Størmer's criterion implies that $x_{2}>m_{2} / 2$ or $x_{3}>m_{2} / 2$.

It immediately follows from (5) with $r \neq 0$ that

$$
\begin{equation*}
\frac{\left|y_{1}\right|+\left|y_{2}\right|}{\sqrt{m_{2}-1}}+\frac{2\left|y_{3}\right|}{m_{2}}>\frac{\pi}{4} . \tag{27}
\end{equation*}
$$

Since $\left|y_{1}\right| \leq k_{2} l_{3}+k_{3} l_{2} \leq 2 T U$ and so on, we have $m_{2}<\left(4\left(2+10^{-8}\right) K L / \pi\right)^{2}<$ $6.49(K L)^{2}$.

Combining with Lemma 4.1, we have $m_{1}<m_{2}<5.19 \cdot 10^{39},\left|y_{i}\right|<2 K L<$ $5.656 \cdot 10^{19}$ and $\log x_{i}<k_{i} \log m_{1}+l_{i} \log m_{2}<9.726 \cdot 10^{11}$, that is, $x_{i}<\exp (9.726$. 10^{11}). This shows the Theorem in Case I.

Case II. We may assume that $x_{1}^{2}+1<m_{2}$. We must have $l_{1}=0$ and $x_{1}^{2}+1=2 m_{1}^{k_{1}}<m_{2}$.

Combining diophantine results mentioned in the proof of Lemma 4.1 allow us to assume that $k_{1}=1$ or 2 . Since (5) is nondegenerate, $l_{i} \neq 0$ for another index $i>1$. Thus, $l_{2}, l_{3}>0$ and $x_{2}^{2}+1, x_{3}^{2}+1>m_{2}$.

Now we clearly have

$$
\begin{equation*}
y_{1} \arctan \frac{1}{x_{1}} \pm l_{3} k_{1} \arctan \frac{1}{x_{2}} \pm l_{2} k_{1} \arctan \frac{1}{x_{3}}=\frac{r \pi}{4} \tag{28}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Lambda_{1}=2 y_{1} \log \frac{x_{1}+\sqrt{-1}}{x_{1}-\sqrt{-1}}-r \pi \sqrt{-1} \tag{29}
\end{equation*}
$$

Then, observing that $\left|r \pi / 4-y_{1} \arctan \left(1 / x_{1}\right)\right|<\left(1+10^{-8}\right) k_{1}\left(l_{2}+l_{3}\right) / m_{2}^{1 / 2}$ with $\left|y_{1}\right| \leq k_{2} l_{3}+l_{3} k_{2}<2 K L$, we have

$$
\begin{equation*}
\left|\Lambda_{1}\right|<\frac{4\left(1+10^{-8}\right) k_{1} L}{m_{2}^{1 / 2}} \tag{30}
\end{equation*}
$$

while Théorème 3 of [3] gives that

$$
\begin{equation*}
-\log \left|\Lambda_{1}\right|<8.87 a H_{1}^{2} \tag{31}
\end{equation*}
$$

where $a=\max \left\{20,10.98 \widehat{\log } m_{1}+\left(\log m_{1}\right) / 2\right\}$ and $H_{1}=\max \{17,2.38+\log ((r / 2 a)+$ $\left.\left.\left(2 y_{1} / 68.9\right)\right)\right\}$.

We observe that $10.98 \widehat{\log } N>20$ for any N and therefore $a=10.98 \widehat{\log } m_{1}+$ $\frac{\log m_{1}}{2}$. Moreover, we have

$$
\begin{equation*}
\left|\frac{r \pi}{4}\right| \leq \frac{2 K L}{x_{1}}+\frac{2 u_{1} L}{x_{2}}<\frac{2.3 L}{m_{1}^{1 / 2}} . \tag{32}
\end{equation*}
$$

and $|r|<3 K L / m_{1}^{1 / 2}$.
If $K L \geq 4 \cdot 10^{7}$, then, from (37), we obtain $\log m_{2}<8.87\left(10.98 \gamma\left(m_{1}\right)+\right.$ $0.51) \log m_{1} \log ^{2}(K L)$. If $m_{2} \leq e^{187}$, then $m_{1}<e^{187}<4.14 \cdot 10^{81}$ and the Theorem immediately follows. If $m_{2}>e^{187}$, then Lemma 4.1 yields that $K L<$ $\log ^{8.88163} m_{2}$. Observing that $8.87 \cdot 8.88163^{2}\left(10.98 \gamma\left(m_{1}\right)+0.51\right) \log m_{1}>14822.4$, we obtain

$$
\begin{equation*}
\log m_{2}<881.32\left(10.98 \gamma\left(m_{1}\right)+0.51\right) \log m_{1} \log \log m_{1} \tag{33}
\end{equation*}
$$

Recalling (34), we have

$$
\begin{equation*}
\frac{2 K L}{\sqrt{m_{1}-1}}>\frac{\pi}{4}-\frac{2 k_{1} L}{\sqrt{m_{2}-1}}>\frac{\pi\left(1-10^{-8}\right)}{4} . \tag{34}
\end{equation*}
$$

Combining this with (39) and Lemma 4.1, we have $m_{1}<4.14 \cdot 10^{81}, m_{2}<$ $\exp (9964497.86)<2.7261 \times 10^{4327526}, \log x_{i}=k_{i} \log m_{1}+l_{i} \log m_{2}<3.18 \cdot 10^{20}$, that is, $x_{i}<\exp \left(3.18 \cdot 10^{20}\right)$, and $y_{i} \leq 2 K L<2.7 \cdot 10^{31}$. This completes the proof of the Theorem.

THREE-TERM MACHIN-TYPE FORMULAE

References

[1] Jack S. Calcut, Gaussian integers and arctangent identities for π, Amer. Math. Monthly 116 (2009), 515-530.
[2] J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, Inv. Math. 75 (1984), 561-584.
[3] Michel Laurent, Maurice Mignotte and Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
[4] M. Lebesgue, Sur L'impossibilité, en nombres entiers, de l'équation $x^{m}=y^{2}+1$, Nouv. Ann. Math. 9 (1850), 178-180.
[5] W. Ljunggren, Zur theorie der Gleichung $X^{2}+1=D Y^{4}$, Avh. Norske, Vid. Akad. Oslo 1, No. 5 (1942).
[6] Maurice Mignotte, A kit on linear forms in three logarithms, avilable from Y. Bugeaud's web page: http://irma.math.unistra.fr/~bugeaud/travaux/kit.pdf
[7] Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^{2}+1=$ $2 Y^{4}$, J. Number Theory 37 (1991), 123-132.
[8] Carl Størmer, Solution complète en nombres entiers m, n, x, y, k de l'équation marc $\operatorname{tg} \frac{1}{x}+$ narc $\operatorname{tg} \frac{1}{y}=k \frac{\pi}{4}$, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse 1895, Nr. 11, 21 pages.
[9] Carl Størmer, Sur l'application de la théorie des nombres entiers complexes a la solution en nombres rationnels $x_{1}, x_{2}, \ldots, x_{n}, c_{1}, c_{2}, \ldots, c_{n}, k$ de l'équation: $c_{1} \operatorname{arctg} x_{1}+c_{2} \operatorname{arc} \operatorname{tg} x_{2}+\cdots+$ $c_{n} \operatorname{arctg} x_{n}=k \frac{\pi}{4}$, Arch. Math. Naturv. 19 (1896), Nr. 3, 96 pages.
[10] Carl Størmer, Quelques théorèmes sur l'équation de Pell $x^{2}-D y^{2}= \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse 1897, Nr. 2, 48 pages.
[11] Ian Tweddle, John Machin and Robert Simson on inverse-tangent series for π, Arch. Hist. Exact Sci. 42 (1991), 1-14.
[12] Michael Roby Wetherfield and Hwang Chien-lih, Computing π, lists of Machin-type (inverse cotangent) identities for $\pi / 4$, http://www.machination.eclipse.co.uk/index.html.
[13] J. Wolfskill, Bounding squares in second order recurrence sequences, Acta Arith. 54 (1989), 127-145.
[14] J. W. Wrench Jr., On the derivation of arctangent equalities, Amer. Math. Monthly 45 (1938), 108-109.
[15] Tomohiro Yamada, A generalization of the Ramanujan-Nagell equation, Glasgow Math. J. advance online publication, https://doi.org/10.1017/S0017089518000344.

\author{

* Center for Japanese language and culture Osaka University 562-8558 8-1-1, Aomatanihigashi, Minoo, Osaka JAPAN
 E-mail address: tyamada1093@gmail.com
}

[^0]: 1991 Mathematics Subject Classification. 11D61, 11Y60, 33B10.
 Key words and phrases. Exponential diophantine equation, Ramanujan-Nagell equation, Machin-type formula.

