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AN  EXPLICIT TRACE FORMULA OF JACQUET-ZAGIER TYPE AND ITS 

APPLICATIONS 

MASAO TSUZUKI都築正男（上智大学理工学部）

This is a write-up of the author's talk given at the conference " Analytic number theory and 
related topics" (October 29 2018 to October 31 2018 at RIMS) based on joint work with Shingo 
Sugiyama (Nihon University). The author thanks the organizers Prof. Hidehiko Misho and Prof. 
Masatoshi Suzuki for giving him an opportunity of presenting this work. 

1. INTRODUCTION 

Let H = { T = x + iyl x E匹 y> O} be the Poincare upper half space with the hyperbolic 
如 dymetric ds2 = (d丑+dyり/y2.The associated volume form is dμ(T) =—2 which is SL2(lR)-
y 

invariant. Let k E 2N be a positive even integer. For any NE  N, let Sk(I'o(N)) denote the space 
of all the elliptic cusp forms on I'o(N) with weight k; as usual, the space carries the Petersson 
inner product defined by 

〈f,Ji〉=J f(T) 『~(T)(Im州dµ(T), f,fiES直 o(N)).
ro(N)¥H 

Let Hk(N) be an orthonormal basis of Skげo(N))consisting of simultaneous eigenfunctions of 
Hecke operators T(n) with n EN  relatively prime to the level N; the normalized eigenvalue of 
T(n) on h E凡 (N)is denoted by入h(n),i.e., 

T(n)h = n(k-l)/2入h(n)h, h E Hk(N), (n, N) = 1. 

Let¢be an even Hecke-Maass form on SL2(Z::)¥H, i.e., の(T)is a 000 -fucntion belonging to 
び(SL2(Z::)¥H)with Ji。澤(x+iy)dx O(V) = y > 0 satisfying the Jomt e1gen-equat10ns 

(1.1) △の(T):=ー炉（晶＋晶）の(T)=入ooc/J(T),
p-1 

(1.2) T(p)c/J(T) := c/J(pT) +区の（干） = pl/2い (T) (p: prime number). 
j=O 

and possessing the invariance under the orientation reversing automorphism T→ ーテ ofH.We 
always assume that¢is normalized so that its first Fourier coefficient is 1, i.e., 

叩 +iy)=区心(n)yl/2 K底 ;2(21rlnly)e21rinx 
nEZ-{O} 

with心(1)= 1, where v00 E ilR is determined by the relation心=(1-心）/4. 1 Note that 
入4>(P)=入pfor all primes p. Then the trace formula of Jacquet-Zagier type is a formula which 

1For SL亭）， theestimate入00 ;;, 1/4 (i.e., V00 E退） is known. 
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gives us an exact evaluation of the spectral average 

(1.3) L い） x j rp(T) h(T) h(T)(Im州dμ(T).
hEHk(N) 、 r。(N)H
I Hecke eigenvalue I'~  , 

I tri pie product period I 

When¢= 1, the exact evaluation of this average had been well-known as the Eichler-Selberg 
廿aceJorn叫 aof the Hecke operator T(n). When¢is the non-holomorphic Eisenstein series 

E(z,T)= L Im('YT)Cz+l)/2, Rez>l,TEH 
沢｛士[5i]}¥Sい(Z)

on SL2(Z) and when N = 1, Zagier obtained an explicit formula of the average in terms of 
the£-series of the quadratic fields and observed that the Eichler-Selberg trace formula can be 
reproved by taking the residue at z = 1 ([18]). Later, the method introduced by Zagier is carried 
over to the case of the Hilbert modular forms over a totally real number field of narrow ideal 
class number 1 by Mizumoto ([6]) and Takase ([17]). In [4], Jacquet and Zagier considered the 
problem in a most general and abstract framework on the adelization of GL(2) over an arbitrary 
number field. In this short report, we explain our recent progress on a new method to prove 
the trace formula of Jacquet-Zagier type in a bit different way than those in these works, which 
allows us to settle the case when¢is a cusp form at the same time. 

In the context of quantum chaos on the modular surface Yo(N) =恥(N)¥H,the average (1.3) 
is also meaningful, where the triple product occurring in (1.3) is vewed as a probability measure 
on Yo(N) depending on h E Hk(N), i.e., 

叫い） =!  心(T)lh(T)l2 (lmT)加 (T)
ro(N)¥H 

for any bounded measurable function心onthe surface Yo (N). The holomorphic analogue of 
Quantum Unique Ergodicity conjecture originary proposed by Rudnick and Sarnak ([7]) asserts 
that the measureμh for every h E Hk(N) should converge to the invariant probability measure 
vol(I'o(N)¥H)-1μon Yo(N) ("the semiclassical limit") as the weight k grows to infinity. Before 
the holomorphic QUE conjecture, as well as the original QUE conjecture itself, has been proved 
([9], [12]) for the full modular case N = 1, several research concerning the average of the family 
皿 (hE叫 1))are conducted2. For example, Luo [13] showed the holomorphic QUE conjecture 
on average proving the limit formula 

(1.4) 区皿（ゆ）→ vol(I'o(l)¥H)―1μ(ゆ），ゆ EC0(Yo(l)) 
#H以1)

底 H以1)

for the full level case> The limiting behavior as K→ +oo of the "quantum variance" 

(1.5)~ 苫~u 『;1)羹）加（ゆ）12 
and the modified version 

(1.6) 凸(~) L L(l, h, sym2) Iμ 虚）1汽
hEH以1)

2The relationship between our results and the QUE conjecture on average should have been addressed properly 
in the talk. Here we put a follow-up information for the people in the audience. 
3 As a matter of fact, in [13] this formula is shown only when心isthe characteristic function of a bounded 
measurable set of Yo(l). The proof works for general似
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are considered by Luo-Sarnak ([14]), where u is an arbitrary function from C0(0, +oo) and 
L(s, h,symりisthe symmetric square£-series of h. In the above formulas, the "test function"心
is supposed to be taken from the space C0(Yo(l)) (resp. C, 揺(Yo(l)))of all the smooth functions 
(resp. those with zero means fsL2(z)¥Hゆ(T)dμ(T) = 0) which as well as their derivatives satisfy 

the bound I心(r)I≪AY―A on y > vf3/2 for any A > 0. They showed that (a) there exists a 
certain Hermitian form B心） on the space C, 揺(Yo(l))such that (1.6) is asymptotically equal 
to 

B心） (fo00 u(t)dt) K +叫(Kl/2十€）

and (b) the quantity Bw (¢) for an even Hecke-Maass cusp form¢as above is given as ; L(ふの）〈¢,の〉．
They gave a brief remark indicating a similar asymptotic formula for the average (1.5) should 
hold true. However, the necessary argument is not that direct, after a while, some detail con-
cerning to the proof appeared in the preprint [15]. Stricltly speaking [15] consideres the variance 
for the familyμ¢; over an orthonormal system of Hecke-Maass forms伍}in the realm of the 
original QUE conjecture; we can check that the argument is easily carried over to the holomor-
phic case. If we choose u to be an appropriate approximation of the characteristic function of 
the interval [1, 2], then the arguments end up with the asymptotic formula (c/[15, Corollary 1]) 

(1.7) L L 血（叩~7r <~,¢)L (い） 0(¢) K (K→ +oo). 
kE2N hEH以1)
K,(k<2K 

The quantity 0(¢) is given by the following convergent Euler poduct over prime numbers 

C(¢) :=古I](1 -pl;; —:~~1/2)' 

where入Pisthe p-th normalized Hecke eigenvalue of¢fitting in the eigenequation (1.2), by which 
the Hecke£-function appering in the asymptotic formula is defined as the analytic continuations 
of the degree 2 Euler product 

L(s, ¢) = IT (1 —入pP―s+p―2s)-1, Res> 1. 
p 

We remark that the completed£-function 

A(s, ¢) = r!R (s + Voo/2)rIR (s -Voo/2) L(s, ¢) 

with v00 E ilR. determined from the Laplace eigenvalue心 by心=(1-心）/ 4 is entire and 
satisfies the functional equation A(s, ¢) = A(l -s, ¢) with plus sign. 
Our main results to be reported in this write-up is summarized as follows 

(i) Restricting ourselves to the full modular case (i.e., N = 1), we describe an exact formula 
of (1.3) when¢is the normalzied Eisenstein series E*(z) or a cusp form in a uniform 
way. 

(ii) We state an asymptotic formula of the average EhEHk(l)肌(¢)入h(n)for any fixed n EN 
with the weight k growing to infinity. Luo's result (1.4) applied to an even Hecke-Maass 

form¢yields(#H瓜1))-1区h叫 (1)皿(¢)→ 0 as k→ oo becauseμ(¢) = 0 by the 
cuspidality. Our asymptotic formula (Theorem 3.2) improves this result in that it tells 
us a rate of convergence to 0. 
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(iii) From our asymptotic formula in cojunction with (1.7), we deduce a quantitative non-
vanishing of the central L-values for the family of degree 6£-functions L(s, ¢x Ad(h)) 

(h E ukE[K,2KJH瓜1))with growing K. 
(iv) A weighted version of the vertical Sato-Tate law which is viewed as a deformation of 
Serre's result [8] in an accurate sence. The ensamble is constructed by the special 
values on a point in the critical strip of the symmetric square£-functions L(s, h; symり
(h E Hk(N)) with a fixed weight k~4 with growing square free levels N. 

Remark : In [10], we work with a Hecke normalized basis rather than an orthonormal basis. 
Let氏(N)be the set of all the Hecke eigen forms in S直 0(N))under the Hecke operators T(n) 
with (n, N) = 1 such that the first Fourier coefficient is normalized to be 1. Then we can take 

Hk(N) = {f〈f,f〉-l/21f E Bk(N)}. 

2. PERIOD FORMULAS 

As usual we set丘(s)=1r―s/2r(s/2).Let¢and h E 1'訊1)be as above. Recall the symmetric 
square£-function of¢and its completion are defined as 

L(s, ¢; symり=Il(l -p―l/p-8戸(1-p―s戸(1-pvv-s)-1, Res > 1, 
p 

A(s, ¢; sym門＝丘(s+ v00)r恥(s)丘(s-v00) x L(s, ¢, symり，
where土ツ00and土Vpare the spectral parameters of¢defined by the relations 

(½-寄） (½+脊）＝入oo, 入p=p―vv/2+ pvv/2 (p: prime numbers), 

respectively. For h E凡 (1),L(s, h; symりandits completion are defined similarly. For conve-
nience, we record several well-known period formulas for our automorphic forms. 

I Petersson inner products I : 

The Rankin-Selberg method yields the identities: 

〈¢,¢>=½A(l,¢, sym2), 〈h,h〉=(41r)-k1r―1r(k) L(l, h.sym2), h E Hk(l). 

I Waldspurger's period forrnula I: 
Let勤(¢)with DE  !7J is the period integral of cf; to be recalled in§3.1. From [5, Theorem 
4.1], we obtain 

l1P'n(¢)12 v固 L(l/2,¢) L(l/2, cf;Rxn) 
11¢112 = 4 L(l, cf;, symり

for any DE  !7J, D < 0. The gamma factor of L(O', cf;Rxn) is given as r艮(s+ v00/2 + 1)八(s-
v00/2 + 1) if D < 0. 

I Watson-Ichino formula I: 

We quote Watson's formula from [14, p.785 last line] ([20])4. This is a special case of !chino's 
formula [3]. 

血(¢)12= 
7r2 1r(k-½+ 芳）12 L (ふcpRhRh)

2cos(1rv /2) rA_、kT'f1.¥ 匝(1)12 T (1 Z.. —？ヽ， hEH瓜1),
00 

4Note that our士玲 is土it¢/2in [14]. 
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where h =区::=I仇 (n)qnis the q-expansion of h. Recall the decomposition formula of the triple 
product£-function: 

L(s, ¢121 hRh) = L(s, ¢) L(s, ¢x Adh). 

where L(s, ¢RAd h) denotes a degree 6£-function defined as the GL(2) x GL(3) convolution 
£-function of 7r¢and the Gelbart-Jacquet lift Ad(冗） ([2]) with 7r¢and回 beingthe automorphic 
representations of GL2(AQJ) generated by¢and h, respectively. 

3. RESULTS 

3.1. Trace formula. Let [g be the set of all the fundamental discriminants. For each D E玖
the Kronecker character of the quadratic field Q(⑰） is denoted by XD・Since Dis fundamental, 
XD is a quadratic Dirichlet character of conductor D. For DE玖 let:F(D) be the set of all the 
integral binary quadaratic forms Q(x, y) = A呼+Bxy+Cy2E Z[x, y] such that gcd(A, B, C) = 1, 
B2 -4AC = D, and Q(x, y) is not negative definite. Then the group PSL2(Z) acts on the set 
:F(D) by the rule 

(Q・ry)(x, y) = Q(ax + by, ex+ dy), for'Y = [~ ~] E SL2(Z). 

Let us recall a few facts on the orbit space F(D)/PSL2(Z). First of all, the orbits are finite in 
number h = #ば(D)/PSL心））， whicheq叫 sthe narrow class number of the quadratic field 
Q(汀）• For Q E :F(D), the stabilizer subgroup of Q is 

r(Q) ={'YE PSL2(Z)I Q・'Y = Q}竺 Un/{土1},

where U D is the global units of Q(✓ 恥

I Period integrals I : 
The "period integral" of rp for D E t;g to be denoted by砂 (rp)is defined as follows. If D < 0, 

2 
恥(¢):= 

鱈 D
こ如Q),

QESL追）¥F(D) 

where ZQ is the unique root of Q(z, 1) = 0 with Im(zQ) > 0. 
If D > 0, 

恥 rp):= L r/>(T) ldQTI, 
QESら(Z)¥F(D)l(Q)¥Cq 

where CQ is the geodesic line (semi-circle) on H joining two real roots of Q(z, 1) = 0 and ldQsl 
the geodesic line element on CQ. 

When△ = f2 D with f E N and D E [g, we set応(¢)=勤(¢).

I p-adic factors I : 

For any△ E Z -{O} such that△ 三 0,1 (mod 4), we have the expression△ = D f2 (uniquely) 
with f E N and D E [g U { 1}. For any v = {叫p<ooE ITp(C/4が(logp)-1.Z),we set 

B(v; △） ~g{ ら（く·!;—;;,1XD) lfl; デ＋ら（ご，）xv)lfl,: ―l 
where (p(s) = (1-p―s)-1, Lp(s,xv) = (1-xv(p)p―8)-1, and If Iv the normalized p-adic absolute 
value off. 
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I Archimedian factors I : For z E C and a E恥 define

ot(z)(a) =品
r(k+デ）r(k+―z-1) 
rR(号）rR(デ）

2 8(lal > 1) (a2 -1)112氾にれ(lal),
2 

釘,(z¥a)=品叫＋デ）r (k+デ）sgn(a) (1 + a2凸｛立旱(ia)一位旱(-ia)},

where郡(x)is the associated Legendre function of the 1st kind: 

判 (x)= r(l -μ)―1(x + it12(x -1)―μ/22凡 (-v,V + 1; 1 -μ; 早）．

Note that釘,(z)(0) . 1s understood as hm -,(z) a→ o Ok (a). 
The normalized Eisenstein series is defined by 

E*(z, T) := A(z + l)E(z, T) with A(s) = rll?.(s)((s). 

The completed L-function of E* (z) is defined as 

A(s,E*(z)) = A (s +½)A (s +½). 

Theorem 3.1. Let k E 2N with k), 4. 

(1) For n EN, DE  !lJ, set 

T(n, D) = { t E ZI t2 -4n = fの（ヨfEN)}. 

Let ef; be an even Hecke-Maass cusp form, or the normalized Eisenstein series E*(z) with 
IRezl < k-3. 
Let (v00, Vfin = {叫p<oo)be the parameter of Laplace-Hecke eigenvalues of ef; that is 
defined by the relations 

1 
極=4(1-底）(1 + v00) 入p= pllp/2 + p―llp/2 

from the eigenvalues of Laplacian and the Hecke operators. Then, 

41r, 爪
(3.1) k -1 区州n)μ¢,(h)=ふ(¢;,n)+』hyp(ef;,n) +』en(¢,n), 

底 Hバ1)

where 

』hyp(c/>,n) = 2ot AG,¢) ど
n=d1d2 

B(viin; (d1 -d炉）a:,(v00) (d1 + d2) 
d1 -d2' 

d1, 必>O,d1#d2

1 
』en(¢,n) =— L 28(D<O)lP'贔） L B(Vfin; t2 -4n) a:gn(『-4n),(v00) t 

2 DE§tET(n,D) い-=-Tni)'
ふ(rp,n) = 0 and c5(rp) = 0 if rp is a cusp form and 

叫，n)=n1/2A(z+l)c5(n=口） {A(-z)2叫 (3-z)/4r(k + (z -1)/2) n―(z+I)/4 
2 r(k)r((z + 1)/4) 

+ A(z) 2Hz7r(3+z)/4 r(k + (-z -1)/2) n -(-z+l)/4 
r(k)r((-z + 1)/4) } 

and c5(rp) = l if rp = E*(z). In the last formula, c5(n =口） is 1 if n is a perfect square 
and is O othe加 ise.
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(2) We have an analogous formula for holomorphic cusp forms h with square-free level N 
and an even Hecke-Maass form <P on SL心） • More generally in the setting of adeles, 
we have a similar result for Hilbert modular forms of square-free level over an arbitrary 
totally real number field F such that the place 2 of Q completely splits in the extension 
F. 

For detail, we refer to [10] and [11]. The above formula for¢= E*(z) has a different shape 
from [18, Theorem l]. For an adjustment to see that the two formulas are indeed the same, we 
use the relations 

皿(E*(z))= 
A(号） A(芳，h,symり
2A(l, h,symり'

(Rankin-Selberg integral), 

野 (E*(z))= 2―8{D<0)1n1(z+1)/4 A (号） A(号，ゅ） (D E~), (Hecke's formula) 

in conjunction with a more elementary formula 

Lμ(d) (り） d―(z+l)/2/Y_z(/ /d) = f―(z+l)/2B(旦；△），
O<dlf 

with旦thediagonal image of z in ITP(IC/4面(logp)-11:)for any non-zero discriminant△ = f2D. 

Hereμ(d) is the Mobius function and IY-z(n) :=区。<din炉．

32 . . Asymptotic formulas. Let¢and凡 (1)be as above. For n E N and k E 2N, consider 
the average 

Ak,n(<P) = L 州 n)μ虚）
底 H以1)

Theorem 3.2. Let Vfin = {叫p<oobe the parameter of Hecke eigenvalues of¢. Then for any 
n EN, we have 

(-l)k/2y'ri,Aぃ(¢)=¼1P'-4n(¢)B(vfini-4n) 

+ L 麟叫</J)B(Vfin;t2 -4n)亭ーi{P(ii!Pl12げ (p/iil12} + O(k―1) 
tEZ, 

O<ltl<2✓ 五

ask E 2N, k→ oo. Here△ =仕-4n and p = 2-1(-t + i凶ふ）．

Note that the second term in the right-hand side of the asymptotic formula is 0(1) with an 
oscilatory behavior. By taking a further average over k E [K, 2K), it is absorbed into the error. 

Theorem 3.3. Let Vfin = {叫p<oobe the parameter of Hecke eigenvalues of¢. 
For any n E飩

臼~~L (ーl)kf2Aぃ(¢)= 1 ]P'_叫）B(Vfini -4n). 
冨kE{2N)n[K,2K) 

3.3. Non-vanishing results. Let¢be an even Hecke-Maass cusp form on SL2(Z) with the 
spectral parameter (v00, Vfin = {vp}p<oo)-Let us define X(</J) to be the set of n EN  with the 
following properties. 

(i) -4n E~-

(ii) L(l/2, ¢ RX-4n) /= 0. 
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Note that E(l/2,1rq,) = +1. Then we have #X(¢) = oo, which is a special case of [1, Theorem 
Bl]. For our result to be non empty, we need the non-vanishing of the central value L(l/2, ¢). 
Up to now, no single example of such¢has been ever constructed. However, abundance of such 

¢is known through asymptotic formulas. Let {叱｝芦 bea complete orthogormal system of the 
l-v2 

space of even Hecke-Maass cuspforms on SL心） such that △的＝—戸 IPj and such that in the 
corresponding set of eigenvalues入j= (1 -l/に）/ 4 (j~1) each eigenvalue is counted with its 
multiplicity. Here we quote the following asymptotic formula due to Motohashi [16, Theorem 
2]. 

L L(l/2凸） ~~ 住logt (t→ +oo). 
|巧,oo/2l(t 

cos(1rvj,00/2) 丑

This evidently shows that there are infinitely many <p with L(l/2, ¢) cJ 0. 
Let¢be an even Hecke-Maass cusp form on SL立）• For n EN and K > 0, define 

知(K)~# { h E >e~ 旦~,,.,凡 (1) qふqix Adh) ,'0, 入,(n),'0} 
Theorem 3.4. Let <p be an even Hecke-Maass form on SL立） with the Laplace eigenvalue 
(1-心）/4. We suppose 

L(ふ¢)-I 0. 
For any n E X (¢) and E E (0, 1), there exists a constant K(¢, n, E) > 0 such that 

(3.2) 
知 (K) 1 -c 1 L(l/2, ¢ RX-4n) 
K),  (l61r) nd(n)2 C(の）L(l, ¢, symり＇

for all K > K(¢, n, E), where d(n) is the number of positive divisors of n. 

Note that the right-hand side of (3.2) is positive for n E X(rp). This theorem shows that 
among the family of£-functions 

L(s, rp x Ad h), (h E LJ Hk(l)) 
屈2Nn[K,2K)

the number of non-vanishing central value is at least a positive multiple of K asymptotically 
asK→ oo, whereas the size of the whole family is about K2. Note that the infinitum of non-
vanishing central values among the family is a direct consequence of the variance formula (1. 7); 
Theorem 3.4 is viewed as a quantification of this fact. 

3.4. Equidistribution theorem. Let N E N and k E 2N. Let q be a prime number such that 
(N, q) = 1. Consider the discrete measure on [-2, 2] defined邸

1 
邸，k,qヂ〉：＝忙o(l): ro(N)] L'-P凶 (q)),'-PECcomp([-2, 2]). 

底 Hk(N)

The limiting behavior of the measureμN,k,q as N + k→ oo is determined in [8]. 

k~l 〈µN,k,q,'-P〉ー [22 土） l;q,a,n~ndX 
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(z) 
ask+N→ oo. For a square free level N, we define a discrete measureμN,k,q (z E [O, 1]) on 

[-2, 2] as 

with 

(z-1)/2 

〈μ娼，q''P〉=II 1: 炉+1)12 L w炉(h)A 1 h 
A(号，h,symり
(, ,symり ¢ 囚(q))'

PIN hEHk(N) 

(pl/2 + p― 1/2戸—入h(P)2 }' 
w(zl(h) = (N Ni:1)Cl-z)/2 II { 1 + (pl/2 + p―1/2)(pz/2 + p― 1/2) —入h(P)2

PINNh' 

where Nh denotes the conductor of h. Note thatμ 図ら =μN,k,q・ Then we have an analogous 
(z) 

limit theorem ofμN,k,q (z E [O, 1]) as N→ oo (with a fixed k~4), where N is square free. 

Theorem 3.5. Suppose k > 4 for simplicity. For any polynomial function叫） on [-2, 2], we 
have 

lim〈μ訊，q'砂=r(z)C心 J <p(x) 
2 1 + qCz+i)/2 vlー呼/4

, .. ,, .. n ndx 
N→ 00 -2 7r 

uniformly in z E [O, 1], where 

r (k+芳）r(z) = {く(z+l) (z>O), 
1 (z = 0) 

叫 z)= 2(3-z)/27f-(3z+l)/4f (旱）
4 4ザ (k-1) . 

If the non-negativity L(s, h, sym2)), 0 (Vh EUN凡 (N),Vs E [O, 1]) (k: fixed) were true, the 
limit formula holds for all cp E Ccomp([-2, 2]). 

Theorem 3.6. Suppose k E 2N with k > 4. Let q be a prime number. 

(1) There exists M > q such that, for any prime number N > M and for any z E [O, 1] there 

exists h ES戸 (I'o(N))with L (攣h,symりヂ0.
(2) Suppose the non-negativity: L(s, h; sym2)), 0知パsE [O, 1]). Then given a subinterval 
[a, /3] C [-2, 2], there exists M > q such that, for any prime number N > M and for 
any z E [O, 1] there exists h E S炉噴o(N)) with the pmpe仕ies:

L(デ h,sy記） -I 0, 入h(q)E [a,/J]. 

4. A SKETCH OF THE PROOFS OF THEOREM 3.1 

In this section, we give a brief idea of proof of Theorem 3.1. Most of the part, no accuracy is 
intended below. Set G = PGL(2) and A the adele ring of Q. One considers the kernel function 

K(g, 91) = L <I>(g―1入91), 9, 91 E G(A) 
入EG(IQl)

where <I> = <I>ooR(Rp叱） on G(A) with <I>00 being the matrix coefficient of a discrete seris 
representation of G(照） of weight k and <I>p (p < oo) being the characteristic function of T(n) = 
{9 EM亭 p)Idet9 En写}.Then one computes the integral 

(4.1) J¢(9)  K(9, 9) d9 
G(IQl)¥G(A) 

in two ways. The spectral expansion of the kernel function takes the form 

K(9,91) = C L 入h(n)h(9) h(91), 
hEHk(l) 
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where his a function on the adeles G(A) corresponding to h. Plugging this formula to (4.1), we 
easily obtain an expression which is essentially yields the left-hand side of (3.1). To obtain the 
other side of (3.1), Jacquet-Zagier's approach uses the series expression of the Eisenstein series 
¢= E*(z) on the convergence region Rez > 1 and resorts to an unfolding argument. The same 
arg=ent does not carry over to the case when¢is a cusp form. In our approach (as in [13]), 
we use the expression 

K(g,g) = L L <l>(g―1入―1訊g)= Lx,(g), 
[,]入EG(砂 ¥G(Ql) [,] 

where bl runs through conjugacy classes of G(Q), to have 

l(Ql)¥G(A)¢(g) K(g, g) dg = ft l(Ql)¥G(A)¢(g)ぷ(g)dg. 
Suppose¢is our cusp form (lifted to a function on G(A)). Then 

J国）¥G(A) <jJ(g)£,(g) dg = l(Ql)¥G(A) <jJ(g) {入EG(f¥G(Ql)<f>(g―1入―1"(入g)}dg 

= J¢(g)  <l>(g古 g)dg
G(Ql)-y¥G(A) 

= l(Ah¥G(Al {le閏 ¥G(Ah<jJ(Tg)dT} X <l>(g―l"(g)dg. 
v ー

忍 (<j,:g)

If'Y is trivial or the unipotent class, ~ 孔¢:g) = 0 by the cuspidality of¢. Otherwise, 
G, 竺砂 withE/Q being a quadratic etale algebra (i.e., a quadratic field or Q x Q). Note that 

¢=@凸 EQ9lnd腐記(I1:v12図IIA四/2)応

where Kp = GL2(Zp) and K00 = 0(2). By uniqueness of the toric model (due to Waldspurger) 

dime Home(ふ）(rnd盟且(I1~12 図 I l;;v/2), coo(Eい噂））） = 1, 
we have a decomposition 

丸(¢:g) =久(¢)IT芽(vvi9v), 9 = (gv) E G(A), 
V 

where芽(v;9v) is the unramified spherical function on E; ¥G(<Qv) whose explicit formula is eas-
ily worked out. (A novelty in our method lies in the usage of these materials from representation 
theory.) In this way, we have the Euler product expression: 

J cp(g) .Jf;,(g) dg = &1,(¢) IT J 芸(vv: 9v)剌 (gv)dgv. 
G(Q)¥G(A) v G(Qv),¥G(Qv) 

with a constant少孔¢)which is eventually identified with lP'瓜¢)up to a tractable constant if D 
is the discriminant of the quadratic field <Q['Y]. A brute-force computation gives us an explicit 
formula of each local integral. 
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Let¢= E*(z), which is not of rapid decay on a fundamental domain. To remedy this, we 

consider the smoothed Eisensteis series 

叫） =!  庁 (z,g) f3(z) dz, 
(c) 

with f3(z) an entire function such that f3(z) = 0((1 + IImzl)-N・），/3(土1)= /3'(士1)= 0. A similar 
analysis goes through as it is before, except that the unipotent term does not vanish this time. 

ロ
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