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1 Introduction 

Let us consider graphset-subgraph matching problems, that is, a type of problems to find 

a subgraph of an input graph isomorphic to a member of a fixed set of graphs. Here, an 

input graph may be weighted on both vertices and edges, and we can ask to find a subgraph 

with the minimum total weight or the maximum total weight. And furthermore, the range 

of a subgraph may be restricted to spanning, induced, connected or disconnected. Thus 

various graph problems including some NP-hard problems can be seem as a member of 

the problems, for example: 

Traveling salesman: Given the set of all cycles, to find a connected, spanning subgraph 

with the minimum total edge weight. 

Longest path (cycle): Given the set of all paths (cycles), to find a connected subgraph 

with the maximum number of edges. 

Feedback vertex set: Given the set of all forests, to find a disconnected, induced sub-

graph with the maximum number of vertices. The set of vertices that are not in the 

obtained subgraph is a feedback vertex set. 

Planarity testing: Given the set of all subdivisions of K5 or K3,3, to find a connected 

subgraph. If any isomorphic subgraph is not found, then the input graph is planer. 

Steiner tree: Given the set of all trees, to find a connected subgraph with the minimum 

total weight, where an edge-weighted connected graph with a set of terminals is 

reconstructed to be a connected graph with weighted vertices and weighted edges 

such that the weight of each edge is the same, the weight of each terminals is -1 

times the sum of the weight of the edges, and the weight of other vertices is zero. 

Since the sets of graphs listed above can be defined by monadic second-order logic (MSOL), 

the fixed-parameter tractability of these problems is clear from a theorem of Courcelle [1, 

2]. However, a naive implementation of the algorithm obtained from Courcelle's theorem 

requires the construction of a deterministic finite-state automaton translated from an 

MSOL formula and the size of the automaton is expected to be a tower of exponentials 

dependent on the formula and the tree-width. On the other hand, this paper presents a 

practical parameterized method to solve the problems. 
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Figure 1: Molecular structure search with given a set of molecules 

A practical method for graphset-subgraph matching problems has been requested in the 

field of chemoinformatics [3, 4]. Pharmaceutical companies and research laboratories have 

huge databases of chemical structures of drug and drug-candidate molecules. Chemical 

structures of molecules are labeled, connected graphs, where vertices are labeled as the 

name of atoms and edges are labeled as the type of bonds. The improvement of molecular 

structure search technique is a key issue for drug discovery. As the introduction of finite 

automata and regular expressions for strings [5] revolutionized string search, a similar 

technique for molecular structure search has been desired. In other words, as shown in 

Figure 1, given a set of molecules, we want to get a list of subgraph-isomorphic molecules 

in a database. 

A key for the development of a parameterized method for graphset-subgraph matching 

problems is a way for expressing a fixed set of graphs. The proposed method uses a CBG 

automaton for defining a set of labeled, connected graphs. CBG automata are a kind of 

graph automata simply obtained by extending ordinary finite tree automata [6], newly 

developed for the method. The idea behind this extension is based on a very simple fact: 

"Any connected graph with cycles becomes a tree if we break all cycles." As shown in 

Figure 2, by choosing an edge from each cycle and inserting two vertices (broken points) 

at the middle of the edges, then a tree (a cycle-broken graph) is obtained. 

二
Original Graph 

broken points 

Cycle-Broken Graph 

Figure 2: Obtaining a cycle-broken graph 

The proposed parameterized method for graphset-subgraph matching problems is de-

veloped based on our previous method for finding a spanning tree of an input graph of 

treewidth 2 isomorphic to a member of a fixed set of trees [7]. 
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2 Preliminaries 

A graph is an ordered pair G = (V, E), where V is a finite set, called vertices, and E is a 

finite set of unordered pairs of distinct vertices, called edges. A vertex u E V is adjacent 

to another vertex v E V if an edge { u, v} is in E. For v E V, we define adj(v) = { u I u E V 

and u is adjacent to v}, and I adj (v) I is called the degree of v. 

For vertices u, v E V, a path from u to v is a sequence of vertices v1 v2・・・Vn for some 

n 2: 2 such that u = v1, v = vn, for 1~i~n -l, Vi is adjacent to Vi+l, and vi, v2, ... , Vn 
are all distinct except that町 mayequal to Vn. A cycle is a path from v to v for some 

v E V. G is acyclic if there is no cycle in G. G is connected if there is a path from u to v 

for any pair of distinct vertices u, v E V. 

A tree is a connected, acyclic graph. A vertex of a tree is called a node. A rooted tree 

is a pair (T, r) such that T is a tree, and r is a node of T. The node r is called the root. 

In a rooted tree, we assume that the edges have a natural direction away from the root. 

The parent of a node v is the node adjacent to v on the path from the root to v. Note 

that every node except the root has a unique parent. The children of a node v are the 

nodes whose parent is v. A node without any children is called a leaf. 

Let I: be a finite set of vertex labels, and let r be a finite set of edge labels. A vertex 
labeling of G is a function a-: V→ I:, and a edge labeling of G is a function'Y: E→ r. A 
labeled graph over I: and r is a quadruple G = (V, E, び心）. In this paper, we assume every 
graph to be labeled, and we use letters in Roman alphabet A, a, B, b, C, c, ... for vertex 
labels and numerical digits 1, 2, 3, ... for edge labels. 

For a connected graph G = (V, E), a cycle-breaking set of G is a set of ordered pair of 

vertices BこVx V such that (v,u) (/_ B if (u,v) EB, and G'= (V,E-{{u,v} I (u,v) E 
B}) becomes a tree. In general, there exist a plural number of cycle-breaking sets of G. 

When G is a tree, however, B = 0 is the one and only cycle-breaking set of G. 
Let * be a special symbol not included in I:, and let @ be a special symbol not 
included in r. For a labeled, connected graph G = (V, E, a-,"!) over I: and r, and a cycle-
breaking set B, a cycle-broken graph of G decided by B is a labeled, connected graph 

G'= (V',E', びげ） over I: U { *} and r U { @} defined as follows: 

• V'= Vu  { I I I ()  E B}, u , v u, v where u and v are new vertices not mcluded in V 

called broken points. 

• E'= E -{{ u, v} I (u, v) EB}+ {{ u, u'}, { v, v'} I (u, v) E B}. 

• が： V'→ 翫 {*}issuch that, for each v E V, が(v)= a-(v), and, for each (u,v) EB, 
が(u')= a-'(v') = *・ 

•'Y': E'→ r U {@} is such that for each e EE,'Y'(e) ='Y(e), and, for each (u, v) EB, 
"!({u,u'}) =@  and'Y({v,v'}) ='Y({u,v}). 

Note that a cycle-broken graph is always a tree. 

Example 1 Consider a labeled, connected graph G = (V, E, びべ） over I: = { a, b} and 
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(1) 

(2) 

(3) 

Figure 3: (1) The graph G, (2) the cycle-broken graph decided by B1, and (3) the cycle-

broken graph decided by B2 

△ = {1, 2, 3}, where 

V ={ v1, v2, v3, v4, v5, v5}, 

E ={{v1, 四},{v1叫 },{v1心 },{v2直 },{vふ四},{V5, V5}}, 

u ={ (v1, a), (v2, b), (v3, a), (v4, b), (v5, b), (v6, a)}, 

and 

6 ={({vi, 四},1), ({ V1, 四},2),({v1,v5},3), ({v公V3},2),

({ Vふ四},1),({v恥V5},3)}. 

For the graph G, B1 = {(v1, 四）} and B2 = {(v3, 四）} are two of the cycle-breaking sets. 

The graph G and the cycle-broken graphs decided by B1 and B2 are illustrated in Figure 3. 

3 CBG Automata 

For defining a set of labeled, connected graphs, CBG automata were developed [8, 9]. CBG 

automata are simply obtained by extending ordinary finite tree automata [6] for labeled, 
ordered trees. A CBG automaton may be said to be a finite tree automaton that accepts 

cycle-broken graphs instead of labeled, connected graphs. 

3.1 Definitions 

A CBC automaton is a five-tuple A=  (Q, ~, r, q0, R) where: 

• Q is a finite set of states, 

• ~is an alphabet of vertex labels, 



5

• r is an alphabet of edge labels, 

• qo E Q is the initial state, and 

• R is a finite set of transition rules of the following form: 

q(f(c1, c2, ... , en))→ f(q1(c1), 卯(c2),... , Qn(Cri)) 

where n 2 0, f EI:, q, Q1, Q2, ・ ・ ・, Qn E Q, and c1, c2, ... , c,, Er U {@}. The number 
n is called the width of a transition rule. When n = 0, we write q(f)→ f instead of 
q(f())→ J(). 

Let A=  (Q, I:, r, q0, R) be a CBG automaton, let G = (V, E, u, ,) be a labeled, connected 
graph, let B be a cycle-breaking set of G, let G'= (V', E', u'ごy')be the cycle-broken 
graph of G decided by B, and let r E V be an vertex of G. A state mapping on G'is a 

functionμ: V'→ Q. A state mappingμon the rooted tree (G', r) is acceptable by A if 
the following conditions hold: 

• μ(r) = qo, i.e., a state mapped to the root is always the initial state, 

• for each node v E V'with n (n > 0) children v1, v2, ... , Vn, if u(v) = f, μ(v) = q, 
,({v, 町})= c1, ,({v, 四})= c2, ... , ,({v,vn}) = Cri, andμ(v1) = Ql, μ(v叫=Q2, 
... , μ(vn) = Qn, then R contains the following transition rule: 

q(f(c1, c2, ... , c,,))→ f (Q1 (ci), 卯(c叫，．．．，伽（％）），

• for each leaf v EV', if u(v) = f, fヂ*,andμ(v) = q, then R contains the following 
transition rule: 

q(f)→ f, 

• and for each (u,v) EB, μ(u) =μ(v). 

G is accepted by A if a cycle-breaking set B exists, B decides a cycle-broken graph G', a 

state mappingμon G'exists, a vertex r E V exists, andμon (G', r) is acceptable by A. 

The set of connected graphs accpeted by A and the set of (possibly disconnected) graphs 

accpeted by A are defined as follows: 

L(A) ={GI G is accepted by A}, and 

Ldc(A) ={GI each component of G is accepted by A}. 

3.2 Examples of CBG Automata 

Example 2 A=  (Q, ~, r, qo, R) is an example of a CBG automaton, where Q = {q0, q1, 
q2, 卯｝，刃={ a, b }, r = {1, 2, 3}, and R consists of transition rules: 

qo(a(@, 2, 3)) → a(q1(@), Q2(2), 卯(3))
叫a(2)) → a(q2(2)) 
ゅ(b(l)) → b(q1(l)) 
q3(b(3)) → b(卯(3))
q3(a) → a 
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Consider the graph G and its cycle-breaking set B1 in Example 1. Let G'be the cycle-

broken graph of G decided by B1. Consider the following state mappingμon G': 

μ={(vi, qo), (v2, q叫，(v3,qi), (v4, q叫，(v恥卯）， (vか卯），

(v心），(vふqi),}

The graph G is accepted by A becauseμon (G', v1) is acceptable by A. The state mapping 

μon (G', 町） is illustrated in Figure 4. 

Figure 4: The acceptable state mappingμon (G', 釘）

Example 3 Another example is CBG Automata that define the set of all paths and the 

set of all cycles. Since we want to define paths and cycles as non-labeled graphs, we need 

a CBG automaton for non-labeled graphs. Instead, we set :E = {a} and r = {1}, i.e., all 
vertices and all edges have the same labels. 

A=  (Qぶ，r,q0, R) is a CBG automaton that defines the set of all paths, where 
Q = {qo, q1}, and R consists of trans1t10n rules: 

qo(a(l)) → a(q1(l)), 
q1(a(l)) → a(q1(1)), and 
q1(a) → a. 

A = (Q, I;, r, Qo, R) is a CBG automaton that defines the set of all cycles, where 
Q = {qo, Q1}, and R consists of transition rules: 

qo(a(l,@)) → a(q1(l),q1(@)), and 
q1(a(l)) → a(q1(l)). 

Example 4 The next example is CBG Automata that define all 9 sets of letter graphs. 

Letter graphs are sets of graphs that represent the topological classification of the capital 

letters in the Roman alphabet in the Sans Serif font [10]. There are the following 9 sets 
of letter graphs: 

Type A: letter graphs representing AR, 

Type B: letter graphs representing B, 

Type C: letter graphs representing Cl」LMNSUVWZ,

Type D: letter graphs representing DO, 
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Type E: letter graphs representing EFGTY, 

Type H: letter graphs representing HK, 

Type P: letter graphs representing P, 

Type Q: letter graphs representing Q, and 

Type X: letter graphs representing X. 

Figure 5 shows the base structures of letter graphs. Each set of letter graphs is defined to 

be a collection of the subdivisions of the corresponding base structure. 

合 包(] {) 臼 翌 ~~
Figure 5: The base structures of letter graphs 

Since letter graphs are thought to be non-labeled graphs, we need a CBG automaton 

for non-labeled graphs. Instead, we set~= {a} and r = {1 }, i.e., all vertices and all 
edges have the same labels. 

The followings are transition rules of CBG automata that define the 9 sets of letter 

graphs, where qo is the initial state: 

• A CBG automaton accepting graphs of type A: 

Qo(a(l, 1,@)) → a(q1(l), ゅ(1),q3(@)) 
q1 (a(l)) → a(q1(l)) 
q1(a(l, 1)) → a(q3(l), q2(l)) 
卯(a(l)) → a(q2(l)) 
卯(a) → a 
卯(a(l)) → a(卯(1))

• A CBG automaton accepting graphs of type B: 

qo(a(l,@,@)) → a(q1 (1), q2(@), q2(@)) 
q1 (a(l)) → a(q1(l)) 
q1(a(l, 1)) → a(q2(l), 卯(1))
卯(a(l)) → a(の(1))

• A CBG automaton accepting graphs of type C: 

qo(a(l)) → a(q1(l)) 
q1(a(l)) → a(q1(l)) 
叫a) → a 
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• A CBG automaton accepting graphs of type D: 

qo(a(l,@)) → a(q1(l),q1(@)) 
Q1(a(l)) → a(印(1))

• A CBG automaton accepting graphs of type E: 

qo(a(l, 1, 1)) → a (q1 (1), q1 (1), q1 (1)) 
q1(a(l)) → a(q1(l)) 
q1 (a) → a 

• A CBG automaton accepting graphs of type H: 

qo(a(l, 1, 1)) → a(q1(l),q1(l), ゅ(1))
q1(a(l)) → a(q1(l)) 
q1 (a) → a 
q2(a(l)) → a(q2(l)) 
q2(a(l, 1)) → a(q1(l),q1(l)) 

• A CBG automaton accepting graphs of type P: 

qo(a(l, 1,@)) → a(q1 (1), q1 (1), q1 (@)) 
叫a(l)) → a(q1(l)) 
q1 (a) → a 

• A CBG automaton accepting graphs of type Q: 

qo(a(l, 1, 1,@)) → a(q1(l)叫 1)叫 1),q1(@)) 
q1(a(l)) → a(q1(l)) 
q1(a) → a 

• A CBG automaton accepting graphs of type X: 

qo(a(l, 1, 1, 1)) → a(q1(l)平 (1),Ql (1), Ql (1)) 
叫a(l)) → a(叫1))
q1(a) → a 

3.3 An Extension to CBG automata 

A CBG automaton cannot define the set of all trees because the degree of a tree is not 

bounded. In order to define the set of all trees, we allow a CBG automaton to have the 

following transition rule: 

Qo(a(l *))→ a(qo(l)*) 

meaning that a vertex to which this rule is applied may have any number of children. The 

CBG automaton whose transition rules are only the above one defines the set of all trees. 
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4 A Parameterized Method to Solve the Graphset-Subgraph 

Matching Problem 

In this section, it is shown that graphset-subgraph matching problems with a fixed set of 
graphs given by a CBG automaton are fixed parameter tractable in the treewidth of an 

input graph by presenting a parameterized method to solve the problems. Since we have a 

method to find a spanning tree of an input graph of treewidth 2 isomorphic to a member 

of a fixed set of trees [7], the proposed method is developed based on the previous method 

with the following three improvements: 

1. A finite tree automaton for a fixed set of trees is replaced by a CBG automaton for 

a fixed set of graphs. 

2. Not only connected, spanning subgraphs but also induced subgraphs, connected 

subgraphs and disconnected subgraphs become targets to find. 

3. The treewidth of an input graph may be any value. 

4.1 Outline of the Proposed Method 

The purpose of the method is to find an acceptable state mapping on a possible cycle-

broken graph of an input graph. A flow of the method is illustrated in Figure 6. Given an 

elimination ordering of vertices of an input graph, hyperedges representing some part of 

the graph are combined in succession. First, a hyperedge is arranged for each edge. Each 

hyperedge is associated with a set of partial solutions. By eliminating a vertex, hyperedges 

containing the vertex are combined. At the last, there is a hyperedge representing all part 

of the input graph, and it is associated with a set of solutions (cycle-broken graphs with an 

acceptable state mapping). One of the most appropriate cycle-broken graphs is supposed 

to be in the set. 

三壬壬■mrn
Figure 6: A flow of the method 

It is known that there is an elimination ordering of vertices of an input graph so that 
the size of each hyperedge does not exceed the treewidth of the input graph [11, 12]. A 

proper elimination ordering can be obtained from a tree decomposition easily. 

4.2 Partial Solutions Associated to a Hyperedge 

A partial solution is a subgraph of a cycle-broken graph with a partially acceptable state 

mapping. Because a cycle-broken graph is a rooted tree, each subgraph is a disjoint union 

of rooted trees. For a hyperedge, only partial solutions that are necessary to obtain a total 

solution with the minimum or maximum weight should be stored. 

Each partial solution associated to a hyperedge has the following representing values: 

For each vertex in the hyperedge, 
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• a Boolean value indicating if the vertex is used or not, 

• an ID of a transition rule applied to the vertex, 

• a selection of IDs of next states in the transition rule which are delivered to the 
inside of the partial solution, and 

• a location (the vertex itself, another vertex in the hyperedge, or one of any already 
eliminated vertices) of the root of the component to which the vertex belongs. (Pos-

sible locations of the root is illustrated in Figure 7.) 
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Figure 7: Possible locations of the root 

A partial solution is stored as a triple: (1) representing values, (2) a weight, and (3) 
a set of edges. We store only partial solutions with the minimum or maximum weight 

among the partial solutions with the same representing values. 

4.3 The Initial Setting of Hyperedges 

When a hyperedge is arranged for each edge, we associate initial partial solutions to 

hyperedges. Let G = (V, E, a, 1) be a labeled, connected graph for an input, and let 
e = {v1心}be an edge in E. Let w : V U E→ R is a weight function on V and E, 
where R is the set of real numbers. Suppose that there is a fixed order on V, and附<V2. 

Suppose also that the following r and r'are transition rules such that a(v1) = f and 

a(叫＝『：

r: q(J(c1, c2, ... , en))→ f(q心），q退），・・・,qn(Cn))

r': q'(f'(c~, c;, ... , c伝））→『(q~(c~),q屈），...,q~(c伝））

For the initial setting, we associate the following partial solutions to the hyperedge 

｛叱叫： For all search modes, 

• associate (((true, r, { i}, 町），(true,r', 0, 町）），w(e),{e}) for some i (1 ::=:; i ::=:; n) such 
that q'= qi and Ci = ,(e), meaning that both v1 and v2 are used and v1 becomes 

the parent of v2, 

• associate (((true,r,0,v2),(true,r',{j},v叫），w(e),{e})for some j (l ::=:; j ::=:; m) such 
that q = q'. and c1 = 1(e), meaning that both v1 and四 areused and四 becomes

the parent of v1・
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• associate (((true, r, { i}, v1), (true, r', {j}, v2)), w(e), { e}) for some i (1さi::; n) and 
j (1::; j::; m) such that qi= q1, Ci=@ and S = 1(e), meaning that both v1 and v2 
are used and (v1心） is in a cycle-breaking set, and 

• associate (((true,r, {i},v1), (true,r', {j},v2)),w(e), {e}) for some i (1::; i::; n) and 
j (1::; j :=; m) such that qi= q1, Ci= 1(e) and c1 =@,meaning that both v1 and v2 
are used and (v2, 町） is in a cycle-breaking set. 

If search mode is not spanning, 

• associate (((false,-,-,-), (false,-,-,-)), 0, 0), meaning that niether v1 nor v2 
are used, 

• associate (((true, r, 0, v1), (false, ー，ー，ー）），0,0), meaning that v2 is not used, and 

• associate (((false,-,-,-), (true, r', 0, v叫），0,0), meaning that v1 is not used. 

And if seach mode is not induced, 

• associate (((true, r, 0, v1), (true, r', 0, v2)), 0, 0), meaning that both v1 and v2 are used 
but the edge { vぃ四}E E is not used. 

4.4 Combining Hyperedges 

When hyperedges are combined, the partial solutions associated to them are also combined. 

Because some combinations of partial solutions cause some inconsistency, we need to check 

(1) the feasibility of transition rules applied to each vertex of the combined hyperedge and 
(2) the validity of shape of the combined partial solution. Since the shape of a partial 
solution is a disjoint union of rooted trees, the check points for the validity of shape are 

the only following two: 

1. Each vertex has at most one parent. 

2. Each component has exactly one root. 

The weight of a combined partial solution is the sum of original partial solutions. 

4.5 Eliminating a Vertex in a Hyperedge 

When all hyperedges containing a vertex to eliminate are combined to be a single hyper-

edge, we eliminate the vertex from the hyperedge and the partial solutions associated to 

it. In order to eliminate a vertex from a partial solution, we need to check if the set of IDs 
of next states in the transition rule applied to the vertex is fulfilled. In addition, if the 

vertex is the root of a component, then the state on the left hand-side of the transition 

rule h邸 tobe the initial state. 

When a vertex is eliminated from a partial solution, we add the weight of the vertex 

to the weight of the partial solution. 

4.6 Final Condition 

When all vertices are eliminated, there is a hyperedge representing all part of the input 

graph, and the hyperedge is associated with a set of solutions. Each solution is supposed 

to be a graph accepted by the CBG automaton. We can find a solution with the minimum 

or maximum weight. 



12

5 Complexity of the Method 

Let G = (V, E, u,'Y) be a labeled, connected graph for an input, and let tw be the treewidth 
of G. Let rules be the number of transition rules of a CBG automaton, and let width be 

the maximum width of a transition rule. 

The maximum number of partial solutions a hyperedge may have is: 

T = (lrulesl・2皿 dth.tw)tw_ 

Thus the space complexity of the method is O(IEI・T), and the time complexity of the 

method is O(IEI -T2 -log(T)). 

6 Implementation of the Method 

A software for given a labeled, connected graph to find a subgraph accepted by a CBG 

automaton was developed. The name of the software is CBGfinder. CBGfinder, written 

in the C++ language, was developed with Visual C++ on Windows. However, it can be 

compiled by g++ on linux. The source code of CBGfinder is available on the following 

web site: 

http: //apricot. cis. ibaraki. ac. jp/CBGfinder/. 

7 Conclusion 

A parameterized method to solve some graphset-subgraph matching problems was pro-

posed. A key for the development of the method was a way for expressing a fixed set of 

graphs, and the method uses a CBG automaton for that. Because of the versatility of the 

proposed method, we can say "Any graph problems that can be formalized as a minimiza-

tion or maximization of a subgraph accepted by a CBG automaton are fixed parameter 

tractable in the treewidth of an input graph." We have seen that those problems include 

traveling salesman, longest path, longest cycle, feedback vertex set, planarity testing, and 

the Steiner tree problem. There are many others. 
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