NOTES ON CHOW RINGS OF G / B AND $B G$

NOBUAKI YAGITA

1. Introduction

Let p be a prime number. Let G and T be a connected compact Lie group and its maximal torus such that $H^{*}(G)$ has p-torsion. Given a field k with $\operatorname{ch}(k)=0$, let G_{k} and T_{k} be a split reductive group and a split maximal torus over the field k, corresponding to G and T. Let us write by $B G_{k}$ its classifying space defined by Totaro $[\mathrm{To} 1,3]$. Let B_{k} be the Borel subgroup containing T_{k}. Let \mathbb{G} be a G_{k}-torsor. Then $\mathbb{F}=\mathbb{G} / B_{k}$ is a (twisted) form of the flag variety G_{k} / B_{k}.

For a smooth algebraic variety X over k, let $C H^{*}(X)=C H^{*}(X)_{(p)}$ mean the p-localized Chow ring generated by algebraic cycles modulo rational relations. The cofibering $G / T \xrightarrow{j} B T \xrightarrow{i} B G([\operatorname{Tod} 1,2])$ induces the maps

$$
\text { (1.1) } C H^{*}\left(B G_{k}\right) \xrightarrow{i^{*}} C H^{*}\left(B B_{k}\right) \xrightarrow{j^{*}} C H^{*}\left(\mathbb{G} / B_{k}\right),
$$

whose composition $j^{*} i^{*}=0$ for $*>0$. But it is far from exact when $\mathbb{G} \cong G_{k}$. (Here exact means $\operatorname{Ker}\left(j^{+}\right)=\operatorname{Ideal}\left(\operatorname{Im}\left(i^{+}\right)\right)$.) However, we observe that it becomes near exact when \mathbb{G} is sufficient twisted, while it is still not exact for most cases.

The author thanks Maski Kameko for pointing out errors in the first version of this paper.

2. $C H^{*}\left(\mathbb{G} / B_{k}\right)$

Recall that G_{k} and T_{k} are the split reductive group and split maximal torus over a field k with $c h(k)=0$, corresponding to Lie groups G and T. Let B_{k} be the Borel subgroup containing T_{k}. Recall that \mathbb{G} is a G_{k}-torsor, and let us write $\mathbb{F}=\mathbb{G} / B_{k}$ in this section.

By Petrov-Semenov-Zainoulline ([Pe-Se-Za], [Se-Zh]), it is known that the p localized motive $M(\mathbb{F})_{(p)}$ of \mathbb{F} is decomposed as

$$
\text { (2.1) } \quad M(\mathbb{F})_{(p)}=M\left(\mathbb{G} / B_{k}\right)_{(p)} \cong R(\mathbb{G}) \otimes\left(\ominus_{i} \tilde{\mathbb{T}}^{\otimes s_{i}}\right)
$$

where $\tilde{\mathbb{T}}$ is the reduced Tate motive and $R(\mathbb{G})$ is some motive called generalized Rost motive. (It is the original Rost motive([Ro], [Vo1,2], [Pe-Se-Za], [Ya2]) when G is of type (I) as explained below). Hence we have maps

$$
\text { (2.2) } C H^{*}\left(B B_{k}\right) \rightarrow C H^{*}(\mathbb{F}) \xrightarrow{\text { split surj. }} C H^{*}(R(\mathbb{G}))
$$

where $B B_{k}$ is the classifying space for B_{k}-bundles. From Merkurjev and Karpenko [Me-Ne-Za], [Kar], we know that the first map is also surjective when \mathbb{G} is a versal G_{k}-torsor. (For the definition of versal torsor see [Ga-Me-Se], [Me-Ne-Za], [Kar],

Key words and phrases. Chow rings, classifying spaces, complete flag varieties.
[To2].) In particular, when G is of type (I), if \mathbb{G} is a non-trivial G_{k}-torsor, then it is versal.

To explain groups of type (I), we recall arguments for $H^{*}(G / T)$ in algebraic topology. By Borel, its $\bmod (p)$ cohomology is (for p odd)

$$
H^{*}(G ; \mathbb{Z} / p) \cong P(y) / p \otimes \Lambda\left(x_{1}, \ldots, x_{\ell}\right), \quad\left|x_{i}\right|=o d d
$$

where $P(y)$ is a truncated polynomial ring generated by even dimensional elements y_{i}, and $\Lambda\left(x_{1}, \ldots, x_{\ell}\right)$ is the \mathbb{Z} / p-exterior algebra generated by x_{1}, \ldots, x_{ℓ}. When $p=2$, we consider the graded ring $\operatorname{gr} H^{*}(G ; \mathbb{Z} / 2)$ which is isomorphic to the right hand side ring above.

When G is simply connected and $P(y)$ is generated by just one generator, we say that G is of type (I). Except for $\left(E_{7}, p=2\right)$ and $\left(E_{8}, p=2,3\right)$, all exceptional (simple) Lie groups are of type (I). Note that in these cases, it is known $\operatorname{rank}(G)=$ $\ell \geq 2 p-2$.

We consider the fibering ([Tod2], [Mi-Ni]) $G \xrightarrow{\pi} G / T \xrightarrow{i} B T$ and the induced spectral sequence

$$
E_{2}^{*, *}=H^{*}\left(B T ; H^{*}(G ; \mathbb{Z} / p)\right) \Longrightarrow H^{*}(G / T ; \mathbb{Z} / p)
$$

Here we can write $H^{*}(B T) \cong S(t)=\mathbb{Z}\left[t_{1}, \ldots, t_{\ell}\right]$ with $\left|t_{i}\right|=2$.
It is well known that $y_{i} \in P(y)$ are permanent cycles and that there is a regular sequence $\left(\bar{b}_{1}, \ldots, \bar{b}_{\ell}\right)$ in $H^{*}(B T) /(p)$ such that $d_{\left|x_{i}\right|+1}\left(x_{i}\right)=\bar{b}_{i}([\operatorname{Tod} 2]$, [Mi-Ni] $)$.

We know that G / T is a manifold such that $H^{*}(G / T)=H^{\text {even }}(G / T)$ and $H^{*}(G / T)$ is torsion free. We also see that there is a filtration in $H^{*}(G / T)_{(p)}$ such that

$$
g r H^{*}(G / T)_{(p)} \cong P(y) \otimes S(t) /\left(b_{1}, \ldots, b_{\ell}\right)
$$

where $b_{i} \in S(t)$ with $b_{i}=\bar{b}_{i} \bmod (p)$.
For the algebraic closure \bar{k} of k, let us write $\bar{X}=\left.X\right|_{\bar{k}}$. Then considering (2.1) over \bar{k}, we see

$$
C H^{*}(\bar{R}(\mathbb{G})) / p \cong P(y), \quad C H^{*}\left(\oplus_{i} \tilde{\mathbb{T}}^{\otimes s_{i}}\right) \cong S(t) /\left(b_{1}, \ldots, b_{\ell}\right)
$$

Moreover when \mathbb{G} is versal, we can see ([Ya2]) that $C H^{*}(R(\mathbb{G}))$ is additively generated by products of b_{1}, \ldots, b_{ℓ} in (2.2). Hence we have surjections $C H^{*}\left(B B_{k}\right) \rightarrow$ $C H^{*}(\mathbb{F}) \xrightarrow{p r} C H^{*}(R(\mathbb{G}))$.

By giving the filtration on $S(t)$ by b_{i}, we can write (additively)

$$
g r S(t) / p \cong A \otimes S(t) /\left(b_{1}, \ldots, b_{\ell}\right) \quad \text { for } A=\mathbb{Z} / p\left[b_{1}, \ldots, b_{\ell}\right]
$$

In particular, we have maps $A \xrightarrow{i_{A}} C H^{*}(\mathbb{F}) / p \rightarrow C H^{*}(R(\mathbb{G})) / p$. We also see that the above composition map is surjective.

Lemma 2.1. ([Ya2]) Suppose that there are $f_{1}(b), \ldots, f_{s}(b) \in A$ such that $C H^{*}(R(\mathbb{G})) / p \cong$ $A /\left(f_{1}(b), \ldots, f_{s}(b)\right)$. Moreover if $f_{i}(b)=0$ for $1 \leq i \leq s$ also in $C H^{*}(\mathbb{F}) / p$, we have the isomorphism

$$
C H^{*}(\mathbb{F}) / p \cong S(t) /\left(p, f_{1}(b), \ldots, f_{s}(b)\right)
$$

For $N>0$, let us write $A_{N}=\mathbb{Z} / p\left\{b_{i_{1}} \ldots b_{i_{k}}| | b_{i_{1}}\left|+\ldots+\left|b_{i_{k}}\right| \leq N\right\}\right.$.
Lemma 2.2. Let $p r: A_{N} \rightarrow C H^{*}(\mathbb{F}) / p \rightarrow C H^{*}(R(\mathbb{G})) / p$, and $b \in \operatorname{Ker}(p r)$. Then $b=\sum b^{\prime} u^{\prime}$ with $b^{\prime} \in A_{N}, u^{\prime} \in S(t)^{+} /\left(p, b_{1}, \ldots, b_{\ell}\right)$ i.e., $\left|u^{\prime}\right|>0$.

Using these, we can prove

Theorem 2.3. ([Ya2]) Let G be of type (I) and $\operatorname{rank}(G)=\ell$. Let \mathbb{G} be a non-trivial G_{k}-torsor. Then $2 p-2 \leq \ell$, and we can take $b_{i} \in S(t)=C H^{*}\left(B B_{k}\right)$ for $1 \leq i \leq \ell$ such that there are isomorphisms

$$
\begin{gathered}
C H^{*}(R(\mathbb{G})) / p \cong \mathbb{Z} / p\left\{1, b_{1}, \ldots, b_{2 p-2}\right\} \\
C H^{*}(X) / p \cong S(t) /\left(p, b_{i} b_{j}, b_{k} \mid 0 \leq i, j \leq 2 p-2<k \leq \ell\right)
\end{gathered}
$$

where $\mathbb{Z} / p\{a, b, \ldots\}$ is the \mathbb{Z} / p-free module generated by a, b, \ldots

3. Relation \mathbb{G} / B_{k} and $B G$

Let $h^{*}(X)=C H^{*}(X) / I(h)$ for some ideal $I(h)\left(\right.$ e.g., $\left.C H^{*}(X) / p\right)$. We note here the following lemma for each G_{k}-torsor \mathbb{G} (not assumed twisted).
Lemma 3.1. For the above $h^{*}(X)$, the composition of the following maps is zero for $*>0$

$$
h^{*}\left(B G_{k}\right) \rightarrow h^{*}\left(B B_{k}\right) \rightarrow h^{*}\left(\mathbb{G} / B_{k}\right) .
$$

Proof. Take U (e.g., $G L_{N}$ for a large N) such that U / G_{k} approximates the classifying space $B G_{k}[\mathrm{To} 3]$. Namely, we can take $\mathbb{G}=f^{*} U$ for the classifying map $f: \mathbb{G} / G_{k} \rightarrow$ U / G_{k}. Hence we have the following commutative diagram

where U / B_{k} (resp. U / G_{k}) approximates $B B_{k}\left(\right.$ resp. $\left.B G_{k}\right)$. Since $h^{*}(\operatorname{Spec}(k))=$ $C H^{*}(\operatorname{Spec}(k)) / I(h)=0$ for $*>0$, we have the lemma.

The above sequences of maps in the lemma is not exact, in general. However we get some informations from $h^{*}(\mathbb{F})$ to $h^{*}\left(B G_{k}\right)$. For example, we get much informations of $h^{*}\left(B G_{k}\right)$ from $h^{*}(\mathbb{F})$ than from $h^{*}\left(G_{k} / B_{k}\right)$ when \mathbb{G} is versal.

Let us write the induced maps

$$
h^{+}\left(B G_{k}\right) \xrightarrow{i^{+}} h^{+}(B T) \xrightarrow{j(\mathbb{G})^{+}} h^{+}\left(\mathbb{G} / B_{k}\right)
$$

where $h^{+}(-)$is the ideal of the positive degree parts. Let us define

$$
D_{h}(\mathbb{G})=\operatorname{Ker}\left(j^{+}\right) /\left(\operatorname{Ideal}\left(\operatorname{Im}\left(i^{+}\right)\right) .\right.
$$

Let \mathbb{G} be versal and k^{\prime} is some extension of k. Then

$$
D_{h}(\mathbb{G}) \subset D_{h}\left(\left.\mathbb{G}\right|_{k^{\prime}}\right) \subset D_{h}\left(\left.G\right|_{\bar{k}}\right) \cong D_{h}\left(G_{k}\right) .
$$

For ease of arguments we mainly consider the case $h^{*}(X)=C H^{*}(G) / p$, and write $D_{h}(\mathbb{G})$ simply by $D(\mathbb{G})$.

Theorem 3.2. Let \mathbb{G} be versal. Then additively

$$
D\left(G_{k}\right) / D(\mathbb{G}) \cong C H^{+}(R(\mathbb{G})) / p \otimes S(t) /\left(b_{1}, \ldots, b_{\ell}\right)
$$

Proof. We consider the map $S(t) \cong C H^{*}\left(B B_{k}\right) \xrightarrow{j^{*}} C H^{*}\left(\mathbb{G} / B_{k}\right)$. Recall that

$$
C H^{*}\left(G_{k} / B_{k}\right) / p \cong P(y) \otimes S(t) /(b) \quad(b)=\operatorname{Ideal}\left(b_{1}, \ldots, b_{\ell}\right)
$$

So $\operatorname{Ker}\left(j\left(G_{k}\right)\right)=(b)$. Hence

$$
D\left(G_{k}\right) /(D(\mathbb{G})) \cong\left(\operatorname{Ker}\left(j\left(G_{k}\right) / \operatorname{Im}\left(i^{+}\right)\right) /\left(\operatorname{Ker}(j(\mathbb{G})) / \operatorname{Im}\left(i^{+}\right)\right)\right.
$$

$$
\cong \operatorname{Ker}\left(j\left(G_{k}\right)\right) / \operatorname{Ker}(j(\mathbb{G})) \subset C H^{*}(\mathbb{F}) / p \xrightarrow{p r .} C H^{+}(R(\mathbb{G})) / p .
$$

This composition map is a surjection. Because each element

$$
x \in \operatorname{Ker}\left(j\left(G_{k}\right)\right)=\left(b_{1}, \ldots, b_{\ell}\right) \subset S(t) / p
$$

can be written using $A(b)^{+}=\mathbb{Z} / p\left[b_{1}, \ldots, b_{\ell}\right]^{+}$

$$
x=\sum b_{I} t(i) \quad b_{I} \in A(b)^{+}, \quad 0 \neq t(I) \in S(t) /\left(b_{1}, \ldots, b_{\ell}\right) .
$$

This also means that the ideal $\operatorname{Ker}(j(G)) \cong A(b)^{+} \otimes S(t) /(b)$, which implies

$$
\operatorname{Ker}(j(G)) / \operatorname{Ker}(j(\mathbb{G})) \cong C H^{+}(R(\mathbb{G})) / p \otimes S(t) /(b)
$$

Corollary 3.3. There is a surjection $D\left(G_{k}\right) \rightarrow C H^{+}(R(\mathbb{G})) / 2$.
Thus we have a very weak version of the decomposition theorem by Petrov-Semenov-Zainoulline [$\mathrm{Pe}-\mathrm{Se}-\mathrm{Za}$], without using deep motive theories.

Corollary 3.4. Let \mathbb{G} be versal. Then we have an additive decomposition of the $\bmod (p)$ Chow ring

$$
\begin{aligned}
& C H^{*}\left(\mathbb{G} / B_{k}\right) / p \cong S(t) /\left(p, b_{1}, \ldots, b_{\ell}\right) \oplus D\left(G_{k}\right) / D(\mathbb{G}) \\
& \cong\left(\mathbb{Z} / p\{1\} \oplus C H^{+}(R(\mathbb{G}) / p) \otimes S(t) /\left(b_{1}, \ldots, b_{\ell}\right) .\right.
\end{aligned}
$$

4. $S O(2 \ell+1)$

At first we consider the orthogonal groups $G=S O(m)$ and $p=2$. The $\bmod (2)$ cohomology is written as (see for example [Tod-Wa], [Ni])

$$
g r H^{*}(S O(m) ; \mathbb{Z} / 2) \cong \Lambda\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)
$$

where $\left|x_{i}\right|=i$, and the multiplications are given by $x_{s}^{2}=x_{2 s}$.
For ease of argument, we only consider the case $m=2 \ell+1$ so that

$$
\begin{gathered}
H^{*}(G ; \mathbb{Z} / 2) \cong P(y) \otimes \Lambda\left(x_{1}, x_{3}, \ldots, x_{2 \ell-1}\right) \\
\operatorname{grP}(y) / 2 \cong \Lambda\left(y_{2}, \ldots, y_{2 \ell}\right), \quad \text { letting } y_{2 i}=x_{2 i} \quad\left(\text { hence } y_{4 i}=y_{2 i}^{2}\right) .
\end{gathered}
$$

The Steenrod operation is given as $S q^{k}\left(x_{i}\right)=\binom{i}{k}\left(x_{i+k}\right)$. The Q_{i}-operations are given by Nishimoto [Ni]

$$
Q_{n} x_{2 i-1}=y_{2 i+2^{n+1}-2}, \quad Q_{n} y_{2 i}=0
$$

In particular, $Q_{0}\left(x_{2 i-1}\right)=y_{2 i}$ in $H^{*}(G ; \mathbb{Z} / 2)$. It is well known that the transgression $b_{i}=d_{2 i}\left(x_{2 i-1}\right)=c_{i}$ is the i-th elementary symmetric function on $S(t)$. Hence we have

Lemma 4.1. We have an isomorphism

$$
g r H^{*}(G / T) \cong P(y) \otimes S(t) /\left(c_{1}, \ldots, c_{\ell}\right)
$$

Moreover, the cohomology $H^{*}(G / T)$ is computed completely by Toda-Watanabe [Tod-Wa] (e.g. $\left.2 y_{2 i}=c_{i} \bmod (4)\right)$.

Let T be a maximal Torus of $S O(m)$ and $W=W_{S O(m)}(T)$ its Weyl group. Then $W \cong S_{\ell}^{ \pm}$is generated by permutations and change of signs so that $\left|S_{k}^{ \pm}\right|=2^{k} k!$. Hence we have

$$
H^{*}(B T)^{W^{\prime}} \cong \mathbb{Z}_{(2)}\left[p_{1}, \ldots, p_{\ell}\right] \subset H^{*}(B T) \cong \mathbb{Z}_{(2)}\left[t_{1}, \ldots, t_{\ell}\right],\left|t_{i}\right|=2
$$

where the Pontriyagin class p_{i} is defined by $\Pi_{i}\left(1+t_{i}^{2}\right)=\sum_{i} p_{i}$.
Here we recall

$$
H^{*}(B G ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[w_{2}, w_{3}, \ldots, w_{2 \ell+1}\right], \quad Q_{0}\left(w_{2 i}\right)=w_{2 i+1} \bmod \left(w_{s} w_{t}\right)
$$

It is known $H^{*}(B G)$ has no higher 2-torsion and

$$
H\left(H^{*}(B G ; \mathbb{Z} / 2) ; Q_{0}\right) \cong\left(H^{*}(B G) / T o r\right) \otimes \mathbb{Z} / 2
$$

where $H\left(A ; Q_{0}\right)$ is the homology of A with the differential Q_{0} and $T o r$ is the torsion ideal in $H^{*}(B G)$. Hence we have

$$
H^{*}(B G) / \text { Tor } \cong D \quad \text { where } D=\mathbb{Z}_{(2)}\left[c_{2}, c_{4}, \ldots, c_{2 \ell}\right]
$$

The isomorphism $j: H^{*}(B G) /$ Tor $\rightarrow H^{*}(B T)^{W}$ is given by $c_{2 i} \mapsto p_{i}$.
Now we consider the $\bmod (2)$ Chow ring and the case that \mathbb{G} is the split group G_{k}.
Lemma 4.2. We have additive isomorphism

$$
D\left(G_{k}\right) \cong \Lambda\left(c_{1}, . ., c_{\ell}\right)^{+} \otimes S(t, c) \quad \text { with } S(t, c) \cong S(t) /\left(c_{1}, \ldots, c_{\ell}\right)
$$

namely, each element $x \in D\left(G_{k}\right)$ is written as $x=\sum c_{I} t(I)$ with $c_{I} \in \Lambda\left(c_{1}, \ldots, c_{\ell}\right)^{+}$ and $t(I) \neq 0 \in S(t) /\left(c_{1}, \ldots, c_{\ell}\right)$.
Proof. Recall that

$$
C H^{*}\left(G_{k} / B_{k}\right) / 2 \cong H^{*}(G / T) / 2 \cong P(y) / 2 \otimes S(t) /\left(c_{1}, \ldots, c_{\ell}\right)
$$

Hence we see

$$
\operatorname{Ker}(j) \cong\left(c_{1}, \ldots, c_{\ell}\right) \subset C H^{*}\left(B B_{k}\right) / 2 \cong H^{*}(B T) / 2
$$

Here $j: p_{i} \mapsto c_{i}^{2} \bmod (2)$ by definition of the Pontryagin class p_{i}.
On the other hand, we know by Totaro [To1]

$$
C H^{*}\left(B G_{k}\right) \cong \mathbb{Z}\left[c_{2}, \ldots, c_{2 \ell+1}\right] /\left(2 c_{o d d}\right)
$$

Hence $C H^{*}\left(B G_{k}\right) / T o r \cong D \cong H^{*}(B T)^{W}$ by $i: c_{2 i} \mapsto p_{i}$. Thus the ideal generated by the image is $(\operatorname{Im}(i)) \cong\left(c_{2}, c_{4}, \ldots, c_{2 \ell}\right) \subset S(t)$. Since $j: p_{i} \mapsto c_{i}^{2}$, we have

$$
\operatorname{Ker}(j) /(\operatorname{Im}(i)) \cong\left(c_{1}, \ldots, c_{\ell}\right) /\left(c_{1}^{2}, \ldots, c_{\ell}^{2}\right) \subset S(t) /\left(c_{1}^{2}, \ldots, c_{\ell}^{2}\right)
$$

which is additively isomorphic to $\Lambda\left(c_{1}, \ldots, c_{\ell}\right)^{+} \otimes S(t) /\left(c_{1}, \ldots, c_{\ell}\right)$.
Recall that there is a surjection $D\left(G_{k}\right) \rightarrow C H^{+}(R(\mathbb{G})) / p$ from Lemma 2.1. We can see $c_{1} \ldots c_{\ell} \neq 0$ in $C H^{*}(R(\mathbb{G})) / 2$ (for example using the torsion index $t(G)=2^{\ell}$ (for the torsion index, see [To2]).
Theorem 4.3. (Petrov [Pe], [Ya2]) Let $(G, p)=(S O(2 \ell+1), 2)$ and $\mathbb{F}=\mathbb{G} / B_{k}$ be versal. Then $C H^{*}(\mathbb{F})$ is torsion free, and

$$
C H^{*}(\mathbb{F}) / 2 \cong S(t) /\left(2, c_{1}^{2}, \ldots, c_{\ell}^{2}\right), \quad C H^{*}(R(\mathbb{G})) / 2 \cong \Lambda\left(c_{1}, \ldots, c_{\ell}\right)
$$

Corollary 4.4. Let $(G, p)=(S O(2 \ell+1), 2)$ and \mathbb{G} be versal.
Then we have $D(\mathbb{G}) \cong 0$.
5. $\operatorname{Spin}(7)$ FOR $p=2$

Hereafter this section, we assume $G=\operatorname{Spin}(7)$ and $p=2$. It is well known

$$
H^{*}(B G ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[w_{4}, w_{6}, w_{7}, w_{8}\right]
$$

where w_{i} for $i \leq 7$ (resp. $i=8$) are the Stiefel-Whitney classes for the representation induced from $\operatorname{Spin}(7) \rightarrow S O(7)$ (resp. the spin representation Δ).

Thus the integral cohomology is written as (using $Q_{0} w_{6}=w_{7}$)

$$
\begin{aligned}
& H^{*}(B G) \cong \mathbb{Z}_{(2)}\left[w_{4}, c_{6}, w_{8}\right] \otimes\left(\mathbb{Z}_{(2)}\{1\} \oplus \mathbb{Z} / 2\left[w_{7}\right]\left\{w_{7}\right\}\right) \\
& \cong D \otimes \Lambda_{\mathbb{Z}}\left(w_{4}, w_{8}\right) \otimes\left(\mathbb{Z}_{(2)}\{1\} \oplus \mathbb{Z} / 2\left[w_{7}\right]\left\{w_{7}\right\}\right)
\end{aligned}
$$

where $D=\mathbb{Z}_{(2)}\left[c_{4}, c_{6}, c_{8}\right]$ with $c_{i}=w_{i}^{2}$.
Next we consider the Atiyah-Hirzebruch spectral sequence

$$
E_{2}^{*, *^{\prime}} \cong H^{*}(B G) \otimes B P^{*} \Longrightarrow B P^{*}(B G)
$$

We can compute the spectral sequence

$$
\begin{gathered}
\operatorname{gr} B P^{*}(B G) \cong D \otimes\left(B P^{*}\left\{1,2 w_{4}, 2 w_{8}, 2 w_{4} w_{8}, v_{1} w_{8}\right\}\right. \\
\left.\oplus B P^{*} /\left(2, v_{1}, v_{2}\right)\left[c_{7}\right]\left\{c_{7}\right\} /\left(v_{3} c_{7} c_{8}\right)\right)
\end{gathered}
$$

Then $B P^{*}(B G) \otimes_{B P^{*}} \mathbb{Z}_{(2)}$ is isomorphic to $([\mathrm{Ko}-\mathrm{Ya}])$

$$
D\left\{1,2 w_{4}, 2 w_{8}, 2 w_{4} w_{8}, v_{1} w_{8}\right\} /\left(2 v_{1} w_{8}\right) \oplus D / 2\left[c_{7}\right]\left\{c_{7}\right\}
$$

On the other hand, the Chow ring of $B G_{\mathbb{C}}$ is given by Guillot ([Gu],[Ya1])
Theorem 5.1. Let $k=\bar{k}$. Then we have isomorphisms

$$
\begin{gathered}
C H^{*}\left(B G_{k}\right) \cong B P^{*}\left(B G_{k}\right) \otimes_{B P^{*}} \mathbb{Z}_{(2)} \\
\cong D \otimes\left(\mathbb{Z}_{(2)}\left\{1, c_{2}^{\prime}, c_{4}^{\prime} \cdot c_{6}^{\prime}\right\} \oplus \mathbb{Z} / 2\left\{\xi_{3}\right\} \oplus \mathbb{Z} / 2\left[c_{7}\right]\left\{c_{7}\right\}\right)
\end{gathered}
$$

where $\operatorname{cl}\left(c_{i}\right)=w_{i}^{2}, \operatorname{cl}\left(c_{2}^{\prime}\right)=2 w_{4}, \operatorname{cl}\left(c_{4}^{\prime}\right)=2 w_{8}, \operatorname{cl}\left(c_{6}^{\prime}\right)=2 w_{4} w_{8}$, and $\operatorname{cl}\left(\xi_{3}\right)=0$, $\left|\xi_{3}\right|=6$. However $\operatorname{cl}_{\Omega}\left(\xi_{3}\right)=v_{1} w_{8}$ in $B P^{*}(B T)^{W}$, for the cycle map cll of the algebraic cobordism.

Now we consider $C H^{*}\left(\mathbb{G} / B_{k}\right)$. Let $G=\operatorname{Spin}(7)$ and \mathbb{G} be versal. The group G is of type (I) and we can take $b_{1}=c_{2}, b_{2}=c_{3}, b_{3}=e_{4}$ with $\left|e_{4}\right|=8$ (for details see [Ya2]). The Chow ring $C H^{*}\left(\mathbb{G} / B_{k}\right)$ is given in Theorem 2.3 (in fact, G is of type (I))

$$
C H^{*}\left(\mathbb{G} / B_{k}\right) \cong S(t) /\left(\left(2 c_{2}, c_{2}^{2}, c_{2} c_{3}, c_{3}^{2}, e_{4}\right), \quad S(t)=\mathbb{Z}_{(2)}\left[t_{1}, t_{2}, t_{3}\right]\right.
$$

Hence we have $\operatorname{Ker}(j(\mathbb{G})) \cong\left(2 c_{2}, c_{2}^{2}, c_{2} c_{3}, c_{3}^{2}, e_{4}\right)$. Recall

$$
C H^{*}\left(B G_{\bar{k}}\right) /(\text { Tor }) \cong C H^{*}\left(B B_{k}\right)^{W} \cong D\left\{1, c_{2}^{\prime \prime}, c_{4}^{\prime \prime}, c_{6}^{\prime \prime}\right\}
$$

where $c_{i}^{\prime \prime}$ is a Chern class of the (complex) spin representation. Since $i\left(c_{2}^{\prime \prime}\right)=2 w_{4}, \ldots$, we see

$$
D / 2 \cong \operatorname{Im}\left(i^{*} / 2: C H^{*}\left(B G_{k}\right) \rightarrow C H^{*}(B T) / 2\right) .
$$

We can see that the map i^{*} is given $c_{4} \mapsto c_{2}^{2}, c_{6} \mapsto c_{3}^{2}, c_{8}^{\prime \prime} \mapsto e_{4}^{2}$, and

$$
c_{2}^{\prime \prime} \mapsto 2 c_{2}, \quad c_{4}^{\prime \prime} \mapsto 2 e_{4}, \quad c_{6}^{\prime \prime} \mapsto 2 c_{2} e_{4}
$$

In particular $i^{*} C H^{*}\left(B G_{k}\right)=i^{*} C H^{*}\left(B G_{\bar{k}}\right)$. Thus we see
Proposition 5.2. Let $G=\operatorname{Spin}(7)$ and \mathbb{G} be versal. Then we have additively

$$
D(\mathbb{G}) \cong \Lambda\left(c_{2} c_{3}, e_{4}\right)^{+} \otimes S(t, c) \quad \text { for } S(t, c) \cong S(t) /\left(c_{2}, c_{3}, e_{4}\right)
$$

References

[Ga-Me-Se] S. Garibaldi, A. Merkurjev and J-P Serre. Cohomological invariants in Galois cohomology. University Lecture Series 28, Amer. Math. Soc. Providence, RI (2003), viii+168pp.
[Gu] P. Guillot, The Chow rings of G_{2} and $\operatorname{Spin}(7)$, J. reine angew. Math. 604 (2007), 137-158.
[Ha] M.Hazewinkel, Formal groups and applications, Pure and Applied Math. 78, Academic Press Inc. (1978), xxii+573pp.
[Ka-Ya] M. Kameko and N. Yagita. Chern subrings. Proc. Amer. Math. Soc. 138 (2010), 367-373.
[Kar] N. Karpenko. Chow groups of some generically twisted flag varieties. Ann K-theory 2 (2017), 341-356.
[Ko-Ya] A. Kono and N.Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), 781-798.
[Me-Ne-Za] A. Merkurjev, A. Neshitov and K. Zainoulline. Invariants o degree 3 and torsion in the Chow group of a versal flag. Composito Math. 151 (2015), 11416-1432.
[Mi-Ni] M. Mimura and T. Nishimoto. Hopf algebra structure of Morava K-theory of exceptional Lie groups. Contem. Math. 293 (2002), 195-231.
[Ni] T. Nishimoto. Higher torsion in Morava K-thoeory of $S O(m)$ and $\operatorname{Spin}(m)$. J. Math. Soc. Japan. 52 (2001), 383-394.
[Pe] V. Petrov. Chow ring of generic maximal orthogonal Grassmannians. Zap. Nauchn, Sem. S.-Peterburg. Otdel. Mat. Inst. Skelov. (POMI) 443 (2016), 147-150.
[Pe-Se-Za] V.Petrov, N.Semenov and K.Zainoulline. J-Invariant of linear algebraic groups. Ann. Scient. Ec. Norm. Sup. 41, (2008) 1023-1053.
[Ra] D.Ravenel. Complex cobordism and stable homotopy groups of spheres. Pure and Applied Mathematics, 121. Academic Press (1986).
[Ro] M.Rost. Some new results on Chowgroups of quadrics. preprint (1990).
[Se-Zh] N. Semenov and M Zhykhovich. Integral motives, relative Krull-Schumidt principle, and Maranda-type theorems. Math. Ann. 363 (2015) 61-75.
[Tod1] H. Toda, Cohomology $\bmod (3)$ of the classifying space $B F_{4}$ of the exceptional group F_{4}. J. Math. Kyoto Univ. 13 (1973) 97-115.
[Tod2] H.Toda. On the cohomolgy ring of some homogeneous spaces. J. Math. Kyoto Univ. 15 (1975), 185-199.
[Tod-Wa] H.Toda and T.Watanabe. The integral cohomology ring of F_{4} / T and E_{4} / T. J. Math. Kyoto Univ. 14 (1974), 257-286.
[To1] B. Totaro. The Chow ring of classifying spaces. Proc.of Symposia in Pure Math. "Algebraic K-theory" (1997:University of Washington,Seattle) 67 (1999), 248-281.
[To2] B. Totaro. The torsion index of the spin groups. Duke Math. J. 299 (2005), 249-290.
[To3] B. Totaro, Group cohomology and algebraic cycles, Cambridge tracts in Math. (Cambridge Univ. Press) 204 (2014).
[Vo1] V. Voevodsky. Motivic cohomology with $\mathbb{Z} / 2$ coefficient. Publ. Math. IHES 98 (2003), 59-104.
[Vo2] V.Voevodsky. On motivic cohomology with \mathbb{Z} / l-coefficients. Ann. of Math. 174 (2011), 401-438.
[Ya1] N. Yagita, The image of the cycle map of classifying space of the exceptional Lie group F_{4}, J. Math. Kyoto Univ. 44 (2004), 181-191.
[Ya2] N. Yagita. Chow rings of versal complete flag varities. arXiv:1609.08721vl. (math. KT). (2016)
[N. Yagita] Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan

E-mail address: nobuaki.yagita.math@vc.ibaraki.ac.jp

