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NOTES ON CHOW RINGS OF G/B AND BG

NOBUAKI YAGITA

1. INTRODUCTION

Let p be a prime number. Let G and T be a connected compact Lie group and
its maximal torus such that H*(G) has p-torsion. Given a field k& with ch(k) = 0,
let Gy and Ty be a split reductive group and a split maximal torus over the field
k, corresponding to G and T'. Let us write by BGy, its classifying space defined by
Totaro [Tol,3]. Let By be the Borel subgroup containing Ty. Let G be a Gg-torsor.
Then F = G/ By, is a (twisted) form of the flag variety Gy /By.

For a smooth algebraic variety X over k, let CH*(X) = CH*(X),) mean the
p-localized Chow ring generated by algebraic cycles modulo rational relations. The

cofibering G/T % BT % BG ([Tod1,2]) induces the maps

(1.1) CH*(BGy) > CH*(BBy) %5 CH*(G/By),

whose composition j*i* = 0 for = > 0. But it is far from exact when G = Gy. (Here
exact means Ker(jT) = Ideal(Im(iT)).) However, we observe that it becomes near
exact when G is sufficient twisted, while it is still not exact for most cases.

The author thanks Maski Kameko for pointing out errors in the first version of
this paper.

2. CH*(G/By)

Recall that G, and T}, are the split reductive group and split maximal torus over
a field k with ch(k) = 0, corresponding to Lie groups G and T'. Let By be the Borel
subgroup containing T. Recall that G is a Gj-torsor, and let us write F = G/ By, in
this section.

By Petrov-Semenov-Zainoulline ([Pe-Se-Zal, [Se-Zh]), it is known that the p-
localized motive M (IF)(, of F is decomposed as

(21) M(F)y) = M(G/Bi)y) = R(G) ® (6:T%*)

where T is the reduced Tate motive and R(G) is some motive called generalized Rost
motive. (It is the original Rost motive([Ro], [Vol,2], [Pe-Se-Zal, [Ya2]) when G is of
type (I) as explained below). Hence we have maps

(2.2) CH*(BBy) — CH*(F) ""'3""7 CH*(R(G))

where BBy, is the classifying space for Bi-bundles. From Merkurjev and Karpenko
[Me-Ne-Za|, [Kar], we know that the first map is also surjective when G is a versal
Gp-torsor. (For the definition of versal torsor see [Ga-Me-Se|, [ Me-Ne-Za|, [Kar],
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[To2].) In particular, when G is of type (I), if G is a non-trivial Gj-torsor, then it
is versal.

To explain groups of type (I), we recall arguments for H*(G/T) in algebraic
topology. By Borel, its mod(p) cohomology is (for p odd)

H*(G;Z/p) = P(y)/p @ Mx1, ..., xp), |z = odd
where P(y) is a truncated polynomial ring generated by even dimensional elements
yi, and A(xq, ..., 2) is the Z/p-exterior algebra generated by 21, ..., 2,. When p = 2,
we consider the graded ring gr H*(G;Z/2) which is isomorphic to the right hand
side ring above.

When G is simply connected and P(y) is generated by just one generator, we
say that G is of type (I). Except for (E7,p = 2) and (Es,p = 2, 3), all exceptional
(simple) Lie groups are of type (I). Note that in these cases, it is known rank(G) =
{>2p—2.

We consider the fibering ([Tod2], [Mi-Ni]) G & G/T - BT and the induced
spectral sequence

Ey" = H*(BT; H"(G;Z/p)) = H*(G/T;Z/p).

Here we can write H*(BT) 2 S(t) = Z[t1, ..., t¢] with |t;| = 2.

It is well known that y; € P(y) are permanent cycles and that there is a regular
sequence (by, ...,be) in H*(BT)/(p) such that d,,+1(2;) = b; ([Tod2], [Mi-Nil).

We know that G/T is a manifold such that H*(G/T) = H***"(G/T) and H*(G/T)
is torsion free. We also see that there is a filtration in H*(G/T),) such that

grH* (G/T) gy = P(y) & S(1)/(br, - )
where b; € S(t) with b; = b; mod(p). B

For the algebraic closure k of &, let us write X = X|;. Then considering (2.1)

over k, we see
CH*(R(G))/p = P(y), CH*(;T) = 5(t)/(by,-...bo).

Moreover when G is versal, we can see ([Ya2]) that CH*(R(G)) is additively
generated by products of by, ..., by in (2.2). Hence we have surjections CH*(BBy) —
CH*(F) ™ CH*(R(G)).

By giving the filtration on S(t) by b;, we can write (additively)

grS(t)/p =2 A® S(t)/(by,....;be) for A=7Z/plbs, ..., be].

In particular, we have maps A 4 oH* (F)/p — CH*(R(G))/p. We also see that the
above composition map is surjective.
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Lemma 2.1. ([Ya2]) Suppose that there are f1(b), ..., fs(b) € A such that CH*(R(G))/p =

A/(f1(b), ..., fs(b)). Moreover if fi(b) =0 for 1 <i < s also in CH*(F)/p, we have
the isomorphism

CH*(F)/p = 5(t)/(p, f1(b), .., f5(b)).
For N > 0, let us write Ay = Z/p{bi,...bi, ||bi,| + ... + |bs,| < N}

Lemma 2.2. Letpr: Ay — CH*(F)/p — CH*(R(G))/p, and b € Ker(pr). Then
b=>Y0u witht € An, u' € S{t)T/(p, b, ..., be) i.e., |u'| > 0.

Using these, we can prove
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Theorem 2.3. ([Ya2]) Let G be of type (I) and rank(G) = £. Let G be a non-trivial
Gy-torsor. Then 2p —2 < {, and we can take b; € S(t) = CH*(BBy,) for1 <i </
such that there are isomorphisms

CH*(R(G))/])% Z/p{l,bh...,bzp_g},
CH*(X)/p= S(t)/(p, bibj, b0 < i, <2p -2 <k < ¥)
where Z/p{a,b, ...} is the Z/p-free module generated by a,b, ...

3. RELATION G/Bjy AND BG

Let h*(X) = CH*(X)/I(h) for some ideal I(h) (e.g., CH*(X)/p). We note here
the following lemma for each Gy-torsor G (not assumed twisted).

Lemma 3.1. For the above h*(X), the composition of the following maps is zero
for x>0
h*(BGy) — h*(BBy) — h*(G/By).

Proof. Take U (e.g., GLy for alarge N) such that U/G}, approximates the classifying
space BGy, [To3]. Namely, we can take G = f*U for the classifying map f : G/Gj —
U/G}. Hence we have the following commutative diagram

F=G/By, — U/By

| l

Spec(k) 2 G/Gy —— U/Gy

where U/By, (resp. U/G}) approximates BBy, (resp. BGy). Since h*(Spec(k)) =
CH*(Spec(k))/I(h) =0 for = > 0, we have the lemma. O

The above sequences of maps in the lemma is not exact, in general. However we
get some informations from h*(F) to h*(BGy). For example, we get much informa-
tions of h*(BGY) from h*(F) than from h*(Gy/By) when G is versal.

Let us write the induced maps

" s
W+ (BGY) St (BT) 'Y 1wt (G/By)
where h*(—) is the ideal of the positive degree parts. Let us define
D (G) = Ker(57)/(Ideal(Im(i™)).
Let G be versal and k' is some extension of k. Then
Dh(G) C Dh(G‘k/) C Dh(G|]§) &~ Dh(Gk).

For ease of arguments we mainly consider the case h*(X) = CH*(G)/p, and write
Dy (G) simply by D(G).

Theorem 3.2. Let G be versal. Then additively
D(Gy)/D(G) = CH(R(G))/p & S(t)/(bi, ..., be).

Proof. We consider the map S(t) & CH*(BBy) 7 CH*(G/By). Recall that
CH*(Gx/Br)/p = P(y) @ S(t)/(b) (b) = Ideal(by, ..., by).
So Ker(j(Gy)) = (b). Hence
D(Gr)/(D(G)) = (Ker(j(Gk)/Im(i")) /(Ker(j(G))/Im(i*))



= Ker(j(Gy))/Ker(j(G)) € CH*(F)/p =5 CH* (R(G))/p.
This composition map is a surjection. Because each element
z € Ker(j(Gr)) = (b1, ..., be) € S(t)/p
can be written using A(b)™ = Z/p|by, ..., be] T

x =Y brt(i) bre ADB)T, 0#I)eS(Et)/(b,....be).
This also means that the ideal Ker(j(G)) = A(b)™ @ S(t)/(b), which implies
Ker(j(G))/Ker(§(G)) = (JH+(R(<GT))/1><X> S(t)/(b).

Corollary 3.3. There is a surjection D(Gy) — CHY(R(G))/2.

Thus we have a very weak version of the decomposition theorem by Petrov-
Semenov-Zainoulline [Pe-Se-Za|, without using deep motive theories.

Corollary 3.4. Let G be versal. Then we have an additive decomposition of the
mod(p) Chow ring

CH™(G/By)/p = S(t)/(p, b1, ... be) & D(Gx)/D(G)

= (Z/p{1} & CHT (R(G)/p) ® S(t)/ (b1, ... by)-

4. SO(20 + 1)

At first we consider the orthogonal groups G = SO(m) and p = 2. The mod(2)-
cohomology is written as ( see for example [Tod-Wa], [Ni])

grH*(SO(m); Z/2) = A(z1, 22, ..., Tm—1)

where |z;| = 4, and the multiplications are given by 22 = zq,.
For ease of argument, we only consider the case m = 2¢ 4+ 1 so that

H*(G;Z/2) = P(y) @ Ax1, 3, ..., Toe—1)

grP(y)/2 = A(y2, ..., Y2r), letting yo; = xo; (hence yg; = y%l)
The Steenrod operation is given as Sq¢*(z;) = (;) (i1+%). The Q;-operations are
given by Nishimoto [Ni]
Qnr2i-1 = Y2iqont+1_2, Qny2i = 0.

In particular, Qo(z2;—1) = y2; in H*(G;Z/2). It is well known that the transgression
bi = dai(z2i—1) = ¢; is the i-th elementary symmetric function on S(t). Hence we
have

Lemma 4.1. We have an isomorphism

grH*(G/T) = P(y) ® S(t)/(c1y ...y Co).
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Moreover, the cohomology H*(G/T) is computed completely by Toda-Watanabe
[Tod-Wa] (e.g. 2y2; = ¢; mod(4)).
Let T be a maximal Torus of SO(m) and W = Wgo(m)(T) its Weyl group. Then

W = 2: is generated by permutations and change of signs so that \S,:ﬂ = 2kk!.
Hence we have
H*(BT)W 2 Z5)[p1, s pe) © H*(BT) 2 Zgy[t, .y te), |ti] = 2

where the Pontriyagin class p; is defined by IL(1 +t7) = >, p;.

Here we recall

H*(BG, Z/Q) = Z/Q[wg, w3y ...y 'U]Q[J,_l], Qo(wgi) = W2i+1 mod(wswt).
It is known H*(BG) has no higher 2-torsion and
H(H*(BG;Z/2); Qo) = (H*(BG)/Tor) ® 7./2
where H(A; Qo) is the homology of A with the differential Q¢ and Tor is the torsion
ideal in H*(BG@). Hence we have
H*(BG)/Tor = D where D = Zg)lcz, 4, ..., o).

The isomorphism j : H*(BG)/Tor — H*(BT)W is given by ca; + p.

Now we consider the mod(2) Chow ring and the case that G is the split group
Gg.

Lemma 4.2. We have additive isomorphism
D(Gy) = Aley, .yce)™ @ S(t,c)  with S(t,c) = S(t)/(c1,..., cr),
namely, each element © € D(Gy) is written as x =Y crt(I) with ¢y € A(cy, ..., co)™
and t(I) #0¢€ S(t)/(c1, ..., co).
Proof. Recall that
CH*(Gy/By)/2 2 H* (G/T)/2 = P(y)/2® S(t)/(c1, ..., ce)-
Hence we see
Ker(j) = (¢1,...,ce) C CH"(BBy)/2 =2 H*(BT)/2.
Here j : p; = ¢ mod(2) by definition of the Pontryagin class p;.
On the other hand, we know by Totaro [Tol]
CH*(BGk) = Z[Cz, ceey 0254_1]/(200(1(1).
Hence CH*(BGy)/Tor = D = H*(BT)Y by i : co; — p;. Thus the ideal generated
by the image is (Im(i)) = (cz, c4, ..., c2¢) C S(t). Since j : p; = cZ, we have
Ker(j)/(Im(i)) = (c1, .., c0) /(€5 v ) C S(t)/(cT, ey c7)
which is additively isomorphic to A(cy, ...,ce)™ @ S()/(c1, .., o). O
Recall that there is a surjection D(Gy) — CH'(R(G))/p from Lemma 2.1. We

can see ci...cy # 0 in CH*(R(G))/2 (for example using the torsion index #(G) = 2°
(for the torsion index, see [To2]).

Theorem 4.3. (Petrov [Pe], [Ya2]) Let (G,p) = (SO(2¢+1),2) and F = G/By, be
versal. Then CH*(F) is torsion free, and

CH*(F)/22 S8(t)/(2,c,...,c2), CH*(R(G))/2 =2 Alcy, ..., co).

Corollary 4.4. Let (G,p) = (SO(2¢+1),2) and G be versal.
Then we have D(G) 22 0.



5. Spin(7) FOR p = 2
Hereafter this section, we assume G = Spin(7) and p = 2. It is well known
H*(BG;Z)2) = Z)2]ws, we, wr, ws)

where w; for i < 7 (resp. i = 8) are the Stiefel-Whitney classes for the representation
induced from Spin(7) — SO(7) (resp. the spin representation A).
Thus the integral cohomology is written as (using Qowg = wy)

H*(BG) = Z)[wa, ce, ws] @ (Z2){1} © Z/2[wr]{wr})

= D @ Ag(ws, ws) ® (Zeg) {1} © Z/2[wrl{wr})
where D = Zy)[ca, cg, cg] with ¢; = w?

i

Next we consider the Atiyah-Hirzebruch spectral sequence
Ey* = H*(BG) ® BP* — BP*(BG).
We can compute the spectral sequence
grBP*(BG) 2 D ® (BP*{1, 2wy, 2ws, 2w ws, v1ws }
©BP"/(2,v1,v2)[er[{cr}/ (vseres)).
Then BP*(BG) @pp+ Z(2) is isomorphic to ([Ko-Yal)
D{1, 2wy, 2ws, 2waws, viws }/(2v1ws) & D/2[c7l{cr}.
On the other hand, the Chow ring of BG¢ is given by Guillot ([Gul,[Yal])
Theorem 5.1. Let k = k. Then we have isomorphisms
CH*(BGy) = BP*(BGy) ®@pp- Z2)
~ D © (Zay{1, b, &b} & Z/2{Es} & Z/2ler {er))
where cl(c;) = w?, cl(ch) = 2wy, cl(c)) = 2ws, cl(cg) = 2waws, and cl(&3) = 0,

|&3| = 6. However clo(&3) = vyws in BP*(BT)W, for the cycle map clg of the
algebraic cobordism.

Now we consider CH*(G/By,). Let G = Spin(7) and G be versal. The group G
is of type (I) and we can take by = ca,by = c3,b3 = ey with |eq| = 8 (for details see
[Ya2]). The Chow ring CH*(G/By) is given in Theorem 2.3 (in fact, G is of type

(1))
CH*(G/Bk) = S(t)/((20270370203703764)7 S(t) = Z(Q) [tl,tg,tg}.

Hence we have Ker(j(G)) & (2cq, ¢3, cacs, 3, e4). Recall
CH*(BG3)/(Tor) = CH*(BBy)YW = D{1,dy,¢], ¢}
where ¢ is a Chern class of the (complex) spin representation. Since i(c)) = 2wy, ...,
we see
D/2 = Im(i*/2 : CH*(BGy) — CH*(BT)/2).
We can see that the map i* is given ¢4 — 3, ¢cg 037 cy — e3, and
cy 209, ) > 2eq, cg > 2c0ey.
In particular i*CH*(BGy) = i*CH*(BGg). Thus we see
Proposition 5.2. Let G = Spin(7) and G be versal. Then we have additively
D(G) =2 A(cacs,eq)™ @ S(t,c)  for S(t,c) =2 S(t)/(ca,c3,e4).
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