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1 Introduction 

The following diagram is known: 

G2/U(2)_ 

~ 
G2/U(2)+ 

~X 
(1.1) 

G2/SU(3) 伍/S0(4)

Here, U(2)土 aretwo types of U(2) embedded in G2. As well known, G2/ SU(3) 
is isomorphic to S見andS6 is equipped with a natural non-integrable almost 

complex structure. It is also well known that G2/ SO(4) is a 8-dimensional 
Riemannian symmetric space equipped with a quaternion Kahler structure. 

The fibration 1r + : G豆U(2)+→G2/ SO(4) is the twistor fibration of the 
quaternion K祉hlerstructure. The map勾： G2/U(2)_→ G2/SU(3) is also 
known as a twistor fibration with respect to the almost complex structure on 
sり

On the other hand, on the diagram (1.1), the double fibration given by匂

and 1r _ is considered as the "Penrose type" twistor correspondence which is 

summarized as follows. Let Z be a complex 3-fold. This Z is called the twistor 

space. If Z contains a rational curve Y with normal bundle holomorphically 

isomorphich to O (1)① 0(1), such rational curve is called twistor line. In 
general, the set of twistor lines consists a complex 4-fold M with naturally 
defined self-dual complex conformal structure. This M is called the space-
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time. Then we obtain the following double fibration: 

F (1.2) 

;/~ 
か M4

For each p E Z, the set 1r(w―1 (p)) is 2-dimensional complex submanifold on 

M in general. Such complex surfaces are called (3-surfaces, and the family of 

(3-surfaces characterizes the self-d叫 structureof M. 
In this article, we show that the double fibration by勾 and1r _ on the 

diagram (1.1) actually have an analogous structure with the Penrose's dou-

ble fibraion. We show that for each p E S6~G2/ SU(3), the subset 
6P = 1r _ (w(p)) is a totally geodesic, totally quaternionic 4-dimensional sub-

manifold on G2/S0(4) (Theorem 6.3). Further, we show that there exists 
a symmetric 3-form'"Y, which satisfies certain integrable condition (Theorem 

6.4). In the way to prove these theorem, we study the detail structure of the 
symmetric space G2/ SO(4), for example, we describe explicitly the tangent 

space. 

Here we remark about the recent work given by Enoyoshi-Tsukada [4]. 

They notice to the following another double fibration 

伍/S0(3)

/~ 
(1.3) 

G2/SU(3) G2/S0(4) 

This double fibration is related to the special Lagrangian submanifold (or to-
tally real submanifold) of S6. The idea of Penrose type twistor correspondence 

also takes an important role of this theory. We, however, do not investigate 

in this theory in this article. 
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2 Construction of the fibration 

2.1 quaternion and G2 

Let IHI be the quaterenions generated by {1, i, j, k} where在=j2=炉＝ー1

and k = ij = -ji. We write Sp(l) = {q E IHI I lql = l}. Let 

((]) = IHI① IHie = Span戦〈1,i, j, k, is, js, ks〉＝艮① Im((]) (2.1) 

be the Cayley numbers. The multiplication on ((]) is defined by (a + bs) (c + 
ds) = (ac -db) + (da + bc)s. The inner product on ((]) is〈x,y〉=Re(xy). 
The 14-dimensional compact Lie group G2 is defined as the aoutomorphism 
group of((]), that is 

G2 = {g E GL(O) I g(xy) = g(x)g(y) for any x, y E O}. (2.2) 

Its Lie algebra g2 is given by 

釦 ={XEEnd(((])) I X(xy) = X(x)y + xX(y) for any x, y E O}. (2.3) 

As well known, G2 C SO(Im((J))~50(7) and consequently g2 C so(7). We 
define an inner product on g2 by 

〈X,Y〉=-TrXY (X,Y E恥）． (2.4) 

2.2 almost complex structure on S 6 

Let S6 = {p E Im((]) I IPI = 1} be the set of imaginary units. The tangent 
space at p E S6 is TP炉 ={uEimOI〈u,p〉=O}. A natural almost complex 
structure J on S6 is defined by 

JP: Tp炉→ T国， JP(u) = pu. (2.5) 

It is well-known that the almost complex structure J is not integrable. 
The group G2 acts transitively on 56 and the isotropy subgroup at i E 56 

is 5U(3) (see [5]). Hence 56'=:::'G2/ 5U(3). 
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2.3 associative Grassmann1an 

A 3-dimensional subspace V C Im([]) is called an associative 3-plane if and 

only if (xy)z = x(yz) holds for any x, y, z EV. We put 

IHiv =罠 EBV. (2.6) 

Then the 3-plane V is associative if and only if IHiv C ([)) is a quaternion 
subspace, i.e. IHiv is a subalgebra of ([)) and is isomorphic to IHI. 

Let G吋(Im0) be the Grassmann manifold of oriented 3-planes on Im 0. 
We write 

G心(ImO)={VEG吋(ImO)IV is associative}, (2.7) 

and we call G心(ImO) as associative Grassmannian. The following proper-

ties hold (see [5]). 

p ropos1t10n 2.1. (i) If x, y E Im O and x .l_ y, then { x, y, xy} spans an 

associative 3-plane. Any associative 3-plane is written in this way. Conse-

quently, any associative 3-plane has a natural orientation. 

(ii) G2 acts transitively on Gr!s(ImO). The isotropy subgroup at Im IHI is 

S0(4). HenceGrts(ImO)~G2/S0(4) andGrts(ImO) is an 8-dimensional 

Riemannian symmetric space. 

Further, Gr!s(ImO)~G2/S0(4) has a quaternion Kahler structure 
which we will explain in Section 5 (see also [2]). We also describe the isotropy 
subgroup S0(4) c G2 explicitly in section 3. 

2.4 associative calibration 

The associative calibration r.p is the 3-linear form on Im((]) defined by 

r.p(x, y, z) =〈x,yz〉. (2.8) 

The following is known. 

Proposition 2.2 ([5]). (i) Let VE Grt (Im tD) and { v1, v2心}is an oriented 

orthonormal basis on V. Then 

cp(V) =ゃ（町，砂，附） (2.9) 
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is independent of the choice of the basis. 

(ii) 1.p(V) =ー1.p(V),where V is the orientation reversing of V. 

(iii) 11.p(V) I ::; 1. In particular 1.p(V) = 1 if and only if V is associative. 

Consequently, we can write 

G可;s(ImO)={VEG吋(ImO)I 1.p(V) = 1}. (2.10) 

2.5 flag manifold Ftass(Im 0) 

We have the following double fibration 

G吋(Im((]))

S'/~ 心(Im(])),

(2.11) 

where匂 and7f _ is defined as follows: let~E Gr f (Im ((])) and { v1心}be an 
oriented orthonormal basis of~, then 

w(~) =叩2E S6, 1r_(~) = Span恥〈V1,V2,V1紐：〉 EGr!s(ImO). (2.12) 

The oriented 2-plane V = {釘心}is one-to-one corresponds with the 
pair (p, V) E S6 X G心(Im((]))satisfying p E V so that p = v1 v2 and V = 

SpanJR〈V1,V2,V1V2〉.Hence the Grassmann manifold Grt(ImO) is naturally 
identified with the flag manifold 

Fli,ass(ImO) = {(p, V) E S6 x Gr!s(ImO) Ip EV}. (2.13) 

Hence we can replace (2.11) by 

Flt, 邸 8(lm([]))

/~ S6 Gr!s(Im 0), 

(2.14) 

In this notation, w(p, V) = p, 1r _ (p, V) = V are the natural projections. 
The group G2 acts Fli,ass(Im~) transitively, and the isotorpy subgroup 

at (i, Im IHI) is 

U(2)_ = SU(3) n S0(4) = {g E G2 I g(i) = i, g(ImIHI) = Im IHI}. (2.15) 
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This group is isomorphic to U(2), which we see in the next section. In this 

way we obtain 

G吋(Im0)~Fli,ass(Im 0)~G2/U(2)_. (2.16) 

2.6 submanifolds in S6 and G心(Im0) 

The following proposition means Jr_ is a CJPl1-bundle, while w is a C戸

bundle. 

Proposition 2.3. (i) For each V E Gr!s(ImO), Yv = w(1r―1(V)) is a 

puedo-holomorphic CJPl1 in Sり

(ii) For each p E 5見6P= 1r(w―1 (p)) has a natural complex structure and is 

biholomorphic to C戸

Proof. We have Yv = {p E V I IPI = 1} = 56 n V'::::'52. For each p E 

Yv, we can write V = Span恥〈p,x,Jpx〉forsome x E TP56. Then TP灼＝

SpanJR〈x,Jpx〉isa complex line in Tp56 -::::: C3. Thus Yv is a psuedo-complex 

(CJPl1 in 56. So (i) is proved. 

Next, for p E 5尺wehave 

6p ={VEG心(Im(})Ip EV}. 

Whenp EVE G心8(lm0), we can write V = Spannt〈p,x,lpx〉forsome x E 

TpS6. Such V one-to-one corresponds with the complex line Span股〈x,Jpx〉C

TpS6'=:::'(C3. Hence w―1 (p) is naturally identified with the complex projec-

tivization of T S6'=:::'C3. ロp 

3 Explicit description of the subgroups 

3.1 S0(4) c G2 

For (q1, q2) E Sp(l) x Sp(l), we define 

p(q1,q砂(a+bs) = q1aif1 + (q2怖）e (a E Im IHI, b E IHI). 
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It is known that p defines an homomorphism Sp(l) x Sp(l)→ G2. In a 
matrix style, we can write 

尋q砂＝（臀ら~RiJ.J (3.1) 

with respect to the decomposition Im([])'.::::'. Im IHI① IHI. Since the kernel of p is 

Z2'.::::'. {土(1,1)}, p defines an embedding S0(4)'::::'(Sp(l) x Sp(l))/Z2→ G2. 
Further, we have the following (see [5]) 

S0(4) = { (;  ~) E G2} = {g E G2 I g(ImlHI) = Im IHI} (3.2) 

3.2 U(2)土 andSU(3) 

Two subgroups of G2 are defined by 

U(2)+ = p(Sp(l) x U(l)), U(2)_ = p(U(l) x Sp(l)), (3.3) 

where U(l) = {q E CC C IHI I lql = 1} C Sp(l). Though both subgroups 
are abstractly ismorphic to U(2), the embeddings are not equivalent to each 
other. Actually, for example, the homotopy types of G豆U(2)土 aredifferent 

(see [7]). 
Another subgroup is defined by 

SU(3) = {g E G2 I g(i) = i}. (3.4) 

The subgroups S0(4), U(2)_, SU(3) are simply characterized by the block 
decomposition of 7 x 7 matrices, and we easily see U(2)_ = SU(3) n S0(4). 

4 Twistor correspondence 

We compare our double fibration (2.14) with the Penrose's twistor correspon-
dence. 

4.1 The idea of Penrose's twistor correspondence 

Penrose's theory ([8]) concerns with the correspondence between a complex 
3-fold Z (called the twist or space) and a self-dual complex 4-fold M (called 
the space-time). The correspondence is constructed in the following way. 
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Let Z be a complex 3-fold. We notice to the family twistor lines {YthEM, 
that is, the family of rational curves (i.e. Yt~CC已 in Z such that the 
normal bundle N is biholomorphic to 0(1) EB 0(1). By the deformation 

theory, such family is parametrized by a complex 4-fold M. If we put F = 
{(z, t) E Z x MI z E Yt}, we obtain the double fibration 

z;/FcXM 
(4.1) 

where匂 and7r are natural projection. 

For each t E M, the corresponding object in Z is by definition w(戸 (t))= 
Yt, which is a holomorphic CIP1 in Z. 

On the other hand, for each z E Z, the corresponding object in Mis邑＝
1r(勾―1(z)).Each 6z is, if not empty, a 2-dimensional complex submanifold 

in Mand is called (3-surface. There is a unique complex conformal structure 

[g] on M satisfying glsz = 0 for any z E Z. We can prove that this conformal 
structure [g] is self-dual (i.e. half conformally flat). 

4.2 Tw1stor correspondence for Gr;tss (Im (0)) 

Our double fibration (2.14) is quite similar to the Penrose's double fibration 

(4.1) in the following sense. 

The correspondence spaces F and Flt, 邸 s(Im ([))) are both the total space 
of (C戸 bundleover the "space-time" M and Grふ(Im(O).

The twistor space Z is a complex 3-fold while S6 is a real 6-dimensional 

manifold with an almost complex structure. Z has a family of twistor lines 

{½} (½".:::: (C的 whileS6 has a family of psuedo holomorphic curves {Yv} 

(Yv c:::: CIP'り．
The space-time M is a complex 4-fold while Grら(Im0) is a real 8-

dimensional quaternion Kahler manifold. M has a family of /3-surfaces {6z} 
while Gr~8(lm0) has a family of submanifolds {6P} (6P-::::: (C已・
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Penrose's case Our case 

corresp. sp. F F li,ass (Im ([])) 
CIP1-bundle over M (CJP1-bundle over G心(Im((J)) 

twistor space Z (complex 3-fold) 隈 (almostcomplex 6-fold) 
twistor lines {Yt} psued-holo. curves {Yv} 
M (complex 4-fold) Grふ(ImO) (q. Kahler 8-fold) 

space-time self-dual ？？ 
(3-sufaces { 6 z} submanifolds { 6P} 

In this comparison, it seems natural to expect that G心(Im((])) has some 
extra geometric structure corresponding with the self-dual structure on M. 
We investigate this geometric structure in Section 5 and 6. 

5 Explicit description of the tangent space 

5.1 Tangent space of G心(Im((J)) 

Proposition 5.1. There is a natural identification 

T。Gr!s(ImO)~{f E Hom恥(ImIHI,IHI)I J(i)i + J(j)j + J(k)k = o}. 
(5.1) 

where o = Im IHI is the base point on Grふ(ImO).

Proof. We have T,。G心(ImO)~T,凸/S0(4)~92/so(4)~µ,where 92 = 

so(4)⑤ μis the Cartan decomposition for G2/50(4). In the matrix style, 

•o(4)~{ (~ ~) E g,} , p~{ eーnEg,} 
0 -J* 

So we check that X~ し。） (f E HomR (Im IHI, IHI)) is contained in p if 

and only if f satisfies the condition J(i)i + J(j)j + J(k)k = 0. 

For each x E ImlHI we have X(x) = f(x)E. On the other hand, for 

x,y E ImlHI, we obtain 

X(xy) = X(x)y + xX(y) 
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by the definition of g2. Hence 

f(xy)E = (f (x)E)y + x(f (y)E) = (f (x)y)E + (f (y)x)E, 

that is, 

J(xy) = J(x)y + J(y)x. 

Putting x = j, y = k, we obtain J(i)i + J(j)j + J(k)k = 0. Thus 

T。Gr!s(Im([]))C {J E HomJR(ImIHI,IHI) I J(i)i + J(j)j + J(k)k = o}. 

Both vector spaces have real dimension 8, so these are equal. 

5.2 The quaternion Kahler structure on G心(Im((]))

Let VEG心(Im0) and we define 

口

Hom邸 s(V,IHiv) = { f E HomJR(V, IHiv) J(e1)釘十 J(e2)e2+ J(e砂匂=o}, 
(5.2) 

where IHiv =罠④ Vis the quaternion subalgebra of([]) and {e1, e2, 匂}is an 
oriented orthonormal basis of V. Then, as a consequence of (5.1), we obtain 
the identification 

TvGバ―s(Im0)'::: Homass(V, IHiv). (5.3) 

The vector space Homass(V, IHiv) has a natural IHiv-module structrue de— 
fined by the left multiplication. This is the quaternion Kahler structure on 

G心(ImO).

5.3 Infinitesimal deformation 

A tangent vector XE  TvGr贔~(Im(())) is considered as an infinitesimal defor-
mation of associative 3-plane m the following way. 

For the simplicity, we assume V = o = ImlHI. Let c(t) be a smooth 
curve on G吋函(Im0) satisfying c(O) = o. We can take a curve g(t) on G2 so 
that c(t) = g(t)• o and g(O) = I. Then the differential g'(O) is determined 
uniquely up to so(4). This means that the infinitesimal deformation c'(O) 
can be written as 

c'(O) = g'(O) +so(4) E gりso(4). (5.4) 
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5.4 The submanifold 6p 

Lemma 5.2. Let p E S6 and VE 6p (i.e. p EVE G心(Im(()))). Then 

Tv6p = {f E Homass(V, IHiv) I f(p) = O}. (5.5) 

Proof. We assume V = o = ImIHI for the simplicity. For a tangent vector 

XET,。釘 letus take a smooth curve c(t) = g(t)・o on 6P so that g(t) E G2, 

g(O) = I and c'(O) = X. 

By definition, p E g(t)・o for any t. Changing the choice of g(t) if needed, 

we can assume g(t)・p = p. Then g'(O)・p = 0. If f E Homass(o, IHI) be 

the corresponding linear map with X = c'(O) = g'(O) + ,go(4), we obtain 
f(p) = 0. ロ

Corollary 5.3. Let p E S6. Then 6P is a real 4-dimensional totally quater-

nionic submanifold of Gr!s (Im O). 

Proof. Direct calculation. 

6 The cone field and the symmetric 3-form 

6.1 The cone field 

ロ

In the Penrose's twistor theory, the self-dual structure (more precisely, the 
self-dual complex conformal structure) [g] is defined so that its null cone is 
tangent to (3-surfaces everywhere. 

Similarly in our case, we notice to the cone field C defined by 

Then 

Cv := LJ Ta虔 p

VE釣

(VEG心(ImO)).

Cv = LJ {f E Homass(V, IHiv) I f(p) = O} 
pES(V) 

= {f E Hom邸 s(V,IHiv) I f(p) = 0 for some p E S(V)} 

= {f E Hom邸 s(V,IHiv) I rankパ<2} 

= {f E Hom邸 s(V,IHiv)I f(e1) X f(e砂X f(叫=O} 

(6.1) 
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where {釘，e2,匂}is the oriented orthonormal b邸 isof V and 

1 
xx y x z = -(x(yz) -z(yx)) 

2 

is the triple cross product. 

6.2 The symmetric 3-form 

Let us define a cubic form P : T vG心(Im(})→恥 by

P(f) = f(e1) X f(e2) X !(匂）

(6.2) 

(6.3) 

which is independent of the choice of the oriented orthonormal basis { e1, e2, 匂｝
on V. Since any polynomial one-to-one corresponds with a symmetric tensor, 

we can de且neIHiv-valued symmetric 3-form I such that 

P(f) = ,(!, f, f) (6.4) 

for any f E TvGr!s(ImO). By definition, we obtain 

Cv = {! E TvGr!s(ImO) I,(!, f, J) = o}. (6.5) 

6.3 Main results 

The associative Grassmannian G心(Im(})~G2/S0(4) is equipped with 
the natural Riemannian metric h. Let▽, R be the Riemannian connection 

and the Riemannian curvature tensor of h. 

Theorem 6.1. The symmetric 3-form I is parallel, i.e. 豆=0. 

Proof. Let e : SO(4)→ SO(p) be the isotropy representation of G2/ SO(4) 
at the base point. Then by the property of the triple cross product, we obtain 

P(e(g)f) = g・P(f). (6.6) 

Thus we obtain 

,(Q(g)cp, [!(g)ゆ， [!(g)x)= g . ,(cp, ゆ，x). (6.7) 
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Taking the differential, we obtain 

,(e*(A)cp, ゆ，x)+ ,(cp, e*(A)心，x)+ ,(cp, 心，e*(A)x)=A• ,(cp, ゆ，x).(6.8) 

for A E -50(4). This means 

,(▽ <p, 心，x)+,(ゃ，▽心，x)+,(ゃ，心，▽x) =▽ ,(cp, ゆ，x) (6.9) 

i.e. ¥7 is parallel. ロ

Lemma 6.2. Let p E S6 and V E釘

(i) ,(cp, ゆ，x)= 0 for any cp, ゆ，XETv6p. 

(ii) Let cp, 心bethe complex basis of 6p~CIP2. Then x E'I', 虔 Pif and only 

if ,(x, cp, 心） =0. 

Proof. This is directly checked when V = ImIHI and p = i. Then the state-

ment follows by the G2-symmetricty. 口

Theorem 6.3. For any p E S見thesubmanifold 6p is real 4-dimensional, 

totally quaternionic and totally geodesic. 

Proof. By Corollary 5.3, we only need to show 6p is totally geodesic. 

For vector fields v, w E王(6p),we have [v, w] E王(6p)-By 1(v, v, v) = 0, 

we obtain O =▽ w1(v,v,v) = 31(▽砂，v,v).Hence by ,(v,v,w) = 0, 

2,(v7匹，v,w) = -1(v, v, ▽ vw) = -1(v,v, ▽砂+[v,w]) = 0. 

By Lemma 6.2, if we take v, w to be the complex basis, ▽ vV E X(6』

On the other hand, by 1(v,w,w) = 0, 

21(v, ▽ vw,w) =―,(▽ vv,w,w) = 0. 

Hence▽ vW E .x(6』 Thus6P is totally geodesic. ロ

Theorem 6.4. Let p E S6 and V E 釘 Then,for any tangent vectors 

<p,'l/J E Tv6p, 

,(R(ゃ，心）cp, cp, 心） =0. (6.10) 
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Proof. We can assume { cp, 心}is the complex basis. Extendingゃ，心 toa 

vector field, we obtain 

R(ゃ，心）cp=▽バ信¢ ―▽ゅ▽四—▽炉，岬J'P E X(6』 (6.11) 

Hence we obtain (6.10). ロ

Remark 6.5. Theorem 6.4 is an analogy of the self-duality. Actually, a Rie-

mannian manifold (M, g) is self-dual if and only if 

g(R(X, Y)X, Y) = 0 

for any tangent vector X, Y (see [6]). 
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