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1 Introduction 

Consonance was introduced by S. Dolecki, G.H. Greco and A. Lechicki in [9], and fur-
ther investigated by T. Nogura and D. Shakhmatov in [12] under the name uK-trivial. 
A. Bouziad showed in [1] that a metrizable separable co-analytic space is consonant if 
and only if it is Polish, and later showed that it is independent of ZFC whether every 
metrizable analytic consonant space is completely metrizable [3]. 
So far there is no characterization of non-metrizable consonant spaces that is analogous 
to A. Bouziad's result, and the purpose of this paper is to make some progress in this 
direction by focusing on countably based (possibly non-metrizable) spaces. In particular, 
we will prove the following theorem, which shows that there is a close connection between 
countably based consonant spaces and a class of countably based Tc。-spacescalled quasi-
Polish spaces [4]. 

Theorem 1 If X is a co-analytic countably based sober space, then every rrg-subspace of 
X is consonant if and only if X is quasi-Polish. ロ

Consonance is hereditary with respect to both closed subspaces and open subspaces, 
but there are examples of non-countably based consonant spaces which have dissonant 
rrg-subspaces (see [9] and [12]). To the best of our knowledge, it is still open whether 
or not consonance is preserved by rrg-subspaces of countably based consonant spaces. If 
such a preservation result does hold, then together with Theorem 1 we would obtain a 
complete Bouziad-like characterization of consonance for countably based sober spaces. 
Unfortunately, we have not yet been able to prove such a preservation result, but we 
recommend the paper [2] to any readers that are interested in pursuing this strategy. 
A major part of the proof of Theorem 1 depends on a Hurewicz-like result for quasi-
Polish spaces that was obtained in [5]. There it was shown that a countably based co-
analytic sober space is not quasi-Polish if and only if it has a rrg-subspace homeomorphic 
to either the rationals (Q or a certain countable space called S,。.Since it is known from 
[1] that the rationals are dissonant (i.e., not consonant), in order to prove Therorem 1 it 
only remains to show that the space S,。isdissonant. 
Therefore, the majority of this paper is dedicated to proving that S,。isdissonant. In 
Section 3 we will define a two-player infinite game Q(X) for each topological space X, 
and prove that if X is consonant then the second player has a winning strategy for Q(X) 
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(Theorem 4). Then in Section 4 we will prove that S,。isdissonant (Lemma 5) by showing 
that the first player has a winning strategy for g(S,。)•
The game we introduce is actually a restricted version of a game introduced by T. Plewe 
in [13] that characterizes the spatiality of localic products of spaces. The core of the 
proof of our game theoretic characterization (Theorem 4) comes from T. Plewe's proof of 
Theorem 1.2 in [13]. The game strategy used in our proof that S,。isdissonant (Lemma 5) 
was first announced at the CCC 2019 workshop as part of our proof that the localic 
product S。XzacS。isnot spatial [6]. The main original technical contribution of this 
paper is Lemma 3, which implicitly provides the link between consonance and localic 
products needed to show that T. Plewe's game partially characterizes consonance. 
Although this paper makes some implicit connections between consonance and spatial 
localic products, to ensure that the results are accessible to general topologists interested 
in consonance, we have structured this paper so that it is self-contained and does not 
require any knowledge of locale theory or localic products. 
However, the implicit connections we make in this paper are not as strong as we 
expect they really are. For readers interested in further clarifying the relationship between 
consonance and the spatiality of localic products, we recommend the references [11] and 
[10] for two different approaches to constructing localic products. We originally found 
the proof of Lemma 3 using the construction in terms of antitone Galois connections that 
is described in [10]. However, the approach we use in this paper is the one described in 
Section 1 of [13], and is perhaps closer related to the construction using C-ideals in [11]. 
This approach makes it easier to apply T. Plewe's proof to our Theorem 4, so that we 
can include that proof and obtain a self-contained paper. The connections with C-ideals 
should make it an easy exercise for the reader to convert P. Johnstone's proof in [11] of 
the non-spatiality of the localic product Q Xzac Q into a winning strategy for the first 
player in g(Q), thereby obtaining an alternative proof that Q is dissonant. 

2 Preliminaries 

We do not implicitly assume any separation訟 iomsfor the topological spaces in this 
paper. Given a topological space X, we write O(X) for the complete lattice of open 
subsets of X. K(X) denotes the set of compact subsets of X, and for K E K(X) we 
define▽ K = {U E O(X) I K~U}. A subset V~O(X) is directed if it is non-empty 
and for every U, V E V there is W E V with U~W and VこW.A subset 1l~O(X) 
is Scott-open if and only if 1l is an upper set and LJ V E 1l implies V n 1lヂ0for each 
directed subset V~O(X). 
A topological space X is consonant if and only if for every Scott-open 1l~O(X) and 
U E 1l, there is K E K(X) such that U E▽ K~1l. A space is dissonant if it is not 
consonant. 
The underlying set of S。isthe set N<N of finite sequences of natural numbers, and 
the topology of S。isgenerated by sub basic open sets of the form { T E S。Ia i_ T} for 
a E S,。,whereごisthe usual prefix relation. S'.。isa sober space, but it does not satisfy the 
T1―訟iom.Also note that S,。hasuncountably many distinct open sets, and every closed 
subspace of S,。isa Baire space (i.e., a space in which the intersection of countably many 
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dense open sets is dense) [5]. 
The remaining definitions in this section are needed to understand the statement of 
Theorem 1. However, they will not be used directly in the proof that S,。isdissonant, so 
the reader can simply skim over them on a first reading. 
A non-empty closed set is irreducible if it is not equal to the union of any two proper 
closed subsets. A space is sober if every irreducible closed subset is the closure of a unique 
point. Every sober space is a Tc。-space,and every Hausdorff space is sober, but sobriety 
is incomparable with the T1叙 iom.Sobriety is a kind of completeness property which is 
precisely what is needed to recover a space from its lattice of open subsets. 
A subset A of a topological space X is rrg if and only if there are sequences (Ui);EN 
and (¼)iEN of open subsets of X such that 

xEA←⇒ ('vi E N) [x E Ui⇒ XE¼]. 

Every G8-set (i.e. a countable intersection of open sets) is a II杓et,and every II附subset
of a separable metrizable set is G8, but it is common for non-Hausdorff spaces to have 
＂岱subsetswhich are not G8. 
A subset of a space is analytic (~D if it is empty or else eq叫 tothe continuous 
image of a Polish space, and a subset is co-analytic (IID if its complement is analytic. A 
countably based space is co-analytic if it is homeomorphic to a co-analytic subspace of 
P(N), where P(N) is the powerset of the natural numbers with the topology generated 
by subbasic opens of the form {SE P(N) In ES} for n EN. Note that every countably 
based Tc。-spacecan be embedded into P(N). 
A space is quasi-Polish if and only if it is homeomorphic to a IIふsubspaceof P(N) (see 
[4] for several other equivalent characterizations). Every Polish space is quasi-Polish, and 
conversely every metrizable quasi-Polish space is Polish. It was shown in [8] that every 
quasi-Polish space is consonant, which turned out to be an important property for the 
study f・ o vanous powerspaces m [7]. 

3 A game for consonance 

In this section, we introduce a two-player infinite game Q(X) for each topological space 
X, and prove that the second player has a winning strategy for the game whenever X is 
consonant. The game Q(X) defined here is a restricted version of the game introduced by 
T. Plewe to characterize the spatiality of localic products of spaces [13]. 

．． 
Defimt1on 2 The game Q(X) is defined as follows for any topological space X. Player 
I begins the game by choosing a non-empty covering U of X x X by open rectangles (i.e. 
open subsets of X x X of the form V x W). Set Va = Wi。=X. The (i + 1)-th round 
(i =:::: 0) proceeds as follows: 

• Player I chooses a point叫+1E if;. 

• Player II responds with an open set½+1~ ½containing 訊+1 ・

• Player I then chooses a point Yi+I E Wi. 
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• Player II finishes the round by playing an open set Wi+1~Wi containing Yi+l・

The game then continues on to the next round. Player II wins the game if there is i E N 
and V X w E u such that¼X wiこVx W. Otherwise, Player I wins. ロ

The rest of this section is dedicated to proving Theorem 4 below, where it is shown 
that if X is consonant then Player II has a winning strategy in the game Q(X). 
Fix a topological space X and let U be a non-empty covering of X x X by open 
rectangles. Define a subset Aげ） of O(X) x O(X) for each ordinal (3 as follows: 

A(O) = {〈v,w〉IV, w E O(X) & (ヨV'XW'EU) V X w~V'X W'} 

Aぼ+1) = {〈LJs,w〉IS~O(X) & (VV E S)〈v,w〉EA位）｝

U{〈v,LJs〉Is~O(X) & (VW E S)〈v,w〉EA位）｝，

A(入） = u氾 forlimit ordinal入．
(3<入

For cardinality reasons, there is some ordinal (3 such that A(f3) = A(f3+1), and we will use 
oo to denote the least such ordinal. 

Lemma 3 Assume X is a consonant space and U is a non-empty covering of X x X by 
open rectangles. Then〈x,x〉EAC00l・

Proof: We first show that for each ordinal (3, if〈V',W'〉EA(f3l and VこV'andW<:;;; W' 
are open, then〈v,w〉EA(f3). This clearly holds for (3 = 0, and if it holds for all ordinals 
less than a limit ordinal入thenit clearly holds for入. So it only remains to prove it 
for successor ordinals. Assume it holds for (3 and we will show it holds for (3 + 1. Fix 
〈V',W'〉EA(f3+1) and opens VこV'andW <:;;; W'. If〈V',W'〉EA(f3l then〈v,w〉EA(f3) 
by the induction hypothesis for (3. Otherwise, there are two cases: 

1. V'= LJ S for some S <:;;; O(X) satisfying (VU E S)〈U,W'〉EA (f3). Then by the 
induction hypothesis for (3 we have〈vnu,w〉EA (f3) for each U E S. By defining 
S'= { U n V I U E S} we have〈v,w〉=〈LJS',W〉EA(f3+l)_ 

2. If the first case does not hold, then W'= LJ S for some S <:;;; O(X) satisfying 
(VU E S)〈V',U〉EA (f3). Then an argument that is symmetric to the first case 
yields〈v,w〉EA(f3+1), which completes the inductive proof. 

It follows that A(oo) is a lower set with respect to the pairwise ordering on O(X) x O(X). 
This implies that 

1-l = {U E O(X) I〈u,u〉尻4(00)}

is an upper subset of O(X). We next show that 1-l is Scott-open. Fix any directed 
subset V~O(X) with V n 1-l = 0. Fix any U E V. For any other V E V, since V is 
directed there is WE  V containing both U and V. The assumption V n 1-l = 0 implies 
〈w,w〉EA(oo), and since A(oo) is a lower set we obtain〈u,v〉EA(oo)_ Since VE V was 
arbitrary, we have〈U,LJV〉EA(oo十l)= A(oo), and since U E V was arbitrary it follows 
that〈LJV,LJV〉EA(oo十l)= A(oo). Therefore, LJ V (/_ 1-l, which completes the proof that 
1-l is Scott-open. 
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Now assume for a contradiction that〈X,X〉(/_A (00 l. Then X E H, and the consonance 
of X implies there is KE  K(X) such that XE▽Kこ甘
For each x E K, we find some〈Vx,Wx〉EA(oo) satisfying X E Vx and K~Wx as 
follows. For every other y E K, there is〈Vx,y,Wx,y〉EA(oo) with x E½,Y and y E Wx,y 
because of the definition of A(o)~A(oo) and the fact that U covers X x X. From the 
compactness of K, there is finite F CK  such that KC  -uyEF Wx,y·Define½= nyEF Vx,y 
and Wx = uyEF 児，y• Then x E Vx and K~Wx. Furthermore, 〈Vぉ，Wx,y〉EA(00l holds 
for each y E F because A(oo) is a lower set, hence〈Vェ，Wx〉=〈Vェ，uyEF凱〉 EA(00l・
Again using the compactness of K, there is finite G C K such that K C -LJxEGじ・
Define V = UxEG Vx and w = nxEG凱.Then repeatmg the argument at the end of the 
previous paragraph yields〈v,w〉EA(00l. By defining U = VnW, we have〈u,u〉EA(00l 
because A(00) is a lower set. 
Thus KこUand U (/_ 1i, which contradicts▽Kこ甘 ロ

The core of the following proof is from T. Plewe's proof of a game theoretic character-
ization of spatial localic products (Theorem 1.2 in [13]). 

Theorem 4 If X is consonant, then Player II has a winning strategy in the game Q(X). 

Proof: Player I initializes the game by choosing a non-empty cover U of X x X by open 
rectangles. Let f3 be the least ordinal such that〈X,X〉EA豆 whichexists by Lemma 3. 
Clearly, either f3 = 0 or else f3 is a successor ordinal. If f3 = 0, then X x X E U, hence 
any valid play by Player II in the first round will be winning. So assume /3 = /3。+1 for 
some ordinal /3。,and set Vo = Wi。=X.
In the (i + 1)-th round (i~0), we can assume〈V;,wi〉EA仇+1J¥ Aは）. Player II's 
strategy for this round will depend on the two possible ways in which <V;,~りcouldhave 
been added to Aは+1):

1. The first possibility is V; = LJ S for some S~O(X) satisfying ('vV E S)〈v,wi〉E
Aは）. In this case, for any point Xi+1 E V; chosen by Player I, there is some〈v,wi〉E
Aは） with X;+i EV. Player II plays½+1 = V for any such V, and in the second half 
of the round plays wi+l = wi in response to any Yi+l E wi played by Player I. 

2. If the first case does not hold, then Wi = LJ S for some S~O(X) satisfying 
('vW E S)〈V;,W〉EA□In this case, Player II plays½+1 = V; in response to 
any point Xi+1 E V; chosen by Player I. In the second half of the round, for any point 
Yi+l E Wi chosen by Player I, there is some〈V;,W〉EAは） with Yi+l E W. Player 
II chooses any such Wand plays W;+1 = W. 

At the end of round (i + 1), Player II has played some <½+1,w. 叫 EA(/3,l_ Let /3 
be the least ordinal such that <½+1,Wi+l〉EA(/3). If f3 = 0, then Player II has won 
the game. Otherwise, f3 = /3;+1 + 1 for some ordinal /3i+1, and we have <½+1,W;+1〉E
A仇+1+ll¥A仇+1l.Th e game then contmues to the next round. 
Since /3i+1 < /3i, and every strictly decreasing sequence of ordinals is finite, the strategy 
defined above is winning for Player II. ロ
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4 s,。isdissonant 
Using the game defined in the previous section, we can now prove that S。isdissonant by 
showing that Player I has a winning strategy in the game Q(S0). We first announced the 
game strategy used in the following proof at the CCC 2019 workshop in order to prove 

that the localic product S,。XlocS。isnot spatial [ 6]. 
Lemma 5 S,。isdissonant. 
Proof: Denote the length of CJ E N咽 byICJI. The empty string is denoted ass, and 
the string consisting of m zeros is written o(m). The string obtained by appending n E N 

to CJ EN碍 iswritten CJ◇ n. We also write CJ◇ T for the concatenation of strings. For 

CJ,T EN気 define

Fび，T= {s◇ n I s E N<N & s ::s CJ & s◇nメCJ& n :S ICJI + 171}, 

U",T = {t E N<N I (Vs E F",T) sメt}.

Then a E Ua,n hence 

U = {Uu,T X UT,u Iび，TEN勺
is an open cover of S,。xS。.Observe that if s E U石andevery element of s is less than 
or equal to 10"1 + ITI thens~ び
Also note that if U <;;;; S,。isopen and O" E U, then there exist infinitely many n E N 
such that every string that has O"◇ n as a prefix is also in U. This is because there is a 

basic open u;。<;;;;s。(i.e.,an open subset of the form u;。={TEN道 I(Vs E F) sメT}for 
some finite F <;;;; S0) such thatび EV。<;;;;U. One can then choose any n EN that is larger 
than any element contained in any of the strings s E F. Then for each s E F, we have 
that s -le_ (]"◇ n and O"◇ n -le_ s, hence no extension ofび◇n will have s as a prefix. 

We now define a winning strategy for Player I in the game g(S,。). Player I initiates 
the game by choosing the open covering U of S,。XS,。.The game begins with round 1. 
For convenience, define Vo = Wi。=S。,and x。=Yo=c, and m。=n。=0. Player I's 
strategy for the i-th round (i:::: りproceedsas follows: 

• Player I chooses m; E N such that every sequence extending Yi-l◇ m; is in wi-1・
Player I then plays x; = x;_1◇ n;-1◇ o(m,)_ 

• Player II must respond with an open subset¼ こ ¼-i containing x,. 

• Next, Player I finds distinct n; and叫inN such that any sequence that has either 
X; ◇ ni or叩◇ n~as a prefix is in¼. Player I plays Yi =糾1◇叫◇o(ni十叫）．

• Player II must respond with an open subset WiこWi-lcontaining Yi・ 

The game then continues on to round i + 1. 
We show that at the end of each round i :::: 1, t畑叩叩砥血加〖 X wi chos血切
Player II is not a subset of any open rectangle in U. Fix any O", T E N虚 withXi E Uu,T 

and Yi E UT,u・Since Yi-1さYiwe have Yi-1 E U T,u, and an mductive argument (keep 

reading) yields Yi-1さT.Using the fact that IYi-l I :::: n;_1 it can be shown that every 
element occurring in X; is less than or equal to IY;-11さ10"1+ ITI, hence the assumption 
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凸 EU",T and the observation at the end of the first paragraph of this proof implies xi :::sび
Similarly, every element of Yi is less than or equal to lxi I :S ITI + lul, hence Yi E UT,。implies
YiごT(thereby completing the inductive argument). Either xi◇ niメuor xi◇ 叫メ u,
and ni, n;'.S IYil :S lul + ITI, thus Xi◇ ni't-u<Y,T or Xi◇叫 't-u(T,T) but both Xi◇ ni and 
X心叫 arein¼, so we conclude that¼x Wig; U",T x UT,<Y・Therefore, the above strategy 
is winning for Player I, hence S。isnot consonant. ロ
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