Isometries on a Banach space of analytic functions on the open unit disk

Takeshi Miura

Department of Mathematics, Niigata University

1 Introduction

Let $(N, \|\cdot\|_N)$ be a normed linear space over \mathbb{R} or \mathbb{C} . A mapping T on $(N, \|\cdot\|_N)$ is an *isometry* if

$$|T(f) - T(g)||_N = ||f - g||_N \qquad (\forall f, g \in N).$$

Here, we don't assume linearity of T. Let \mathbb{D} be the open unit disc and \mathbb{T} the unit circle in \mathbb{C} . We denote by $H(\mathbb{D})$ the complex linear space of all analytic functions on \mathbb{D} . Let H^p be the Hardy space defined by

$$H^{p} = \left\{ f \in H(\mathbb{D}) : \|f\|_{p} = \sup_{0 < r < 1} \left[\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{p} dt \right]^{1/p} < \infty \right\} \qquad (1 \le p < \infty),$$
$$H^{\infty} = \left\{ f \in H(\mathbb{D}) : \|f\|_{\infty} = \sup_{z \in \mathbb{D}} |f(z)| < \infty \right\}.$$

Complex linear isometries on the Hardy spaces were characterized in 1960's.

Theorem (deLeeuw, Rudin and Wermer [1]). 1. Let T be a surjective, complex linear isometry on $(H^{\infty}, \|\cdot\|_{\infty})$. Then there exist a constant $\alpha \in \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ and a conformal map $\phi : \mathbb{D} \to \mathbb{D}$ such that

$$T(f)(z) = \alpha f(\phi(z)) \qquad (\forall f \in H^{\infty}, z \in \mathbb{D}).$$

2. Let T be a surjective, complex linear isometry on $(H^1, \|\cdot\|_1)$. Then there exist a constant $\alpha \in \mathbb{T}$ and a conformal map $\phi \colon \mathbb{D} \to \mathbb{D}$ such that

$$T(f)(z) = \alpha \phi'(z) f(\phi(z)) \qquad (\forall f \in H^1, z \in \mathbb{D}).$$

In 1959, Nagasawa [8] gave the characterization of surjective complex linear isometry on uniform algebras. The characterization of isometries on H^{∞} by deLeeuw, Rudin and Wermer is a special case of the result by Nagasawa.

Forelli [3] investigated complex linear, not necessarily surjective, isometries on H^p . Here, I will introduce the result of surjective case. **Theorem** (Forelli, [3]). Let p be a real number with $1 \le p < \infty$ and $p \ne 2$, and let T be a surjective complex linear isometry on $(H^p, \|\cdot\|_p)$. There exist a constant $\alpha \in \mathbb{T}$ and a conformal map $\phi \colon \mathbb{D} \to \mathbb{D}$ such that

$$T(f)(z) = \alpha(\phi'(z))^{1/p} f(\phi(z)) \qquad (\forall f \in H^p, z \in \mathbb{D})$$

Novinger and Oberlin [9] considered Banach spaces of analytic functions

$$\mathcal{S}^p = \{ f \in H(\mathbb{D}) : f' \in H^p \} \qquad (1 \le p < \infty)$$

with the following norms:

 $||f||_{\sigma} = |f(0)| + ||f'||_{p}, \quad ||f||_{\Sigma} = ||f||_{\infty} + ||f'||_{p} \qquad (f \in \mathcal{S}^{p}).$

Here, it should be mentioned that $||f||_{\infty}$ is well-defined; in fact, if a function $f \in H(\mathbb{D})$ satisfies $f' \in H^p$ for some $p, 1 \leq p$ then f is extended to a continuous function on the closed unit ball $\overline{\mathbb{D}}$ (see, for example [2, Theorem 3.11]). Novinger and Oberlin [9] characterized complex linear isometries on S^p without assuming surjectivity. For the sake of simplicity, I will show you a surjective case of their results.

Theorem (Novinger and Oberlin [9]). Let p be a real number with $1 \le p < \infty$ and $p \ne 2$.

1. If T is a surjective complex linear isometry on $(S^p, \|\cdot\|_{\sigma})$, then there exist a constant $c \in \mathbb{T}$ and a conformal map $\phi \colon \mathbb{D} \to \mathbb{D}$ such that

$$T(f)(z) = cf(0) + \int_{[0,z]} (\phi'(\zeta))^{1/p} f'(\phi(\zeta)) d\zeta \qquad (\forall f \in \mathcal{S}^p, z \in \mathbb{D}).$$

2. If T is a surjective complex linear isometry on $(S^p, \|\cdot\|_{\Sigma})$, then there exist a constant $c \in \mathbb{T}$ and a conformal map $\phi \colon \mathbb{D} \to \mathbb{D}$ such that

$$T(f)(z) = cf(\phi(z)) \qquad (\forall f \in \mathcal{S}^p, z \in \mathbb{D}).$$

Novinger and Oberlin excluded the case when $p = \infty$ in the above result. But S^{∞} is well-defined, and I believe the characterization of isometries on S^{∞} is important to the theory of analytic functions. The purpose of this note is to give an answer to the above problem.

2 Main results

We define $S^{\infty} = \{f \in H(\mathbb{D}) : f' \in H^{\infty}\}$. As is mentioned above, if $f \in S^{\infty}$, then it can be extended to a continuous function on $\overline{\mathbb{D}}$. Thus, $\|f'\|_{\infty}$ is well-defined. We consider the following two norms on S^{∞} :

$$||f||_{\sigma} = |f(0)| + ||f'||_{\infty}, \qquad ||f||_{\Sigma} = ||f||_{\infty} + ||f'||_{\infty} \qquad (f \in \mathcal{S}^{\infty}).$$

We see that $(\mathcal{S}^{\infty}, \|\cdot\|_{\sigma})$ and $(\mathcal{S}^{\infty}, \|\cdot\|_{\Sigma})$ are both Banach spaces. Noviger and Oberlin characterized complex linear isometries on \mathcal{S}^p $(1 \leq p < \infty)$ without assuming surjectivity. Here we investigate *surjective*, not necessarily linear, isometries on \mathcal{S}^{∞} . The main results of this note is as follows.

Theorem 1. A map T is a surjective isometry on $(\mathcal{S}^{\infty}, \|\cdot\|_{\Sigma})$ if and only if there exist constants $c, \lambda \in \mathbb{T}$ such that

$$T(f)(z) = T(0)(z) + cf(\lambda z) \qquad (\forall f \in S^p, z \in \mathbb{D}) \quad or$$

$$T(f)(z) = T(0)(z) + \overline{cf(\lambda z)} \qquad (\forall f \in S^p, z \in \mathbb{D}).$$

Outline of proof. By the Mazur-Ulam theorem [5], the map $T_0 = T - T(0)$, which sends $f \in \mathcal{S}^{\infty}$ to T(f) - T(0), is real linear. In addition, we see that T_0 is a surjective isometry. Let $\hat{f'}$ be the Gelfand transform of $f' \in H^{\infty}$ and let $\partial_{H^{\infty}}$ be the Shilov boundary for H^{∞} . Then $\sup_{\zeta \in \mathbb{D}} |f'(\zeta)| = \sup_{z \in \partial_{H^{\infty}}} |\hat{f'}(\zeta)|$ for $f \in \mathcal{S}^{\infty}$. We denote by \hat{f} the unique continuous extension of $f \in \mathcal{S}^{\infty}$ to $\overline{\mathbb{D}}$. By the maximal modulus principle, $\sup_{z \in \mathbb{D}} |f(z)| = \sup_{z \in \mathbb{T}} |\hat{f}(z)|$ for $f \in \mathcal{S}^{\infty}$. Therefore

$$\|f\|_{\Sigma} = \sup_{z \in \mathbb{D}} |f(z)| + \sup_{\zeta \in \mathbb{D}} |f'(\zeta)| = \sup_{z \in \mathbb{T}} |\hat{f}(z)| + \sup_{\zeta \in \partial_{H^{\infty}}} |\hat{f}'(\zeta)| = \sup_{(z,w,\zeta) \in \mathbb{T}^2 \times \partial_{H^{\infty}}} |\hat{f}(z) + w\hat{f}'(\zeta)|.$$

We now define a map $U: \mathcal{S}^{\infty} \to C(\mathbb{T}^2 \times \partial_{H^{\infty}})$ by

$$U(f)(z,w,\zeta) = \hat{f}(z) + w\hat{f}'(\zeta) \qquad (\forall f \in \mathcal{S}^{\infty}, (z,w,\zeta) \in \mathbb{T}^2 \times \partial_{H^{\infty}}).$$

Set $B = U(\mathcal{S}^{\infty})$, and then U is a surjective complex linear isometry from $(\mathcal{S}^{\infty}, \|\cdot\|_{\Sigma})$ onto $(B, \|\cdot\|_{\infty})$.

$$\begin{array}{cccc} \mathcal{S}^{\infty} & \xrightarrow{\mathcal{T}_{0}} & \mathcal{S}^{\infty} \\ U & & & \downarrow U \\ B & \xrightarrow{V} & B \end{array}$$

We set $V = UT_0U^{-1}$. Then V is a surjective real linear isometry on $(B, \|\cdot\|_{\infty})$.

By a modified arguments of [10, Proof of Lemma 3.1], we can prove that

$$V_*(\{\lambda\delta_x:\lambda\in\mathbb{T},x\in\mathbb{T}^2\times\partial_{H^\infty}\})=\{\lambda\delta_x:\lambda\in\mathbb{T},x\in\mathbb{T}^2\times\partial_{H^\infty}\},\$$

where $V_* \colon B^* \to B^*$ is a map defined by

$$V_*(\eta)(a) = \operatorname{Re} \eta(V(a)) - i\operatorname{Re} \eta(V(ia)) \qquad (\forall \eta \in B^*, a \in B)$$

and $\delta_x \colon B \to \mathbb{C}$ is a point evaluation functional with $\delta_x(a) = a(x)$ for $a \in B$. Using the form of V, we can describe T_0 with extra variables, say $w \in \mathbb{T}$ and $\zeta \in \partial_{H^{\infty}}$. By straightforward, but complicated arguments, we obtain the desired form of T. The reader may refer to [7] for the detail. **Theorem 2.** Let T be a surjective isometry on $(\mathcal{S}^{\infty}, \|\cdot\|_{\sigma})$. Then there exist constants $c_0, c_1, \lambda \in \mathbb{T}$ and $a \in \mathbb{D}$ such that

$$T(f)(z) = T(0)(z) + c_0 f(0) + \int_{[0,z]} c_1 f'\left(\lambda \frac{z-a}{1-\overline{a}\zeta}\right) d\zeta \qquad (\forall f \in \mathcal{S}^p, z \in \mathbb{D}) \quad or$$

$$T(f)(z) = T(0)(z) + c_0 \overline{f(0)} + \int_{[0,z]} c_1 f'\left(\lambda \frac{z-a}{1-\overline{a}\zeta}\right) d\zeta \qquad (\forall f \in \mathcal{S}^p, z \in \mathbb{D}) \quad or$$

$$T(f)(z) = T(0)(z) + c_0 f(0) + \int_{[0,z]} c_1 f'\left(\overline{\lambda \frac{z-a}{1-\overline{a}\zeta}}\right) d\zeta \qquad (\forall f \in \mathcal{S}^p, z \in \mathbb{D}) \quad or$$

$$T(f)(z) = T(0)(z) + c_0 \overline{f(0)} + \int_{[0,z]} c_1 f'\left(\overline{\lambda \frac{z-a}{1-\overline{a}\zeta}}\right) d\zeta \qquad (\forall f \in \mathcal{S}^p, z \in \mathbb{D}).$$

Conversely, if T is one of the above four, then it is a surjective isometry on $(\mathcal{S}^{\infty}, \|\cdot\|_{\sigma})$.

Outline of proof. The idea of this proof is quite similar to that of Theorem 1. We need the characterization of surjective, real linear isometries on uniform algebras (see [4, 6]).

References

- K. deLeeuw, W. Rudin and J. Wermer, *The isometries of some function spaces*, Proc. Amer. Math. Soc. **11** (1960), 694–698.
- [2] P.L. Duren, The theory of H^p spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970.
- [3] F. Forelli, The isometries of H^p , Canad. J. Math. 16 (1964), 721–728.
- [4] O. Hatori and T. Miura, Real linear isometries between function algebras. II, Cent. Eur. J. Math. 11 (2013), 1838–1842.
- [5] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.
- [6] T. Miura, Real-linear isometries between function algebras, Cent. Eur. J. Math. 9 (2011), 778–788.
- [7] T. Miura, Surjective isometries on a Banach space of analytic functions on the open unit disc, preprint.
- [8] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep. 11 (1959), 182–188.

- [9] W.P. Novinger and D.M. Oberlin, *Linear isometries of some normed spaces of analytic functions*, Can. J. Math. 37 (1985), 62–74.
- [10] N.V. Rao and A.K. Roy, *Linear isometries of some function spaces*, Pacific J. Math. 38 (1971), 177–192.

Department of Mathematics Niigata University Niigata 950-2181 JAPAN E-mail address: miura@math.sc.niigata-u.ac.jp