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Initial value problem to a shallow water model 

with a floating solid body 

Tatsuo lguchi 

Department of Mathematics, Keio University 

1 Introduction 

We consider the two-dimensio叫 motionof the water over a flat bottom together with the 
motion of a floating solid body on the water surface under the assumption that there are 
only two contact points where the water, the air, and the body meet. Let t be the time, 
x the horizontal spatial coordinate, and z the vertical spatial coordinate. The horizontal 
coordinates of these contact points at time tare denoted by x_(t) and x+(t), which satisfy 
x_(t) <叫(t).Let I(t) and E(t) be the projections on the horizontal line of the parts 
where the water surface contacts with the floating body and the air, respectively, that is, 

｛エ(t)= (x_(t), x+(t)), 
E(t) = E_(t) U E+(t), L(t) = (-oo, x_(t)), E_(t) = (x+(t), oo). 

The corresponding water regions toエ(t)and E(t) will be called the interior and the 
exterior regions, respectively. We consider the case where overhanging waves do not 
occur and suppose that the surface elevation of the water in the exterior region is denoted 
by Ze(t, x) and that the underside of the floating body is parameterized by Zi(t, x). See 
Figure 1. Let h。bethe mean depth of the water, so that the water depth in the interior 

z = Z;(t,x) 

L(t) 正(t) エ(t) x~(t) ふ (t)

Figure 1: Waves interacting with a floating body 

and exterior regions are given by Hi(t, x) = h。＋公(t,x)and He(t,x) = h。+Ze(t, x), 
respectively. We denote by V (t, x) the vertically averaged horizontal velocity of the water 
and put Q = HV, which is the horizontal且uxof the water. The restrictions of Q to 
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the interior and the exterior regions will be denoted by Qi and Qe, respectively. Let 
凸(t,x) be the pressure of the water at the underside of the floating body. This pressure 
is an important unknown quantity and should be determined together with the motion of 
the water. In the case where the floating body moves freely, the body interacts with the 
water through the force exerted by this pressure. The shallow water model proposed by D. 
Lannes [2] was derived from the full water wave equations by using the assumption that 

以I誓x)V(t,x,z)2dz)'.:::c8x(H(t,x)V(t,x)2), where V(t,x,z) denotes the horizontal 

component of the velocity field in the water, and that the pressure P(t, x, z) can be 
approximated by the hydrostatic pressure, that is, 

P(t, x, z)'.:::c { Patm -pg(z -Ze(t, x)) in£(t), 
凸(t,x)-pg(z-Zi(t,x)) in I(t), 

where p is the density of the water, g the gravitational constant, and Patm a constant 
atmospheric pressure. Then, the shallow water model for the water has the form 

｛闘＋闘 ~0 in [(t), 

鴫 +ax(尻＋炉gH;)= 0 in E(t), 
(1) 

in the exterior region, while under the floating body we have 

｛闘＋闊 ~0 in T(t), 

鴎 +ax(尻＋加訳）＝―!H鱈 in I(l), 
p 

(2) 

with matching conditions 

He = Hi, Qe = Qi, じ=Patm on r(t), (3) 

where r(t) = 8エ(t)= 8£(t) denotes the contact points, which together with (Ze, Qe) and 
(Zi,Qi, 凸） are unknown quantities in our problem. We note that the equations in (1) are 
well-known nonlinear shallow water equations. As for the motion of the floating body, we 
consider three cases: the floating body is fixed; the motion of the body is prescribed; and 
the body moves freely according to Newton's laws, and that we also need to prescribe 
equations of the motion of the floating body according to these three cases. 

1.1 The case of a fixed floating body 

In the case where the body is fixed, we impose the condition 

Zi = Z1id on I(t), (4) 

where Zlict = Zlia(x) is a given function defined on an open interval If and represents the 
shape of the underside of the floating body. 
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1.2 The case of a floating body with a prescribed motion 

Since the floating body is allowed only to a solid motion, its motion is completely deter-
mined by (x0 (t), zc (t)) the coordinates of the center of mass and 0 (t) the rotational angle 
of the body. Without loss of generality, we have 0lt=O = 0. Suppose that the underside 
of the floating body is initially parameterized by Ziid (x) on an open interval Ir, so that 
Zilt=O = Z1id inエ(0). Consider a point of the underside of the body and denote the 
coordinates of the point at t = 0 by (X, Z). Let the coordinates of the point at time t be 
(x, z). Then, it holds that 

z = ziid(x), z = Zi(t, x), 

and that 

G口::[月） = G~:: 闘―Cご~~~g)) (1 二::(~?)
Therefore, we obtain 

(Zi(t, x)一知(t))cos0(t) -(x -xa(t)) sin0(t) + 知(0)

= Z1id ((x -xa(t)) cos 0(t) + (Zi(t, x) -za(t)) sin 0(t) + xa(O)). (5) 

This is the equation for the motion of the body and gives an expression of Zi implicitly 
in terms of xaやa,0, and Zlict• Here we note that xaやa,and 0 are also given functions 
since we suppose that the motion of the floating body is prescribed in this case. 

1.3 The case of a freely floating body 

Finally, we consider the case where the floating body moves freely according to Newton's 
laws under the action of the gravitational force and the pressure from the air and from the 
water. Let m and i。bethe mass and the inertia coefficient of the body. Then, Newton's 
laws for the conservation of linear and angular momentum have the form 

｛王(t)~-mge, -J PndS, 
叫 (t)= J Pr~• n:~~) 

ac(t) 

where Va = (8心GりtZG汀andw = 8t0 are the velocity of the center of mass and the 
angular velocity of the body, respectively, C(t) is the domain occupied by the floating 
body at time t, P the pressure of the air and the water on the surface of the body, n the 
unit outward normal to 8C(t), and r0 a position vector relative to the center of mass. Let 
枷 C(t)and 8ぶ(t)be portions of 8C(t) in contact with the water and the air respectively. 
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Then, we see that 

where 

laC(t) PndS = la亨 (t)已ndS+ laむC(t)PatmndS 

=!  <-Patm)ndS 
邸 (t)

=-!  化 (t,x) -Patm)Ni(t, x)dx, 
工(t)

Ni(t,x) = (-ax~(t,x)). 

In the derivation of the above equalities, we used the identity 

lac(t) PatmndS = J 1(t)▽ Patmdxdz = 0. 

Simil叫 y,we have 

laC(t) Pr古・ndS=-1エ(t/じ(t,x) -Patm加 (t,x)J_・Ni(t, x)dx, 

where 

叫 t,x) = (瓜，；）竺如）．
Therefore, Newton's laws for the conservation of linear and angular momentum are written 
in the form 

｛叫(t)~-mge,+ j化 (t,x)-P,,m)N,(t,x)dx, 

叫 (t)= -J化 (t,~ エ)~t~Patm)ra(t,X)_1・Ni (t, X)dx, 
エ(t)

which together with (5) constitute the equations of motion for the floating body. 

(6) 

In this communication we report that the initial value problem to these wave-structure 
interactions are well-posed locally in time. The result was obtained through a joint 
research with David Lannes at University of Bordeaux. 

2 Reformulation of the problem 

We proceed to consider the initial value problem to the shallow water models with a 
floating solid body (1)-(3) together with (4), (5), or/and (6) according to the motion of 
the floating body. By using the equations of the floating body, we can reduce the shallow 
water equations (2) in the interior regionエ(t)to simple ordinary differential equations as 
follows. 
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2.1 The case of a fixed floating body 

It follows from (4) that凡(t,x) = ho+ Zlid (x) does not depend on t, so that the continuity 
equation in (2) yields axQi = 0. This means that Qi does not depend on x, so that we 
can write Qi(t, x) = qi(t). Plugging this into the momentum equation in (2) we have 

2 1 

螂 +ax(l+戸）＝ー：闊Ei,

which is equivalent to 
底 1qf 1 
可十ax(2戸十gHi)=一PaxEi

Therefore, 凸satisfiesa simple boundary value problem 

｛饂＝一p(い（嘉+grr,)) in エ(t), (7) 

じ=Patm on f(t). 

Integrating the first equation in (7) and using the boundary condition, we obtain 

畑 fx(t)kい［嘉+gHi] = 0, (8) 

where [F] = F(t,x_(t)) -F(t,x+(t)) for a function F = F(t,x). This is a solvability 
condition of the boundary value problem (7) for E. Conversely, once qi and四 aregiven 
so that (8) holds, we can resolve (7) for the pressure E_i explicitly as 

じ(t,x) = Patm -p{畑 (t)J x dx' 

X-(t)凡(x')

＋伍(t)2(凡tx)2 ―几(x〗 (t))2) + g(Hi(x) -Hi(x_(t)))} 

Therefore, the equations in the interior region (2) are reduced to a scalar ordinary differ-
ential equation (8). 

To summarize, the problem is reduced to the nonlinear shallow water equations in the 
exterior region 

｛闘＋闘 ~0 in C(t), 

吟 +ax(鸞＋炉gH;)= 0 in E(t), 

the matching condition on the contact points 

He= Hi, Qe = qi on f(t), 

and the ordinary differential equation 

1 
坊qi=

1 qf 
-fr(t) kdx [可+gHi],

(9) 

(10) 

(11) 

where H; is given by H;(x) = h。+Zud (x). In this case, the initial conditions are given by 

(Ze, Qe)lt=O = (Z: 閃，Q翌） in £(0), X叶t=O=互塁， q;lt=O = q『. (12) 
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2.2 The case of a floating body with a prescribed motion 

We remind that (5) determines Zi in terms of G = (xc, zc, 0) and Zlid・More precisely, 
by the implicit function theorem we see that there exists a functionゅdeterminedby zlid 
such that 

Zi(t,x) =心(x-知(t),0(t)) +知(t). (13) 

Differentiating (5) with respect tot and x, we see that 

⑰ = (Ve -wrら） -Ni= -ox((り） -T(応）），

where T(ra) is defined by 

T(r叫＝（匝信）．
This together with the continuity equation in (2) yields that there exists a function qi(t) 
of t such that 

Qi(t, x) = (冒） -T(r叫，x))心 (t). (14) 

Plugging this into the momentum equation in (2), we obtain an equation for E_i. As 
a solvability condition of the boundary value problem to the equation for凸 withthe 
bound紅 ycondition几=Patm on r(t), we obtain an ordinary differential equation in the 
form 

闊=F(面G孔G,a;G,x_,叫）

with some function F. For the explicit form of this function F, we refer to T. lguchi and 
D. Lannes [1] and D. Lannes [2]. 

To summ紅 ize,the problem is reduced to the nonline紅 shallowwater equations in the 
exterior region 

｛闘＋闊冨゚ I in E(l), 

國 +8仇+2gH;) = 0 in£(t), 

the matching condition on the contact points 

He=Hi, 仏=Qi on r(t), 

and the ordinary differential equation 

8晶 =F(りi,G,8ぶ，洸G,x_,叫），

(15) 

(16) 

(17) 

where Hi= h。+Zi and Qi are given by (13) and (14), respectively, and G = (xc, zc, 0) 
are given functions of t. In this case, the initial conditions are also given by 

(Ze,Q』lt=O= (Z, 翌，Q翌） in £(0), X土lt=O=互翌， 7iilt=o = 71(n_ (1s) 
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2.3 The case of a freely floating body 

We note that the calculations in Section 2.2 are valid although G = (xか知， 0)are un-
known functions in this case and are governed by Newton's laws (6). Under the solvability 
condition (17) we can solve the pressure E_i. Plugging the expression of the pressure E_i 
into Newton's laws (6), after some calculations we have a system of ordinary differential 
eq叫 ionsof the form 

8tW = F(W,x_,x+) 

with some function F, where W = (G, OtG, qJ are functions oft. Therefore, the problem 
is reduced to the nonlinear shallow water equations in the exterior region 

｛間＋闘 ~0 in &(l), 

吟 +ax(尻＋炉gH;)= 0 in &(t), 

the matching condition on the contact points 

He= Hi, Qe = Qi on f(t), 

and the ordinary differential equations 

8tW = F(W,x_,x+), 

(19) 

(20) 

(21) 

where Hi= h。+Zi and Qi are given by (13) and (14), respectively. In this case, the 
initial conditions are given by 

{ (Ze, Qe)lt=O = (Z⑰,Q閃） in E(O), ヰ lt=O=互閏，
列t=O=卯，（叩，zc,0,Uc,w)lt=O = (喝，z囲，o,u杓，win).

(22) 

Now, our initial value problem to the shallow water model with a floating solid body on 
the water surface was reduced to (9)―(12) in the case of a fixed floating body, to (15)-(18) 
in the case of a floating body with a prescribed motion, and to (19)-(22) in the case of 
a freely floating body. However, all of the reduced problems have the same structure: 
a free boundary problem to the nonlinear shallow water equations with a Dirichlet type 
boundary condition on the free boundary coupled with a system of ordinary differential 
equations. These considerations motive us to analyze a new type of free boundary problem 
to a quasilinear hyperbolic system of equations. 

3 Free boundary problem to 2 x 2 quasilinear hyperbolic system 

Motivated by the reduction in Section 2, we consider a free boundary problem to a 
2 X 2 qu邸 ilinearhyperbolic system of partial differential equations in a moving domain 

（ェ(t),oo): 
8tU + A(U)8xU = 0 in (互(t),oo)

with a Dirichlet type boundary condition 

U=仄 on x = .:J:.(t), 

(23) 

(24) 
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where U; = U;(t, x) is a given R2-valued function, whereas互(t)is an unknown function. 
As for the coefficient matrix A(U) we assume the following. 

A ssumption 1 Let U be an open set in R叫whichrepresents a phase space of U. 

i. A E C00(U). 

ii. For each U EU, the matrix A(U) has eigenvalues士入土(U)satisfying心(U)> 0. 

In the case of nonlinear shallow water equations 

{::: ニ冒゜；；訳） ~o,
the coefficient matrix A(U) with U = (Z, Q? are given by 

A(U) = (gH~。（籾 2贔）
with H = h。+Z, so that the eigenvalues土心(U)are given by心(U)= .jgH土号．
Therefore, the second condition in Assumption 1 corresponds to the subsonic condition 
in the gas dynamics. 

3.1 Equation for the contact point 

In the free boundary problem (23)―(24), we do not have any explicit equation for the 
contact point互(t)such as the kinematic boundary condition in the standard free boundary 
problems in the fluid dynamics. In our problem, the equation of the contact point互(t)
is a part of the boundary condition (24). In fact, differentiating the boundary condition 
U(t, ェ(t))=仏(t,こ(t))with respect tot, we have 

8tU + (8tx.)8,』l= Ot仏+(8tェ）a』Ji on x = x_(t), 

which implies 

8直＝一
(8tU -8t仏）・ (8,』1-ax仏）

店u-axui12 x=互(t)

In view of this, a discontinuity of the spatial derivative 8』1on the free boundary is crucial 
to the free boundary problem (23)-(24) whereas U itself is continuous. Note that we have 
also 

（邸—邸）・（むU-o土）上= 0 on x =互(t),

which can be viewed as a boundary condition to the hyperbolic system (23), so that 
the nonlinearity of the problem (23)―(24) is very high, especially, on the boundary. We 
also note that only one boundary condition is allowed under the subsonic condition in 
Assumption 1, that is, a part of the condition in (24) is used as a standard boundary 
condition and another part is used to determine the contact pointェ(t).

In the case of the shallow water model with a floating solid body on the water surface, 
this discontinuity condition is equivalent to a transversality condition for the water surface 
to the underside of the floating body. More precisely, we have the following proposition. 
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Proposition 1 Suppose that Ue = (Ze, Qe汀， Ui= (Zi, Qi?, 凸， andx±satisfy (1)-(3). 
Then, the condition 8凸— DxUi ヂ 0 on r(t) is equivalent to Dx公ー Dx公ヂ 0on r(t). 

3.2 C a・ oor mate transformat10n 

To analyze the free boundary problem (23)―(24) mathematically rigorously, we need to 
transform this problem on a moving domain (こ(t),oo) into another one cast on a fix 
domain, say, R+. This is done through a diffeomorphism rp(t, •) that maps R+ onto 
（ェ(t),oo) for each time t, which should satisfy rp(t, 0) =ェ(t).Several choices are possible 
for rp and we choose it appropriately. Here, we should emphasize that this diffeomorphism 
rp(t, ・) is also unknown quantity. Once we have the contact point互(t),rp(t, •) is determined. 
We put u = U o rp and introduce the notations 

度u= (8山） 0 r_p, 

Then, we have the relation 

冴u= (8山） 0 r.p. 

l o心
a::u = OxU, a『U= OtU - OxU = OtUー (Ot'P)o;:u, (25) 

8叶） 。ェや

and the free boundary problem (23)-(24) can be recast as a problem on a fix domain 

{a『u+ A(u)叩=0 in (0, T) x Rが

U=柘 on (0,T) x {x = 0}, 
(26) 

where ui(t) =仏(t五r(t))contains an unknown contact point互(t).The first equation in 
(26) is written in the standard form 

Btu+ A(u, 如）8四 =0,

where 
1 

A(u如） = (A(u)-(知）Id). 
0叶？

The eigenvalues of A(u, 和） are given by土否パ入士(u)干如） and we will consider the 

solution (u, 互） of (26) satisfying入土(u(t,x))ヰ 0心(t,x) > 0. Under Assuption 1 and an 
appropriate choise of the diffeomorphism 1..p(t, ・), this condition would be equivalent to 
入士(u(t,0))干位(t)> 0. Without loss of generality, we can assume that互(0)= 0, so that 
we impose the initial conditions of the form 

ult=O =砂 in R十 9 ;r:_(O) = 0. (27) 

3.3 Linearized equations and good unknowns 

We linearize (26) around (u旦） and denote the variation in the linearization by (bu, 位）．
It is important to introduce good unknowns (u, 盆） by 

盆：＝位， it:=如ー（和）選u.
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In terms of these unknowns the linearized equations have the form 

｛叩+A(u)叩=j in (0, T) x R十 9

心十盆(8:fu-8:fui) = g on (0, T) x {x = O}, 
(28) 

where j and g are given functions. We note that thanks of the introduction of the good 
unknowns, the structure of the equations, that is, the principal part of the first equation 
in (28) does not change under this linearization. We decompose the boundary condition 
into the direction 8:f u -8:f ui and its perpendicular one to obtain 

｛叩+A(u)叩=j in (0, T) x R十9

v•u=g1 on (0,T)x{x=O}, 
(29) 

and 

盆＝
炉.it 

閻u一度叫2
+ f12 on x = 0, (30) 

where 11 = (選u-a;:祐）上.Here, we note that the first equation in (29) can be written as 

励+A(u, ar.p)邸 =j,

where we are assuming that A(u, 和） has positive and negative eigenvalues. Therefore, 
the equations for u and that forわarenow decoupled, and that it is sufficient to analyze 
the initial and boundary value problem to (29). 

3.4 Energy estimate and Kreiss-Lopatinski1 condition 

In view of (29), we need to consider the classical initial and boundary value problem to a 
linear hyperbolic 2 x 2 system of equations 

Fi>+:~,;;,~四 ~f(t,x)~: 麿〗こ↑x十'~O},
U=砂 (x) on { t = 0} x R十9

(31) 

where u, uin, f, and v are R2-valued functions and g is a real-valued function, while A 
takes their values in the space of 2 x 2 real-valued matrices. We also make the following 
assumption on the hyperbolicity of the system. 

Assumption 2 There exists c0 > 0 such that the following assertions hold. 

i. A E w1,00((0, T) x R』,V E C([O, Tl). 

ii. For any (t,x) E (O,T) x R+, the matrix A(t,x) has eigenvalues土入十(t,x) satisfying 
心(t,x)2': c0. 

Under the condition ii in Assumption 2, the system in (31) is particularly strictly hy-
perbolic, so that one can easily construct a symmetrizer S(t, x), that is, a positive matrix 
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with the property that S(t, x)A(t, x) is symmetric. Then, by the standard calculations 
we have 

d 
面JS(t, x)u(t, x)・u(t, x)dx -S(t, O)A(t, O)u(t, 0)・u(t, 0) 

~r{(邸(t,x)+疇(t, x)A(t, .r,)))n(t, x) + 2S(t, x)J(t, x))・n(t, x)dx. 
R+ 

In order to obtain a useful energy estimate, we have to control the boundary term 
S(t, O)A(t, O)u(t, 0)• u(t, 0). The next proposition relates the uniform Kreiss-Lopatinskil 
condition with a control of this boundary term, and particularly, the condition yields the 
maximal dissipativity on the boundary. 

Proposition 2 Suppose that the conditions in Assumption 2, lv(t)I~c0, and IA(t, x)I :S 
1/c。holdfor some c0 > 0. Then, the following four statements are all equivalent. 

i. There exist a symmetrizer SE W1•00((0, T) xい） and positive constants a。and(3。
such that a。Id:S S(t, x) :S (301d and that for any v E R2 satisfying v(t)・v = 0 we 
have 

vT S(t, O)A(t, O)vさ0.

ii. (The maximal dissipativity.) There exist a symmetrizer SE W1•00((0, T) x R+) and 
positive constants a。,(30, a1, and (31 such that a。Id:S S(t, x) :S (301d and that for 
any v E R2 we have 

vT S(t, O)A(t, O)v :S -a1lvl2 + (3位(t).vl2-

iii. There exists a positive constant a。suchthat 

l1r_(t, O)v(t)_j_l ;::=: a。,

where 1r±(t, x) is the eigenprojector associated to the eigenvalue土入土(t,x)of A(t,x). 

iv. (The uniform Kreiss-Lopatinskiz condition.) There exists a positive constant a。such
that 

lv(t)・e+(t,O)I ;::=: ao, 

where e土(t,x) is the unit eigenvector associated to the eigenvalue土入土(t,x)of A(t,x). 

Thanks of this proposition, if we impose the uniform Kreiss-Lopatinskff condition, 
then we can show the well-posedness of the initial and boundary value problem (31). 
Now, we turn to consider the free boundary problem to the 2 x 2 quasilinear hyperbolic 
system (26). In view of the linearized problem (29), the corresponding Kreiss-Lopatinski'i'. 
condition would be 

lv•e+(u)l>O on x=O, (32) 

where v = (8:f u -8:f ui)_j_ and e士(u)is the unit eigenvector邸 sociatedto the eigenvalue 
士入士(u)of A(u). The following proposition helps us to check this Kreiss-Lopatinski1 
condition. 
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Proposition 3 Suppose that u together with翌 isa regular solution to (26) satisfying 

(8:fu-a;: 祐）lx=Oヂ0and入土位(t,0))干知(t)> 0. Then, th ere exists a unique unit vector 
μ=μ(t) up to the sign such that 

μ. (8訊 +A(祖）8託）lx=O = 0. 

Moreover, we have the following identity on x = 0: 

Iv• e+(u)I = 
囚(u) —虹）虜u ー選叫

I ((泣）Id -A(u))国
Iμ. e+(u)I. 

Therefore, under our restriction (8:f uー選糾）lx=O =/ 0 and入土(u(t,0))干atェ(t)> 0, the 
Kreiss-LopatinskiY condition (32) is equivalent to 

Iμ ・e+(u)I> 0 on x = 0. (33) 

In the case of the shallow water model (1)-(3) with a且oatingsolid body on the water 
surface, the eigenvector e+(u) andμare given by 

1 1 
e+(u) =ごT+(u)2(い）），μ=G), 

so that the Kreiss-Lopatinskff condition is automatically satisfied. 

4 Local well-posedness 

We now fix the diffeomorphism cp(t, •) : R+→ （竺(t),oo) by 

叫，x)= x+心ピ）五(t)' (34) 

where 1/J E C0(R) is a cut-off function such that心(x)= 1 for lxl ::; 1 and = 0 for lxl 2'. 2, 
and E > 0 is chosen to be sufficiently small. As for the local well-posedness of the initial 
value problem to (26), we have the following theorem. 

Theorem 1 Let m 2'. 2 be an integer. Suppose that Assumption 1 is satisfied. If uin E 
加 (R+)takes its values in a compact and convex set JC。C U and if the data砂 and
Ui E wm,00((0, T) x (一15,15)) satisfy 

i. 心(uinlx=o)干吋>0, 

ii. (Bx砂）lx=O -(BxUi)lt=x=O =J 0, 

iii. ((8四 in)lx=O-(8xUi)lt=x=O)_j_・ 年 (uinlx=O)=J 0, 

where吋=(8心）lt=O is determined by 

in= 
笙1

(A(uinlx=o)(む砂）lx=O + (8t訊）t=x=O) . ((む砂）lx=O -(むUi)t=x=O)

l(ax砂）lx=O -(8x仏）t=x=al2 
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and the compatibility conditions up to order m-1, then there exist T1 E (0, T] and a unique 
solution (u, ;r;_) to (26) in the time interval [O, T叶withthe diffeomorphism'P defined by 
(34) and the solution satisfies 

冒1~'.1:dご。／悶＋）］。／゜；"'o/,~,,, -1, 
ェEH呵O,T).

We turn to consider the local well-posedness of the initial value problem to the shallow 
water model with a floating solid body on the water surface. For simplicity, we restrict 
our consideration to the case of a freely floating body, so that we consider the initial value 
problem (19)-(22). The other cases can be treated in the same way. As before, we need 
to use a coordinate transformation to reduce the equations on the unknown region£(t) 
to those on a fixed region f_. Let立 andヰ bethe initial contact points at time t = 0 
such that笙門＜ェ団 andput f__ = (-oo, 立'.'.'),f_+ = (立t,oo),and f_ = f__ Uf_+・We use a 
diffeomorphism cp(t, •) : f_→ £(t) and put (e = Zeocp, he= Heocp, qe =仏ocp,(; = Ziocp, 
and qi = Qi o cp. Such a diffeomorphism cp can be constructed as in (34), that is, 

~(t,x)~{ X十,,,c-,王~)に (l) ―立） fo, XE[_ , 

x十心(X-E五＋）い(t)一ェ誓） for XE立
(35) 

whereゆEC0(R) is a cut-off function such that心(x)= 1 for lxl :':'.: 1 and= 0 for lxl 2'. 2, 
and E > 0 is chosen to be sufficiently small. As before, we will use the notation a;: and 
8『whichwere defined by (25). Now, the problem under consideration is reduced to 

｛厄＋亭 ~o in[, 

丘+a礼 +~gh;) = 0 in [, 

with the matching condition 

he = hi, qe = m on 喧，

the ordinary differential equations 

8tW = F(W, x_, x+), 

and the initial conditions 

｛は，qe)lt=O= ((翌，q翌） in£(0), X五 o=塁
Ziilt=O =訂 (xa,za, 0, Va, w)lt=o = (x牲，z3,o,v牲，win).

(36) 

(37) 

(38) 

(39) 

Let us calculate笙出 = (8心）lt=O in terms of the initial data. Differentiating the 
boundary condition Ze(t, x±(t)) = Zi(t, X土(t))with respect tot and using the equation 
8t尻十 f)x(ふ=0, we obtain (8xZe — 8xZi)fJ心土= (8xQe + 8tZi) on fJ[士， sothat 

in Z悶+fJxq位
笙±c,1= 

8xく炉ー 8立,lid ' 
(40) 

X=竺翌
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where Z性=(a必）lt=O is given by 

Z悶(X)= (U~+ Win (叫〗：り））（辺↑土））
The following theorem asserts the local well-posedness of the initial value problem (36)-
(39) to the shallow water model with a freely floating solid body on the water surface. 

Theorem 2 Let m :::-2 be an integer and Ir an open interval. If the data ((位，q位） E 

加（こ），ェ誓 EIf, (如， x~,z翌， U性， win) E R6, and Z1id E wm,00(!£) satisfy 

I. X <x 

ii. inf(h。+ZH<l(x)) > 0, inf(h。+(位(x))> 0, 
ぉEh xEf:_ 

iii. inf 
lq位(x)IXEこ（エニ亨〗— h。＋匂(x)) >0, 

in 
iv. (心面丁己 qe ー加+(!n―辻，1)[)[_ > 0, 

v. (ax知—似位）laこcJ0, 

where辻，1is defined by (40), and the compatibility conditions up to order m -l, then 
there exist T > 0 and a unique solution ((砂e,X土汀戸0,z0, 0) in the time interval [O, T] 
to (36)―(39) with the diffeomorphism cp given by (35) and the solution satisfies 

｛二~二， ~f.'.\~:;~ ニ＿悶，）~tい゜~~! 二，I,

互 EH叫0,T), qi E Hm+1(0, T), 叩， zc,0 E Hm+2(0, T). 

The details in this communication will be published in T. Iguchi and D. Lannes [1]. 
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