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Abstract 

The complex Ginzburg-Landau equation (CGLE) is a general model of spatially extended nonequilib-

num systems. In this paper, an analytical method for solving a variable coefficient CGLE (VCCGLE) is 

presented to obtain exact solutions. Variable transformations for space and time variables with coefficient 

functions yield an imaginary time advection equation related to a complex valued characteristic curve. 

The VCCGLE is transformed into the nonlinear Schrodinger equation (NLSE) on the complex valued 

characteristic curve. This result indicates that the exact solutions of the NLSE generate that of the 

VCCGLE. Examples of the exact solutions of the VCGLE are presented through those of the NLSE. 

1 Introduction 

Spatiotemporal dynamics in dissipative systems have attracted the interest of researchers in the past 

few decades [1, 2]. In this literature, complex wave patters play dominant roles in various fields, such 

as fluid convections [3], fiber optics [4], chemical reactions [5] and biological systems [6]. In particular, 

localized dissipative waves, known as dissipative solitons, serve variety of the spatiotemporal dynamics in 

the dissipative systems [7]. Thus the nature of the dissipative solitons have been studied intensively by 

analytical, experimental and numerical methods to obtain the knowledge of the related systems. 

As a fundamental model of the dissipative systems, the complex Ginzburg-Landau equation (CGLE) 

has been introduced by means of singular perturbation methods [8, 9]. The parameters of the CGLE 

is derived from the original evolution equations of the dissipative systems. Thus the emergence of the 

dissipative solitons can be predicted by estimating specific values of the parameters of the CGLE. Based 

on the idea, the control method of the dissipative solitons were developed in and applied to the optical 

fiber telecommunications [10]. 

Recently, the dissipative solitons under spatiotemporal modulations were began to be investigated in 

the area of the Bose-Einstein condensation [11, 12, 13, 14] and signal processing in optical fibers [15, 16, 

17, 18]. In these systems, the CGLE is modified to have space and/ or time dependent variable coefficients 

originated from external magnetic fields and/or optical lattices [19, 20]. To investigate the behavior of the 

dissipative solitons in these systems, analytical approximation techniques with numerical methods have 

been employed: a secant hyperbolic form anzats takes the dynamical system of the parameters of the 

dissipative solitons [21], the method of variational approximation provides the criteria of stability [22], 

steady state assumption derives nonlinear eigenvalue problems which determine the shape of the spatial 

modes of the dissipative solitons [23]. 

Despite the previous studies of the dissipative solitons under spatiotemporal modulations, fully an-

alytical methods, which provide exact solutions, have yet to be developed except to the situation that 
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temporal modulations only exist [24]. In this study, therefore, we develop an analytical method for solv-

ing a variable coefficient CGLE (VCCGLE) with its solvable condition. As applications of the proposed 

method, we investigate the spatiotemporal dynamics of the dissipative solitons of the VCCGLE in related 

physical systems. 

2 Formal solutions of the variable coefficient complex Ginzburg-Landau 

equation 

The CGLE is derived from nonlinear partial differential equations of the dissipative systems, based 

on the assumption that the spatiotemporal dynamics can be described by slow amplitude evolution on 

a carrier wave. In order to incorporate the effect of inhomogeneity in media and temporal modulation, 

space and time dependent variable coefficients are introduced into the CGLE in the form: 

如 821/J
l面+p(x,t) 戸—+ q(x, t)I心121/J= [―叫t)+ i,(t)]心， (1) 

where心(x,t) describes slowly evolving amplitude of the systems. The coefficient functions p(x, t) and 

q(x, t) are given by p(x, t) = Pr(x, t) + ipi(x, t) and q(x, t) = qr(x, t) + iqi(x, t), where Pr(x, t), Pi(x, t), 

qr(x, t), and qi(x, t) are real valued functions, 7(t), and叫） are positive definite real valued functions. It 

is assumed that p(-x, t)q(-x, t) = p(x, t)q(x, t). In the literature of nonlinear wave theory, p(x, t), q(x, t), 

7(t), and w(t) correspond to linear dispersion and dissipation, nonlinear saturation, linear gain or loss, 

and frequency modulation coefficients, respectively. 

2.1 Variable transformations 

The complex valued function心(x,t) is transformed into 

ゆ(x,t) = exp[f(t) + iO(t)炉(x,t), 

where r(t) and O(t) are defined by 

r(t) = j'Y(t')dt', 

叩） = j w(t')dt'. 

Substituting Eqs. (2), (3) and (4) into Eq. (1) with a transformed variable 

T = j q(x, t')e汀 (t'ldt'

and a transformed coefficient function 

r(x, t)2 = 
p(x, t) 

e 
-2r(t) 

q(x, t) 

one obtains a variable coefficient nonlinear Schrodinger equation (NLSE) as 

Brp 
— +r(x,T) 

2B2<p 

BT Bx2 
+ l'P 2'P = o. 

(2) 
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(5) 

(6) 

(7) 

In order to obtain transformed variables which reduce Eq. (7) to the NLSE without the variable coef-

ficients, a complex valued characteristic curve is introduced. Suppose~(x, T) is a transformed variable 

satisfying an imaginary time advection equation 

信—［二r(x,T)2]虞=0 (8) 
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On the characteristic curve of Eq. (8), the variable coefficient NLSE in Eq. (7) is transformed into 

2 
8<.p 淡 8
ご (r(い）西英)'-P+I叫2'-P= 0. 

Introducing the variable transformation as 

'T/ = J二，T)(塁）―id(,

Eq. (9) yields the NLSE with respect to'T/皿 dT 邸

如 02'{)

否十芹十 'Pl2'P= o. 

(9) 

(10) 

(11) 

Since the exact solutions of the NLSE can be obtained by several methods, the inverse variable transfor-

rnations for the solutions of Eq. (11) provide those of the VCCGLE in Eq. (1). 

2.2 Solvable condition of the imaginary time advection equation 

In order to solve the imaginary time advection equation in Eq. (8), without loss of generality, the 

solvable conditions with respect to variable coefficients are introduced. Suppose p(x, t) and q(x, t) are 

given by 

p(x,t) =ふ(x)Tv(t),

q(x, t) =ふ(x)Tq(t),

(12) 

(13) 

where X心） and Tz(t) (l = p, q) are positive real functions, respectively. With Eqs. (5), (12) and (13), 

the imaginary time advection equation in Eq. (8) is rewritten as 

i 淡 1 8 (い））洸
加）玩―うふ(x)元 X土） 元 =0.

By the method of characteristics [29], the corresponding characteristic equations are derived as 

dt 
=-

ds ⑭ (t)' 

dx 1 8 ふ(x)
面＝一5ふ(x国（ふ(x))'

(14) 

(15) 

(16) 

where s is an auxiliary variable of the characteristic curve. From Eqs. (15) and (16), the characteristic 

curve is derived as 

/'i,= -ix Xqい［羞（芯：：｝）］―idx'+i ft⑭ (t')dt', (17) 

皿 dthus the solution of the imaginary time advection equation is obtained as 

t(x, t) = fo(1,,), (18) 

where (o(・) is an initial function of Eq. (8). Moreover, if Xq(x) is constant, the transformed variable T/ is 

reduced to 

1) = ix dx' 
r(が，T)

(19) 

by the inversion function theorem. Under these solvable conditions, the specific forms of transformed 

variables can be ealculated. 
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3 Exact solutions of the nonlinear Scrodinger equation 

With the use of the variable transformations in the previous section, one can obtain the exact solutions 

of the VCCGLE through those of the NLSE. In this section, thus, exact solutions of the NLSE are briefly 

reviewed. 

Hirota's bilinear method was developed to solve integrable nonlinear wave equations by algebraic 

procedures. The D-operator for differentiable functions f (z) and g(z) is defined by [28] 

叫 f・g)= [誓g(z')-f (z) 81~ り］が=z (20) 

The complex valued function <p(TJ,T) is assumed to be a rational function of real F(TJ,T) and complex 

G(ry,) T funct10ns as 

'P(T/, T) = 
G(ry,T) 

F(ry,T)― 

The following relations between partial derivatives and D-operators 

釦 D7(G・F)
＝ 街 p2 , 

匹 D加(G-F) D印(F・F)
＝ 枷2 戸 GF

for Eq. (11) yield the bilinear forms with respect to F and Gas 

D7(G-F) +D化(G-F)=入GF,

D加(F-F)-IGl2 =入p2_

(21) 

(22) 

(23) 

(24) 

(25) 

The auxiliary function入(T/,T) is introduced to incorporate boundary conditions into the bilinear forms 

in Eqs. (24) and (25). The exact solutions of the NLSE are obtained from algebraic procedures for the 

bilinear forms. 

Suppose F and G are expanded with respect to an infinitesimal parameter E as 

F=l+E2凡十 E4F4+・・・，

G = EG1 + E3G3 +・ ・ ・. 

(26) 

(27) 

Substituting Eqs. (26) and (27) into Eqs. (24) and (25), one obtains an E-hierarchy of the bilinear forms. 

Although the perturbation expansions in Eqs. (26) and (27) are infinite series, the E-hierarchy of the 

bilinear forms are truncated at finite order. In particular, the one soliton solution is immediately obtained 

under入=0邸 follows:

孤'f/,T) = Asech(K71 -VT)e10。, (28) 

where A, K, V, and 0。areconstant parameters. Since the NLSE describes the propagating envelope of a 

carrier wave, the soliton solution in Eq. (28) is called an envelope soliton. Figure 1 shows spatiotemporal 

dynamics of magnitude of the envelope soliton in Eq. (28). As well known, a unimodal shape propagates 

with constant velocity in this figure. 

The NLSE has a rational function solution [30]. Suppose F and Gin Eq. (21) are polynomial functions 

of x and t, their coefficients are determined sequentially by direct substitution. Depending on the highest 

order of the polynomials, the rational function solutions of the NLSE exhibit different forms. The possible 

lowest order polynomials of F and G yield the following rational function solution 

ゃ(TJ,T)=[l-1尺；戸:~2] 炉 (29) 
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Fig. 1: Spatiotemporal dynamics of the envelope soliton solution. The parameters in Eq. (28) are fixed as A=  K = 

V=0。=1.0. 
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Fig. 2: Spatiotemporal dynamics of the Peregrine soliton. 

The spatiotemporally localized soliton in Eq. (29) is known as the Peregrine soliton, which is used as a 

mathematical model of rogue waves and freak waves [31, 32]. In Fig. 2, it is seen that a localized wave 

emerges around the center of filed. It disappears after a short living time. 

In addition, a periodic wave solution is derived from the NLSE [33, 34]. To obtain an oscillating 

solution the following ansatz is introduced as 

<.p(7J,T) = [p(7J,T)+u(T)]eiO(r), (30) 

where p('T/, r) is a complex valued function, O"(r) and 0(r)紅 ereal valued functions. Substituting Eq. (30) 

into Eq. (11) provides the set of differential equations with respect top, O" and 0. Through a cumbersome 

calculation with integrable conditions, a periodic solution is obtained as 

ゃ(r,,T)= 
cos(⑫ r,) + iv'2sinhT 

e圧
cos(v'2r,) -v'2coshT 

(31) 

This periodic solution shows breathing oflocalized wave trains, which is known as the Akhmediev breather, 

as is shown in Fig. 3. In this figure, periodically aligned localized waves emerge around the center of field. 
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Fig. 3: Spatiotemporal dynamics of the Akhmediev breather. 

4 Examples of related physical systems 

Some relevant physical models of the VCCGLE appear in the field of plasma fluid, optical lattice 

and the Bose-Einstein condensation. In previous works, both analytical and numerical approximation 

methods have been introduced to investigate the spatiotemporal dynamics of the relevant models. The 

proposed method in this paper, on the other hand, provides the exact solution of the VCCGLE related 

to those of the NLSE presented in Sec. 3. 

4.1 Nonlinear waves in plasma systems 

In the plasma system where an electron beam is injected, an unstable NLSE is derived from electro-

magnetic fluid equations. As a generalized model of slowly v紅 yingamplitude modulations, the NLSE 

with space v紅 iablecoefficients has been introduced as follows: 

信+p(x誓+q(x)心121/J= 0. (32) 

Interchange of variables x and t in Eq. (32), one obtains a stable variable coefficient NLSE considered in 

the system of soliton equation with slowly varying variables [25]: 

i枷 a2'1/;

at 
— +p(t) —+ q(t)I心12'1/;= 0. 

8x2 
(33) 

Since this equation is a reduced form of the VCCGLE in Eq. (1), exact solutions with the corresponding 

variable transformations can be obtained. As an example, here, the time variable coefficients in Eq. (33) 

are given邸

p(t) = 1 + apcos(w研十 6砂

q(t) = 1 + aqsin(w砂＋％），

(34) 

(35) 

where ap, aq, wp, wか Opand Oq are positive real parameters. In this case, auxiliary variables are readily 

obtained from Eqs. (5) and (19) as 

aq 
T = t + -[cos(w砂＋幻ー 1],

Wq 

1 + aqsin(w砂＋幻
7/ = Ii x. 

1 +apcos(w祉＋炉

(36) 

(37) 
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Fig. 4: Spatiotemporal dynamics of the envelope soliton under periodic temporal modulation. The coefficients of 

p(t) and q(t) are fixed as follows: ap = 0.1, Wp = 10, Op= 0, aq = 0.1, Wq = 5, Oq = 0. 
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Fig. 5: Spatiotemporal dynamics of the Peregrine soliton under periodic temporal modulation. The coefficients of 

p(t) and q(t) are fixed as follows: ap = 0.1, Wp = 10, 8P = 0, aq = 0.1, Wq = 5, 8q = 0. 

Periodic temporal modulations in x and t directions are expected to appear by influence of the variable 

coefficients in Eqs. (34) and (35). Figure. 4 shows a propagating envelope soliton under the periodic 

temporal modulation. In these pictures, the velocity of the envelope soliton varies periodically while the 

shape of it is invariant. In Fig. 5, the Peregrine soliton is also affected by the periodic temporal modulation. 

Its tails spread periodically in time direction after the wave emerging suddenly. The spatiotemporal 

dynamics of the Akhmediev breathers under periodic temporal modulation is exhibited in Fig. 6. The 

influence of temporal modulation is observed clearly far from central domain. 

4.2 Nonlinear optical lattice 

The system of nonlinear optical lattices is given by the NLSE or CGLE with spatially modulated 

variable coefficients for linear and/or nonlinear terms [26]. For the sake of brevity, we consider the case 

that only nonlinear terms are influenced by spatial modulation. In this c邸 e,the NLSE with a linear 

damping and a spatial variable coefficient is presented邸

.8ゅ 821/;
可+戸・+q(x)I心121/J=噌． (38) 
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t 0 

一Fig. 6: Spatiotemporal dynamics of the Akhmediev breather under periodic temporal modulation. The coefficients 

of p(t) and q(t) are fixed as follows: ap = 0.1, wp = 10, Op= 0, aq = 0.l, wq = 5, Oq = 0. 

The linear daJUping term with the positive constant I leads to r = ,t in Eq. (3). In this example, the 

variable coefficient q(x) is given as 

q(叫=1-応 in2x,(0 < k < 1), (39) 

which appears in PT-symmetric systems [27]. Transformed variables are derived from r(t) and q(x) as 

1 
T=-(1-k怜in2x)(e2't-1) 

21 

T/ = e21tF(xi, k), 

(40) 

(41) 

where F(¢, k) is the incomplete elliptic integral of the first kind. With these transformed variables, the 

exact solutions presented in Sec. 3 provide the spationtemporal dynamics of Eq. (38). 

Figure 7 shows an envelope soliton in the nonlinear optical lattice. It is observed that the shape of 

the envelope soliton changes under acceleration. The symmetry breaking of the Peregrine soliton on the 

time direction is observed in Fig. 8. In fact, as is confirmed in Eqs. (40) and (41), both T and T/ no longer 

have symmetry with respect to the time variable t. With existence of the linear damping and spatial 

modulation, the Akhmediev breather focus on the time direction and then converges into a plane wave. 

To the best of my knowledge, it is first time that such an anomalous dynamics of the nonlinear wave 

propagation under the optical lattice are observed. 

5 C onclus10n 

In this paper, the analytical method for solving the VCCGLE was presented. On the characteristic 

curve, which introduces the imaginary time advection equation, the VCCGLE can be transformed into 

the NLSE with respected to the transformed variables. Also, the solvable condition for the imaginary time 

advection equation was introduced in order to obtain the characteristic curve analytically. Examples of the 

VCCGLE were investigated related to the plasma systems and optical lattices, where it was demonstrated 

that the proposed method yields the exact solutions of the VCCGLE with closed forms of the transformed 

variables. 

A space dependent coefficient function for the linear term was not considered in this paper. In 

other words, as a model of the Bose-Einstein condensation, Eq. (1) is not applicable to describe the 
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Fig. 7: Spatiotemporal dynamics of the envelope soliton under linear damping and spatial modulation. The coeffi-

cients are fixed as follows: , = 0.5, k = 0.5. 
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Fig. 8: Spatiotemporal dynamics of the Peregrine soliton under linear damping and spatial modulation. The coeffi-

cients are fixed as follows: , = 0.5, k = 0.5. 
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Fig. 9: Spatiotemporal dyn皿 icsof the Akhmediev breather under linear damping and spatial modulation. The 

coefficients are fixed as follows: 1 = 0.5, k = 0.5. 
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spatiotemporal dynamics of macroscopic wave functions. Incorporating the space variable coefficient into 

the linear term of the VCCGLE will be considered near future. 
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