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Parametric representations of multisoliton solutions 
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We consider three novel PDEs associated with the integrable generalizations of the short 

pulse equation classified recently by Hone et al (2018 Lett. Math. Phys. 108 927-947). In 

particular, we obtain a variety of exact solutions by means of a direct method combined 

with the reciprocal transformations. We report the main results associated with soliton 

solutions. Specifically, we present the parametric representations of multisoliton solutions. 

These solutions include cusp solitons, unbounded solutions with finite slope and breathers. 

In addition, the cusped periodic wave solutions are constructed from the cusp solitons by 

means of a simple procedure. The new features of solutions are exemplified for both the 

cusp solitons and cusped periodic waves. 

1. Introduction 

The classification of the integrable PDEs of second order with quadratic and cubic non-

linear terms has been performed recently by Hone et al [1]. They found the following 

seven integrable PDEs including the SP equation: 

1 
Uxt=U+ ( -u  

6 
3 
) xx, 

Uxt = U + (u2)xx, 

2 
Uxt = U + 2uuxx + ux, 

Uxt = U + U2匝 +uu;,

Uxt = u + 4uuxx + u;, 

Uxt = u + (u2 -4u2囮）x, 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 
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知=u + a(2u駈 ＋ 心 +fJ(u2駈＋叫）， a(Jヂ0, (1.7) 

where u = u(x, t) represents a scalar function of x and t, and subscripts x and t appended 

to u denote partial differentiations. Equation (1.1) is the short pulse (SP) equation which 

has been derived as an asymptotic model describing the propagation of ultra-short pulses 

in isotropic optical fibers [2]. A large number of works have been devoted to the study 

of the SP equation. See, for example, a review article [3] as for the soliton and periodic 

solutions and their properties. Equations (1.2), (1.3) and (1.4) are already known and 

sometimes called the Vakhnenko (or reduced Ostrovsky), Hunter-Suxton and modified SP 

equations, respectively [4-7]. While equations (1.3) and (1.5) have been derived in the 

process of studying the short-wave dynamics of surface gravity waves [8], the analysis of 

the latter equation has not been done yet. On the other hand, equations (1.6) and (1.7) 

seem to be new, as far as we know. 

The purpose of this short report is to present the parametric representations for exact 

solutions of equations (1.5)-(1. 7) and investigate their properties. In particular, we are 

concerned with the cusp soliton solutions and their periodic analogs for each equation. 

The detailed description of the exact method of solutions and solutions will be reported 

elsewhere [9]. 

2. Parametric solutions of equation (1.5) 

First, we rewrite equation (1.5) in the form 

3 1 2 知＝ぅU-UUxx―］匹 (2.1) 

by rescaling the variables according to t→ (3/2)t, u→ -u/6. Then, equation (2.1) can 

be put into the local conservation law 

2 

Pt+ (pu)x = 0, p = m3, m = 1-Uxx・ (2.2) 

We construct solutions of equation (2.1) under the boundary condition u→ o, lxl→ 00. 

2.1. Parametric solutions 

The goal is to establish the following theorem. 

Theorem 2.1. Equation (2.1) admits the parametric representation for the multisoliton 

solutions 

u = -2(lng)合 9

x = y -2(lng)r + Yo, 

(2.3a) 

(2.3b) 
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where g = g(y, T) is the tau-function given by 

g=ド-2DTD』・f, (2.4) 

with f = f (y, T) being the fundamental tau-function expressed by a finite sum 

N 

f=~ い［苫μi(~i +叫+1:<; 苫~Nµiµj"/ij] , (2.5a) 

3 
~i = kiy+-T+~iO, (i = 1,2, …，N), (2.5b) 

2k; 

砂＝
(k; —鱈(k; -kふ＋尻）
(k; + k州(k;+ kふ＋闘）＇

(i,j=l,2, ... ,N;i=Jj). (2.5c) 

Here, k; and~i。 are arbitra可 complexparameters, and N is an arbitrary positive in-

teger. The notation区μ=O,Iimplies the summation over all possible combinations of 

μ1 = 0, 1, 四=0, 1, ... , 邸=0, 1. The bilinear operators Dr and Dy in (2.4) are de-

fined by 

仄 Dn . 
a a m 

T yf g = (百―戸）（羞—喜） f (y, T)g(y', T1) r'=r,y'=y'(m, n = 0, 1, 2, …）． 

The above expression for u will be shown to represent the non-periodic N-cusp soliton 

solution for the real parameters kj andら0. The former parameters are related to the 

amplitudes of solitons whereas the latter ones represent the phases of solitons. The cusped 

periodic wave solutions can be constructed by replacing these real parameters with the 

pure imaginary ones, i.e., kj→ ikからo→ iら0(j = 1, 2, …, N). Theorem 2.1 is proved by 
a sequence of steps, which will be detailed in [9]. 

2.2. Soliton solutions 

2.2.1. Cusp soliton 

Here, we explore the properties of soliton solutions for both the non-periodic and periodic 

cases. In particular, we show that soliton solutions take the form of cusp solitons. The 

tau-functions for the one-soliton solution are given by (2.4) and (2.5) with N = 1 and 

k1ふ€ 股.They read 

f = 1 -e~, g = 1 + 4e~+ e竺~= ky+玉T+ fo, (2.6) 
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where we have put~= 6, k = k1 and fo = 60 for simplicity. The parametric representa-

tion of the solution follows from (2.3) and (2.6). It can be written in the form 

9 2 cash l + 1 
U=-

2炉 (cashl + 2)2' 
(2.7a) 

3 l 3 sinh 
X 三 x+ — t+x0 = --- t 

2k2 k k cash l + 2' 
(2.7b) 

where the traveling-wave coordinate X has been introduced for convenience in which x。
is an arbitrary real constant. A typical profile of u is depicted on the left panel of figure 

1 as a function of X. It represents a cusp soliton with the amplitude 3/(2炉） and the 

velocity 3/ (2炉）. To see the structure of the singularity in more detail, we compute the 

X derivative of u from (2.7) and obtain 

9 1 1 
Ux=  -

ktanh s. cosh~+ 2 
2 

(2.8) 

Near the trough X = 0 (~= 0), one estimates that ux ~ 6/(k~), X ~~ り(180k),and 

hence limx→土aux= limx→土0(218/5炉）1/5 j Xl/5 =土oo,showing the appearance of the 

cusp. 

2.2.2. Cusped periodic wave 

The cusped periodic wave solution is obtained formally from (2.7) if one replaces the 

parameters as k→ ik,(→ if It reads in the form 

9 2cos(+l 
U=  

2炉 (cos(+2)2'

3 (3  sin ( 
X 三 x- — t+xo = 

2炉 k kcos(+2・ 

The expression corresponding to (2.8) becomes 

9 1 1 
Ux  =--

k tan s. cos (+ 2・ 
2 

(2.9a) 

(2.9b) 

(2.10) 

It represents the cusped periodic wave with the period 21r / k. The cusp singularity appears 

at the crest of the periodic wave. The middle panel of figure 1 shows the profile of a cusped 

periodic wave with the period 21r J可瓦
It is important to observe that (2.9) belongs to a class of singular traveling waves. 

Actually, the traveling wave ansatz u = u(X), X = x -ct -x0 (c, x0 E股） reduces Eq. 
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(2.1) to an ODE -cuxx = 3u/2 -uuxx -ui:/4. Integrating this equation once with 

respect to X, we obtain 

ぼ）2 = 2u —lu~!1112 + 4c, (2.11) 

where d E賊 isan integration constant. One can confirm that (2.9) indeed satisfies Eq. 

(2.11) with d = -c312 and c = 3/(2炉）．

2.2.3. Peaked periodic wave 

Equation (2.11) exhibits smooth periodic solutions if c > 0 and O < d < c312. In particular, 
in the limit of d→ c312, the periodic wave reduces to an infinitesimal wave of the form 

u~acos亨 X,lal < < 1, a E艮 Inthe limit d→ 0, on the other hand, it reduces 

to the peaked periodic wave with parabolic profile 

1 
u = -(X2 -4c), X E [一亭，濫］，

2 
(2.12) 

periodically continued beyond the interval [--0兄』詞 Itshould be remarked that the 

solution (2.12) can be derived directly by integrating Eq. (2.11) with d = 0. See the right 

panel of figure 1. The phase plane analysis of Eq. (2.11) exhibits a variety of periodic 

solutions. The detail will be reported elsewhere. 
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Figure 1 The profiles of the cusp soliton, cusped periodic wave and peaked periodic wave 

solutions with the parameter k = J可豆 Left:Cusp soliton. Middle: Cusped periodic 

wave, Right: Peaked periodic wave with c = 1. 

3. Parametric solutions of equation (1.6) 

In this section, we present the parametric multisoliton solutions of equation (1.6). First, 

we observe that equation (1.6) exhibits two exact solutions, u = -x/4十叫+c2 and 

u = x/2十叫+c2, where c1 and c2 are arbitrary constants. We shall show that soliton 

solutions of equation (1.6) asymptotically approach either these straight lines or u = 0 

as lxl→ oo. Hence, the zero boundary conditions u→ o, lxl→ oo are not specified in 

advance. 
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3.1. Parametric solutions 

Here, we establish the following theorem. 

Theorem 3.1. Equation (1.6) admits the parametric representation for the multisoliton 

solutions 

U=~(lnft, 

x = y -(lnf勺）T +Yo, 

(3.la) 

(3.lb) 

where the tau-functions g = g(y, T) and f = f(y, T) are given respectively by (忍.4)and 

(2.5) in which the variable Tis replaced by 2T/3. 

3.2. Soliton solutions 

The tau-functions for the one-soliton solution is given by (2.4) and (2.5) with T replaced 

by 2T /3. They read 

f = l -et, g = l + 4et + e笠 (=ky+i+fo・ (3.2) 

Substitution of these expressions into (3.1) yields the parametric representation of the 

one-soliton solution 
3 coth s. 

U= 2 

2k cosh~+ 2' 
(3.3a) 

5. 
t~3 e2(eE+3) 

X 三 x+ — +x。=---
炉 k 2k sinh~(cosh~+ 2) 

+ Yo• (3.3b) 

It follows from (3.3a, b) by a direct computation that 

0.5 

コ 0

-0.5 

du 3(cosh 2~+ 2 cosh~+ 3) 
＝一

dX cosh 3~+ 6 cosh 2~+ 39 cosh~+ 26. 

-------, ________ _ 

-2 0 2 4 
X 

゜-0.05 
-0.1 

!:f -0.15 

-0.2 

-0.25 

-2 0 2 4 
X 

(3.3c) 

Figure 2. The profiles of an unbounded solution and its X derivative with the parameters 

k = 1.0, Yo = 3. Left: u. Right: ux. 
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The typical profiles of u and ux are depicted in figure 2 as a function of X. The solution 

exhibits the different features depending on the range of the parameter (Specifically, the 

solution represented by the solid curve in figure 2 corresponds to O <~< oo whereas that 
of the dashed curve corresponds to -oo <~< 0. The former (latter) solution diverges 

when X tends to -oo (+oo), and asymptotically approaches a straight line u = -X / 4 

since u ~ 1/(k~), X ~ -4/(k~) near~= 0. We observe that~= 0 is the zero of the 

tau-function f from (3.2) which separates two branches of the solutions. One can show 
that -1 / 4 < ux < 0 for any finite X. Recall that u = -X / 4 is an exact solution of 

equation (1.6). It can be seen from figure 2 that for each curve, ux takes the form of a 

kink. Note also that if u(x, t) is a solution of equation (1.6), then -u(-x, -t) satisfies 

equation (1.6) as well. This symmetry relation is manifested clearly in figure 2 in which 

the solution represented by the solid curve is mapped to that represented by the dashed 

curve by means of the transformation u(X)→ ―u(-X). 
Another divergent solution is produced if one shifts the parameter~。 as fo→ fo + i1r. 

Then, the tau-functions f and g from (3.2) become 

f = 1 + eE, g = 1 -4eE + e竺(=ky+ f +fo. 

The parametric representation of the solution corresponding to (3.3) is given by 

3 tanh s. 
U =  

2 

2k 2 -cosh ( 

t (3  包 (3-eり
X 三 x+ — +x。=---

炉 k 2k cosh s. ( 
2 

2 -cosh () 
+Yo, 

du 3(cosh 2(-2 cosh (+ 3) 
＝ 

dX cosh 3(-6 cosh 2(+ 39 cosh (-25・ 

(3.4) 

(3.5a) 

(3.5b) 

(3.5c) 
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Figure 3. The profiles of an unbounded solution and its X derivative with the parameters 

k = 1.0, Yo= 3. Left: u. Right: ux. 
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The profiles of u and ux for the same values of the parameters as those of figure 2 

are shown in figure 3. The solution has three branches according to the range of t The 
solid, thin solid and dashed curves represent the solutions for -oo < l < -s, -s < l < s 

and s < l < oo, respectively, where s is a positive solution of the transcendental equation 

cosh l = 2, i.e., s c::c 1.317. This coincides with the positive zero of the tau-function g from 

(3.4), i.e., l = ln(2 +⑰ • When compared with figure 2, a new branch of the solution 

appears which is represented by the thin solid curve. The corresponding expression of 

ux takes the form of a bright soliton on a constant background. Note that the inequality 

1/2 < ux < 3/4 holds for finite X. See the right panel of figure 3. 

4. Parametric solutions of equation (1. 7) 

We modify equation (1. 7) by means of the linear transformation (u, x, t)→ (U,X,T) 
ごaccording to U =和+1,X =― X十ヂtT =ヂt. Then, we find that it is 

°' ✓ ―万＇汀
expressed in terms of the new variables as Uxr = U -1-U2Uxx -UUえ.Subsequently, 

we replace the variables U, X, T by u, ix, -it, respectively, and obtain the basic equation 

that we consider here: 

知=u-l +u2知 +uu~. (4.1) 

In this section, we solve equation (4.1) under the boundary condition u→ i, lxl→ OO 

which corresponds to non-periodic solutions. 

4.1. Parametric solutions 

Here, we establish the following theorem. 

Theorem 4.1. Equation (4-1) admits the parametric representation for the multisoliton 

solutions 

u = l + i (1n l) , 
g T 

f x = y -T - i ln --(ln f g)-r + Yo, 
g 

(4.2a) 

(4.2b) 

where J and g are tau-functions given by 

f=Lexp[立((;+ d; -~i) + Lμ;μjrij] , (4.3a) 
μ,=0,1 i=l 1'.::i<j'.::N 

g=互exp[喜仏に— di+~i) +ピt1'.::N叫 jrij], (4.3b) 
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with 
1 

li =piy+-T十らo, (i=l,2, ... ,N), 
Pi 

1 + ipi 
砂 =,I (i=l,2, …, N), 

1-ip/ 

砕 j= (:: ~:; r, (i,j = 1, 2, …，N; i =J j). 

(4.3c) 

(4.3d) 

(4.3e) 

Here, Pi and品，。 arearbitrary complex parameters. 

If one puts Pi= tan 0i, then the expression of di from (4.3d) simplifies to di= i0i. This 

parametrization is found to be very useful in constructing cusp and breather solutions. 

The solutions given by (4.2) become co~plex-valued functions for complex parameters 

Pi and (iO・If one imposes the conditions f = g*, !} = f* for the tau-functions with the 

asterisk being the complex conjugate, then, (4.2) gives rise to real solutions characterized 

by a single tau-function g. It reads 
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＋
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(4.4a) 

(4.4b) 

The conditions mentioned above for the tau-functions are realized if one takes the real 

values for the parameters Pi and~iO which would lead to cusp soliton solutions, as will be 

exemplified below. Another choice is possible by putting N = 2M and p加 1=Pふ（ぃ＝

Gi (i = 1,2, …, M), where Mis a positive integer. The resulting solutions would be shown 

to take the form of breather solutions. 

4.2. Soliton solutions 

4.2.1. Cusp soliton 

The tau-function g for the one-soliton solution is given by (4.3b) with N = l. It c皿 be

written in the form 

g=l+ie~-d, ed=口,~=PY+ t T +~o, (4.5) 

where p and~。 are real parameters. If we put p = tan 0 (0 < 0 < 1r/2), then d = i0 and 

g = l + iel-iO. Introducing g into (4.35) yields a one-soliton solution 

cos 0 l 
u=l+ 

tan 0 cosh~+ sin 0' 
(4.6a) 
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X 三 x+ 1 t + Xo = l - 1 sinh l -2 tan―I (cos 0 tanh { . 
sin2 0 tan 0 tan 0 cosh l + sin 0 1 + sin 0 2) 

(4.6b) 

Here, the constant y。hasbeen chosen such that l = 0 corresponds to X = 0. Although 

the expression (4.6) represents a bounded solution, it has a cusp at the crest. To see this, 

we compute the X derivative of u to obtain 

役 cos0 
ux=-=- . 

XE sinh~ 
(4.6c) 

On the other hand, the coordinate X from (4.6b) has an expansion X =幻+O(~りnear

~= o, where K, = cos e+cot 0 Thus, Ux ~ -K,1/3 cos 0 x-1!3, implying that limx→士aux=
3(1+sin 0)3・ 

干00.

The profile of the cusp soliton is plotted as a function of X on the left panel of figure 

4. It represents a singular pulse propagating to the left at a constant velocity 1/ sin2 0 on 

the coordinate system at rest. 
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Figure 4. The profiles of the cusp soliton and cusped periodic wave solutions. Left: Cusp 

soliton with the parameter 0 = 1r / 4. Middle: Cusped periodic wave with the parameter 

0 = cosh―1 2. Right: Cycloid. 

4.2.2. Cusped periodic wave 

The cusped periodic wave solution is obtained formally from the cusp soliton solution (4.6) 

if one replaces the parameters~and 0 by i~and 1r/2 + i0, respectively. The parametric 

solution (4.6) then becomes 

sinh 0 1 
u=l-

coth 0 cos~+ cosh 0' 
(4.7a) 

X 三 x+ 1 t + x0 =~1 sin~- 2 tan―1 (sinh 0 tan { 
cosh'0 coth 0―coth 0 cos { + cosh 0 1 + cosh 0 (42~ バ

for~E (-1r, 1r). The solution (4.7) can be periodically continued beyond the interval 

(—入/2, 入/2)with入=21r(l -tanh 0). It turns out that (4. 7) represents a cusped periodic 
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wave with the amplitude 1/ cosh 0 and the period入.Its typical profile is depicted on the 

middle panel of figure 4. Since u x = sinh 0 / sin~, the cusp appears both at the crest and 

at the trough in marked contrast to the periodic traveling wave solution of equation (1.5) 

shown on the middle panel of figure 1 in which the cusp appears only at the crest of the 

wave. 

Last, we demonstrate that an intriguing result is obtained from a special limit of (4.7). 

To be more specific, let~= 1r + 0 cot(¢/2) (の E股）， andtake the limit 0→ 0. Then, 

(4. 7) reduces to 

u =cos¢, X 三 x+t+x0=¢+sin¢. (4.8) 

The profile of (4.8) is plotted on the right panel of figure 4. It follows from (4.8) that 

ux = -tan(¢/2), which determines the position of the cusp, i.e., X = 1r (mod 21r). The 

parametric solution (4.8) represents the cycloid which is familiar to us in geometry. It 

satisfies an ODE, (du/dX戸=(1 -u)/(1 + u). Actually, if we seek the traveling wave 

solution of the form u = u(X), X = x -ct+ x0 (c, x0 E股）， thenwe see that Eq. (4.1) 

can be recast to a nonlinear ODE, (du/dX)2 = -(u2 -2u + d)/(炉 +c) (d E良）. In 

the case of c = -1 and d = 1, this equation simplifies to an ODE mentioned above. 

Recall that the conventional representation of the cycloid is given by x = a(t -sin t), y = 

a(l -cost), (a> O,t E恥） in the (x, y) plane, and the transformation of (4.8) to this 

form can be made simply by shifting the variables u, X and¢by u -1, X + 1r and¢+ 1r, 

respectively. It is interesting to observe that the expression -u from (4.8) coincides with 

the surface profile of Gerstner's trochoidal wave which has been derived more than 200 

years ago in the theory of deep gravity waves [10, 11]. Last, we point out that smooth 

periodic wave solutions exist if c > 0 and d < 1 in the above ODE. 

4.2.3. Breather 

The breather solutions are obtained following the recipe described in the last sentence in 

section 4.1. To show this, we find it convenient to introduce the new parameters according 

to the relations 

ら=T/j + ixj, 知＝ふ十iμj, pj = tan化＝も+ibj, 化＝句+i/3j, (j=l,2, …，N). 
(4.9) 

The parameters aj and bj are expressed in terms of aj and /3j as 

2 
-sin 2a-

bj = 
½sinh 2/3j 

aj = 2 /3 . 2 , (j = 1, 2, ... , N). (4.10) 
cosh• -sm a・ cosh2 /3j―sin2 aj' 

It turns out from (4.10) that a凸=sin 2aj / sinh 2/3j. This quantity characterizes the 

feature of the solution. 
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Figure 5. The profiles of the breather solutions. Left: The smooth breather with the 

parameters P1 = p2 = tan(1r /6 + i), 60 =~2。= 0. Right: The singular breather with the 

parameters P1 = p2 = tan(1r /6 + 0.2 i), 6o =~2。= 0. 

Here, we consider the single breather solution. The corresponding tau-function is given 

by (4.3b) with N = 2. We put 6 =~2 = 77+ix,P1 = p2 = tan 0 = a+ib,0 = a+i/3,fo = 

~2。＝入+iμ, <5 = (b/a)2. Then, the tau-function g can be expressed in the form 

g = 1 + i e'7+f3+i(x-a) + i ery-(3-i(x+a) + 8 e初ー2ia, (4.lla) 

with 
a b 

TJ = ay + T +入， x=by-
炉+b2 炉 +b2 

T+μ. (4.llb) 

The parametric representation of the solution is given by (4.4) with the tau-function g 

from (4. lla). The explicit form of the solution is, however too complicated to write down 

here. The profile of the smooth breather solution at t = 0 is depicted on the left panel 

of figure 5 as a function of x for the specified values of the parameters. It represents an 

oscillating pulse on a constant background. The smoothness of the solution depends on 

the parameter 1/,/8 = a/b (a > 0, b > 0). A detailed analysis reveals that the smooth 

solutions are produced if the condition a/b < cos a/ cosh (3 (0 < a < 1r /2, (3 > 0) is 

satisfied. In the present example, a/b = 0.239, cos a/ cosh (3 = 0.561 (a = 1r /6, (3 = 1.0). 

As for the a叫 ogousconditions for the smooth breather solutions of the SP and modified 

SP equations, one can refer to Refs. [7, 12]. 

If the value of the parameter a/b exceeds certain critical value, then the singularities 

of the solutions appear in the form of cusps. The amplitude of the solution is, however 

finite since gヂ0(or g*g > 0) for arbitrary values of rJ and X, as can be confirmed by 

using (4.llb). The formation of cusps is exemplified on the right panel of figure 5 for the 

specified values of the parameters. In this example, a/b = 2.11 and cos a/ cosh (3 = 0.849, 

so that the condition for the smoothness is violated. 
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