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Noether’s problem and rationality problem for

multiplicative invariant fields: a survey

By

Akinari Hoshi∗

Abstract

In this paper, we give a brief survey of recent developments on Noether’s problem and

rationality problem for multiplicative invariant fields including author’s recent papers Hoshi

[Hos15] about Noether’s problem over Q, Hoshi, Kang and Kunyavskii [HKK13], Chu, Hoshi,

Hu and Kang [CHHK15], Hoshi [Hos16] and Hoshi, Kang and Yamasaki [HKY16] about

Noether’s problem over C, and Hoshi, Kang and Kitayama [HKK14] and Hoshi, Kang and

Yamasaki [HKY] about rationality problem for multiplicative invariant fields.
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§ 1. Introduction

Let k be a field and G be a finite group acting on the rational function field

k(xg | g ∈ G) by k-automorphisms h(xg) = xhg for any g, h ∈ G. We denote the

fixed field k(xg | g ∈ G)G by k(G). Emmy Noether [Noe13, Noe17] asked whether k(G)
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is rational (= purely transcendental) over k. This is called Noether’s problem for G

over k, and is related to the inverse Galois problem, to the existence of generic G-

Galois extensions over k, and to the existence of versal G-torsors over k-rational field

extensions (see Swan [Swa81, Swa83], Saltman [Sal82], Manin and Tsfasman [MT86],

Garibaldi, Merkurjev and Serre [GMS03, Section 33.1, page 86], Colliot-Thélène and

Sansuc [CTS07]).

Theorem 1.1 (Fischer [Fis15], see also Swan [Swa83, Theorem 6.1]). Let G be

a finite abelian group with exponent e. Assume that (i) either char k = 0 or char k > 0

with char k ̸ | e, and (ii) k contains a primitive e-th root of unity. Then k(G) is rational

over k. In particular, C(G) is rational over C.

Theorem 1.2 (Kuniyoshi [Kun54, Kun55, Kun56], see also Gaschütz [Gas59]).

Let G be a p-group and k be a field with char k = p > 0. Then k(G) is rational over k.

Definition 1.3. Let K/k and L/k be finitely generated extensions of fields.

(1) K is said to be rational over k (for short, k-rational) if K is purely transcendental

over k, i.e. K ≃ k(x1, . . . , xn) for some algebraically independent elements x1, . . . , xn

over k;

(2) K is said to be stably k-rational if K(y1, . . . , ym) is k-rational for some algebraically

independent elements y1, . . . , ym over K;

(3) K and L are said to be stably k-isomorphic if K(y1, . . . , ym) ≃ L(z1, . . . , zn) for

some algebraically independent elements y1, . . . , ym over K and z1, . . . , zn over L;

(4) (Saltman, [Sal84b, Definition 3.1]) when k is an infinite field, K is said to be retract

k-rational if there exists a k-algebra A contained in K such that (i) K is the quo-

tient field of A, (ii) there exist a non-zero polynomial f ∈ k[x1, . . . , xn] and k-algebra

homomorphisms φ : A → k[x1, . . . , xn][1/f ] and ψ : k[x1, . . . , xn][1/f ] → A satisfying

ψ ◦ φ = 1A;

(5) K is said to be k-unirational if k ⊂ K ⊂ k(x1, . . . , xn) for some integer n.

We see that if K and L are stably k-isomorphic and K is retract k-rational, then

L is also retract k-rational (see [Sal84b, Proposition 3.6]), and hence it is not difficult

to verify the following implications:

k-rational ⇒ stably k-rational ⇒ retract k-rational ⇒ k-unirational.

Note that k(G) is retract k-rational if and only if there exists a generic G-Galois exten-

sion over k (see [Sal82, Theorem 5.3], [Sal84b, Theorem 3.12]). In particular, if k is a

Hilbertian field, e.g. number field, and k(G) is retract k-rational, then inverse Galois

problem for G over k has a positive answer, i.e. there exists a Galois extension K/k

with Gal(K/k) ≃ G.
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§ 2. Noether’s problem over Q

Masuda [Mas55, Mas68] gave an idea to use a technique of Galois descent to

Noether’s problem for cyclic groups Cp of order p. Let ζp be a primitive p-th root

of unity, L = Q(ζp) and π = Gal(L/Q). Then, by Theorem 1.1, we have Q(Cp) =

Q(x1, . . . , xp)
Cp = (L(x1, . . . , xp)

Cp)π = L(y0, . . . , yp−1)
π = L(M)π(y0) where y0 =∑p

i=1 xi is π-invariant, M is free Z[π]-module and π acts on y1, . . . , yp−1 by σ(yi) =∏p−1
j=1 y

aij

j , [aij ] ∈ GLn(Z) for any σ ∈ π. Thus the field L(M)π may be regarded as the

function field of some algebraic torus of dimension p − 1 (see e.g. [Vos98, Chapter 3],

[HY17, Chapter 1]).

Theorem 2.1 (Masuda [Mas55, Mas68], see also [Swa83, Lemma 7.1]).

(1) M is projective Z[π]-module of rank one;

(2) If M is a permutation Z[π]-module, i.e. M has a Z-basis which is permuted by π,

then L(M)π is Q-rational. In particular, Q(Cp) is Q-rational for p ≤ 11.1

Swan [Swa69] gave the first negative solution to Noether’s problem by investigating

a partial converse to Masuda’s result.

Theorem 2.2 (Swan [Swa69], Voskresenskii [Vos70]).

(1) If Q(Cp) is Q-rational, then there exists α ∈ Z[ζp−1] such that NQ(ζp−1)/Q(α) = ±p;
(2) (Swan [Swa69, Theorem 1]) Q(C47), Q(C113) and Q(C233) are not Q-rational;

(3) (Voskresenskii [Vos70, Theorem 2]) Q(C47), Q(C167), Q(C359), Q(C383), Q(C479),

Q(C503) and Q(C719) are not Q-rational.

Theorem 2.3 (Voskresenskii [Vos71, Theorem 1]). Q(Cp) is Q-rational if and

only if there exists α ∈ Z[ζp−1] such that NQ(ζp−1)/Q(α) = ±p.

Hence if the cyclotomic field Q(ζp−1) has class number one, then Q(Cp) is Q-

rational. However, it is known that such primes are exactly p ≤ 43 and p = 61, 67, 71

(see Masley and Montgomery [MM76, Main theorem] or Washington’s book [Was97,

Chapter 11]).

Endo and Miyata [EM73] refined Masuda-Swan’s method and gave some further

consequences on Noether’s problem when G is abelian (see also [Vos73]).

Theorem 2.4 (Endo and Miyata [EM73, Theorem 2.3]). Let G1 and G2 be fi-

nite groups and k be a field with char k = 0. If k(G1) and k(G2) are k-rational (resp.

stably k-rational), then k(G1 ×G2) is k-rational (resp. stably k-rational).2

1The author [Hos05, Chapter 5] generalized Theorem 2.1 (2) to Frobenius groups Fpl of order pl
with l | p− 1 (p ≤ 11).

2Kang and Plans [KP09, Theorem 1.3] showed that Theorem 2.4 is also valid for any field k.
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Theorem 2.5 (Endo and Miyata [EM73, Theorem 3.1]). Let p be an odd prime

and l be a positive integer. Let k be a field with char k = 0 and [k(ζpl) : k] = pm0d0

with 0 ≤ m0 ≤ l − 1 and d0 | p− 1. Then the following conditions are equivalent:

(1) For any faithful k[Cpl ]-module V , k(V )Cpl is k-rational;

(2) k(Cpl) is k-rational;

(3) There exists α ∈ Z[ζpm0d0 ] such that

NQ(ζpm0d0
)/Q(α) =

±p m0 > 0

±pl m0 = 0.

Further suppose that m0 > 0. Then the above conditions are equivalent to each of the

following conditions:

(1′) For any k[Cpl ]-module V , k(V )Cpl is k-rational;

(2′) For any 1 ≤ l′ ≤ l, k(Cpl′ ) is k-rational.

Theorem 2.6 (Endo and Miyata [EM73, Proposition 3.2]). Let p be an odd prime

and k be a field with char k = 0. If k contains ζp + ζ−1
p , then k(Cpl) is k-rational for

any l. In particular, Q(C3l) is Q-rational for any l.

Theorem 2.7 (Endo and Miyata [EM73, Proposition 3.4, Corollary 3.10]).

(1) For primes p ≤ 43 and p = 61, 67, 71, Q(Cp) is Q-rational;

(2) For p = 5, 7, Q(Cp2) is Q-rational;

(3) For l ≥ 3, Q(C2l) is not stably Q-rational.

Theorem 2.8 (Endo and Miyata [EM73, Theorem 4.4]). Let G be a finite abelian

group of odd order and k be a field with char k = 0. Then there exists an integer m > 0

such that k(Gm) is k-rational.

Theorem 2.9 (Endo and Miyata [EM73, Theorem 4.6]). Let G be a finite abelian

group. Then Q(G) is Q-rational if and only if Q(G) is stably Q-rational.

Ultimately, Lenstra [Len74] gave a necessary and sufficient condition of Noether’s

problem for abelian groups.

Theorem 2.10 (Lenstra [Len74, Main Theorem, Remark 5.7]). Let k be a field

and G be a finite abelian group. Let kcyc be the maximal cyclotomic extension of k in

an algebraic closure. For k ⊂ K ⊂ kcyc, we assume that ρK = Gal(K/k) = ⟨τk⟩ is finite
cyclic. Let p be an odd prime with p ̸= char k and s ≥ 1 be an integer. Let aK(ps) be a

Z[ρK ]-ideal defined by

aK(ps) =

Z[ρK ] if K ̸= k(ζps)

(τK − t, p) if K = k(ζps) where t ∈ Z satisfies τK(ζp) = ζtp
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and put aK(G) =
∏

p,s aK(ps)m(G,p,s) where m(G, p, s) = dimZ/pZ(p
s−1G/psG). Then

the following conditions are equivalent:

(1) k(G) is k-rational;

(2) k(G) is stably k-rational;

(3) for k ⊂ K ⊂ kcyc, the Z[ρK ]-ideal aK(G) is principal and if char k ̸= 2, then

k(ζr(G))/k is cyclic extension where r(G) is the highest power of 2 dividing the exponent

of G.

Theorem 2.11 (Lenstra [Len74, Corollary 7.2], [Len80, Proposition 2, Corollary 3]).

Let n be a positive integer. Then the following conditions are equivalent:

(1) Q(Cn) is Q-rational;

(2) k(Cn) is k-rational for any field k;

(3) Q(Cps) is Q-rational for any ps || n;
(4) 8 ̸ | n and for any ps || n, there exists α ∈ Z[ζφ(ps)] such that NQ(ζφ(ps))/Q(α) = ±p.

Theorem 2.12 (Lenstra [Len74, Corollary 7.6], [Len80, Proposition 6]). Let k

be a field which is finitely generated over its prime field. Let Pk be the set of primes

p for which k(Cp) is k-rational. Then Pk has Dirichlet density 0 inside the set of all

primes. In particular,

lim
x→∞

π∗(x)

π(x)
= 0

where π(x) is the number of primes p ≤ x, and π∗(x) is the number of primes p ≤ x for

which Q(Cp) is Q-rational.

Theorem 2.13 (Lenstra [Len80, Proposition 4]). Let p be a prime and s ≥ 2 be

an integer. Then Q(Cps) is Q-rational if and only if ps ∈ {22, 3m, 52, 72 | m ≥ 2}.

By using Theorem 2.4, Endo and Miyata [EM73, Appendix] checked whetherQ(Cp)

is Q-rational for some primes p < 2000. By using PARI/GP [PARI2], Hoshi [Hos15]

confirmed that for primes p < 20000, Q(Cp) is not Q-rational except for 17 rational

cases with p ≤ 43 and p = 61, 67, 71 and undetermined 46 cases. Eventually, Plans

[Pla17] determined the complete set of primes for which Q(Cp) is Q-rational:

Theorem 2.14 (Plans [Pla17, Theorem 1.1]). Let p be a prime. Then Q(Cp) is

Q-rational if and only if p ≤ 43, p = 61, 67 or 71.

Combining Theorem 2.11, Theorem 2.13 and Theorem 2.14, we have:

Corollary 2.15 (Plans [Pla17, Corollary 1.2]). Let n be a positive integer. Then

Q(Cn) is Q-rational if and only if n divides

22 · 3m · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 61 · 67 · 71

for some integer m ≥ 0.
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On the other hand, just a handful of results about Noether’s problem are obtained

when the groups are non-abelian.

Theorem 2.16 (Maeda [Mae89, Theorem, page 418]). Let k be a field and A5

be the alternating group of degree 5. Then k(A5) is k-rational.

Theorem 2.17 (Rikuna [Rik], Plans [Pla07], see also [HKY11, Example 13.7]).

Let k be a field with char k ̸= 2. Then k(SL2(F3)) and k(GL2(F3)) are k-rational.

Theorem 2.18 (Serre [GMS03, Chapter IX], see also Kang [Kan05]). Let G be

a finite group with a 2-Sylow subgroup which is cyclic of order ≥ 8 or the generalized

quaternion Q16 of order 16. Then Q(G) is not stably Q-rational.

Theorem 2.19 (Plans [Pla09, Theorem 2]). Let An be the alternating group of

degree n. If n ≥ 3 is odd integer, then Q(An) is rational over Q(An−1). In particular,

if Q(An−1) is Q-rational, then so is Q(An).

However, it is an open problem whether k(An) is k-rational for n ≥ 6.

§ 3. Noether’s problem over C and unramified Brauer groups

We consider Noether’s problem for G over C, i.e. the rationality problem for C(G)

over C. Let G be a p-group. Then, by Theorem 1.1 and Theorem 1.2, we may focus on

the case where G is a non-abelian p-group and k is a field with char k ̸= p. For p-groups

of small order, the following results are known.

Theorem 3.1 (Chu and Kang [CK01]). Let p be any prime and G be a p-group

of order ≤ p4 and of exponent e. If k is a field containing a primitive e-th root of unity,

then k(G) is k-rational. In particular, C(G) is C-rational.

Theorem 3.2 (Chu, Hu, Kang and Prokhorov [CHKP08]). Let G be a group of

order 32 and of exponent e. If k is a field containing a primitive e-th root of unity, then

k(G) is k-rational. In particular, C(G) is C-rational.

Saltman introduced a notion of retract k-rationality (see Definition 1.3) and the

unramified Brauer group:

Definition 3.3 (Saltman [Sal84a, Definition 3.1], [Sal85, page 56]). LetK/k be

an extension of fields. The unramified Brauer group Brnr(K/k) of K over k is defined

to be

Brnr(K/k) =
∩
R

Image{Br(R) → Br(K)}



Noether’s problem and rationality problem for multiplicative invariant fields 35

where Br(R) → Br(K) is the natural map of Brauer groups and R runs over all the

discrete valuation rings R such that k ⊂ R ⊂ K and K is the quotient field of R. We

write just Brnr(K) when the base field k is clear from the context.

Proposition 3.4 (Saltman [Sal84a], [Sal85, Proposition 1.8], [Sal87]). If K is

retract k-rational, then Br(k)
∼−→ Brnr(K). In particular, if k is an algebraically closed

field and K is retract k-rational, then Brnr(K) = 0.

Theorem 3.5 (Bogomolov [Bog88, Theorem 3.1], Saltman [Sal90, Theorem 12]).

Let G be a finite group and k be an algebraically closed field with char k = 0 or char

k = p ̸ | |G|. Then Brnr(k(G)/k) is isomorphic to the group B0(G) defined by

B0(G) =
∩
A

Ker{res : H2(G,Q/Z) → H2(A,Q/Z)}

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is

either a cyclic group or a direct product of two cyclic groups).

Remark 3.6. For a smooth projective variety X over C with function field

K, Brnr(K/C) is isomorphic to the birational invariant H3(X,Z)tors which was used

by Artin and Mumford [AM72] to provide some elementary examples of k-unirational

varieties which are not k-rational (see also [Bog88, Theorem 1.1 and Corollary]).

Note that B0(G) is a subgroup of H2(G,Q/Z) which is isomorphic to the Schur

multiplier H2(G,Z) of G (see Karpilovsky [Kar87]). We call B0(G) the Bogomolov mul-

tiplier of G (cf. Kunyavskii [Kun10]). Because of Theorem 3.5, we will not distinguish

B0(G) and Brnr(k(G)/k) when k is an algebraically closed field, and char k = 0 or char

k = p ̸ | |G|. Using B0(G), Saltman and Bogomolov gave counter-examples to Noether’s

problem for non-abelian p-groups over algebraically closed field.

Theorem 3.7 (Saltman [Sal84a], Bogomolov [Bog88]). Let p be any prime and

k be any algebraically closed field with char k ̸= p.

(1) (Saltman [Sal84a, Theorem 3.6]) There exists a meta-abelian group G of order p9

such that B0(G) ̸= 0. In particular, k(G) is not (retract, stably) k-rational;

(2) (Bogomolov [Bog88, Lemma 5.6]) There exists a group G of order p6 such that

B0(G) ̸= 0. In particular, k(G) is not (retract, stably) k-rational.

Colliot-Thélène and Ojanguren [CTO89] generalized the notion of the unramified

Brauer group Brnr(K/k) to the unramified cohomology Hi
nr(K/k, µ

⊗j
n ) of degree i ≥ 1,

that is F i,j
n (K/k) in [CTO89, Definition 1.1].

Definition 3.8 (Colliot-Thélène and Ojanguren [CTO89], [CT95, Sections 2–4]).

Let n be a positive integer and k be a field with char k = 0 or char k = p with p ̸ | n. Let
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K/k be a function field, that is finitely generated field extension as a field over k. For any

positive integer i ≥ 2, any integer j, the unramified cohomology group Hi
nr(K/k, µ

⊗j
n ) of

K over k of degree i is defined to be

Hi
nr(K/k, µ

⊗j
n ) :=

∩
R

Ker{rR : Hi(K,µ⊗j
n ) → Hi−1(kR, µ

⊗(j−1)
n )}

where R runs over all the discrete valuation rings R of rank one such that k ⊂ R ⊂ K

and K is the quotient field of R, kR is the residue field of R and rR is the residue map

of K at R.

By [CT95, Theorem 4.1.1, page 30], if it is assumed furthermore that K is the

function field of a complete smooth variety over k, the unramified cohomology group

Hi
nr(K/k, µ

⊗j
n ) may be defined as well by

Hi
nr(K/k, µ

⊗j
n ) =

∩
R

Image{Hi
ét(R,µ

⊗j
n ) → Hi

ét(K,µ
⊗j
n )}

where R runs over all the discrete valuation rings R of rank one such that k ⊂ R ⊂ K

and K is the quotient field of R.

Note that the unramified cohomology groups of degree two are isomorphic to the

n-torsion part of the unramified Brauer group: nBrnr(K/k) ≃ H2
nr(K/k, µn).

Theorem 3.9. Let n be a positive integer and k be an algebraically closed field

with char k = 0 or char k = p̸ | n.
(1) (Colliot-Thélène and Ojanguren [CTO89, Proposition 1.2]) If K and L are stably

k-isomorphic, then Hi
nr(K/k, µ

⊗j
n )

∼−→ Hi
nr(L/k, µ

⊗j
n ). In particular, K is stably k-

rational, then Hi
nr(K/k, µ

⊗j
n ) = 0;

(2) ([Mer08, Proposition 2.15], see also [CTO89, Remarque 1.2.2], [CT95, Sections 2–4],

[GS10, Example 5.9]) If K is retract k-rational, then Hi
nr(K/k, µ

⊗j
n ) = 0.

Colliot-Thélène and Ojanguren [CTO89, Section 3] produced the first example of

not stably C-rational but C-unirational field K with H3
nr(K,µ

⊗3
2 ) ̸= 0, where K is

the function field of a quadric of the type ⟨⟨f1, f2⟩⟩ = ⟨g1g2⟩ over the rational function

field C(x, y, z) with three variables x, y, z for a 2-fold Pfister form ⟨⟨f1, f2⟩⟩, as a gen-

eralization of Artin and Mumford [AM72]. Peyre [Pey93, Corollary 3] gave a sufficient

condition for Hi
nr(K/k, µ

⊗i
p ) ̸= 0 and produced an example of the function field K with

H3
nr(K/k, µ

⊗3
p ) ̸= 0 and Brnr(K/k) = 0 using a result of Suslin [Sus91] where K is the

function field of a product of some norm varieties associated to cyclic central simple

algebras of degree p (see [Pey93, Proposition 7]). Using a result of Jacob and Rost

[JR89], Peyre [Pey93, Proposition 9] also gave an example of H4
nr(K/k, µ

⊗4
2 ) ̸= 0 and

Brnr(K/k) = 0 where K is the function field of a product of quadrics associated to a

4-fold Pfister form ⟨⟨a1, a2, a3, a4⟩⟩ (see also [CT95, Section 4.2]).
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In case char k = 0, take the direct limit with respect to n:

Hi(K/k,Q/Z(j)) = lim
−→
n

Hi(K/k, µ⊗j
n )

and we may define the unramified cohomology group

Hi
nr(K/k,Q/Z(j)) =

∩
R

Ker{rR : Hi(K/k,Q/Z(j)) → Hi−1(kR,Q/Z(j − 1))}.

We write simply Hi
nr(K,µ

⊗j
n ) and Hi

nr(K,Q/Z(j)) when the base field k is un-

derstood. When k is an algebraically closed field with char k = 0, we will write

Hi
nr(K/k,Q/Z) for H

i
nr(K/k,Q/Z(j)). Then we have Brnr(K/k) ≃ H2

nr(K/k,Q/Z).

Peyre [Pey08] constructed an example of a field K, as K = C(G), whose unramified

Brauer group vanishes, but unramified cohomology of degree three does not vanish:

Theorem 3.10 (Peyre [Pey08, Theorem 3]). Let p be any odd prime. Then there

exists a p-group G of order p12 such that B0(G) = 0 and H3
nr(C(G),Q/Z) ̸= 0. In par-

ticular, C(G) is not (retract, stably) C-rational.

The idea of Peyre’s proof is to find a subgroup K3
max/K

3 of H3
nr(C(G),Q/Z) and

to show that K3
max/K

3 ̸= 0 (see [Pey08, page 210]).

Asok [Aso13] generalized Peyre’s argument [Pey93] and established the following

theorem for a smooth proper model X (resp. a smooth projective model Y ) of the

function field of a product of quadrics of the type ⟨⟨s1, . . . , sn−1⟩⟩ = ⟨sn⟩ (resp. Rost

varieties) over some rational function field over C with many variables.

Theorem 3.11 (Asok [Aso13], see [AM11, Theorem 3] for retract rationality).

(1) ([Aso13, Theorem 1]) For any n > 0, there exists a smooth projective complex

variety X that is C-unirational, for which Hi
nr(C(X), µ⊗i

2 ) = 0 for each i < n, yet

Hn
nr(C(X), µ⊗n

2 ) ̸= 0, and so X is not A1-connected, nor (retract, stably) C-rational;

(2) ([Aso13, Theorem 3]) For any prime l and any n ≥ 2, there exists a smooth projective

rationally connected complex variety Y such that Hn
nr(C(Y ), µ⊗n

l ) ̸= 0. In particular, Y

is not A1-connected, nor (retract, stably) C-rational.

Namely, the triviality of the unramified Brauer group or the unramified cohomology

of higher degree is just a necessary condition of C-rationality of fields. It is unknown

whether the vanishing of all the unramified cohomologies is a sufficient condition for C-

rationality. It is interesting to consider an analog of Theorem 3.11 for quotient varieties

V/G, e.g. the case of Noether’s problem C(Vreg/G) = C(G).

Colliot-Thélène and Voisin [CTV12] established:

Theorem 3.12 (Colliot-Thélène and Voisin [CTV12], [Voi14, Theorem 6.18]).

For any smooth projective complex variety X, there is an exact sequence

0 → H3
nr(X,Z)⊗Q/Z→ H3

nr(X,Q/Z) → Tors(Z4(X)) → 0
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where

Z4(X) = Hdg4(X,Z)/Hdg4(X,Z)alg

and the lower index “alg” means that we consider the group of integral Hodge classes

which are algebraic. In particular, if X is rationally connected, then we have

H3
nr(X,Q/Z) ≃ Z4(X).

Using Peyre’s method [Pey08], we obtain the following theorem which is an im-

provement of Theorem 3.10 and gives an explicit counter-example to integral Hodge

conjecture with the aid of Theorem 3.12.

Theorem 3.13 (Hoshi, Kang and Yamasaki [HKY16, Theorem 1.4]). Let p be

any odd prime. Then there exists a p-group G of order p9 such that B0(G) = 0 and

H3
nr(C(G),Q/Z) ̸= 0. In particular, C(G) is not (retract, stably) C-rational.

The case where G is a group of order p5 (p ≥ 3).

From Theorem 3.7 (2), Bogomolov [Bog88, Remark 1] raised a question to classify

the groups of order p6 with B0(G) ̸= 0. He also claimed that if G is a p-group of order

≤ p5, then B0(G) = 0 ([Bog88, Lemma 5.6]). However, this claim was disproved by

Moravec:

Theorem 3.14 (Moravec [Mor12, Section 8]). Let G be a group of order 243.

Then B0(G) ̸= 0 if and only if G = G(35, i) with 28 ≤ i ≤ 30, where G(35, i) is the

i-th group of order 243 in the GAP database [GAP]. Moreover, if B0(G) ̸= 0, then

B0(G) ≃ Z/3Z.

Moravec [Mor12] gave a formula for B0(G) by using a nonabelian exterior squareG∧
G of G and an implemented algorithm b0g.g in computer algebra system GAP [GAP],

which is available from his website www.fmf.uni-lj.si/~moravec/Papers/b0g.g. The

number of all solvable groups G of order ≤ 729 apart from the orders 512, 576 and 640

with B0(G) ̸= 0 was given as in [Mor12, Table 1].

Hoshi, Kang and Kunyavskii [HKK13] determined p-groups G of order p5 with

B0(G) ̸= 0 for any p ≥ 3. It turns out that they belong to the same isoclinism family.

Definition 3.15 (Hall [Hal40, page 133]). Let G be a finite group. Let Z(G)

be the center of G and [G,G] be the commutator subgroup of G. Two p-groups G1

and G2 are called isoclinic if there exist group isomorphisms θ : G1/Z(G1) → G2/Z(G2)

and ϕ : [G1, G1] → [G2, G2] such that ϕ([g, h]) = [g′, h′] for any g, h ∈ G1 with g′ ∈
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θ(gZ(G1)), h
′ ∈ θ(hZ(G1)):

G1/Z1 ×G1/Z1

[·,·]
��

(θ,θ)
//

⟲

G2/Z2 ×G2/Z2

[·,·]
��

[G1, G1]
ϕ

// [G2, G2].

For a prime p and an integer n, we denote by Gn(p) the set of all non-isomorphic

groups of order pn. In Gn(p), consider an equivalence relation: two groups G1 and G2

are equivalent if and only if they are isoclinic. Each equivalence class of Gn(p) is called

an isoclinism family, and the j-th isoclinism family is denoted by Φj .

For p ≥ 5 (resp. p = 3), there exist 2p+ 61 + gcd{4, p− 1}+ 2gcd{3, p− 1} (resp.

67) groups G of order p5 which are classified into ten isoclinism families Φ1, . . . ,Φ10

(see [Jam80, Section 4]). The main theorem of [HKK13] can be stated as follows:

Theorem 3.16 (Hoshi, Kang and Kunyavskii [HKK13, Theorem 1.12]). Let p be

any odd prime and G be a group of order p5. Then B0(G) ̸= 0 if and only if G belongs

to the isoclinism family Φ10. Moreover, if B0(G) ̸= 0, then B0(G) ≃ Z/pZ.

For the last statement, see [Kan14, Remark, page 424]. The proof of Theorem 3.16

was given by purely algebraic way. There exist exactly 3 groups which belong to Φ10 if

p = 3, i.e. G = G(243, i) with 28 ≤ i ≤ 30. This agrees with Moravec’s computational

result (Theorem 3.14). For p ≥ 5, there exist exactly 1 + gcd{4, p− 1}+ gcd{3, p− 1}
groups which belong to Φ10 (see [Jam80, page 621]).

The following result for the k-rationality of k(G) supplements Theorem 3.14 al-

though it is unknown whether k(G) is k-rational for groups G which belong to Φ7:

Theorem 3.17 (Chu, Hoshi, Hu and Kang [CHHK15, Theorem 1.13]). Let G be

a group of order 243 with exponent e. If B0(G) = 0 and k be a field containing a primi-

tive e-th root of unity, then k(G) is k-rational except possibly for the five groups G which

belong to Φ7, i.e. G = G(243, i) with 56 ≤ i ≤ 60.

In [HKK13] and [CHHK15], not only the evaluation of the Bogomolov multiplier

B0(G) and the k-rationality of k(G) but also the k-isomorphisms between k(G1) and

k(G2) for some groups G1 and G2 belonging to the same isoclinism family were given.

Bogomolov and Böhning [BB13] gave an answer to the question raised as [HKK13,

Question 1.11] in the affirmative as follows.

Theorem 3.18 (Bogomolov and Böhning [BB13, Theorem 6]). If G1 and G2 are

isoclinic, then C(G1) and C(G2) are stably C-isomorphic. In particular, Hi
nr(C(G1), µ

⊗j
n )

∼−→ Hi
nr(C(G2), µ

⊗j
n ).
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A partial result of Theorem 3.18 was already given by Moravec. Indeed, Moravec

[Mor14, Theorem 1.2] proved that if G1 and G2 are isoclinic, then B0(G1) ≃ B0(G2).

The case where G is a group of order 64.

The classification of the groups G of order 64 = 26 with B0(G) ̸= 0 was obtained

by Chu, Hu, Kang and Kunyavskii [CHKK10]. Moreover, they investigated Noether’s

problem for groups G with B0(G) = 0. There exist 267 groups G of order 64 which

are classified into 27 isoclinism families Φ1, . . . ,Φ27 by Hall and Senior [HS64] (see also

[JNO90, Table I]). The main result of [CHKK10] can be stated in terms of the isoclinism

families as follows.

Theorem 3.19 (Chu, Hu, Kang and Kunyavskii [CHKK10]). Let G = G(26, i),

1 ≤ i ≤ 267, be the i-th group of order 64 in the GAP database [GAP].

(1) ([CHKK10, Theorem 1.8]) B0(G) ̸= 0 if and only if G belongs to the isoclinism

family Φ16, i.e. G = G(26, i) with 149 ≤ i ≤ 151, 170 ≤ i ≤ 172, 177 ≤ i ≤ 178 or

i = 182. Moreover, if B0(G) ̸= 0, then B0(G) ≃ Z/2Z (see [Kan14, Remark, page 424]

for this statement);

(2) ([CHKK10, Theorem 1.10]) If B0(G) = 0 and k is an quadratically closed field, then

k(G) is k-rational except possibly for five groups which belong to Φ13, i.e. G = G(26, i)

with 241 ≤ i ≤ 245.

For groups G which belong to Φ13, k-rationality of k(G) is unknown. The following

two propositions supplement the cases Φ13 and Φ16 of Theorem 3.19. For the proof, the

case of G = G(26, 149) is given in [HKK14, Proof of Theorem 6.3], see also [CHKK10,

Example 5.11, page 2355] and the proof for other cases can be obtained by the similar

manner.

Definition 3.20. Let k be a field with char k ̸= 2 and k(X1, X2, X3, X4, X5, X6)

be the rational function field over k with variables X1, X2, X3, X4, X5, X6.

(1) The field L
(0)
k is defined to be k(X1, X2, X3, X4, X5, X6)

H where H = ⟨σ1, σ2⟩ ≃
Z/2Z⊕ Z/2Z acts on k(X1, X2, X3, X4, X5, X6) by k-automorphisms

σ1 : X1 7→ X3, X2 7→ 1

X1X2X3
, X3 7→ X1, X4 7→ X6, X5 7→ 1

X4X5X6
, X6 7→ X4,

σ2 : X1 7→ X2, X2 7→ X1, X3 7→ 1

X1X2X3
, X4 7→ X5, X5 7→ X4, X6 7→ 1

X4X5X6
.

(2) The field L
(1)
k is defined to be k(X1, X2, X3, X4)

⟨τ⟩ where ⟨τ⟩ ≃ C2 acts on k(X1, X2,

X3, X4) by k-automorphisms

τ : X1 7→ −X1, X2 7→ X4

X2
, X3 7→ (X4 − 1)(X4 −X2

1 )

X3
, X4 7→ X4.
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Proposition 3.21 ([CHKK10, Proposition 6.3], see also [HY17, Proposition 12.5]).

Let G be a group of order 64 which belongs to Φ13, i.e. G = G(26, i) with 241 ≤ i ≤ 245.

There exists a C-injective homomorphism φ : L
(0)
C → C(G) such that C(G) is ratio-

nal over φ(L
(0)
C ). In particular, C(G) and L

(0)
C are stably C-isomorphic and B0(G) ≃

Brnr(L
(0)
C ) = 0.

Proposition 3.22 ([CHKK10, Example 5.11], [HKK14, Proof of Theorem 6.3]).

Let G be a group of order 64 which belongs to Φ16, i.e. G = G(26, i) with 149 ≤ i ≤ 151,

170 ≤ i ≤ 172, 177 ≤ i ≤ 178 or i = 182. There exists a C-injective homomorphism

φ : L
(1)
C → C(G) such that C(G) is rational over φ(L

(1)
C ). In particular, C(G) and L

(1)
C

are stably C-isomorphic, B0(G) ≃ Brnr(L
(1)
C ) ≃ Z/2Z and hence C(G) and L

(1)
C are not

(retract, stably) C-rational.

Question 3.23 ([CHKK10, Section 6], [HY17, Section 12]). Is L
(0)
k k-rational?

The case where G is a group of order 128.

There exist 2328 groups of order 128 which are classified into 115 isoclinism families

Φ1, . . . ,Φ115 ([JNO90, Tables I, II, III]).

Theorem 3.24 (Moravec [Mor12, Section 8, Table 1]). Let G be a group of or-

der 128. Then B0(G) ̸= 0 if and only if G belongs to the isoclinism family Φ16, Φ30,

Φ31, Φ37, Φ39, Φ43, Φ58, Φ60, Φ80, Φ106 or Φ114. Moreover, we have

B0(G) ≃

Z/2Z if G belongs to Φ16,Φ31,Φ37,Φ39,Φ43,Φ58,Φ60,Φ80,Φ106 or Φ114,

(Z/2Z)⊕2 if G belongs to Φ30.

In particular, C(G) is not (retract, stably) C-rational.

It turns out that there exist 220 groups G of order 128 with B0(G) ̸= 0:

Family Φ16 Φ31 Φ37 Φ39 Φ43 Φ58 Φ60 Φ80 Φ106 Φ114 Φ30

exp(G) 8 4 8 4 or 8 8 8 8 16 8 8 4

B0(G) Z/2Z (Z/2Z)⊕2

# of G’s 48 55 18 6 26 20 10 9 2 2 34

It is natural to ask the (stably) birational classification of C(G) for groups G of

order 128. In particular, what happens toC(G) with B0(G) ̸= 0? The following theorem

(Theorem 3.26) gives a partial answer to this question.

Definition 3.25. Let k be a field with char k ̸= 2 and k(X1, X2, X3, X4, X5, X6,

X7) be the rational function field over k with variables X1, X2, X3, X4, X5, X6, X7.
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(1) The field L
(2)
k is defined to be k(X1, X2, X3, X4, X5, X6)

⟨ρ⟩ where ⟨ρ⟩ ≃ C4 acts on

k(X1, X2, X3, X4, X5, X6) by k-automorphisms

ρ : X1 7→ X2, X2 7→ −X1, X3 7→ X4, X4 7→ X3,

X5 7→ X6, X6 7→ (X2
1X

2
2 − 1)(X2

1X
2
3 +X2

2 −X2
3 − 1)

X5
.

(2) The field L
(3)
k is defined to be k(X1, X2, X3, X4, X5, X6, X7)

⟨λ1,λ2⟩ where ⟨λ1, λ2⟩ ≃
C2 × C2 acts on k(X1, X2, X3, X4, X5, X6, X7) by k-automorphisms

λ1 : X1 7→ X1, X2 7→ X1

X2
, X3 7→ 1

X1X3
, X4 7→ X2X4

X1X3
,

X5 7→ −X1X
2
6 − 1

X5
, X6 7→ −X6, X7 7→ X7,

λ2 : X1 7→ 1

X1
, X2 7→ X3, X3 7→ X2, X4 7→ (X1X

2
6 − 1)(X1X

2
7 − 1)

X4
,

X5 7→ −X5, X6 7→ −X1X6, X7 7→ −X1X7.

Theorem 3.26 (Hoshi [Hos16, Theorem 1.31]). Let G be a group of order 128.

Assume that B0(G) ̸= 0. Then C(G) and L
(m)
C are stably C-isomorphic where

m =


1 if G belongs to Φ16,Φ31,Φ37,Φ39,Φ43,Φ58,Φ60 or Φ80,

2 if G belongs to Φ106 or Φ114,

3 if G belongs to Φ30.

In particular, Brnr(L
(1)
C ) ≃ Brnr(L

(2)
C ) ≃ Z/2Z and Brnr(L

(3)
C ) ≃ (Z/2Z)⊕2 and hence

the fields L
(1)
C , L

(2)
C and L

(3)
C are not (retract, stably) C-rational.

For m = 1, 2, the fields L
(m)
C and L

(3)
C are not stably C-isomorphic because their

unramified Brauer groups are not isomorphic. However, we do not know whether the

fields L
(1)
C and L

(2)
C are stably C-isomorphic. If not, it is interesting to evaluate the

higher unramified cohomologies.

§ 4. Rationality problem for multiplicative invariant fields

Let k be a field, G be a finite group and ρ : G→ GL(V ) be a faithful representation

of G where V is a finite-dimensional vector space over k. Then G acts on the rational

function field k(V ).

We consider the rationality problem for k(V )G. By No-name Lemma (cf. Miyata

[Miy71, Remark 3]), it is known that k(G) is stably k-rational if and only if so is k(V )G
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where ρ : G → GL(V ) is any faithful representation of G over k. Thus the rationality

problem of k(V )G over k is also called Noether’s problem.

In order to solve the rationality problem of k(V )G, it is natural and almost in-

evitable that we reduce the problem to that of the multiplicative invariant field k(M)G

defined in Definition 4.2; an illustration of reducing Noether’s problem to the multi-

plicative invariant field can be found in, e.g. [CHKK10], [HKY11, Example 13.7].

When M is a G-lattice with rankZM = n, the multiplicative invariant field k(M)G

is nothing but k(x1, . . . , xn)
G, the fixed field of the rational function field k(x1, . . . , xn)

on which G acts by multiplicative actions.

Definition 4.1. Let G be a finite group and Z[G] be the group ring. A finitely

generated Z[G]-module M is called a G-lattice if, as an abelian group, M is a free

abelian group of finite rank. We will write rankZM for the rank of M as a free abelian

group. A G-lattice M is called faithful if, for any σ ∈ G\{1}, σ ·x ̸= x for some x ∈M .

Suppose that G is any finite group and Φ : G→ GLn(Z) is a group homomorphism,

i.e. an integral representation of G. Then the group Φ(G) acts naturally on the free

abelian group M := Z⊕n; thus M becomes a Z[G]-module. We call M the G-lattice

associated to Φ (or Φ(G)). Conversely, if M is a G-lattice with rankZM = n, write

M = ⊕1≤i≤nZ · xi. Then there is a group homomorphism Φ : G → GLn(Z) defined as

follows: If σ ·xi =
∑

1≤j≤n aij xj where σ ∈ G and aij ∈ Z, define Φ(σ) = (aij)1≤i,j≤n ∈
GLn(Z).

When the group homomorphism Φ : G → GLn(Z) is injective, the corresponding

G-lattice is a faithful G-lattice. For examples, any finite subgroup G of GLn(Z) gives

rise to a faithful G-lattice of rank n.

The list of all the finite subgroups of GLn(Z) (with n ≤ 4), up to conjugation, can

be found in the book [BBNWZ78] and in GAP [GAP]. As to the situations of GLn(Z)

(with n ≥ 5), Plesken etc. found the lists of all the finite subgroups of GLn(Z) (with

n = 5 and 6); see [PS00] and the references therein. These lists may be found in the

GAP package CARAT [CARAT] and also in [HY17, Chapter 3].

Here is a list of the total number of lattices, up to isomorphism, of a given rank:

rank 1 2 3 4 5 6

# of G-lattices 2 13 73 710 6079 85308

Definition 4.2. Let M be a G-lattice of rank n and write M = ⊕1≤i≤nZ · xi.
For any field k, define k(M) = k(x1, . . . , xn) the rational function field over k with n

variables x1, . . . , xn. Define a multiplicative action of G on k(M): For any σ ∈ G, if

σ · xi =
∑

1≤j≤n aij xj in the G-lattice M , then we define σ · xi =
∏

1≤j≤n x
aij

j in the

field k(M). Note that G acts trivially on k. The above multiplicative action is called a
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purely monomial action of G on k(M) in [HK92] and k(M)G is called a multiplicative

invariant field in [Sal87].

When M is the G-lattice Z[G] where M = ⊕g∈GZ · xg and h · xg = xhg for

h, g ∈ G, we have k(M) = k(xg | g ∈ G) and k(M)G = k(G) (see Section 1). Note that

k(G) = k(Vreg)
G where G→ GL(Vreg) is the regular representation of G over k.

Theorem 4.3 (Hajja [Haj87]). Let k be a field and G be a finite group acting

on k(x1, x2) by monomial k-automorphisms. Then k(x1, x2)
G is k-rational.

Theorem 4.4 (Hajja and Kang [HK92, HK94], Hoshi and Rikuna [HR08]). Let

k be a field and G be a finite group acting on k(x1, x2, x3) by purely monomial k-

automorphisms. Then k(x1, x2, x3)
G is k-rational.

Theorem 4.5 (Hoshi, Kang and Kitayama [HKK14, Theorem 1.16]). Let k be

a field, G be a finite group and M be a G-lattice with rankZM = 4 such that G acts on

k(M) by purely monomial k-automorphisms. If M is decomposable, i.e. M =M1 ⊕M2

as Z[G]-modules where 1 ≤ rankZM1 ≤ 3, then k(M)G is k-rational.

Theorem 4.6 (Hoshi, Kang and Kitayama [HKK14, Theorem 6.2]). Let k be a

field, G be a finite group and M be a G-lattice such that G acts on k(M) by purely

monomial k-automorphisms. Assume that (i) M = M1 ⊕M2 as Z[G]-modules where

rankZM1 = 3 and rankZM2 = 2, (ii) either M1 or M2 is a faithful G-lattice. Then

k(M)G is k-rational except the following situation: char k ̸= 2, G = ⟨σ, τ⟩ ≃ D4 and

M1 =
⊕

1≤i≤3 Zxi, M2 =
⊕

1≤j≤2 Zyj such that σ : x1 ↔ x2, x3 7→ −x1 − x2 − x3,

y1 7→ y2 7→ −y1, τ : x1 ↔ x3, x2 7→ −x1 − x2 − x3, y1 ↔ y2 where the Z[G]-module

structure of M is written additively. For the exceptional case, k(M)G is not retract

k-rational.

Definition 4.7. Let k be a field and µ be a multiplicative subgroup of k \ {0}
containing all the roots of unity in k. If M is a G-lattice, a µ-extension is an exact

sequence of Z[G]-modules given by (α) : 1 → µ→Mα →M → 0 where G acts trivially

on µ. Be aware that Mα = µ ⊕M as abelian groups, but not as Z[G]-modules except

when the extension (α) splits.

As in Definition 4.2, if M = ⊕1≤i≤nZ · xi and Mα is a µ-extension, we define the

field kα(M) = k(x1, . . . , xn) the rational function field over k with n variables x1, . . . , xn;

the action of G on kα(M) will be described in the next paragraph. Note that Mα is

embedded into the multiplicative group kα(M)\{0} by sending (ϵ,
∑

1≤i≤n bixi) ∈ µ⊕M
to the element ϵ

∏
1≤i≤n x

bi
i in the field kα(M) = k(x1, . . . , xn).

The group G acts on kα(M) by a twisted multiplicative action: Suppose that, in

M we have σ · xi =
∑

1≤j≤n aij xj , and in Mα we have σ · xi = εi(σ) +
∑

1≤j≤n aij xj

where εi(σ) ∈ µ. Then we define σ · xi = εi(σ)
∏

1≤j≤n x
aij

j in kα(M). Again G acts
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trivially on the coefficient field k. The above group action is called monomial group

action in [HK92] and kα(M)G is called twisted multiplicative invariant field in [Sal90].

Note that, if the extension (α) : 1 → µ → Mα → M → 0 is a split extension, then

kα(M) = k(M) and the twisted multiplicative action is reduced to the multiplicative

action in Definition 4.2.

For any faithful linear representation G → GL(V ) of G, we have Brnr(C(V )G) ≃
B0(G) by No-name Lemma (see [Sal90]).

The formula in [Sal90, Theorem 12] (Theorem 3.5) can be used to compute not

only Brnr(C(V )G), but also Brnr(Cα(M)G) where Cα(M) is the rational function field

associated to the µ-extension Mα:

Theorem 4.8 (Saltman [Sal90, Theorem 12]). Let k be an algebraically closed

field with char k = 0, and G be a finite group. If M is a G-lattice and (α) : 1 →
µ → Mα → M → 0 is a µ-extension such that (i) M is a faithful G-lattice, and (ii)

H2(G,µ) → H2(G,Mα) is injective, then

Brnr(kα(M)G) =
∩
A

Ker{res : H2(G,Mα) → H2(A,Mα)}

where A runs over all the bicyclic subgroups of G.

In particular, if the µ-extension (α) : 1 → µ → Mα → M → 0 splits, then

Brnr(k(M)G) ≃ B0(G) ⊕
∩

A Ker{res : H2(G,M) → H2(A,M)} where A runs over

bicyclic subgroups of G.

Definition 4.9. By Definition 3.3, Brnr(K) is a subgroup of the Brauer group

Br(K). On the other hand, the map of the Brauer groups Br(kα(M)G) → Br(kα(M))

sends Brnr(kα(M)G) to Brnr(kα(M)) [Sal87, Theorem 2.1]. Since Brnr(kα(M)) = 0 by

[Sal87, Proposition, 2.2], it follows that the unramified Brauer group Brnr(kα(M)G) is

a subgroup of the relative Brauer group Br(kα(M)/kα(M)G). As Br(kα(M)/kα(M)G)

is isomorphic to the cohomology group H2(G, kα(M)×), we may regard Brnr(kα(M)G)

as a subgroup of H2(G, kα(M)×).

Through the embedding Mα ↪→ kα(M)×, there is a canonical injection H2(G,Mα)

↪→ Br(kα(M)G) [Sal90, page 536]. Identifying Brnr(kα(M)G) and H2(G,Mα) as sub-

groups of H2(G, kα(M)×), we see that Brnr(kα(M)G) is a subgroup of H2(G,Mα)

[Sal90, page 536]. Thus we write H2
nr(G,Mα) for Brnr(kα(M)G) (see [Sal90]).

Note that there is a natural map H2(G,Q/Z) → H2(G,Mα). Clearly this map is

injective if the µ-extension (α) : 1 → µ → Mα → M → 0 splits. In this case, regarding

H2(G,Q/Z) and H2(G,M) as subgroups of H2(G,Mα), we define H2
nr(G,Q/Z) =

H2(G,Q/Z) ∩ Brnr(kα(M)G) and H2
nr(G,M) = H2(G,M) ∩ Brnr(kα(M)G). It follows

that Brnr(kα(M)G) = H2
nr(G,Q/Z) ⊕ H2

nr(G,M). By Theorems 3.5 and 4.8, we have
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H2
nr(G,Q/Z) ≃ B0(G) and H

2
nr(G,M) ≃

∩
A Ker{res : H2(G,M) → H2(A,M)} where

A runs over bicyclic subgroups of G.

Theorem 4.10 (Barge [Bar89, Theorem II.7]). Let G be a finite group. Then

the following conditions are equivalent:

(1) All the Sylow subgroups of G are bicyclic;

(2) Brnr(C(M)G) = 0 for all G-lattices M .

Theorem 4.11 (Barge [Bar97, Theorem IV-1]). Let G be a finite group. Then

the following conditions are equivalent:

(1) All the Sylow subgroups of G are cyclic;

(2) Brnr(Cα(M)G) = 0 for all G-lattices M , for all short exact sequences of Z[G]-

modules α : 0 → C× →Mα →M → 0.

As in Definition 4.9, we have Brnr(C(M)G) ≃ B0(G) ⊕ H2
nr(G,M) where B0(G)

is the Bogomolov multiplier and H2
nr(G,M) ≤ H2(G,M). We remark that B0(G) is

related to the rationality of C(V )G where G → GL(V ) is any faithful linear represen-

tation of G over C; on the other hand, H2
nr(G,M) arises from the multiplicative nature

of the field C(M)G.

In case rankZM ≤ 3, Brnr(C(M)G) = 0 for all G-lattices M because C(M)G are

always C-rational (see Theorem 4.3 and Theorem 4.4). The following theorem [HKY,

Theorem 1.10] gives the classification of all the latticesM with Brnr(C(M)G) ̸= 0 when

rankZM ≤ 6. Thus C(M)G are not retract C-rational for these lattices (and thus are

not C-rational).

Let Cn (resp. Dn, QD8n, Q8n) be the cyclic group of order n (resp. the dihedral

group of order 2n, the quasi-dihedral group of order 16n, the generalized quaternion

group of order 8n).

Theorem 4.12 (Hoshi, Kang and Yamasaki [HKY, Theorem 1.10]). Let G be a

finite group and M be a faithful G-lattice.

(1) If rankZM ≤ 3, then Brnr(C(M)G) = 0.

(2) If rankZM = 4, then Brnr(C(M)G) ̸= 0 if and only if M is one of the 5 cases

in Table 1. Moreover, if M is one of the 5 G-lattices with Brnr(C(M)G) ̸= 0, then

B0(G) = 0 and Brnr(C(M)G) = H2
nr(G,M).

(3) If rankZM = 5, then Brnr(C(M)G) ̸= 0 if and only if M is one of the 46 cases in

[HKY, Table 2]. Moreover, if M is one of the 46 G-lattices with Brnr(C(M)G) ̸= 0,

then B0(G) = 0 and Brnr(C(M)G) = H2
nr(G,M).

(4) If rankZM = 6, then Brnr(C(M)G) ̸= 0 if and only if M is one of the 1073 cases as

in [HKY, Table 3]. Moreover, if M is one of the 1073 G-lattices with Brnr(C(M)G) ̸= 0,

then B0(G) = 0 and Brnr(C(M)G) = H2
nr(G,M), except for 24 cases with B0(G) =
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Z/2Z where the CARAT ID of G are (6, 6458, i), (6, 6459, i), (6, 6464, i) (1 ≤ i ≤ 8).

Note that 22 cases out of the exceptional 24 cases satisfy H2
nr(G,M) = 0.

Table 1: 5 G-lattices M of rank 4 with Brnr(C(M)G) ̸= 0

G(n, i) G GAP ID B0(G) H2
nr(G,M)

(8, 3) D4 (4, 12, 4, 12) 0 Z/2Z

(8, 4) Q8 (4, 32, 1, 2) 0 (Z/2Z)⊕2

(16, 8) QD8 (4, 32, 3, 2) 0 Z/2Z

(24, 3) SL2(F3) (4, 33, 3, 1) 0 (Z/2Z)⊕2

(48, 29) GL2(F3) (4, 33, 6, 1) 0 Z/2Z

Remark 4.13. (1) The above theorem remains valid if we replace the coefficient

field C by any algebraically closed field k with char k = 0.

(2) If M is of rank ≤ 6 and Brnr(C(MG)) ̸= 0, then G is solvable and non-abelian, and

Brnr(C(M)G) ≃ Z/2Z, Z/3Z or Z/2Z⊕Z/2Z. The case where Brnr(C(M)G) ≃ Z/3Z
occurs only for 4 groups G of order 27, 27, 54, 54 with the CARAT ID (6, 2865, 1),

(6, 2865, 3), (6, 2899, 3), (6, 2899, 5) which are isomorphic to C9 ⋊ C3, C9 ⋊ C3, (C9 ⋊
C3)⋊C2, (C9⋊C3)⋊C2 respectively. For CARAT ID, see Hoshi and Yamasaki [HY17,

Chapter 3].

(3) The group G (≃ D4) which appears as the exceptional case in Theorem 4.6 (i.e.

[HKK14, Theorem 6.2]) satisfies the property that Brnr(C(M)G) = H2
nr(G,M) ̸= 0

where M is the associated lattice. It follows that C(M)G is not retract rational.

In Theorem 4.6, note that both C(M1)
G and C(M2)

G are rational by Theorem

4.4 and Theorem 4.3. Thus Brnr(C(M2)
G) = 0 and H2

nr(G,M2) = 0. But M1 is not a

faithful G-lattice and we cannot apply Theorem 4.8 to C(M1)
G. Hence it is possible

that H2
nr(G,M1) is non-trivial. Because H2

nr(G,M) ≃ H2
nr(G,M1) ⊕ H2

nr(G,M2), this

allows for the possibility that H2
nr(G,M) is non-trivial. Indeed, it can be shown that

H2
nr(G,M1) ≃ Z/2Z and therefore Brnr(C(M)G) = H2

nr(G,M1) ≃ Z/2Z.
(4) Here is a summary of Theorem 4.12:

rankZM 1 2 3 4 5 6

# of G-lattices M 2 13 73 710 6079 85308

# of G-lattices M with Brnr(C(M)G) ̸= 0 0 0 0 5 46 1073

Theorem 4.14 (Hoshi, Kang and Yamasaki [HKY, Theorem 4.4]). The follow-

ing fields K are stably equivalent each other:

(1) C(G) where G is a group of order 64 which belongs to the 16th isoclinism class Φ16

(see the 9 groups defined as in Theorem 3.19 (1));
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(2) C(x1, x2, x3, x4)
D4 where D4 = ⟨σ, τ⟩ acts on C(x1, x2, x3, x4) by

σ : x1 7→ x2x3, x2 7→ x1x3, x3 7→ x4, x4 7→ 1
x3
,

τ : x1 7→ 1
x2
, x2 7→ 1

x1
, x3 7→ 1

x4
, x4 7→ 1

x3

(see Theorem 4.12 (2) and Table 1);

(3) C(y1, y2, y3, y4, y5)
D4 where D4 = ⟨σ, τ⟩ acts on C(y1, y2, y3, y4, y5) by

σ : y1 7→ y2, y2 7→ y1, y3 7→ 1
y1y2y3

, y4 7→ y5, y5 7→ 1
y4
,

τ : y1 7→ y3, y2 7→ 1
y1y2y3

, y3 7→ y1, y4 7→ y5, y5 7→ y4

(see Theorem 4.6);

(4) C(z1, z2, z3, z4)
C2×C2 where C2 × C2 = ⟨σ, τ⟩ acts on C(z1, z2, z3, z4) by

σ : z1 7→ z2, z2 7→ z1, z3 7→ 1
z1z2z3

, z4 7→ −1
z4
,

τ : z1 7→ z3, z2 7→ 1
z1z2z3

, z3 7→ z1, z4 7→ −z4

(see [HKK14, Proof of Theorem 6.4]);

(5) C(w1, w2, w3, w4)
C2 where C2 = ⟨σ⟩ acts on C(w1, w2, w3, w4) by

σ : w1 7→ −w1, w2 7→ w4

w2
, w3 7→ (w4−1)(w4−w2

1)
w3

, w4 7→ w4

(see [HKK14, Theorem 6.3]).

In particular, the unramified cohomology groups Hi
nr(K,Q/Z) of the fields K in

(1)–(5) coincide and Brnr(K) ≃ Z/2Z.

As in Remark 4.13 (2), all the G-lattices M with rankZM ≤ 6 and H2
nr(G,M) ̸= 0

in Theorem 4.12 satisfy the condition that G is non-abelian and solvable. Examples

of G-lattices M with H2
nr(G,M) ̸= 0 where G is abelian (resp. non-solvable; in fact,

simple) are given in [HKY] as follows:

Theorem 4.15 (Hoshi, Kang and Yamasaki [HKY, Theorem 6.1]). Let G be an

elementary abelian group of order 2n in GL7(Z) and M be the associated G-lattice of

rank 7. Then Brnr(C(M)G) ̸= 0 if and only if G is isomorphic up to conjugation to one

of the nine groups G1, . . . , G9 ≤ GL7(Z) as in [HKY, Theorem 6.1] where each of Gi is

isomorphic to (C2)
3 as an abstract group. Moreover, Brnr(C(M)Gi) = H2

nr(Gi,M) ≃
Z/2Z (resp. Z/2Z⊕ Z/2Z) for 1 ≤ i ≤ 8 (resp. i = 9).

Theorem 4.16 (Hoshi, Kang and Yamasaki [HKY, Theorem 6.2]). Embed A6

into S10 through the isomorphism A6 ≃ PSL2(F9), which acts on the projective line P1
F9

via fractional linear transformations. Thus we may regard A6 as a transitive subgroup of
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S10. Let N = ⊕1≤i≤10Z ·xi be the S10-lattice defined by σ ·xi = xσ(i) for any σ ∈ S10; it

becomes an A6-lattice by restricting the action of S10 to A6. DefineM = N/(Z·
∑10

i=1 xi)

with rankZM = 9. There exist exactly six A6-lattices M = M1, M2, . . . ,M6 which are

Q-conjugate but not Z-conjugate to each other; in fact, all these Mi form a single

Q-class, but this Q-class consists of six Z-classes. Then we have

H2
nr(A6,M1) ≃ H2

nr(A6,M3) ≃ Z/2Z, H2
nr(A6,Mi) = 0 for i = 2, 4, 5, 6.

In particular, C(M1)
A6 and C(M3)

A6 are not retract C-rational. Furthermore, the

lattices M1 and M3 may be distinguished by the Tate cohomology groups:

H1(A6,M1) = 0, Ĥ−1(A6,M1) = Z/10Z,

H1(A6,M3) = Z/5Z, Ĥ−1(A6,M3) = Z/2Z.

Motivated by the G-lattices in Theorem 4.12 (2) (see Table 1), the following G-

lattices M of rank 2n + 2, 4n and p(p − 1) (n is any positive integer and p is any odd

prime number) with Brnr(C(M)G) ̸= 0 were constructed in [HKY]:

Theorem 4.17 (Hoshi, Kang and Yamasaki [HKY, Theorem 7.2]). Let G = ⟨σ,
τ | σ4n = τ2 = 1, τ−1στ = σ−1⟩ ≃ D4n, the dihedral group of order 8n where n is any

positive integer. Let M be the G-lattice of rank 2n+2 defined in [HKY, Definition 7.1].

Then H2
nr(G,M) ≃ Z/2Z. Consequently, C(M)G is not retract C-rational.

Theorem 4.18 (Hoshi, Kang and Yamasaki [HKY, Theorem 7.5]).

(1) Let n be any positive integer and G = ⟨σ, τ | σ8n = τ2 = 1, τ−1στ = σ4n−1⟩ ≃ QD8n

be the quasi-dihedral group of order 16n. Let M be the G-lattice of rank 4n defined in

[HKY, Definition 7.4]. Then H2
nr(G,M) ≃ Z/2Z. Consequently, C(M)G is not retract

C-rational.

(2) Let Ĝ = ⟨σ2, στ⟩ ≃ Q8n ≤ G be the generalized quaternion group of order 8n. Let

M̂ = ResG
Ĝ
(M) be the Ĝ-lattice of rank 4n defined in [HKY, Definition 7.4]. Then

H2
nr(Ĝ, M̂) ≃ Z/2Z⊕ Z/2Z. Consequently, C(M̂)Ĝ is not retract C-rational.

Theorem 4.19 (Hoshi, Kang and Yamasaki [HKY, Theorem 7.7]). Let p be an

odd prime and G = ⟨σ, τ | σp2

= τp = 1, τ−1στ = σp+1⟩ ≃ Cp2 ⋊ Cp. Let M be the

G-lattice of rank p(p − 1) defined in [HKY, Definition 7.6]. Then H2
nr(G,M) ≃ Z/pZ.

Consequently, C(M)G is not retract C-rational.
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[BB13] F. A. Bogomolov, C. Böhning, Isoclinism and stable cohomology of wreath prod-

ucts, Birational geometry, rational curves, and arithmetic, 57–76, Springer, New

York, 2013.
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282, Birkhäuser Boston, Inc., Boston, MA, 2010.

[Len74] H. W. Lenstra, Jr., Rational functions invariant under a finite abelian group,

Invent. Math. 25 (1974) 299–325.

[Len80] H. W. Lenstra, Jr., Rational functions invariant under a cyclic group, Proceedings

of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979), pp. 91–

99, Queen’s Papers in Pure and Appl. Math., 54, Queen’s Univ., Kingston, Ont.,

1980.

[Mae89] T. Maeda, Noether’s problem for A5, J. Algebra 125 (1989) 418–430.

[MT86] Y. I. Manin, M. A. Tsfasman, Rational varieties: algebra, geometry, arithmetic,

Russian Math. Surveys 41 (1986) 51–116.

[MM76] J. M. Masley, H. L. Montgomery, Cyclotomic fields with unique factorization, J.

Reine Angew. Math. 286/287 (1976) 248–256.

[Mas55] K. Masuda, On a problem of Chevalley, Nagoya Math. J. 8 (1955) 59–63.

[Mas68] K. Masuda, Application of theory of the group of classes of projective modules to

existence problem of independent parameters of invariant, J. Math. Soc. Japan

20 (1968) 223–232.

[Mer08] A. Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. (2) 78

(2008) 51–64.

[Miy71] T. Miyata, Invariants of certain groups. I, Nagoya Math. J. 41 (1971) 69–73.

[Mor12] P. Moravec, Unramified Brauer groups of finite and infinite groups, Amer. J.

Math. 134 (2012) 1679–1704.

[Mor14] P. Moravec, Unramified Brauer groups and isoclinism, Ars Math. Contemp. 7

(2014) 337–340.

[Noe13] E. Noether, Rationale Funktionenkörper, Jber. Deutsch. Math.-Verein. 22 (1913)

316–319.

[Noe17] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1917)

221–229.

[PARI2] PARI/GP, version 2.6.0 (alpha), Bordeaux, 2013,

http://pari.math.u-bordeaux.fr/.

[Pey93] E. Peyre, Unramified cohomology and rationality problem, Math. Ann. 296 (1993)

247–268.

[Pey08] E. Peyre, Unramified cohomology of degree 3 and Noether’s problem, Invent. Math.

171 (2008) 191–225.

[Pla07] B. Plans, Noether’s problem for GL(2, 3), Manuscripta Math. 124 (2007) 481–

487.



Noether’s problem and rationality problem for multiplicative invariant fields 53

[Pla09] B. Plans, On Noether’s problem for central extensions of symmetric and alternat-

ing groups, J. Algebra 321 (2009) 3704–3713.

[Pla17] B. Plans, On Noether’s rationality problem for cyclic groups over Q, Proc. Amer.

Math. Soc. 145 (2017) 2407–2409.

[PS00] W. Plesken, T. Schulz, Counting crystallographic groups in low dimension, Exp.

Math. 9 (2000) 407–411.

[Rik] Y. Rikuna, The existence of a generic polynomial for SL(2, 3) over Q, preprint,

2004, available from http://www.mmm.muroran-it.ac.jp/~yuji/MuNT/2004/

papers/04030602rikuna.pdf.

[Sal82] D. J. Saltman, Generic Galois extensions and problems in field theory, Adv. Math.

43 (1982) 250–283.

[Sal84a] D. J. Saltman, Noether’s problem over an algebraically closed field, Invent. Math.

77 (1984) 71–84.

[Sal84b] D. J. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math.

47 (1984) 165–215.

[Sal85] D. J. Saltman, The Brauer group and the center of generic matrices, J. Algebra

97 (1985) 53–67.

[Sal87] D. J. Saltman, Multiplicative field invariants, J. Algebra 106 (1987) 221–238.

[Sal90] D. J. Saltman, Multiplicative field invariants and the Brauer group, J. Algebra

133 (1990) 533–544.

[Sus91] A. A. Suslin, K-theory and K-cohomology of certain group varieties, Algebraic

K-theory, 53–74, Adv. Soviet Math., 4, Amer. Math. Soc., Providence, RI, 1991.

[Swa69] R. G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math.

7 (1969) 148–158.

[Swa81] R. G. Swan, Galois theory, in Emmy Noether. A tribute to her life and work.

Edited by James W. Brewer and Martha K. Smith. Monographs and Textbooks

in Pure and Applied Mathematics, 69. Marcel Dekker, Inc., New York, 1981.

[Swa83] R. G. Swan, Noether’s problem in Galois theory, Emmy Noether in Bryn Mawr

(Bryn Mawr, Pa., 1982), 21–40, Springer, New York-Berlin, 1983.

[Voi14] C. Voisin, Chow rings, decomposition of the diagonal, and the topology of families,

Annals of Mathematics Studies, 187, Princeton University Press, 2014.

[Vos70] V. E. Voskresenskii, On the question of the structure of the subfield of invariants

of a cyclic group of automorphisms of the field Q(x1, . . . , xn) (Russian). Izv. Akad.

Nauk SSSR Ser. Mat. 34 (1970) 366–375. English translation: Math. USSR-Izv.

4 (1970) 371–380.

[Vos71] V. E. Voskresenskii, Rationality of certain algebraic tori, Izv. Akad. Nauk SSSR

Ser. Mat. (Russian) 35 (1971) 1037–1046. English translation: Math. USSR-Izv.

5 (1971) 1049–1056.

[Vos73] V. E. Voskresenskii, Fields of invariants of abelian groups, Uspekhi Mat. Nauk

(Russian) 28 (1973) 77–102. English translation: Russian Math. Surveys 28

(1973) 79–105.

[Vos98] V. E. Voskresenskii, Algebraic groups and their birational invariants, Translated

from the Russian manuscript by Boris Kunyavskii, Translations of Mathematical

Monographs, 179. American Mathematical Society, Providence, RI, 1998.

[Was97] L. C. Washington, Introduction to cyclotomic fields, Second edition. Graduate

Texts in Mathematics, 83. Springer-Verlag, New York, 1997.


