Noether's problem and rationality problem for multiplicative invariant fields: a survey

By

Akinari Hoshi*

Abstract

In this paper, we give a brief survey of recent developments on Noether's problem and rationality problem for multiplicative invariant fields including author's recent papers Hoshi [Hos15] about Noether's problem over \mathbb{Q}, Hoshi, Kang and Kunyavskii [HKK13], Chu, Hoshi, Hu and Kang [CHHK15], Hoshi [Hos16] and Hoshi, Kang and Yamasaki [HKY16] about Noether's problem over \mathbb{C}, and Hoshi, Kang and Kitayama [HKK14] and Hoshi, Kang and Yamasaki [HKY] about rationality problem for multiplicative invariant fields.

Contents

§ 1. Introduction

§ 2. Noether's problem over \mathbb{Q}
§3. Noether's problem over \mathbb{C} and unramified Brauer groups
§4. Rationality problem for multiplicative invariant fields
References

§ 1. Introduction

Let k be a field and G be a finite group acting on the rational function field $k\left(x_{g} \mid g \in G\right)$ by k-automorphisms $h\left(x_{g}\right)=x_{h g}$ for any $g, h \in G$. We denote the fixed field $k\left(x_{g} \mid g \in G\right)^{G}$ by $k(G)$. Emmy Noether [Noe13, Noe17] asked whether $k(G)$

[^0]is rational (= purely transcendental) over k. This is called Noether's problem for G over k, and is related to the inverse Galois problem, to the existence of generic G Galois extensions over k, and to the existence of versal G-torsors over k-rational field extensions (see Swan [Swa81, Swa83], Saltman [Sal82], Manin and Tsfasman [MT86], Garibaldi, Merkurjev and Serre [GMS03, Section 33.1, page 86], Colliot-Thélène and Sansuc [CTS07]).

Theorem 1.1 (Fischer [Fis15], see also Swan [Swa83, Theorem 6.1]). Let G be a finite abelian group with exponent e. Assume that (i) either char $k=0$ or char $k>0$ with char $k X e$, and (ii) k contains a primitive e-th root of unity. Then $k(G)$ is rational over k. In particular, $\mathbb{C}(G)$ is rational over \mathbb{C}.

Theorem 1.2 (Kuniyoshi [Kun54, Kun55, Kun56], see also Gaschütz [Gas59]). Let G be a p-group and k be a field with char $k=p>0$. Then $k(G)$ is rational over k.

Definition 1.3. Let K / k and L / k be finitely generated extensions of fields.
(1) K is said to be rational over k (for short, k-rational) if K is purely transcendental over k, i.e. $K \simeq k\left(x_{1}, \ldots, x_{n}\right)$ for some algebraically independent elements x_{1}, \ldots, x_{n} over k;
(2) K is said to be stably k-rational if $K\left(y_{1}, \ldots, y_{m}\right)$ is k-rational for some algebraically independent elements y_{1}, \ldots, y_{m} over K;
(3) K and L are said to be stably k-isomorphic if $K\left(y_{1}, \ldots, y_{m}\right) \simeq L\left(z_{1}, \ldots, z_{n}\right)$ for some algebraically independent elements y_{1}, \ldots, y_{m} over K and z_{1}, \ldots, z_{n} over L;
(4) (Saltman, [Sal84b, Definition 3.1]) when k is an infinite field, K is said to be retract k-rational if there exists a k-algebra A contained in K such that (i) K is the quotient field of A, (ii) there exist a non-zero polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and k-algebra homomorphisms $\varphi: A \rightarrow k\left[x_{1}, \ldots, x_{n}\right][1 / f]$ and $\psi: k\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow A$ satisfying $\psi \circ \varphi=1_{A}$;
(5) K is said to be k-unirational if $k \subset K \subset k\left(x_{1}, \ldots, x_{n}\right)$ for some integer n.

We see that if K and L are stably k-isomorphic and K is retract k-rational, then L is also retract k-rational (see [Sal84b, Proposition 3.6]), and hence it is not difficult to verify the following implications:

$$
k \text {-rational } \Rightarrow \text { stably } k \text {-rational } \Rightarrow \text { retract } k \text {-rational } \Rightarrow k \text {-unirational. }
$$

Note that $k(G)$ is retract k-rational if and only if there exists a generic G-Galois extension over k (see [Sal82, Theorem 5.3], [Sal84b, Theorem 3.12]). In particular, if k is a Hilbertian field, e.g. number field, and $k(G)$ is retract k-rational, then inverse Galois problem for G over k has a positive answer, i.e. there exists a Galois extension K / k with $\operatorname{Gal}(K / k) \simeq G$.

§ 2. Noether's problem over \mathbb{Q}

Masuda [Mas55, Mas68] gave an idea to use a technique of Galois descent to Noether's problem for cyclic groups C_{p} of order p. Let ζ_{p} be a primitive p-th root of unity, $L=\mathbb{Q}\left(\zeta_{p}\right)$ and $\pi=\operatorname{Gal}(L / \mathbb{Q})$. Then, by Theorem 1.1, we have $\mathbb{Q}\left(C_{p}\right)=$ $\mathbb{Q}\left(x_{1}, \ldots, x_{p}\right)^{C_{p}}=\left(L\left(x_{1}, \ldots, x_{p}\right)^{C_{p}}\right)^{\pi}=L\left(y_{0}, \ldots, y_{p-1}\right)^{\pi}=L(M)^{\pi}\left(y_{0}\right)$ where $y_{0}=$ $\sum_{i=1}^{p} x_{i}$ is π-invariant, M is free $\mathbb{Z}[\pi]$-module and π acts on y_{1}, \ldots, y_{p-1} by $\sigma\left(y_{i}\right)=$ $\prod_{j=1}^{p-1} y_{j}^{a_{i j}},\left[a_{i j}\right] \in G L_{n}(\mathbb{Z})$ for any $\sigma \in \pi$. Thus the field $L(M)^{\pi}$ may be regarded as the function field of some algebraic torus of dimension $p-1$ (see e.g. [Vos98, Chapter 3], [HY17, Chapter 1]).

Theorem 2.1 (Masuda [Mas55, Mas68], see also [Swa83, Lemma 7.1]).
(1) M is projective $\mathbb{Z}[\pi]$-module of rank one;
(2) If M is a permutation $\mathbb{Z}[\pi]$-module, i.e. M has a \mathbb{Z}-basis which is permuted by π, then $L(M)^{\pi}$ is \mathbb{Q}-rational. In particular, $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational for $p \leq 11 .{ }^{1}$

Swan [Swa69] gave the first negative solution to Noether's problem by investigating a partial converse to Masuda's result.

Theorem 2.2 (Swan [Swa69], Voskresenskii [Vos70]).
(1) If $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational, then there exists $\alpha \in \mathbb{Z}\left[\zeta_{p-1}\right]$ such that $N_{\mathbb{Q}\left(\zeta_{p-1}\right) / \mathbb{Q}}(\alpha)= \pm p$;
(2) (Swan [Swa69, Theorem 1]) $\mathbb{Q}\left(C_{47}\right), \mathbb{Q}\left(C_{113}\right)$ and $\mathbb{Q}\left(C_{233}\right)$ are not \mathbb{Q}-rational;
(3) (Voskresenskii [Vos70, Theorem 2]) $\mathbb{Q}\left(C_{47}\right), \mathbb{Q}\left(C_{167}\right), \mathbb{Q}\left(C_{359}\right), \mathbb{Q}\left(C_{383}\right), \mathbb{Q}\left(C_{479}\right)$, $\mathbb{Q}\left(C_{503}\right)$ and $\mathbb{Q}\left(C_{719}\right)$ are not \mathbb{Q}-rational.

Theorem 2.3 (Voskresenskii [Vos71, Theorem 1]). $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational if and only if there exists $\alpha \in \mathbb{Z}\left[\zeta_{p-1}\right]$ such that $N_{\mathbb{Q}\left(\zeta_{p-1}\right) / \mathbb{Q}}(\alpha)= \pm p$.

Hence if the cyclotomic field $\mathbb{Q}\left(\zeta_{p-1}\right)$ has class number one, then $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q} rational. However, it is known that such primes are exactly $p \leq 43$ and $p=61,67,71$ (see Masley and Montgomery [MM76, Main theorem] or Washington's book [Was97, Chapter 11]).

Endo and Miyata [EM73] refined Masuda-Swan's method and gave some further consequences on Noether's problem when G is abelian (see also [Vos73]).

Theorem 2.4 (Endo and Miyata [EM73, Theorem 2.3]). Let G_{1} and G_{2} be finite groups and k be a field with char $k=0$. If $k\left(G_{1}\right)$ and $k\left(G_{2}\right)$ are k-rational (resp. stably k-rational), then $k\left(G_{1} \times G_{2}\right)$ is k-rational (resp. stably k-rational). ${ }^{2}$

[^1]Theorem 2.5 (Endo and Miyata [EM73, Theorem 3.1]). Let p be an odd prime and l be a positive integer. Let k be a field with char $k=0$ and $\left[k\left(\zeta_{p^{l}}\right): k\right]=p^{m_{0}} d_{0}$ with $0 \leq m_{0} \leq l-1$ and $d_{0} \mid p-1$. Then the following conditions are equivalent:
(1) For any faithful $k\left[C_{p^{l}}\right]$-module $V, k(V)^{C_{p^{l}}}$ is k-rational;
(2) $k\left(C_{p^{\imath}}\right)$ is k-rational;
(3) There exists $\alpha \in \mathbb{Z}\left[\zeta_{p^{m 0} d_{0}}\right]$ such that

$$
N_{\mathbb{Q}\left(\zeta_{p^{m}}{ }_{0} d_{0}\right) / \mathbb{Q}}(\alpha)= \begin{cases} \pm p & m_{0}>0 \\ \pm p^{l} & m_{0}=0\end{cases}
$$

Further suppose that $m_{0}>0$. Then the above conditions are equivalent to each of the following conditions:
(1') For any $k\left[C_{p^{l}}\right]$-module $V, k(V)^{C_{p^{l}}}$ is k-rational;
(2') For any $1 \leq l^{\prime} \leq l, k\left(C_{p^{\prime \prime}}\right)$ is k-rational.
Theorem 2.6 (Endo and Miyata [EM73, Proposition 3.2]). Let p be an odd prime and k be a field with char $k=0$. If k contains $\zeta_{p}+\zeta_{p}^{-1}$, then $k\left(C_{p^{l}}\right)$ is k-rational for any l. In particular, $\mathbb{Q}\left(C_{3^{l}}\right)$ is \mathbb{Q}-rational for any l.

Theorem 2.7 (Endo and Miyata [EM73, Proposition 3.4, Corollary 3.10]).
(1) For primes $p \leq 43$ and $p=61,67,71, \mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational;
(2) For $p=5,7, \mathbb{Q}\left(C_{p^{2}}\right)$ is \mathbb{Q}-rational;
(3) For $l \geq 3, \mathbb{Q}\left(C_{2^{l}}\right)$ is not stably \mathbb{Q}-rational.

Theorem 2.8 (Endo and Miyata [EM73, Theorem 4.4]). Let G be a finite abelian group of odd order and k be a field with char $k=0$. Then there exists an integer $m>0$ such that $k\left(G^{m}\right)$ is k-rational.

Theorem 2.9 (Endo and Miyata [EM73, Theorem 4.6]). Let G be a finite abelian group. Then $\mathbb{Q}(G)$ is \mathbb{Q}-rational if and only if $\mathbb{Q}(G)$ is stably \mathbb{Q}-rational.

Ultimately, Lenstra [Len74] gave a necessary and sufficient condition of Noether's problem for abelian groups.

Theorem 2.10 (Lenstra [Len74, Main Theorem, Remark 5.7]). Let k be a field and G be a finite abelian group. Let k_{cyc} be the maximal cyclotomic extension of k in an algebraic closure. For $k \subset K \subset k_{\text {cyc }}$, we assume that $\rho_{K}=\operatorname{Gal}(K / k)=\left\langle\tau_{k}\right\rangle$ is finite cyclic. Let p be an odd prime with $p \neq \operatorname{char} k$ and $s \geq 1$ be an integer. Let $\mathfrak{a}_{K}\left(p^{s}\right)$ be a $\mathbb{Z}\left[\rho_{K}\right]$-ideal defined by

$$
\mathfrak{a}_{K}\left(p^{s}\right)= \begin{cases}\mathbb{Z}\left[\rho_{K}\right] & \text { if } K \neq k\left(\zeta_{p^{s}}\right) \\ \left(\tau_{K}-t, p\right) & \text { if } K=k\left(\zeta_{p^{s}}\right) \text { where } t \in \mathbb{Z} \text { satisfies } \tau_{K}\left(\zeta_{p}\right)=\zeta_{p}^{t}\end{cases}
$$

and put $\mathfrak{a}_{K}(G)=\prod_{p, s} \mathfrak{a}_{K}\left(p^{s}\right)^{m(G, p, s)}$ where $m(G, p, s)=\operatorname{dim}_{\mathbb{Z} / p \mathbb{Z}}\left(p^{s-1} G / p^{s} G\right)$. Then the following conditions are equivalent:
(1) $k(G)$ is k-rational;
(2) $k(G)$ is stably k-rational;
(3) for $k \subset K \subset k_{\text {cyc }}$, the $\mathbb{Z}\left[\rho_{K}\right]$-ideal $\mathfrak{a}_{K}(G)$ is principal and if char $k \neq 2$, then $k\left(\zeta_{r(G)}\right) / k$ is cyclic extension where $r(G)$ is the highest power of 2 dividing the exponent of G.

Theorem 2.11 (Lenstra [Len74, Corollary 7.2], [Len80, Proposition 2, Corollary 3]). Let n be a positive integer. Then the following conditions are equivalent:
(1) $\mathbb{Q}\left(C_{n}\right)$ is \mathbb{Q}-rational;
(2) $k\left(C_{n}\right)$ is k-rational for any field k;
(3) $\mathbb{Q}\left(C_{p^{s}}\right)$ is \mathbb{Q}-rational for any $p^{s} \| n$;
(4) $8 \nmid n$ and for any $p^{s} \| n$, there exists $\alpha \in \mathbb{Z}\left[\zeta_{\varphi\left(p^{s}\right)}\right]$ such that $N_{\mathbb{Q}\left(\zeta_{\varphi\left(p^{s}\right)}\right) / \mathbb{Q}}(\alpha)= \pm p$.

Theorem 2.12 (Lenstra [Len74, Corollary 7.6], [Len80, Proposition 6]). Let k be a field which is finitely generated over its prime field. Let P_{k} be the set of primes p for which $k\left(C_{p}\right)$ is k-rational. Then P_{k} has Dirichlet density 0 inside the set of all primes. In particular,

$$
\lim _{x \rightarrow \infty} \frac{\pi^{*}(x)}{\pi(x)}=0
$$

where $\pi(x)$ is the number of primes $p \leq x$, and $\pi^{*}(x)$ is the number of primes $p \leq x$ for which $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational.

Theorem 2.13 (Lenstra [Len80, Proposition 4]). Let p be a prime and $s \geq 2$ be an integer. Then $\mathbb{Q}\left(C_{p^{s}}\right)$ is \mathbb{Q}-rational if and only if $p^{s} \in\left\{2^{2}, 3^{m}, 5^{2}, 7^{2} \mid m \geq 2\right\}$.

By using Theorem 2.4, Endo and Miyata [EM73, Appendix] checked whether $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational for some primes $p<2000$. By using PARI/GP [PARI2], Hoshi [Hos15] confirmed that for primes $p<20000, \mathbb{Q}\left(C_{p}\right)$ is not \mathbb{Q}-rational except for 17 rational cases with $p \leq 43$ and $p=61,67,71$ and undetermined 46 cases. Eventually, Plans [Pla17] determined the complete set of primes for which $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational:

Theorem 2.14 (Plans [Pla17, Theorem 1.1]). Let p be a prime. Then $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational if and only if $p \leq 43, p=61,67$ or 71 .

Combining Theorem 2.11, Theorem 2.13 and Theorem 2.14, we have:
Corollary 2.15 (Plans [Pla17, Corollary 1.2]). Letn be a positive integer. Then $\mathbb{Q}\left(C_{n}\right)$ is \mathbb{Q}-rational if and only if n divides

$$
2^{2} \cdot 3^{m} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 61 \cdot 67 \cdot 71
$$

for some integer $m \geq 0$.

On the other hand, just a handful of results about Noether's problem are obtained when the groups are non-abelian.

Theorem 2.16 (Maeda [Mae89, Theorem, page 418]). Let k be a field and A_{5} be the alternating group of degree 5 . Then $k\left(A_{5}\right)$ is k-rational.

Theorem 2.17 (Rikuna [Rik], Plans [Pla07], see also [HKY11, Example 13.7]). Let k be a field with char $k \neq 2$. Then $k\left(S L_{2}\left(\mathbb{F}_{3}\right)\right)$ and $k\left(G L_{2}\left(\mathbb{F}_{3}\right)\right)$ are k-rational.

Theorem 2.18 (Serre [GMS03, Chapter IX], see also Kang [Kan05]). Let G be a finite group with a 2 -Sylow subgroup which is cyclic of order ≥ 8 or the generalized quaternion Q_{16} of order 16 . Then $\mathbb{Q}(G)$ is not stably \mathbb{Q}-rational.

Theorem 2.19 (Plans [Pla09, Theorem 2]). Let A_{n} be the alternating group of degree n. If $n \geq 3$ is odd integer, then $\mathbb{Q}\left(A_{n}\right)$ is rational over $\mathbb{Q}\left(A_{n-1}\right)$. In particular, if $\mathbb{Q}\left(A_{n-1}\right)$ is \mathbb{Q}-rational, then so is $\mathbb{Q}\left(A_{n}\right)$.

However, it is an open problem whether $k\left(A_{n}\right)$ is k-rational for $n \geq 6$.

§ 3. Noether's problem over \mathbb{C} and unramified Brauer groups

We consider Noether's problem for G over \mathbb{C}, i.e. the rationality problem for $\mathbb{C}(G)$ over \mathbb{C}. Let G be a p-group. Then, by Theorem 1.1 and Theorem 1.2, we may focus on the case where G is a non-abelian p-group and k is a field with char $k \neq p$. For p-groups of small order, the following results are known.

Theorem 3.1 (Chu and Kang [CK01]). Let p be any prime and G be a p-group of order $\leq p^{4}$ and of exponent e. If k is a field containing a primitive e-th root of unity, then $k(G)$ is k-rational. In particular, $\mathbb{C}(G)$ is \mathbb{C}-rational.

Theorem 3.2 (Chu, Hu, Kang and Prokhorov [CHKP08]). Let G be a group of order 32 and of exponent e. If k is a field containing a primitive e-th root of unity, then $k(G)$ is k-rational. In particular, $\mathbb{C}(G)$ is \mathbb{C}-rational.

Saltman introduced a notion of retract k-rationality (see Definition 1.3) and the unramified Brauer group:

Definition 3.3 (Saltman [Sal84a, Definition 3.1], [Sal85, page 56]). Let K / k be an extension of fields. The unramified Brauer group $\mathrm{Br}_{\mathrm{nr}}(K / k)$ of K over k is defined to be

$$
\operatorname{Br}_{\mathrm{nr}}(K / k)=\bigcap_{R} \operatorname{Image}\{\operatorname{Br}(R) \rightarrow \operatorname{Br}(K)\}
$$

where $\operatorname{Br}(R) \rightarrow \operatorname{Br}(K)$ is the natural map of Brauer groups and R runs over all the discrete valuation rings R such that $k \subset R \subset K$ and K is the quotient field of R. We write just $\mathrm{Br}_{\mathrm{nr}}(K)$ when the base field k is clear from the context.

Proposition 3.4 (Saltman [Sal84a], [Sal85, Proposition 1.8], [Sal87]). If K is retract k-rational, then $\operatorname{Br}(k) \xrightarrow{\sim} \operatorname{Br}_{\mathrm{nr}}(K)$. In particular, if k is an algebraically closed field and K is retract k-rational, then $\mathrm{Br}_{\mathrm{nr}}(K)=0$.

Theorem 3.5 (Bogomolov [Bog88, Theorem 3.1], Saltman [Sal90, Theorem 12]). Let G be a finite group and k be an algebraically closed field with char $k=0$ or char $k=p \nmid|G|$. Then $\operatorname{Br}_{\mathrm{nr}}(k(G) / k)$ is isomorphic to the group $B_{0}(G)$ defined by

$$
B_{0}(G)=\bigcap_{A} \operatorname{Ker}\left\{\operatorname{res}: H^{2}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}(A, \mathbb{Q} / \mathbb{Z})\right\}
$$

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is either a cyclic group or a direct product of two cyclic groups).

Remark 3.6. For a smooth projective variety X over \mathbb{C} with function field $K, \operatorname{Br}_{\mathrm{nr}}(K / \mathbb{C})$ is isomorphic to the birational invariant $H^{3}(X, \mathbb{Z})_{\text {tors }}$ which was used by Artin and Mumford [AM72] to provide some elementary examples of k-unirational varieties which are not k-rational (see also [Bog88, Theorem 1.1 and Corollary]).

Note that $B_{0}(G)$ is a subgroup of $H^{2}(G, \mathbb{Q} / \mathbb{Z})$ which is isomorphic to the Schur multiplier $H_{2}(G, \mathbb{Z})$ of G (see Karpilovsky [Kar87]). We call $B_{0}(G)$ the Bogomolov multiplier of G (cf. Kunyavskii [Kun10]). Because of Theorem 3.5, we will not distinguish $B_{0}(G)$ and $\operatorname{Br}_{\mathrm{nr}}(k(G) / k)$ when k is an algebraically closed field, and char $k=0$ or char $k=p \nmid|G|$. Using $B_{0}(G)$, Saltman and Bogomolov gave counter-examples to Noether's problem for non-abelian p-groups over algebraically closed field.

Theorem 3.7 (Saltman [Sal84a], Bogomolov [Bog88]). Let p be any prime and k be any algebraically closed field with char $k \neq p$.
(1) (Saltman [Sal84a, Theorem 3.6]) There exists a meta-abelian group G of order p^{9} such that $B_{0}(G) \neq 0$. In particular, $k(G)$ is not (retract, stably) k-rational;
(2) (Bogomolov [Bog88, Lemma 5.6]) There exists a group G of order p^{6} such that $B_{0}(G) \neq 0$. In particular, $k(G)$ is not (retract, stably) k-rational.

Colliot-Thélène and Ojanguren [CTO89] generalized the notion of the unramified Brauer group $\mathrm{Br}_{\mathrm{nr}}(K / k)$ to the unramified cohomology $H_{\mathrm{nr}}^{i}\left(K / k, \mu_{n}^{\otimes j}\right)$ of degree $i \geq 1$, that is $F_{n}^{i, j}(K / k)$ in [CTO89, Definition 1.1].

Definition 3.8 (Colliot-Thélène and Ojanguren [CTO89], [CT95, Sections 2-4]). Let n be a positive integer and k be a field with char $k=0$ or char $k=p$ with $p \nmid n$. Let
K / k be a function field, that is finitely generated field extension as a field over k. For any positive integer $i \geq 2$, any integer j, the unramified cohomology group $H_{\mathrm{nr}}^{i}\left(K / k, \mu_{n}^{\otimes j}\right)$ of K over k of degree i is defined to be

$$
H_{\mathrm{nr}}^{i}\left(K / k, \mu_{n}^{\otimes j}\right):=\bigcap_{R} \operatorname{Ker}\left\{r_{R}: H^{i}\left(K, \mu_{n}^{\otimes j}\right) \rightarrow H^{i-1}\left(\mathfrak{k}_{R}, \mu_{n}^{\otimes(j-1)}\right)\right\}
$$

where R runs over all the discrete valuation rings R of rank one such that $k \subset R \subset K$ and K is the quotient field of R, \mathbb{k}_{R} is the residue field of R and r_{R} is the residue map of K at R.

By [CT95, Theorem 4.1.1, page 30], if it is assumed furthermore that K is the function field of a complete smooth variety over k, the unramified cohomology group $H_{\mathrm{nr}}^{i}\left(K / k, \mu_{n}^{\otimes j}\right)$ may be defined as well by

$$
H_{\mathrm{nr}}^{i}\left(K / k, \mu_{n}^{\otimes j}\right)=\bigcap_{R} \operatorname{Image}\left\{H_{\text {êt }}^{i}\left(R, \mu_{n}^{\otimes j}\right) \rightarrow H_{\text {êt }}^{i}\left(K, \mu_{n}^{\otimes j}\right)\right\}
$$

where R runs over all the discrete valuation rings R of rank one such that $k \subset R \subset K$ and K is the quotient field of R.

Note that the unramified cohomology groups of degree two are isomorphic to the n-torsion part of the unramified Brauer group: ${ }_{n} \operatorname{Br}_{\mathrm{nr}}(K / k) \simeq H_{\mathrm{nr}}^{2}\left(K / k, \mu_{n}\right)$.

Theorem 3.9. Let n be a positive integer and k be an algebraically closed field with char $k=0$ or char $k=p \nmid n$.
(1) (Colliot-Thélène and Ojanguren [CTO89, Proposition 1.2]) If K and L are stably k-isomorphic, then $H_{\mathrm{nr}}^{i}\left(K / k, \mu_{n}^{\otimes j}\right) \xrightarrow{\sim} H_{\mathrm{nr}}^{i}\left(L / k, \mu_{n}^{\otimes j}\right)$. In particular, K is stably k rational, then $H_{\mathrm{nr}}^{i}\left(K / k, \mu_{n}^{\otimes j}\right)=0$;
(2) ([Mer08, Proposition 2.15], see also [CTO89, Remarque 1.2.2], [CT95, Sections 2-4], [GS10, Example 5.9]) If K is retract k-rational, then $H_{\mathrm{nr}}^{i}\left(K / k, \mu_{n}^{\otimes j}\right)=0$.

Colliot-Thélène and Ojanguren [CTO89, Section 3] produced the first example of not stably \mathbb{C}-rational but \mathbb{C}-unirational field K with $H_{\mathrm{nr}}^{3}\left(K, \mu_{2}^{\otimes 3}\right) \neq 0$, where K is the function field of a quadric of the type $\left\langle\left\langle f_{1}, f_{2}\right\rangle\right\rangle=\left\langle g_{1} g_{2}\right\rangle$ over the rational function field $\mathbb{C}(x, y, z)$ with three variables x, y, z for a 2 -fold Pfister form $\left\langle\left\langle f_{1}, f_{2}\right\rangle\right\rangle$, as a generalization of Artin and Mumford [AM72]. Peyre [Pey93, Corollary 3] gave a sufficient condition for $H_{\mathrm{nr}}^{i}\left(K / k, \mu_{p}^{\otimes i}\right) \neq 0$ and produced an example of the function field K with $H_{\mathrm{nr}}^{3}\left(K / k, \mu_{p}^{\otimes 3}\right) \neq 0$ and $\mathrm{Br}_{\mathrm{nr}}(K / k)=0$ using a result of Suslin [Sus91] where K is the function field of a product of some norm varieties associated to cyclic central simple algebras of degree p (see [Pey93, Proposition 7]). Using a result of Jacob and Rost [JR89], Peyre [Pey93, Proposition 9] also gave an example of $H_{\mathrm{nr}}^{4}\left(K / k, \mu_{2}^{\otimes 4}\right) \neq 0$ and $\operatorname{Br}_{\mathrm{nr}}(K / k)=0$ where K is the function field of a product of quadrics associated to a 4 -fold Pfister form $\left\langle\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle\right\rangle$ (see also [CT95, Section 4.2]).

In case char $k=0$, take the direct limit with respect to n :

$$
H^{i}(K / k, \mathbb{Q} / \mathbb{Z}(j))=\lim _{\vec{n}} H^{i}\left(K / k, \mu_{n}^{\otimes j}\right)
$$

and we may define the unramified cohomology group

$$
H_{\mathrm{nr}}^{i}(K / k, \mathbb{Q} / \mathbb{Z}(j))=\bigcap_{R} \operatorname{Ker}\left\{r_{R}: H^{i}(K / k, \mathbb{Q} / \mathbb{Z}(j)) \rightarrow H^{i-1}\left(\mathbb{k}_{R}, \mathbb{Q} / \mathbb{Z}(j-1)\right)\right\} .
$$

We write simply $H_{\mathrm{nr}}^{i}\left(K, \mu_{n}^{\otimes j}\right)$ and $H_{\mathrm{nr}}^{i}(K, \mathbb{Q} / \mathbb{Z}(j))$ when the base field k is understood. When k is an algebraically closed field with char $k=0$, we will write $H_{\mathrm{nr}}^{i}(K / k, \mathbb{Q} / \mathbb{Z})$ for $H_{\mathrm{nr}}^{i}(K / k, \mathbb{Q} / \mathbb{Z}(j))$. Then we have $\mathrm{Br}_{\mathrm{nr}}(K / k) \simeq H_{\mathrm{nr}}^{2}(K / k, \mathbb{Q} / \mathbb{Z})$.

Peyre [Pey08] constructed an example of a field K, as $K=\mathbb{C}(G)$, whose unramified Brauer group vanishes, but unramified cohomology of degree three does not vanish:

Theorem 3.10 (Peyre [Pey08, Theorem 3]). Letp be any odd prime. Then there exists a p-group G of order p^{12} such that $B_{0}(G)=0$ and $H_{\mathrm{nr}}^{3}(\mathbb{C}(G), \mathbb{Q} / \mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C}-rational.

The idea of Peyre's proof is to find a subgroup $K_{\max }^{3} / K^{3}$ of $H_{\mathrm{nr}}^{3}(\mathbb{C}(G), \mathbb{Q} / \mathbb{Z})$ and to show that $K_{\max }^{3} / K^{3} \neq 0$ (see [Pey08, page 210]).

Asok [Aso13] generalized Peyre's argument [Pey93] and established the following theorem for a smooth proper model X (resp. a smooth projective model Y) of the function field of a product of quadrics of the type $\left\langle\left\langle s_{1}, \ldots, s_{n-1}\right\rangle\right\rangle=\left\langle s_{n}\right\rangle$ (resp. Rost varieties) over some rational function field over \mathbb{C} with many variables.

Theorem 3.11 (Asok [Aso13], see [AM11, Theorem 3] for retract rationality). (1) ([Aso13, Theorem 1]) For any $n>0$, there exists a smooth projective complex variety X that is \mathbb{C}-unirational, for which $H_{\mathrm{nr}}^{i}\left(\mathbb{C}(X), \mu_{2}^{\otimes i}\right)=0$ for each $i<n$, yet $H_{\mathrm{nr}}^{n}\left(\mathbb{C}(X), \mu_{2}^{\otimes n}\right) \neq 0$, and so X is not \mathbb{A}^{1}-connected, nor (retract, stably) \mathbb{C}-rational; (2) ([Aso13, Theorem 3]) For any prime l and any $n \geq 2$, there exists a smooth projective rationally connected complex variety Y such that $H_{\mathrm{nr}}^{n}\left(\mathbb{C}(Y), \mu_{l}^{\otimes n}\right) \neq 0$. In particular, Y is not \mathbb{A}^{1}-connected, nor (retract, stably) \mathbb{C}-rational.

Namely, the triviality of the unramified Brauer group or the unramified cohomology of higher degree is just a necessary condition of \mathbb{C}-rationality of fields. It is unknown whether the vanishing of all the unramified cohomologies is a sufficient condition for \mathbb{C} rationality. It is interesting to consider an analog of Theorem 3.11 for quotient varieties V / G, e.g. the case of Noether's problem $\mathbb{C}\left(V_{\text {reg }} / G\right)=\mathbb{C}(G)$.

Colliot-Thélène and Voisin [CTV12] established:
Theorem 3.12 (Colliot-Thélène and Voisin [CTV12], [Voi14, Theorem 6.18]). For any smooth projective complex variety X, there is an exact sequence

$$
0 \rightarrow H_{\mathrm{nr}}^{3}(X, \mathbb{Z}) \otimes \mathbb{Q} / \mathbb{Z} \rightarrow H_{\mathrm{nr}}^{3}(X, \mathbb{Q} / \mathbb{Z}) \rightarrow \operatorname{Tors}\left(Z^{4}(X)\right) \rightarrow 0
$$

where

$$
Z^{4}(X)=\operatorname{Hdg}^{4}(X, \mathbb{Z}) / \operatorname{Hdg}^{4}(X, \mathbb{Z})_{\text {alg }}
$$

and the lower index "alg" means that we consider the group of integral Hodge classes which are algebraic. In particular, if X is rationally connected, then we have

$$
H_{\mathrm{nr}}^{3}(X, \mathbb{Q} / \mathbb{Z}) \simeq Z^{4}(X)
$$

Using Peyre's method [Pey08], we obtain the following theorem which is an improvement of Theorem 3.10 and gives an explicit counter-example to integral Hodge conjecture with the aid of Theorem 3.12.

Theorem 3.13 (Hoshi, Kang and Yamasaki [HKY16, Theorem 1.4]). Let p be any odd prime. Then there exists a p-group G of order p^{9} such that $B_{0}(G)=0$ and $H_{\mathrm{nr}}^{3}(\mathbb{C}(G), \mathbb{Q} / \mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C}-rational.

The case where G is a group of order $p^{5}(p \geq 3)$.
From Theorem 3.7 (2), Bogomolov [Bog88, Remark 1] raised a question to classify the groups of order p^{6} with $B_{0}(G) \neq 0$. He also claimed that if G is a p-group of order $\leq p^{5}$, then $B_{0}(G)=0([\operatorname{Bog} 88$, Lemma 5.6]). However, this claim was disproved by Moravec:

Theorem 3.14 (Moravec [Mor12, Section 8]). Let G be a group of order 243. Then $B_{0}(G) \neq 0$ if and only if $G=G\left(3^{5}, i\right)$ with $28 \leq i \leq 30$, where $G\left(3^{5}, i\right)$ is the i-th group of order 243 in the GAP database [GAP]. Moreover, if $B_{0}(G) \neq 0$, then $B_{0}(G) \simeq \mathbb{Z} / 3 \mathbb{Z}$.

Moravec [Mor12] gave a formula for $B_{0}(G)$ by using a nonabelian exterior square $G \wedge$ G of G and an implemented algorithm b0g.g in computer algebra system GAP [GAP], which is available from his website www.fmf.uni-lj.si/~moravec/Papers/b0g.g. The number of all solvable groups G of order ≤ 729 apart from the orders 512,576 and 640 with $B_{0}(G) \neq 0$ was given as in [Mor12, Table 1].

Hoshi, Kang and Kunyavskii [HKK13] determined p-groups G of order p^{5} with $B_{0}(G) \neq 0$ for any $p \geq 3$. It turns out that they belong to the same isoclinism family.

Definition 3.15 (Hall [Hal40, page 133]). Let G be a finite group. Let $Z(G)$ be the center of G and $[G, G]$ be the commutator subgroup of G. Two p-groups G_{1} and G_{2} are called isoclinic if there exist group isomorphisms $\theta: G_{1} / Z\left(G_{1}\right) \rightarrow G_{2} / Z\left(G_{2}\right)$ and $\phi:\left[G_{1}, G_{1}\right] \rightarrow\left[G_{2}, G_{2}\right]$ such that $\phi([g, h])=\left[g^{\prime}, h^{\prime}\right]$ for any $g, h \in G_{1}$ with $g^{\prime} \in$

$$
\theta\left(g Z\left(G_{1}\right)\right), h^{\prime} \in \theta\left(h Z\left(G_{1}\right)\right):
$$

For a prime p and an integer n, we denote by $G_{n}(p)$ the set of all non-isomorphic groups of order p^{n}. In $G_{n}(p)$, consider an equivalence relation: two groups G_{1} and G_{2} are equivalent if and only if they are isoclinic. Each equivalence class of $G_{n}(p)$ is called an isoclinism family, and the j-th isoclinism family is denoted by Φ_{j}.

For $p \geq 5$ (resp. $p=3$), there exist $2 p+61+\operatorname{gcd}\{4, p-1\}+2 \operatorname{gcd}\{3, p-1\}$ (resp. 67) groups G of order p^{5} which are classified into ten isoclinism families $\Phi_{1}, \ldots, \Phi_{10}$ (see [Jam80, Section 4]). The main theorem of [HKK13] can be stated as follows:

Theorem 3.16 (Hoshi, Kang and Kunyavskii [HKK13, Theorem 1.12]). Let p be any odd prime and G be a group of order p^{5}. Then $B_{0}(G) \neq 0$ if and only if G belongs to the isoclinism family Φ_{10}. Moreover, if $B_{0}(G) \neq 0$, then $B_{0}(G) \simeq \mathbb{Z} / p \mathbb{Z}$.

For the last statement, see [Kan14, Remark, page 424]. The proof of Theorem 3.16 was given by purely algebraic way. There exist exactly 3 groups which belong to Φ_{10} if $p=3$, i.e. $G=G(243, i)$ with $28 \leq i \leq 30$. This agrees with Moravec's computational result (Theorem 3.14). For $p \geq 5$, there exist exactly $1+\operatorname{gcd}\{4, p-1\}+\operatorname{gcd}\{3, p-1\}$ groups which belong to Φ_{10} (see [Jam80, page 621]).

The following result for the k-rationality of $k(G)$ supplements Theorem 3.14 although it is unknown whether $k(G)$ is k-rational for groups G which belong to Φ_{7} :

Theorem 3.17 (Chu, Hoshi, Hu and Kang [CHHK15, Theorem 1.13]). Let G be a group of order 243 with exponent e. If $B_{0}(G)=0$ and k be a field containing a primitive e-th root of unity, then $k(G)$ is k-rational except possibly for the five groups G which belong to Φ_{7}, i.e. $G=G(243, i)$ with $56 \leq i \leq 60$.

In [HKK13] and [CHHK15], not only the evaluation of the Bogomolov multiplier $B_{0}(G)$ and the k-rationality of $k(G)$ but also the k-isomorphisms between $k\left(G_{1}\right)$ and $k\left(G_{2}\right)$ for some groups G_{1} and G_{2} belonging to the same isoclinism family were given.

Bogomolov and Böhning [BB13] gave an answer to the question raised as [HKK13, Question 1.11] in the affirmative as follows.

Theorem 3.18 (Bogomolov and Böhning [BB13, Theorem 6]). If G_{1} and G_{2} are isoclinic, then $\mathbb{C}\left(G_{1}\right)$ and $\mathbb{C}\left(G_{2}\right)$ are stably \mathbb{C}-isomorphic. In particular, $H_{\mathrm{nr}}^{i}\left(\mathbb{C}\left(G_{1}\right), \mu_{n}^{\otimes j}\right)$ $\xrightarrow{\sim} H_{\mathrm{nr}}^{i}\left(\mathbb{C}\left(G_{2}\right), \mu_{n}^{\otimes j}\right)$.

A partial result of Theorem 3.18 was already given by Moravec. Indeed, Moravec [Mor14, Theorem 1.2] proved that if G_{1} and G_{2} are isoclinic, then $B_{0}\left(G_{1}\right) \simeq B_{0}\left(G_{2}\right)$.

The case where G is a group of order 64.

The classification of the groups G of order $64=2^{6}$ with $B_{0}(G) \neq 0$ was obtained by Chu, Hu, Kang and Kunyavskii [CHKK10]. Moreover, they investigated Noether's problem for groups G with $B_{0}(G)=0$. There exist 267 groups G of order 64 which are classified into 27 isoclinism families $\Phi_{1}, \ldots, \Phi_{27}$ by Hall and Senior [HS64] (see also [JNO90, Table I]). The main result of [CHKK10] can be stated in terms of the isoclinism families as follows.

Theorem 3.19 (Chu, Hu, Kang and Kunyavskii [CHKK10]). $\quad \operatorname{Let} G=G\left(2^{6}, i\right)$, $1 \leq i \leq 267$, be the i-th group of order 64 in the GAP database [GAP].
(1) ([CHKK10, Theorem 1.8]) $B_{0}(G) \neq 0$ if and only if G belongs to the isoclinism family Φ_{16}, i.e. $G=G\left(2^{6}, i\right)$ with $149 \leq i \leq 151,170 \leq i \leq 172,177 \leq i \leq 178$ or $i=182$. Moreover, if $B_{0}(G) \neq 0$, then $B_{0}(G) \simeq \mathbb{Z} / 2 \mathbb{Z}$ (see [Kan14, Remark, page 424] for this statement);
(2) ([CHKK10, Theorem 1.10]) If $B_{0}(G)=0$ and k is an quadratically closed field, then $k(G)$ is k-rational except possibly for five groups which belong to Φ_{13}, i.e. $G=G\left(2^{6}, i\right)$ with $241 \leq i \leq 245$.

For groups G which belong to Φ_{13}, k-rationality of $k(G)$ is unknown. The following two propositions supplement the cases Φ_{13} and Φ_{16} of Theorem 3.19. For the proof, the case of $G=G\left(2^{6}, 149\right)$ is given in [HKK14, Proof of Theorem 6.3], see also [CHKK10, Example 5.11, page 2355] and the proof for other cases can be obtained by the similar manner.

Definition 3.20. Let k be a field with char $k \neq 2$ and $k\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$ be the rational function field over k with variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$.
(1) The field $L_{k}^{(0)}$ is defined to be $k\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)^{H}$ where $H=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \simeq$ $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ acts on $k\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$ by k-automorphisms

$$
\begin{aligned}
& \sigma_{1}: X_{1} \mapsto X_{3}, X_{2} \mapsto \frac{1}{X_{1} X_{2} X_{3}}, X_{3} \mapsto X_{1}, X_{4} \mapsto X_{6}, X_{5} \mapsto \frac{1}{X_{4} X_{5} X_{6}}, X_{6} \mapsto X_{4} \\
& \sigma_{2}: X_{1} \mapsto X_{2}, X_{2} \mapsto X_{1}, X_{3} \mapsto \frac{1}{X_{1} X_{2} X_{3}}, X_{4} \mapsto X_{5}, X_{5} \mapsto X_{4}, X_{6} \mapsto \frac{1}{X_{4} X_{5} X_{6}} .
\end{aligned}
$$

(2) The field $L_{k}^{(1)}$ is defined to be $k\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\langle\tau\rangle}$ where $\langle\tau\rangle \simeq C_{2}$ acts on $k\left(X_{1}, X_{2}\right.$, X_{3}, X_{4}) by k-automorphisms

$$
\tau: X_{1} \mapsto-X_{1}, X_{2} \mapsto \frac{X_{4}}{X_{2}}, X_{3} \mapsto \frac{\left(X_{4}-1\right)\left(X_{4}-X_{1}^{2}\right)}{X_{3}}, X_{4} \mapsto X_{4} .
$$

Proposition 3.21 ([CHKK10, Proposition 6.3], see also [HY17, Proposition 12.5]). Let G be a group of order 64 which belongs to Φ_{13}, i.e. $G=G\left(2^{6}, i\right)$ with $241 \leq i \leq 245$. There exists a \mathbb{C}-injective homomorphism $\varphi: L_{\mathbb{C}}^{(0)} \rightarrow \mathbb{C}(G)$ such that $\mathbb{C}(G)$ is rational over $\varphi\left(L_{\mathbb{C}}^{(0)}\right)$. In particular, $\mathbb{C}(G)$ and $L_{\mathbb{C}}^{(0)}$ are stably \mathbb{C}-isomorphic and $B_{0}(G) \simeq$ $\operatorname{Br}_{\mathrm{nr}}\left(L_{\mathbb{C}}^{(0)}\right)=0$.

Proposition 3.22 ([CHKK10, Example 5.11], [HKK14, Proof of Theorem 6.3]). Let G be a group of order 64 which belongs to Φ_{16}, i.e. $G=G\left(2^{6}, i\right)$ with $149 \leq i \leq 151$, $170 \leq i \leq 172,177 \leq i \leq 178$ or $i=182$. There exists a \mathbb{C}-injective homomorphism $\varphi: L_{\mathbb{C}}^{(1)} \rightarrow \mathbb{C}(G)$ such that $\mathbb{C}(G)$ is rational over $\varphi\left(L_{\mathbb{C}}^{(1)}\right)$. In particular, $\mathbb{C}(G)$ and $L_{\mathbb{C}}^{(1)}$ are stably \mathbb{C}-isomorphic, $B_{0}(G) \simeq \operatorname{Br}_{\mathrm{nr}}\left(L_{\mathbb{C}}^{(1)}\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and hence $\mathbb{C}(G)$ and $L_{\mathbb{C}}^{(1)}$ are not (retract, stably) \mathbb{C}-rational.

Question 3.23 ([CHKK10, Section 6], [HY17, Section 12]). Is $L_{k}^{(0)} k$-rational?

The case where G is a group of order 128.

There exist 2328 groups of order 128 which are classified into 115 isoclinism families $\Phi_{1}, \ldots, \Phi_{115}$ ([JNO90, Tables I, II, III $]$).

Theorem 3.24 (Moravec [Mor12, Section 8, Table 1]). Let G be a group of order 128. Then $B_{0}(G) \neq 0$ if and only if G belongs to the isoclinism family Φ_{16}, Φ_{30}, $\Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60}, \Phi_{80}, \Phi_{106}$ or Φ_{114}. Moreover, we have
$B_{0}(G) \simeq \begin{cases}\mathbb{Z} / 2 \mathbb{Z} & \text { if } G \text { belongs to } \Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60}, \Phi_{80}, \Phi_{106} \text { or } \Phi_{114}, \\ (\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2} & \text { if } G \text { belongs to } \Phi_{30} .\end{cases}$
In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C}-rational.
It turns out that there exist 220 groups G of order 128 with $B_{0}(G) \neq 0$:

Family	Φ_{16}	Φ_{31}	Φ_{37}	Φ_{39}	Φ_{43}	Φ_{58}	Φ_{60}	Φ_{80}	Φ_{106}	Φ_{114}	Φ_{30}
$\exp (G)$	8	4	8	4 or 8	8	8	8	16	8	8	4
$B_{0}(G)$	$\mathbb{Z} / 2 \mathbb{Z}$										
\# of G 's	48	55	18	6	26	20	10	9	2	2	34

It is natural to ask the (stably) birational classification of $\mathbb{C}(G)$ for groups G of order 128. In particular, what happens to $\mathbb{C}(G)$ with $B_{0}(G) \neq 0$? The following theorem (Theorem 3.26) gives a partial answer to this question.

Definition 3.25. Let k be a field with char $k \neq 2$ and $k\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right.$, X_{7}) be the rational function field over k with variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}$.
(1) The field $L_{k}^{(2)}$ is defined to be $k\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)^{\langle\rho\rangle}$ where $\langle\rho\rangle \simeq C_{4}$ acts on $k\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$ by k-automorphisms

$$
\begin{aligned}
& \rho: X_{1} \mapsto X_{2}, X_{2} \mapsto-X_{1}, X_{3} \mapsto X_{4}, X_{4} \mapsto X_{3}, \\
& X_{5} \mapsto X_{6}, X_{6} \mapsto \frac{\left(X_{1}^{2} X_{2}^{2}-1\right)\left(X_{1}^{2} X_{3}^{2}+X_{2}^{2}-X_{3}^{2}-1\right)}{X_{5}} .
\end{aligned}
$$

(2) The field $L_{k}^{(3)}$ is defined to be $k\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right)^{\left\langle\lambda_{1}, \lambda_{2}\right\rangle}$ where $\left\langle\lambda_{1}, \lambda_{2}\right\rangle \simeq$ $C_{2} \times C_{2}$ acts on $k\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right)$ by k-automorphisms

$$
\begin{aligned}
\lambda_{1}: & X_{1} \mapsto X_{1}, X_{2} \mapsto \frac{X_{1}}{X_{2}}, X_{3} \mapsto \frac{1}{X_{1} X_{3}}, X_{4} \mapsto \frac{X_{2} X_{4}}{X_{1} X_{3}}, \\
& \quad X_{5} \mapsto-\frac{X_{1} X_{6}^{2}-1}{X_{5}}, X_{6} \mapsto-X_{6}, X_{7} \mapsto X_{7}, \\
\lambda_{2}: & X_{1} \mapsto \frac{1}{X_{1}}, X_{2} \mapsto X_{3}, X_{3} \mapsto X_{2}, X_{4} \mapsto \frac{\left(X_{1} X_{6}^{2}-1\right)\left(X_{1} X_{7}^{2}-1\right)}{X_{4}}, \\
\quad & X_{5} \mapsto-X_{5}, X_{6} \mapsto-X_{1} X_{6}, X_{7} \mapsto-X_{1} X_{7} .
\end{aligned}
$$

Theorem 3.26 (Hoshi [Hos16, Theorem 1.31]). Let G be a group of order 128. Assume that $B_{0}(G) \neq 0$. Then $\mathbb{C}(G)$ and $L_{\mathbb{C}}^{(m)}$ are stably \mathbb{C}-isomorphic where

$$
m= \begin{cases}1 & \text { if } G \text { belongs to } \Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60} \text { or } \Phi_{80} \\ 2 & \text { if } G \text { belongs to } \Phi_{106} \text { or } \Phi_{114}, \\ 3 & \text { if } G \text { belongs to } \Phi_{30}\end{cases}
$$

In particular, $\operatorname{Br}_{\mathrm{nr}}\left(L_{\mathbb{C}}^{(1)}\right) \simeq \operatorname{Br} \mathrm{nr}\left(L_{\mathbb{C}}^{(2)}\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and $\mathrm{Br}_{\mathrm{nr}}\left(L_{\mathbb{C}}^{(3)}\right) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2}$ and hence the fields $L_{\mathbb{C}}^{(1)}, L_{\mathbb{C}}^{(2)}$ and $L_{\mathbb{C}}^{(3)}$ are not (retract, stably) \mathbb{C}-rational.

For $m=1,2$, the fields $L_{\mathbb{C}}^{(m)}$ and $L_{\mathbb{C}}^{(3)}$ are not stably \mathbb{C}-isomorphic because their unramified Brauer groups are not isomorphic. However, we do not know whether the fields $L_{\mathbb{C}}^{(1)}$ and $L_{\mathbb{C}}^{(2)}$ are stably \mathbb{C}-isomorphic. If not, it is interesting to evaluate the higher unramified cohomologies.

§4. Rationality problem for multiplicative invariant fields

Let k be a field, G be a finite group and $\rho: G \rightarrow G L(V)$ be a faithful representation of G where V is a finite-dimensional vector space over k. Then G acts on the rational function field $k(V)$.

We consider the rationality problem for $k(V)^{G}$. By No-name Lemma (cf. Miyata [Miy71, Remark 3]), it is known that $k(G)$ is stably k-rational if and only if so is $k(V)^{G}$
where $\rho: G \rightarrow G L(V)$ is any faithful representation of G over k. Thus the rationality problem of $k(V)^{G}$ over k is also called Noether's problem.

In order to solve the rationality problem of $k(V)^{G}$, it is natural and almost inevitable that we reduce the problem to that of the multiplicative invariant field $k(M)^{G}$ defined in Definition 4.2; an illustration of reducing Noether's problem to the multiplicative invariant field can be found in, e.g. [CHKK10], [HKY11, Example 13.7].

When M is a G-lattice with $\operatorname{rank}_{\mathbb{Z}} M=n$, the multiplicative invariant field $k(M)^{G}$ is nothing but $k\left(x_{1}, \ldots, x_{n}\right)^{G}$, the fixed field of the rational function field $k\left(x_{1}, \ldots, x_{n}\right)$ on which G acts by multiplicative actions.

Definition 4.1. Let G be a finite group and $\mathbb{Z}[G]$ be the group ring. A finitely generated $\mathbb{Z}[G]$-module M is called a G-lattice if, as an abelian group, M is a free abelian group of finite rank. We will write $\operatorname{rank}_{\mathbb{Z}} M$ for the rank of M as a free abelian group. A G-lattice M is called faithful if, for any $\sigma \in G \backslash\{1\}, \sigma \cdot x \neq x$ for some $x \in M$.

Suppose that G is any finite group and $\Phi: G \rightarrow G L_{n}(\mathbb{Z})$ is a group homomorphism, i.e. an integral representation of G. Then the group $\Phi(G)$ acts naturally on the free abelian group $M:=\mathbb{Z}^{\oplus n}$; thus M becomes a $\mathbb{Z}[G]$-module. We call M the G-lattice associated to $\Phi($ or $\Phi(G))$. Conversely, if M is a G-lattice with $\operatorname{rank}_{\mathbb{Z}} M=n$, write $M=\oplus_{1 \leq i \leq n} \mathbb{Z} \cdot x_{i}$. Then there is a group homomorphism $\Phi: G \rightarrow G L_{n}(\mathbb{Z})$ defined as follows: If $\sigma \cdot x_{i}=\sum_{1 \leq j \leq n} a_{i j} x_{j}$ where $\sigma \in G$ and $a_{i j} \in \mathbb{Z}$, define $\Phi(\sigma)=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in$ $G L_{n}(\mathbb{Z})$.

When the group homomorphism $\Phi: G \rightarrow G L_{n}(\mathbb{Z})$ is injective, the corresponding G-lattice is a faithful G-lattice. For examples, any finite subgroup G of $G L_{n}(\mathbb{Z})$ gives rise to a faithful G-lattice of rank n.

The list of all the finite subgroups of $G L_{n}(\mathbb{Z})$ (with $n \leq 4$), up to conjugation, can be found in the book [BBNWZ78] and in GAP [GAP]. As to the situations of $G L_{n}(\mathbb{Z})$ (with $n \geq 5$), Plesken etc. found the lists of all the finite subgroups of $G L_{n}(\mathbb{Z})$ (with $n=5$ and 6); see [PS00] and the references therein. These lists may be found in the GAP package CARAT [CARAT] and also in [HY17, Chapter 3].

Here is a list of the total number of lattices, up to isomorphism, of a given rank:

rank	1	2	3	4	5	6
\# of G-lattices	2	13	73	710	6079	85308

Definition 4.2. Let M be a G-lattice of rank n and write $M=\oplus_{1 \leq i \leq n} \mathbb{Z} \cdot x_{i}$. For any field k, define $k(M)=k\left(x_{1}, \ldots, x_{n}\right)$ the rational function field over k with n variables x_{1}, \ldots, x_{n}. Define a multiplicative action of G on $k(M)$: For any $\sigma \in G$, if $\sigma \cdot x_{i}=\sum_{1 \leq j \leq n} a_{i j} x_{j}$ in the G-lattice M, then we define $\sigma \cdot x_{i}=\prod_{1 \leq j \leq n} x_{j}^{a_{i j}}$ in the field $k(M)$. Note that G acts trivially on k. The above multiplicative action is called a
purely monomial action of G on $k(M)$ in [HK92] and $k(M)^{G}$ is called a multiplicative invariant field in [Sal87].

When M is the G-lattice $\mathbb{Z}[G]$ where $M=\oplus_{g \in G} \mathbb{Z} \cdot x_{g}$ and $h \cdot x_{g}=x_{h g}$ for $h, g \in G$, we have $k(M)=k\left(x_{g} \mid g \in G\right)$ and $k(M)^{G}=k(G)$ (see Section 1). Note that $k(G)=k\left(V_{\text {reg }}\right)^{G}$ where $G \rightarrow G L\left(V_{\text {reg }}\right)$ is the regular representation of G over k.

Theorem 4.3 (Hajja [Haj87]). Let k be a field and G be a finite group acting on $k\left(x_{1}, x_{2}\right)$ by monomial k-automorphisms. Then $k\left(x_{1}, x_{2}\right)^{G}$ is k-rational.

Theorem 4.4 (Hajja and Kang [HK92, HK94], Hoshi and Rikuna [HR08]). Let k be a field and G be a finite group acting on $k\left(x_{1}, x_{2}, x_{3}\right)$ by purely monomial k automorphisms. Then $k\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is k-rational.

Theorem 4.5 (Hoshi, Kang and Kitayama [HKK14, Theorem 1.16]). Let k be a field, G be a finite group and M be a G-lattice with $\operatorname{rank}_{\mathbb{Z}} M=4$ such that G acts on $k(M)$ by purely monomial k-automorphisms. If M is decomposable, i.e. $M=M_{1} \oplus M_{2}$ as $\mathbb{Z}[G]$-modules where $1 \leq \operatorname{rank}_{\mathbb{Z}} M_{1} \leq 3$, then $k(M)^{G}$ is k-rational.

Theorem 4.6 (Hoshi, Kang and Kitayama [HKK14, Theorem 6.2]). Let k be a field, G be a finite group and M be a G-lattice such that G acts on $k(M)$ by purely monomial k-automorphisms. Assume that (i) $M=M_{1} \oplus M_{2}$ as $\mathbb{Z}[G]$-modules where $\operatorname{rank}_{\mathbb{Z}} M_{1}=3$ and $\operatorname{rank}_{\mathbb{Z}} M_{2}=2$, (ii) either M_{1} or M_{2} is a faithful G-lattice. Then $k(M)^{G}$ is k-rational except the following situation: char $k \neq 2, G=\langle\sigma, \tau\rangle \simeq D_{4}$ and $M_{1}=\bigoplus_{1 \leq i \leq 3} \mathbb{Z} x_{i}, M_{2}=\bigoplus_{1 \leq j \leq 2} \mathbb{Z} y_{j}$ such that $\sigma: x_{1} \leftrightarrow x_{2}, x_{3} \mapsto-x_{1}-x_{2}-x_{3}$, $y_{1} \mapsto y_{2} \mapsto-y_{1}, \tau: x_{1} \leftrightarrow x_{3}, x_{2} \mapsto-x_{1}-x_{2}-x_{3}, y_{1} \leftrightarrow y_{2}$ where the $\mathbb{Z}[G]$-module structure of M is written additively. For the exceptional case, $k(M)^{G}$ is not retract k-rational.

Definition 4.7. Let k be a field and μ be a multiplicative subgroup of $k \backslash\{0\}$ containing all the roots of unity in k. If M is a G-lattice, a μ-extension is an exact sequence of $\mathbb{Z}[G]$-modules given by $(\alpha): 1 \rightarrow \mu \rightarrow M_{\alpha} \rightarrow M \rightarrow 0$ where G acts trivially on μ. Be aware that $M_{\alpha}=\mu \oplus M$ as abelian groups, but not as $\mathbb{Z}[G]$-modules except when the extension (α) splits.

As in Definition 4.2, if $M=\oplus_{1 \leq i \leq n} \mathbb{Z} \cdot x_{i}$ and M_{α} is a μ-extension, we define the field $k_{\alpha}(M)=k\left(x_{1}, \ldots, x_{n}\right)$ the rational function field over k with n variables x_{1}, \ldots, x_{n}; the action of G on $k_{\alpha}(M)$ will be described in the next paragraph. Note that M_{α} is embedded into the multiplicative group $k_{\alpha}(M) \backslash\{0\}$ by sending $\left(\epsilon, \sum_{1 \leq i \leq n} b_{i} x_{i}\right) \in \mu \oplus M$ to the element $\epsilon \prod_{1 \leq i \leq n} x_{i}^{b_{i}}$ in the field $k_{\alpha}(M)=k\left(x_{1}, \ldots, x_{n}\right)$.

The group G acts on $k_{\alpha}(M)$ by a twisted multiplicative action: Suppose that, in M we have $\sigma \cdot x_{i}=\sum_{1 \leq j \leq n} a_{i j} x_{j}$, and in M_{α} we have $\sigma \cdot x_{i}=\varepsilon_{i}(\sigma)+\sum_{1 \leq j \leq n} a_{i j} x_{j}$ where $\varepsilon_{i}(\sigma) \in \mu$. Then we define $\sigma \cdot x_{i}=\varepsilon_{i}(\sigma) \prod_{1 \leq j \leq n} x_{j}^{a_{i j}}$ in $k_{\alpha}(M)$. Again G acts
trivially on the coefficient field k. The above group action is called monomial group action in [HK92] and $k_{\alpha}(M)^{G}$ is called twisted multiplicative invariant field in [Sal90].

Note that, if the extension $(\alpha): 1 \rightarrow \mu \rightarrow M_{\alpha} \rightarrow M \rightarrow 0$ is a split extension, then $k_{\alpha}(M)=k(M)$ and the twisted multiplicative action is reduced to the multiplicative action in Definition 4.2.

For any faithful linear representation $G \rightarrow G L(V)$ of G, we have $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(V)^{G}\right) \simeq$ $B_{0}(G)$ by No-name Lemma (see [Sal90]).

The formula in [Sal90, Theorem 12] (Theorem 3.5) can be used to compute not only $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(V)^{G}\right)$, but also $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}_{\alpha}(M)^{G}\right)$ where $\mathbb{C}_{\alpha}(M)$ is the rational function field associated to the μ-extension M_{α} :

Theorem 4.8 (Saltman [Sal90, Theorem 12]). Let k be an algebraically closed field with char $k=0$, and G be a finite group. If M is a G-lattice and $(\alpha): 1 \rightarrow$ $\mu \rightarrow M_{\alpha} \rightarrow M \rightarrow 0$ is a μ-extension such that (i) M is a faithful G-lattice, and (ii) $H^{2}(G, \mu) \rightarrow H^{2}\left(G, M_{\alpha}\right)$ is injective, then

$$
\operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)=\bigcap_{A} \operatorname{Ker}\left\{\text { res }: H^{2}\left(G, M_{\alpha}\right) \rightarrow H^{2}\left(A, M_{\alpha}\right)\right\}
$$

where A runs over all the bicyclic subgroups of G.
In particular, if the μ-extension $(\alpha): 1 \rightarrow \mu \rightarrow M_{\alpha} \rightarrow M \rightarrow 0$ splits, then $\operatorname{Br}_{\mathrm{nr}}\left(k(M)^{G}\right) \simeq B_{0}(G) \oplus \bigcap_{A} \operatorname{Ker}\left\{\right.$ res : $\left.H^{2}(G, M) \rightarrow H^{2}(A, M)\right\}$ where A runs over bicyclic subgroups of G.

Definition 4.9. By Definition 3.3, $\operatorname{Br}_{\mathrm{nr}}(K)$ is a subgroup of the Brauer group $\operatorname{Br}(K)$. On the other hand, the map of the Brauer groups $\operatorname{Br}\left(k_{\alpha}(M)^{G}\right) \rightarrow \operatorname{Br}\left(k_{\alpha}(M)\right)$ sends $\operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)$ to $\operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)\right)$ [Sal87, Theorem 2.1]. Since $\operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)\right)=0$ by [Sal87, Proposition, 2.2], it follows that the unramified Brauer group $\mathrm{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)$ is a subgroup of the relative Brauer group $\operatorname{Br}\left(k_{\alpha}(M) / k_{\alpha}(M)^{G}\right)$. As $\operatorname{Br}\left(k_{\alpha}(M) / k_{\alpha}(M)^{G}\right)$ is isomorphic to the cohomology group $H^{2}\left(G, k_{\alpha}(M)^{\times}\right)$, we may regard $\operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)$ as a subgroup of $H^{2}\left(G, k_{\alpha}(M)^{\times}\right)$.

Through the embedding $M_{\alpha} \hookrightarrow k_{\alpha}(M)^{\times}$, there is a canonical injection $H^{2}\left(G, M_{\alpha}\right)$ $\hookrightarrow \operatorname{Br}\left(k_{\alpha}(M)^{G}\right)$ [Sal90, page 536]. Identifying $\operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)$ and $H^{2}\left(G, M_{\alpha}\right)$ as subgroups of $H^{2}\left(G, k_{\alpha}(M)^{\times}\right)$, we see that $\operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)$ is a subgroup of $H^{2}\left(G, M_{\alpha}\right)$ [Sal90, page 536]. Thus we write $H_{\mathrm{nr}}^{2}\left(G, M_{\alpha}\right)$ for $\mathrm{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)$ (see [Sal90]).

Note that there is a natural map $H^{2}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}\left(G, M_{\alpha}\right)$. Clearly this map is injective if the μ-extension $(\alpha): 1 \rightarrow \mu \rightarrow M_{\alpha} \rightarrow M \rightarrow 0$ splits. In this case, regarding $H^{2}(G, \mathbb{Q} / \mathbb{Z})$ and $H^{2}(G, M)$ as subgroups of $H^{2}\left(G, M_{\alpha}\right)$, we define $H_{\mathrm{nr}}^{2}(G, \mathbb{Q} / \mathbb{Z})=$ $\left.H^{2}(G, \mathbb{Q} / \mathbb{Z}) \cap \operatorname{Br} \mathrm{nr}^{(} k_{\alpha}(M)^{G}\right)$ and $H_{\mathrm{nr}}^{2}(G, M)=H^{2}(G, M) \cap \operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)$. It follows that $\operatorname{Br}_{\mathrm{nr}}\left(k_{\alpha}(M)^{G}\right)=H_{\mathrm{nr}}^{2}(G, \mathbb{Q} / \mathbb{Z}) \oplus H_{\mathrm{nr}}^{2}(G, M)$. By Theorems 3.5 and 4.8, we have
$H_{\mathrm{nr}}^{2}(G, \mathbb{Q} / \mathbb{Z}) \simeq B_{0}(G)$ and $H_{\mathrm{nr}}^{2}(G, M) \simeq \bigcap_{A} \operatorname{Ker}\left\{\right.$ res : $\left.H^{2}(G, M) \rightarrow H^{2}(A, M)\right\}$ where A runs over bicyclic subgroups of G.

Theorem 4.10 (Barge [Bar89, Theorem II.7]). Let G be a finite group. Then the following conditions are equivalent:
(1) All the Sylow subgroups of G are bicyclic;
(2) $\mathrm{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right)=0$ for all G-lattices M.

Theorem 4.11 (Barge [Bar97, Theorem IV-1]). Let G be a finite group. Then the following conditions are equivalent:
(1) All the Sylow subgroups of G are cyclic;
(2) $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}_{\alpha}(M)^{G}\right)=0$ for all G-lattices M, for all short exact sequences of $\mathbb{Z}[G]$ modules $\alpha: 0 \rightarrow \mathbb{C}^{\times} \rightarrow M_{\alpha} \rightarrow M \rightarrow 0$.

As in Definition 4.9, we have $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \simeq B_{0}(G) \oplus H_{\mathrm{nr}}^{2}(G, M)$ where $B_{0}(G)$ is the Bogomolov multiplier and $H_{\mathrm{nr}}^{2}(G, M) \leq H^{2}(G, M)$. We remark that $B_{0}(G)$ is related to the rationality of $\mathbb{C}(V)^{G}$ where $G \rightarrow G L(V)$ is any faithful linear representation of G over \mathbb{C}; on the other hand, $H_{\mathrm{nr}}^{2}(G, M)$ arises from the multiplicative nature of the field $\mathbb{C}(M)^{G}$.

In case $\operatorname{rank}_{\mathbb{Z}} M \leq 3, \operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right)=0$ for all G-lattices M because $\mathbb{C}(M)^{G}$ are always \mathbb{C}-rational (see Theorem 4.3 and Theorem 4.4). The following theorem [HKY, Theorem 1.10] gives the classification of all the lattices M with $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$ when $\operatorname{rank}_{\mathbb{Z}} M \leq 6$. Thus $\mathbb{C}(M)^{G}$ are not retract \mathbb{C}-rational for these lattices (and thus are not \mathbb{C}-rational).

Let C_{n} (resp. $D_{n}, Q D_{8 n}, Q_{8 n}$) be the cyclic group of order n (resp. the dihedral group of order $2 n$, the quasi-dihedral group of order $16 n$, the generalized quaternion group of order $8 n$).

Theorem 4.12 (Hoshi, Kang and Yamasaki [HKY, Theorem 1.10]). Let G be a finite group and M be a faithful G-lattice.
(1) If $\operatorname{rank}_{\mathbb{Z}} M \leq 3$, then $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right)=0$.
(2) If $\operatorname{rank}_{\mathbb{Z}} M=4$, then $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$ if and only if M is one of the 5 cases in Table 1. Moreover, if M is one of the $5 G$-lattices with $\mathrm{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$, then $B_{0}(G)=0$ and $\mathrm{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right)=H_{\mathrm{nr}}^{2}(G, M)$.
(3) If $\operatorname{rank}_{\mathbb{Z}} M=5$, then $\mathrm{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$ if and only if M is one of the 46 cases in [HKY, Table 2]. Moreover, if M is one of the $46 G$-lattices with $\mathrm{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$, then $B_{0}(G)=0$ and $\mathrm{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right)=H_{\mathrm{nr}}^{2}(G, M)$.
(4) If $\operatorname{rank}_{\mathbb{Z}} M=6$, then $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$ if and only if M is one of the 1073 cases as in [HKY, Table 3]. Moreover, if M is one of the $1073 G$-lattices with $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$, then $B_{0}(G)=0$ and $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right)=H_{\mathrm{nr}}^{2}(G, M)$, except for 24 cases with $B_{0}(G)=$
$\mathbb{Z} / 2 \mathbb{Z}$ where the CARAT ID of G are $(6,6458, i)$, $(6,6459, i),(6,6464, i)(1 \leq i \leq 8)$. Note that 22 cases out of the exceptional 24 cases satisfy $H_{\mathrm{nr}}^{2}(G, M)=0$.

Table 1: $5 G$-lattices M of rank 4 with $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$

$G(n, i)$	G	GAP ID	$B_{0}(G)$	$H_{\mathrm{nr}}^{2}(G, M)$
$(8,3)$	D_{4}	$(4,12,4,12)$	0	$\mathbb{Z} / 2 \mathbb{Z}$
$(8,4)$	Q_{8}	$(4,32,1,2)$	0	$(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2}$
$(16,8)$	$Q D_{8}$	$(4,32,3,2)$	0	$\mathbb{Z} / 2 \mathbb{Z}$
$(24,3)$	$S L_{2}\left(\mathbb{F}_{3}\right)$	$(4,33,3,1)$	0	$(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2}$
$(48,29)$	$G L_{2}\left(\mathbb{F}_{3}\right)$	$(4,33,6,1)$	0	$\mathbb{Z} / 2 \mathbb{Z}$

Remark 4.13. (1) The above theorem remains valid if we replace the coefficient field \mathbb{C} by any algebraically closed field k with char $k=0$.
(2) If M is of rank ≤ 6 and $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}\left(M^{G}\right)\right) \neq 0$, then G is solvable and non-abelian, and $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \simeq \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. The case where $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \simeq \mathbb{Z} / 3 \mathbb{Z}$ occurs only for 4 groups G of order 27, $27,54,54$ with the CARAT ID $(6,2865,1)$, $(6,2865,3),(6,2899,3),(6,2899,5)$ which are isomorphic to $C_{9} \rtimes C_{3}, C_{9} \rtimes C_{3},\left(C_{9} \rtimes\right.$ $\left.C_{3}\right) \rtimes C_{2},\left(C_{9} \rtimes C_{3}\right) \rtimes C_{2}$ respectively. For CARAT ID, see Hoshi and Yamasaki [HY17, Chapter 3].
(3) The group $G\left(\simeq D_{4}\right)$ which appears as the exceptional case in Theorem 4.6 (i.e. [HKK14, Theorem 6.2]) satisfies the property that $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right)=H_{\mathrm{nr}}^{2}(G, M) \neq 0$ where M is the associated lattice. It follows that $\mathbb{C}(M)^{G}$ is not retract rational.

In Theorem 4.6, note that both $\mathbb{C}\left(M_{1}\right)^{G}$ and $\mathbb{C}\left(M_{2}\right)^{G}$ are rational by Theorem 4.4 and Theorem 4.3. Thus $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}\left(M_{2}\right)^{G}\right)=0$ and $H_{\mathrm{nr}}^{2}\left(G, M_{2}\right)=0$. But M_{1} is not a faithful G-lattice and we cannot apply Theorem 4.8 to $\mathbb{C}\left(M_{1}\right)^{G}$. Hence it is possible that $H_{\mathrm{nr}}^{2}\left(G, M_{1}\right)$ is non-trivial. Because $H_{\mathrm{nr}}^{2}(G, M) \simeq H_{\mathrm{nr}}^{2}\left(G, M_{1}\right) \oplus H_{\mathrm{nr}}^{2}\left(G, M_{2}\right)$, this allows for the possibility that $H_{\mathrm{nr}}^{2}(G, M)$ is non-trivial. Indeed, it can be shown that $H_{\mathrm{nr}}^{2}\left(G, M_{1}\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and therefore $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right)=H_{\mathrm{nr}}^{2}\left(G, M_{1}\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$.
(4) Here is a summary of Theorem 4.12:

$\operatorname{rank}_{\mathbb{Z}} M$	1	2	3	4	5	6
$\#$ of G-lattices M	2	13	73	710	6079	85308
\# of G-lattices M with $\operatorname{Br}_{\text {nr }}\left(\mathbb{C}(M)^{G}\right) \neq 0$	0	0	0	5	46	1073

Theorem 4.14 (Hoshi, Kang and Yamasaki [HKY, Theorem 4.4]). The following fields K are stably equivalent each other:
(1) $\mathbb{C}(G)$ where G is a group of order 64 which belongs to the 16 th isoclinism class Φ_{16} (see the 9 groups defined as in Theorem 3.19 (1));
(2) $\mathbb{C}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{D_{4}}$ where $D_{4}=\langle\sigma, \tau\rangle$ acts on $\mathbb{C}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by

$$
\begin{aligned}
& \sigma: x_{1} \mapsto x_{2} x_{3}, x_{2} \mapsto x_{1} x_{3}, x_{3} \mapsto x_{4}, x_{4} \mapsto \frac{1}{x_{3}} \\
& \tau: x_{1} \mapsto \frac{1}{x_{2}}, x_{2} \mapsto \frac{1}{x_{1}}, x_{3} \mapsto \frac{1}{x_{4}}, x_{4} \mapsto \frac{1}{x_{3}}
\end{aligned}
$$

(see Theorem 4.12 (2) and Table 1);
(3) $\mathbb{C}\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)^{D_{4}}$ where $D_{4}=\langle\sigma, \tau\rangle$ acts on $\mathbb{C}\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$ by

$$
\begin{aligned}
& \sigma: y_{1} \mapsto y_{2}, y_{2} \mapsto y_{1}, y_{3} \mapsto \frac{1}{y_{1} y_{2} y_{3}}, y_{4} \mapsto y_{5}, y_{5} \mapsto \frac{1}{y_{4}}, \\
& \tau: y_{1} \mapsto y_{3}, y_{2} \mapsto \frac{1}{y_{1} y_{2} y_{3}}, y_{3} \mapsto y_{1}, y_{4} \mapsto y_{5}, y_{5} \mapsto y_{4}
\end{aligned}
$$

(see Theorem 4.6);
(4) $\mathbb{C}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{C_{2} \times C_{2}}$ where $C_{2} \times C_{2}=\langle\sigma, \tau\rangle$ acts on $\mathbb{C}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ by

$$
\begin{aligned}
& \sigma: z_{1} \mapsto z_{2}, z_{2} \mapsto z_{1}, z_{3} \mapsto \frac{1}{z_{1} z_{2} z_{3}}, z_{4} \mapsto \frac{-1}{z_{4}}, \\
& \tau: z_{1} \mapsto z_{3}, z_{2} \mapsto \frac{1}{z_{1} z_{2} z_{3}}, z_{3} \mapsto z_{1}, z_{4} \mapsto-z_{4}
\end{aligned}
$$

(see [HKK14, Proof of Theorem 6.4]);
(5) $\mathbb{C}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{C_{2}}$ where $C_{2}=\langle\sigma\rangle$ acts on $\mathbb{C}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ by

$$
\sigma: w_{1} \mapsto-w_{1}, w_{2} \mapsto \frac{w_{4}}{w_{2}}, w_{3} \mapsto \frac{\left(w_{4}-1\right)\left(w_{4}-w_{1}^{2}\right)}{w_{3}}, w_{4} \mapsto w_{4}
$$

(see [HKK14, Theorem 6.3]).
In particular, the unramified cohomology groups $H_{\mathrm{nr}}^{i}(K, \mathbb{Q} / \mathbb{Z})$ of the fields K in (1)-(5) coincide and $\operatorname{Br}_{\mathrm{nr}}(K) \simeq \mathbb{Z} / 2 \mathbb{Z}$.

As in Remark 4.13 (2), all the G-lattices M with $\operatorname{rank}_{\mathbb{Z}} M \leq 6$ and $H_{\mathrm{nr}}^{2}(G, M) \neq 0$ in Theorem 4.12 satisfy the condition that G is non-abelian and solvable. Examples of G-lattices M with $H_{\mathrm{nr}}^{2}(G, M) \neq 0$ where G is abelian (resp. non-solvable; in fact, simple) are given in [HKY] as follows:

Theorem 4.15 (Hoshi, Kang and Yamasaki [HKY, Theorem 6.1]). Let G be an elementary abelian group of order 2^{n} in $G L_{7}(\mathbb{Z})$ and M be the associated G-lattice of rank 7. Then $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$ if and only if G is isomorphic up to conjugation to one of the nine groups $G_{1}, \ldots, G_{9} \leq G L_{7}(\mathbb{Z})$ as in [HKY, Theorem 6.1] where each of G_{i} is isomorphic to $\left(C_{2}\right)^{3}$ as an abstract group. Moreover, $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G_{i}}\right)=H_{\mathrm{nr}}^{2}\left(G_{i}, M\right) \simeq$ $\mathbb{Z} / 2 \mathbb{Z}$ (resp. $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z})$ for $1 \leq i \leq 8$ (resp. $i=9$).

Theorem 4.16 (Hoshi, Kang and Yamasaki [HKY, Theorem 6.2]). Embed A_{6} into S_{10} through the isomorphism $A_{6} \simeq P S L_{2}\left(\mathbb{F}_{9}\right)$, which acts on the projective line $\mathbb{P}_{\mathbb{F}_{9}}^{1}$ via fractional linear transformations. Thus we may regard A_{6} as a transitive subgroup of
S_{10}. Let $N=\oplus_{1 \leq i \leq 10} \mathbb{Z} \cdot x_{i}$ be the S_{10}-lattice defined by $\sigma \cdot x_{i}=x_{\sigma(i)}$ for any $\sigma \in S_{10}$; it becomes an A_{6}-lattice by restricting the action of S_{10} to A_{6}. Define $M=N /\left(\mathbb{Z} \cdot \sum_{i=1}^{10} x_{i}\right)$ with $\operatorname{rank}_{\mathbb{Z}} M=9$. There exist exactly six A_{6}-lattices $M=M_{1}, M_{2}, \ldots, M_{6}$ which are \mathbb{Q}-conjugate but not \mathbb{Z}-conjugate to each other; in fact, all these M_{i} form a single \mathbb{Q}-class, but this \mathbb{Q}-class consists of six \mathbb{Z}-classes. Then we have

$$
H_{\mathrm{nr}}^{2}\left(A_{6}, M_{1}\right) \simeq H_{\mathrm{nr}}^{2}\left(A_{6}, M_{3}\right) \simeq \mathbb{Z} / 2 \mathbb{Z}, \quad H_{\mathrm{nr}}^{2}\left(A_{6}, M_{i}\right)=0 \text { for } i=2,4,5,6
$$

In particular, $\mathbb{C}\left(M_{1}\right)^{A_{6}}$ and $\mathbb{C}\left(M_{3}\right)^{A_{6}}$ are not retract \mathbb{C}-rational. Furthermore, the lattices M_{1} and M_{3} may be distinguished by the Tate cohomology groups:

$$
\begin{array}{ll}
H^{1}\left(A_{6}, M_{1}\right)=0, & \widehat{H}^{-1}\left(A_{6}, M_{1}\right)=\mathbb{Z} / 10 \mathbb{Z} \\
H^{1}\left(A_{6}, M_{3}\right)=\mathbb{Z} / 5 \mathbb{Z}, & \widehat{H}^{-1}\left(A_{6}, M_{3}\right)=\mathbb{Z} / 2 \mathbb{Z}
\end{array}
$$

Motivated by the G-lattices in Theorem 4.12 (2) (see Table 1), the following G lattices M of rank $2 n+2,4 n$ and $p(p-1)(n$ is any positive integer and p is any odd prime number) with $\operatorname{Br}_{\mathrm{nr}}\left(\mathbb{C}(M)^{G}\right) \neq 0$ were constructed in [HKY]:

Theorem 4.17 (Hoshi, Kang and Yamasaki [HKY, Theorem 7.2]). \quad Let $G=\langle\sigma$, $\tau\left|\sigma^{4 n}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle \simeq D_{4 n}$, the dihedral group of order $8 n$ where n is any positive integer. Let M be the G-lattice of rank $2 n+2$ defined in [HKY, Definition 7.1]. Then $H_{\mathrm{nr}}^{2}(G, M) \simeq \mathbb{Z} / 2 \mathbb{Z}$. Consequently, $\mathbb{C}(M)^{G}$ is not retract \mathbb{C}-rational.

Theorem 4.18 (Hoshi, Kang and Yamasaki [HKY, Theorem 7.5]).
(1) Let n be any positive integer and $G=\left\langle\sigma, \tau \mid \sigma^{8 n}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{4 n-1}\right\rangle \simeq Q D_{8 n}$ be the quasi-dihedral group of order $16 n$. Let M be the G-lattice of rank $4 n$ defined in [HKY, Definition 7.4]. Then $H_{\mathrm{nr}}^{2}(G, M) \simeq \mathbb{Z} / 2 \mathbb{Z}$. Consequently, $\mathbb{C}(M)^{G}$ is not retract \mathbb{C}-rational.
(2) Let $\widehat{G}=\left\langle\sigma^{2}, \sigma \tau\right\rangle \simeq Q_{8 n} \leq G$ be the generalized quaternion group of order $8 n$. Let $\widehat{M}=\operatorname{Res}_{\widehat{G}}^{G}(M)$ be the \widehat{G}-lattice of rank $4 n$ defined in [HKY, Definition 7.4]. Then $H_{\mathrm{nr}}^{2}(\widehat{G}, \widehat{M}) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. Consequently, $\mathbb{C}(\widehat{M})^{\widehat{G}}$ is not retract \mathbb{C}-rational.

Theorem 4.19 (Hoshi, Kang and Yamasaki [HKY, Theorem 7.7]). Let p be an odd prime and $G=\left\langle\sigma, \tau \mid \sigma^{p^{2}}=\tau^{p}=1, \tau^{-1} \sigma \tau=\sigma^{p+1}\right\rangle \simeq C_{p^{2}} \rtimes C_{p}$. Let M be the G-lattice of rank $p(p-1)$ defined in [HKY, Definition 7.6]. Then $H_{\mathrm{nr}}^{2}(G, M) \simeq \mathbb{Z} / p \mathbb{Z}$. Consequently, $\mathbb{C}(M)^{G}$ is not retract \mathbb{C}-rational.

References

[AM72] M. Artin, D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. (3) 25 (1972) 75-95.
[Aso13] A. Asok, Rationality problems and conjectures of Milnor and Bloch-Kato, Compos. Math. 149 (2013) 1312-1326.
[AM11] A. Asok, F. Morel, Smooth varieties up to \mathbb{A}^{1}-homotopy and algebraic h cobordisms, Adv. Math. 227 (2011) 1990-2058.
[Bar89] J. Barge, Cohomologie des groupes et corps d'invariants multiplicatifs, Math. Ann. 283 (1989) 519-528.
[Bar97] J. Barge, Cohomologie des groupes et corps d'invariants multiplicatifs tordus, Comment. Math. Helv. 72 (1997) 1-15.
[Bog88] F. A. Bogomolov, The Brauer group of quotient spaces of linear representations, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987) 485-516, 688. English translation: Math. USSR-Izv. 30 (1988) 455-485.
[BB13] F. A. Bogomolov, C. Böhning, Isoclinism and stable cohomology of wreath products, Birational geometry, rational curves, and arithmetic, 57-76, Springer, New York, 2013.
[BBNWZ78] H. Brown, R. Büllow, J. Neubüser, H. Wondratschek, H. Zassenhaus, Crystallographic Groups of Four-Dimensional Spaces, John Wiley, New York, 1978.
[CARAT] J. Opgenorth, W. Plesken, T. Schulz, CARAT, GAP 4 package, version 2.1b1, 2008, available from http://wwwb.math.rwth-aachen.de/carat/.
[CHHK15] H. Chu, S.-J. Hu, A. Hoshi, M. Kang, Noether's problem for groups of order 243, J. Algebra 442 (2015) 233-259.
[CHKK10] H. Chu, S.-J. Hu, M. Kang, B. E. Kunyavskii, Noether's problem and the unramified Brauer groups for groups of order 64, Int. Math. Res. Not. IMRN 2010 2329-2366.
[CHKP08] H. Chu, S.-J. Hu, M. Kang, Y. G. Prokhorov, Noether's problem for groups of order 32, J. Algebra 320 (2008) 3022-3035.
[CK01] H. Chu, M. Kang, Rationality of p-group actions, J. Algebra 237 (2001) 673-690.
[CT95] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), 1-64, Proc. Sympos. Pure Math., 58, Part 1, Amer. Math. Soc., Providence, RI, 1995.
[CTO89] J.-L. Colliot-Thélène, M. Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l'example d'Artin et Mumford, Invent. Math. 97 (1989) 141-158.
[CTS07] J.-L. Colliot-Thélène, J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), Algebraic groups and homogeneous spaces, 113-186, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007.
[CTV12] J.-L. Colliot-Thélène, C. Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012) 735-801.
[EM73] S. Endo, T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973) 7-26.
[Fis15] E. Fischer, Die Isomorphie der Invariantenkörper der endlichen Abel'schen Gruppen linearer Transformationen, Nachr. Königl. Ges. Wiss. Göttingen (1915) 7780.
[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12; 2008. (http://www.gap-system.org)
[GMS03] S. Garibaldi, A. Merkurjev, J-P. Serre, Cohomological invariants in Galois cohomology, AMS Univ. Lecture Series, vol.28, Amer. Math. Soc., Providence, RI,
2003.
[GS10] S. Garibaldi, D. J. Saltman, Quaternion algebras with the same subfields, Quadratic forms, linear algebraic groups, and cohomology, 225-238, Dev. Math., 18, Springer, New York, 2010.
[Gas59] W. Gaschütz, Fixkörper von p-Automorphismengruppen reintranszendenter Körpererweiterungen von p-Charakteristik, Math. Zeit. 71 (1959) 466-468.
[Haj87] M. Hajja, Rationality of finite groups of monomial automorphisms of $k(x, y)$, J. Algebra 109 (1987) 46-51.
[HK92] M. Hajja, M. Kang, Finite group actions on rational function fields, J. Algebra 149 (1992) 139-154.
[HK94] M. Hajja, M. Kang, Three-dimensional purely monomial group actions, J. Algebra 170 (1994) 805-860.
[HS64] M. Hall, Jr., J. K. Senior, The groups of order $2^{n}(n \leq 6)$, The Macmillan Co., New York; Collier-Macmillan, Ltd., London, 1964.
[Hal40] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940) 130-141.
[Hos05] A. Hoshi, Multiplicative quadratic forms on algebraic varieties and Noether's problem for meta-abelian groups, Ph. D. dissertation, Waseda University, 2005, http://dspace.wul.waseda.ac.jp/dspace/handle/2065/3004.
[Hos15] A. Hoshi, On Noether's problem for cyclic groups of prime order, Proc. Japan Acad. Ser. A 91 (2015) 39-44.
[Hos16] A. Hoshi, Birational classification of fields of invariants for groups of order 128, J. Algebra 445 (2016) 394-432.
[HKK14] A. Hoshi, M. Kang, H. Kitayama, Quasi-monomial actions and some 4dimensional rationality problems, J. Algebra 403 (2014) 363-400.
[HKK13] A. Hoshi, M. Kang, B. E. Kunyavskii, Noether's problem and unramified Brauer groups, Asian J. Math. 17 (2013) 689-714.
[HKY16] A. Hoshi, M. Kang, A. Yamasaki, Degree three unramified cohomology groups, J. Algebra 458 (2016) 120-133.
[HKY] A. Hoshi, M. Kang, A. Yamasaki, Multiplicative invariant fields of dimension ≤ 6, arXiv:1609.04142, to appear in Mem. Amer. Math. Soc.
[HKY11] A. Hoshi, H. Kitayama, A. Yamasaki, Rationality problem of three-dimensional monomial group actions, J. Algebra 341 (2011) 45-108.
[HR08] A. Hoshi, Y. Rikuna, Rationality problem of three-dimensional purely monomial group actions: the last case, Math. Comp. 77 (2008) 1823-1829.
[HY17] A. Hoshi, A. Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. 248 (2017) no. 1176, v+215 pp.
[JR89] B. Jacob, M. Rost, Degree four cohomological invariants for quadratic forms, Invent. Math. 96 (1989) 551-570.
[Jam80] R. James, The groups of order p^{6} (p an odd prime), Math. Comp. 34 (1980) 613-637.
[JNO90] R. James, M.F. Newman, E. A. O'Brien, The groups of order 128, J. Algebra 129 (1990) 136-158.
[Kan05] M. Kang, Noether's problem for dihedral 2-groups. II, Pacific J. Math. 222 (2005) 301-316.
[Kan14] M. Kang, Bogomolov multipliers and retract rationality for semidirect products, J. Algebra 397 (2014) 407-425.
[KP09] M. Kang, B. Plans, Reduction theorems for Noether's problem, Proc. Amer. Math. Soc. 137 (2009) 1867-1874.
[Kar87] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs, vol.2, Oxford Univ. Press, 1987.
[Kun54] H. Kuniyoshi, On purely-transcendency of a certain field, Tohoku Math. J. (2) 6 (1954) 101-108.
[Kun55] H. Kuniyoshi, On a problem of Chevalley, Nagoya Math. J. 8 (1955) 65-67.
[Kun56] H. Kuniyoshi, Certain subfields of rational function fields, Proceedings of the international symposium on algebraic number theory, Tokyo \& Nikko, 1955, 241243, Science Council of Japan, Tokyo, 1956.
[Kun10] B. E. Kunyavskii, The Bogomolov multiplier of finite simple groups, Cohomological and geometric approaches to rationality problems, 209-217, Progr. Math., 282, Birkhäuser Boston, Inc., Boston, MA, 2010.
[Len74] H. W. Lenstra, Jr., Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974) 299-325.
[Len80] H. W. Lenstra, Jr., Rational functions invariant under a cyclic group, Proceedings of the Queen's Number Theory Conference, 1979 (Kingston, Ont., 1979), pp. 9199, Queen's Papers in Pure and Appl. Math., 54, Queen's Univ., Kingston, Ont., 1980.
[Mae89] T. Maeda, Noether's problem for A_{5}, J. Algebra 125 (1989) 418-430.
[MT86] Y. I. Manin, M. A. Tsfasman, Rational varieties: algebra, geometry, arithmetic, Russian Math. Surveys 41 (1986) 51-116.
[MM76] J. M. Masley, H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976) 248-256.
[Mas55] K. Masuda, On a problem of Chevalley, Nagoya Math. J. 8 (1955) 59-63.
[Mas68] K. Masuda, Application of theory of the group of classes of projective modules to existence problem of independent parameters of invariant, J. Math. Soc. Japan 20 (1968) 223-232.
[Mer08] A. Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. (2) 78 (2008) 51-64.
[Miy71] T. Miyata, Invariants of certain groups. I, Nagoya Math. J. 41 (1971) 69-73.
[Mor12] P. Moravec, Unramified Brauer groups of finite and infinite groups, Amer. J. Math. 134 (2012) 1679-1704.
[Mor14] P. Moravec, Unramified Brauer groups and isoclinism, Ars Math. Contemp. 7 (2014) 337-340.
[Noe13] E. Noether, Rationale Funktionenkörper, Jber. Deutsch. Math.-Verein. 22 (1913) 316-319.
[Noe17] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1917) 221-229.
[PARI2] PARI/GP, version 2.6.0 (alpha), Bordeaux, 2013, http://pari.math.u-bordeaux.fr/.
[Pey93] E. Peyre, Unramified cohomology and rationality problem, Math. Ann. 296 (1993) 247-268.
[Pey08] E. Peyre, Unramified cohomology of degree 3 and Noether's problem, Invent. Math. 171 (2008) 191-225.
[Pla07] B. Plans, Noether's problem for GL(2,3), Manuscripta Math. 124 (2007) 481487.
[Pla09] B. Plans, On Noether's problem for central extensions of symmetric and alternating groups, J. Algebra 321 (2009) 3704-3713.
[Pla17] B. Plans, On Noether's rationality problem for cyclic groups over \mathbb{Q}, Proc. Amer. Math. Soc. 145 (2017) 2407-2409.
[PS00] W. Plesken, T. Schulz, Counting crystallographic groups in low dimension, Exp. Math. 9 (2000) 407-411.
[Rik] Y. Rikuna, The existence of a generic polynomial for $\mathrm{SL}(2,3)$ over \mathbf{Q}, preprint, 2004, available from http://www.mmm.muroran-it.ac.jp/~yuji/MuNT/2004/ papers/04030602rikuna.pdf.
[Sal82] D. J. Saltman, Generic Galois extensions and problems in field theory, Adv. Math. 43 (1982) 250-283.
[Sal84a] D. J. Saltman, Noether's problem over an algebraically closed field, Invent. Math. 77 (1984) 71-84.
[Sal84b] D. J. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math. 47 (1984) 165-215.
[Sal85] D. J. Saltman, The Brauer group and the center of generic matrices, J. Algebra 97 (1985) 53-67.
[Sal87] D. J. Saltman, Multiplicative field invariants, J. Algebra 106 (1987) 221-238.
[Sal90] D. J. Saltman, Multiplicative field invariants and the Brauer group, J. Algebra 133 (1990) 533-544.
[Sus91] A. A. Suslin, K-theory and K-cohomology of certain group varieties, Algebraic K-theory, 53-74, Adv. Soviet Math., 4, Amer. Math. Soc., Providence, RI, 1991.
[Swa69] R. G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969) 148-158.
[Swa81] R. G. Swan, Galois theory, in Emmy Noether. A tribute to her life and work. Edited by James W. Brewer and Martha K. Smith. Monographs and Textbooks in Pure and Applied Mathematics, 69. Marcel Dekker, Inc., New York, 1981.
[Swa83] R. G. Swan, Noether's problem in Galois theory, Emmy Noether in Bryn Mawr (Bryn Mawr, Pa., 1982), 21-40, Springer, New York-Berlin, 1983.
[Voi14] C. Voisin, Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies, 187, Princeton University Press, 2014.
[Vos70] V. E. Voskresenskii, On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 366-375. English translation: Math. USSR-Izv. 4 (1970) 371-380.
[Vos71] V. E. Voskresenskii, Rationality of certain algebraic tori, Izv. Akad. Nauk SSSR Ser. Mat. (Russian) 35 (1971) 1037-1046. English translation: Math. USSR-Izv. 5 (1971) 1049-1056.
[Vos73] V. E. Voskresenskii, Fields of invariants of abelian groups, Uspekhi Mat. Nauk (Russian) 28 (1973) 77-102. English translation: Russian Math. Surveys 28 (1973) 79-105.
[Vos98] V. E. Voskresenskii, Algebraic groups and their birational invariants, Translated from the Russian manuscript by Boris Kunyavskii, Translations of Mathematical Monographs, 179. American Mathematical Society, Providence, RI, 1998.
[Was97] L. C. Washington, Introduction to cyclotomic fields, Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997.

[^0]: Received March 27, 2017. Revised January 31, 2018.
 2010 Mathematics Subject Classification(s): 11E72, 12F12, 13A50, 14E08, 14F22, 14M20, 20J06.
 Key Words: Noether's problem, Rationality problem, multiplicative invariant field, unramified Brauer group, Bogomolov multiplier, unramified cohomology group.
 This work was partially supported by JSPS KAKENHI Grant Number 25400027.
 *Department of Mathematics, Niigata University, Niigata 950-2181, Japan.
 e-mail: hoshi@math.sc.niigata-u.ac.jp

[^1]: ${ }^{1}$ The author [Hos05, Chapter 5] generalized Theorem 2.1 (2) to Frobenius groups $F_{p l}$ of order $p l$ with $l \mid p-1(p \leq 11)$.
 ${ }^{2}$ Kang and Plans [KP09, Theorem 1.3] showed that Theorem 2.4 is also valid for any field k.

