On the Feigin-Tipunin conjecture

SHOMA SUGIMOTO* ${ }^{*}$
Research Institute For Mathematical Sciences, Kyoto University

1 Introduction

The triplet W-algebra ($=$ type A_{1} logarithmic W-algebra) ([AM1]-[AM3], [FGST1]-[FGST3], [NT], $[\mathrm{TW}], \ldots$) is one of the most famous examples of C_{2}-cofinite but irrational vertex operator algebra, and it relates to many interesting objects such as the tails of colored Jones polynomials and false theta functions [BM1, CCFGH, MN], quantum groups at root of unity [CGR, FGR, NT], and the quantum geometric Langlands program [CG, Cr1]. We can immediately generalize the definition of the triplet W algebra to type $A D E$ cases, and we call them the type $A D E$ logarithmic W-algebras $W(p)_{Q}$. However, very little is known about the properties and the representation theory of the higher rank generalizations of the triplet W-algebra.

In [FT], without detailed proofs, they claimed that $W(p)_{Q}$ and its irreducible modules are constructed as the spaces of global sections of some homogeneous vector bundles over the flag variety, and we call it Feigin-Tipunin conjecture. In [S1, S2], the author proved it partially and obtained some of new results on the type $A D E$ logarithmic W-algebras.

In this paper, with some comments and remarks, we gather results that will given in [S1, S2]. We give the geometric construction of the type $A D E$ logarithmic W-algebra $W(p)_{Q}$ that claimed in [FT]. This construction reveals us the G-module structure and the character formula of $W(p)_{Q}$. Moreover, under the assumption of simpleness of $W(p)_{Q}$, we also completely determine the $\mathcal{W}^{k}(\mathfrak{g})$-module structure of $W(p)_{Q}$. Finally, applying this result to the cases of type A_{2} with small $p \in \mathbb{Z}_{\geq 2}$, we prove the C_{2}-cofiniteness of $W(p)_{Q}$ in these cases under the assumption of simpleness.

1.1 Setting

Let \mathfrak{g} be a simply-laced simple Lie algebra of $\operatorname{rank} l$, and $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$the triangular decomposition, \mathfrak{h} the Cartan subalgebra, $\mathfrak{b}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ the Borel subalgebra, G, H, and B the semisimple, simply-connected, complex algebraic groups corresponding to $\mathfrak{g}, \mathfrak{h}, \mathfrak{b}$, respectively. We adopt the standard numbering for the simple roots $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of \mathfrak{g} as in $[\mathrm{B}]$ and denote by $\left\{\omega_{1}, \ldots, \omega_{l}\right\}$ the corresponding fundamental weights, and denote by Π denotes the set of simple roots. Let Q be the root lattice of \mathfrak{g}, P the weight lattice of \mathfrak{g}, P_{+}the set of dominant integral weights of \mathfrak{g}. Denote by (\cdot, \cdot) the normalized invariant form of \mathfrak{g}, W the Weyl group of \mathfrak{g} generated by the simple reflections $\left\{\sigma_{i}\right\}_{i=1}^{l},\left(c_{i j}\right)$ the Cartan matrix of \mathfrak{g}

[^0]and $\left(c^{i j}\right)$ the inverse matrix to $\left(c_{i j}\right), \rho$ the half sum of positive roots, h the Coxeter number of \mathfrak{g}, Ω the abelian group P / Q. We choose the representatives of generators of Ω in P in the following way: for A_{l}, $D_{l}, E_{6}, E_{7}, E_{8}$, we choose $\left\{0, \omega_{1}, \ldots, \omega_{l}\right\},\left\{0, \omega_{1}, \omega_{l-1}, \omega_{l}\right\},\left\{0, \omega_{1}, \omega_{3}\right\},\left\{0, \omega_{2}\right\},\{0\}$, respectively. We fix an integer $p \in \mathbb{Z}_{\geq 2}$.
Let $V_{\sqrt{p} Q}=\bigoplus_{\alpha \in Q} \mathcal{F}_{\sqrt{p} \alpha}$ be the lattice vertex operator algebra associated to the rescaled root lattice $\sqrt{p} Q$, where $\mathcal{F}_{\sqrt{p} \alpha}=\mathcal{U}\left(\hat{\mathfrak{h}}^{<0}\right) \otimes|\sqrt{p} \alpha\rangle$ is the Fock module of the Heisenberg vertex operator algebra $\mathcal{F}_{0}=\mathcal{U}\left(\hat{\mathfrak{h}}^{<0}\right) \otimes|0\rangle$.

We choose the shifted conformal vector ω of $V_{\sqrt{p} Q}$ as

$$
\begin{equation*}
\omega=\frac{1}{2} \sum_{1 \leq i, j \leq l} c^{i j}\left(\alpha_{i}\right)_{(-1)} \alpha_{j}+Q_{0}(\rho)_{(-2)}|0\rangle \in \mathcal{F}_{0} \subseteq V_{\sqrt{p} Q} \tag{1}
\end{equation*}
$$

where $Q_{0}=\sqrt{p}-\frac{1}{\sqrt{p}}$. The central charge c of ω is given by

$$
\begin{equation*}
c=l+12(\rho, \rho)\left(2-p-\frac{1}{p}\right)=l+h \operatorname{dim} \mathfrak{g}\left(2-p-\frac{1}{p}\right) . \tag{2}
\end{equation*}
$$

For $n \in \mathbb{Z}$, we use the traditional notation L_{n} for the Virasoro operator $\omega_{(n+1)}$.
Irreducible modules over $V_{\sqrt{p} Q}$ are classified by elements of the abelian group $\Lambda=\frac{1}{\sqrt{p}} P / \sqrt{p} Q$ ([D]). For each equivalence class $\langle\lambda\rangle \in \Lambda$, we choose the unique representative $\lambda \in \frac{1}{\sqrt{p}} P$ of $\langle\lambda\rangle \in \Lambda$ as

$$
\begin{equation*}
\lambda=-\sqrt{p} \hat{\lambda}+\bar{\lambda}=-\sqrt{p} \hat{\lambda}+\sum_{j=1}^{l} \frac{s_{j}}{\sqrt{p}} \omega_{j} \tag{3}
\end{equation*}
$$

where $0 \leq s_{j} \leq p-1, \hat{\lambda} \in \Omega$ and the representatives of generators of Ω are given in above: for A_{l}, D_{l}, E_{6}, E_{7}, E_{8}, we have $\left\{0, \omega_{1}, \ldots, \omega_{l}\right\},\left\{0, \omega_{1}, \omega_{l-1}, \omega_{l}\right\},\left\{0, \omega_{1}, \omega_{3}\right\},\left\{0, \omega_{2}\right\},\{0\}$, respectively. For $\lambda \in \frac{1}{\sqrt{p}} P$, denote by $V_{\sqrt{p} Q+\lambda}$ the irreducible $V_{\sqrt{p} Q}$-module

$$
\begin{equation*}
V_{\sqrt{p} Q+\lambda}=\bigoplus_{\alpha \in Q} \mathcal{F}_{\sqrt{p} \alpha+\lambda} \tag{4}
\end{equation*}
$$

corresponding to $\langle\lambda\rangle \in \Lambda$, where $\mathcal{F}_{\sqrt{p} \alpha+\lambda}$ is the Fock module over \mathcal{F}_{0} with the highest weight vector $|\sqrt{p} \alpha+\lambda\rangle$. For $\mu \in \frac{1}{\sqrt{p}} P$, the conformal weight Δ_{μ} of $|\mu\rangle$ is

$$
\begin{equation*}
\Delta_{\mu}=\frac{1}{2}\left|\mu-Q_{0} \rho\right|^{2}+\frac{c-l}{24}=\frac{1}{2}|\mu|^{2}-Q_{0}(\mu, \rho) \tag{5}
\end{equation*}
$$

1.2 Screening and narrow screening

For $1 \leq i \leq l, \alpha \in Q$ and $\lambda \in \Lambda$, we consider the screening operators

$$
\begin{equation*}
f_{i}=\left|\sqrt{p} \alpha_{i}\right\rangle_{(0)} \in \operatorname{Hom}\left(\mathcal{F}_{-\sqrt{p} \alpha+\lambda}, \mathcal{F}_{-\sqrt{p}\left(\alpha+\alpha_{i}\right)+\lambda}\right) \tag{6}
\end{equation*}
$$

For $\sigma \in W$ and $\mu \in \frac{1}{\sqrt{p}} P$, set

$$
\begin{equation*}
\sigma \star \mu=\sigma\left(\mu+\frac{1}{\sqrt{p}} \rho\right)-\frac{1}{\sqrt{p}} \rho . \tag{7}
\end{equation*}
$$

Then we have the following W-action on Λ :

$$
\begin{equation*}
\sigma * \lambda=-\sqrt{p} \hat{\lambda}+\sigma \star \bar{\lambda} \tag{8}
\end{equation*}
$$

In order to define the narrow screening operators $F_{i, \lambda} \in \operatorname{Hom}\left(\mathcal{F}_{-\sqrt{p} \alpha+\lambda}, \mathcal{F}_{-\sqrt{p} \alpha+\sigma_{i} * \lambda}\right)$ for $1 \leq i \leq l$, we consider the following element in $\operatorname{Hom}\left(V_{\sqrt{p} Q}, V_{\sqrt{p} Q-\frac{\alpha_{i}}{\sqrt{p}}}\right) \otimes \mathbb{C}\left[\left[z^{ \pm}\right]\right]$:

$$
\begin{equation*}
F_{i}(z)=e^{-\frac{\alpha_{i}}{\sqrt{p}}} z^{-\frac{\left(\alpha_{i}\right)(0)}{\sqrt{p}}} \exp \left(\sum_{n<0} \frac{z^{-n}}{n} \frac{\left(\alpha_{i}\right)_{(n)}}{\sqrt{p}}\right) \exp \left(\sum_{n>0} \frac{z^{-n}}{n} \frac{\left(\alpha_{i}\right)_{(n)}}{\sqrt{p}}\right) c_{-\frac{\alpha_{i}}{\sqrt{p}}} . \tag{9}
\end{equation*}
$$

Here the element $e^{-\frac{\alpha_{i}}{\sqrt{p}}} \in \operatorname{Hom}\left(V_{\sqrt{p} Q}, V_{\sqrt{p} Q-\frac{\alpha_{i}}{\sqrt{p}}}\right)$ is defined by

$$
\left\{\begin{array}{l}
e^{-\frac{\alpha_{i}}{\sqrt{p}}}|\sqrt{p} \mu\rangle=\left|-\frac{\alpha_{i}}{\sqrt{p}}+\sqrt{p} \mu\right\rangle, \tag{10}\\
{\left[h_{(n)}, e^{-\frac{\alpha_{i}}{\sqrt{p}}}\right]=\delta_{n, 0}\left(h,-\frac{\alpha_{i}}{\sqrt{p}}\right) e^{-\frac{\alpha_{i}}{\sqrt{p}}}}
\end{array}\right.
$$

for $\mu \in Q$ and $h_{(n)} \in \mathcal{U}(\hat{\mathfrak{h}})$, and the element $c_{-\frac{\alpha_{i}}{\sqrt{p}}} \in \operatorname{Hom}\left(V_{\sqrt{p} Q}, V_{\sqrt{p} Q-\frac{\alpha_{i}}{\sqrt{p}}}\right)$ is defined by

$$
\begin{equation*}
c_{-\frac{\alpha_{i}}{\sqrt{p}}} s|\sqrt{p} \mu\rangle=\epsilon^{\prime}\left(-\alpha_{i}, \mu\right) s|\sqrt{p} \mu\rangle . \tag{11}
\end{equation*}
$$

Here $s \in \mathcal{U}\left(\hat{\mathfrak{h}}^{<0}\right)$ and $\epsilon^{\prime}: Q \times Q \rightarrow \mathbb{C}^{\times}$is the 2-cocycle defined by

$$
\epsilon\left(\alpha_{i}, \alpha_{j}\right)= \begin{cases}(-1) & i=j \tag{12}\\ (-1)^{\left(\alpha_{i}, \alpha_{j}\right)} & i<j \\ 1 & i>j\end{cases}
$$

For $\alpha \in Q$, the narrow screening operator is given by the z^{-1} coefficient of $F_{i}(z)$

$$
\begin{equation*}
F_{i, 0}=\int F_{i}(z) d z \in \operatorname{Hom}\left(\mathcal{F}_{-\sqrt{p} \alpha}, \mathcal{F}_{-\sqrt{p} \alpha-\frac{\alpha_{i}}{\sqrt{p}}}\right) \tag{13}
\end{equation*}
$$

Denote by \mathcal{F}_{0}^{i} the rank 1 Heisenberg vertex algebra generated by α_{i}, and $\mathcal{F}_{0}^{i, \perp}$ the rank $l-1$ Heisenberg vertex algebra generated by $\left\{\omega_{j}\right\}_{1 \leq j \neq i \leq l}$, respectively. Then for $a \in \mathcal{F}_{0}^{i, \perp}$ and $n \in \mathbb{Z}$, we have $F_{i, 0} a_{(n)}=$ $a_{(n)} F_{i, 0}$. By applying the multiplication of narrow screening operators in the case of type A_{1} (see [CRW, NT]) to $\left.F_{i, 0}\right|_{\mathcal{F}_{0}^{i}}$, for $\alpha \in Q$ and $\lambda \in \Lambda$ such that $0 \leq s_{i} \leq p-2$, we have the non-trivial map

$$
F_{i, \lambda}=\int_{\left[\Gamma_{\left.s_{i}+1\right]}\right]} F_{i}\left(z_{1}\right) \ldots F_{i}\left(z_{s_{i}+1}\right) \mathrm{d} z_{1} \ldots \mathrm{~d} z_{s_{i}+1} \in \operatorname{Hom}\left(\mathcal{F}_{-\sqrt{p} \alpha+\lambda}, \mathcal{F}_{-\sqrt{p} \alpha+\sigma_{i} * \lambda}\right)
$$

where the cycle $\left[\Gamma_{s_{i}+1}\right]$ such that $F_{i, \lambda}$ to be non-trivial is uniquely determined up to normalization. For convenience, we set $F_{i, \lambda}=0$ for $\lambda \in \Lambda$ such that $s_{i}=p-1$.

Clearly, the screening and narrow screening operators are differential operators on $V_{\sqrt{p} Q}$ because they are zero modes. In other words, they satisfy the Leibniz rule

$$
\begin{align*}
f_{i} u_{(n)} v & =\left(f_{i} u\right)_{(n)} v+u_{(n)} f_{i} v, \tag{14}\\
F_{i, 0} a_{(n)} b & =\left(F_{i, 0} a\right)_{(n)} b+a_{(n)} F_{i, 0} b \tag{15}\\
& =\sum_{m \geq 0} \frac{(-1)^{-n-m-1}}{m!} T^{m} b_{(n+m)} F_{i, 0} a+a_{(n)} F_{i, 0} b,
\end{align*}
$$

where $n \in \mathbb{Z}, u, v \in V_{\sqrt{p} Q+\lambda}$ and $a, b \in V_{\sqrt{p} Q}$. Moreover, a straightforward calculation shows that

$$
\begin{equation*}
\left[f_{i}, L_{n}\right]=\left[F_{i, \lambda}, L_{n}\right]=0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[f_{i}, F_{j, \lambda}\right]=0 \tag{17}
\end{equation*}
$$

for $1 \leq i, j \leq l$ and $n \in \mathbb{Z}$. In particular, (16) means that f_{i} and $F_{i, \lambda}$ preserve the conformal grading.

1.3 Logarithmic W-algebra

Since every $F_{i, 0}$ satisfies (15), we have the vertex operator subalgebra

$$
\begin{equation*}
W(p)_{Q}=\left.\bigcap_{i=1}^{l} \operatorname{ker} F_{i, 0}\right|_{V_{\sqrt{p} Q}} \subseteq V_{\sqrt{p} Q} . \tag{18}
\end{equation*}
$$

By (16), ω is a conformal vector of $W(p)_{Q}$. This vertex operator algebra is called the logarithmic W algebra associated to Q and p. In particular, in the case of type $A_{1}, W(p)_{Q}$ is the triplet W-algebra ([AM1]-[AM3], [FGST1]-[FGST3], [NT], [TW], ...).

For $1 \leq i \leq l$, we consider the following operator $h_{i, \lambda}$ acting on $V_{\sqrt{p} Q+\lambda}$:

$$
\begin{equation*}
h_{i, \lambda}=-\frac{1}{\sqrt{p}}\left(\alpha_{i}\right)_{(0)}+\frac{1}{\sqrt{p}}\left(\alpha_{i}, \bar{\lambda}\right) \mathrm{id} \tag{19}
\end{equation*}
$$

Theorem 1 ([FT, Theorem 4.1]).

1. The operators $\left\{f_{i}, h_{i, \lambda}\right\}_{i=1}^{l}$ give rise to an action of \mathfrak{b} on $V_{\sqrt{p} Q+\lambda}$.
2. The action of \mathfrak{b} in (1) is integrable.

For $\lambda \in \Lambda$, we consider the homogeneous vector bundle

$$
\begin{equation*}
\xi_{\lambda}=G \times_{B} V_{\sqrt{p} Q+\lambda} \tag{20}
\end{equation*}
$$

over the flag variety G / B, where the action of B on G is given by the right multiplication and that on $V_{\sqrt{p} Q, \lambda}$ is given by Theorem 1 . We can easily show that the space of global sections $H^{0}\left(\xi_{0}\right)$ inherits the vertex operator algebra structure from $V_{\sqrt{p} Q}$, and each $H^{0}\left(\xi_{\lambda}\right)$ is a $H^{0}\left(\xi_{0}\right)$-module as in the same way.

1.4 Results

Definition 1. For $\lambda \in \Lambda$ and $\sigma \in W$, set

$$
\begin{equation*}
\epsilon_{\lambda}(\sigma)=\frac{1}{\sqrt{p}}(\sigma \star \bar{\lambda}-\overline{\sigma * \lambda}) \tag{21}
\end{equation*}
$$

Let J be a subset of nodes of the Dynkin diagram of G and $\lambda \in \Lambda$. The pairing (J, λ) is good if $\epsilon_{\lambda}\left(\sigma_{j}\right)=-\alpha_{j}$ for any $j \in J$ or $\left(\epsilon_{\lambda}\left(\sigma_{j}\right), \alpha_{i}\right)=-\delta_{i, j}$ for any $i, j \in J$. In particular, when $J=\Pi$, we call λ is good if (Π, λ) is good.

Remark 1. If $|J|=1,(J, \lambda)$ is good.
The following three theorems will be given in [S1].
Theorem 2. 1. For $p \in \mathbb{Z}_{\geq 2}$, we have the vertex operator algebra isomorphism

$$
H^{0}\left(\xi_{0}\right) \simeq W(p)_{Q}
$$

In particular, the group G acts on $W(p)_{Q}$ as an automorphism group.
2. More generally, if λ is good, we have the $W(p)_{Q}$-module and G-module isomorphism

$$
\left.H^{0}\left(\xi_{\lambda}\right) \simeq \bigcap_{i=1}^{l} \operatorname{ker} F_{i, \lambda}\right|_{V_{\sqrt{p} Q+\lambda}}
$$

3. If λ is not good, $H^{0}\left(\xi_{\lambda}\right)$ is properly embedded into $\left.\bigcap_{i=1}^{l} \operatorname{ker} F_{i, \lambda}\right|_{V_{\sqrt{p} Q+\lambda}}$.

Theorem 3. We have the vertex operator algebra isomorphism

$$
\left.\mathcal{W}^{k}(\mathfrak{g}) \simeq \bigcap_{i=1}^{l} \operatorname{ker} f_{i}\right|_{\mathcal{F}_{0}}
$$

where $\mathcal{W}^{k}(\mathfrak{g})$ is the affine W-algebra $[F F]$ of level $k=p-h$

Theorem 4.

1. Let \mathcal{R}_{μ} be the irreducible \mathfrak{g}-module with the highest weight $\mu \in P_{+}$. Then we have the $W(p)_{Q^{-}}$ module and G-module isomorphism

$$
\begin{equation*}
H^{0}\left(\xi_{\lambda}\right) \simeq \bigoplus_{\alpha \in P_{+} \cap Q} \mathcal{R}_{\alpha+\hat{\lambda}} \otimes \mathcal{W}_{-\sqrt{p} \alpha+\lambda} \subseteq V_{\sqrt{p} Q+\lambda} \tag{22}
\end{equation*}
$$

where $\mathcal{W}_{-\sqrt{p} \alpha+\lambda}=\bigcap_{i=1}^{l}\left(\left.\operatorname{ker} f_{i}\right|_{\mathcal{F}_{0}}|-\sqrt{p} \alpha+\lambda\rangle\right)$ and $\left.\operatorname{ker} f_{i}\right|_{\mathcal{F}_{0}}|-\sqrt{p} \alpha+\lambda\rangle$ is the $\left.\operatorname{ker} f_{i}\right|_{\mathcal{F}_{0}}-$ module generated by the highest weight vector $|-\sqrt{p} \alpha+\lambda\rangle$. In particular, we have

$$
W(p)_{Q} \simeq \bigoplus_{\alpha \in P_{+} \cap Q} \mathcal{R}_{\alpha} \otimes \mathcal{W}_{-\sqrt{p} \alpha}
$$

and $\mathcal{W}^{k}(\mathfrak{g}) \simeq \mathcal{R}_{0} \otimes \mathcal{W}_{0}$ is the vertex operator full subalgebra of $W(p)_{Q}$.
2. Let us fix $\lambda \in \Lambda$, and a minimal expression of $w_{0}=\sigma_{i_{N}} \ldots \sigma_{i_{1}}$. If $\left(\epsilon_{\lambda}\left(\sigma_{i_{k}} \ldots \sigma_{i_{1}}\right), \alpha_{i_{k+1}}\right)=0$ for $1 \leq k \leq N-1$, then we have $H^{k}\left(\xi_{\lambda}\right)=0$ for $k \geq 1$. In particular, if $\bar{\lambda}=0$, then $H^{k}\left(\xi_{\lambda}\right)=0$ for $k \geq 1$. Moreover, we have the character formula

$$
\begin{aligned}
\operatorname{Tr}_{H^{0}\left(\xi_{\lambda}\right)}\left(q^{L_{0}-\frac{c}{24}} z_{1}^{h_{1, \lambda}} \cdots z_{l}^{h_{l, \lambda}}\right) & =\sum_{\alpha \in P_{+} \cap Q} \chi_{\alpha+\hat{\lambda}}^{\mathfrak{g}}(z)\left(\sum_{\sigma \in W}(-1)^{l(\sigma)} \frac{q^{\frac{1}{2}\left|\sqrt{p} \sigma(\alpha+\rho+\hat{\lambda})-\bar{\lambda}-\frac{1}{\sqrt{p}} \rho\right|^{2}}}{\eta(q)^{l}}\right) \\
& =\sum_{\alpha \in P_{+} \cap Q} \chi_{\alpha+\hat{\lambda}}^{\mathfrak{g}}(z) \operatorname{Tr}_{H_{D S, \alpha+\hat{\lambda}}^{0}\left(\mathbb{V}_{p, \sqrt{\bar{\lambda}} \bar{\lambda})}\left(q^{L_{0}-\frac{c}{24}}\right),\right.}
\end{aligned}
$$

where $\chi_{\beta}^{\mathfrak{g}}(z)$ be the Weyl character of $\mathcal{R}_{\beta}, l(\sigma)$ the length of $\sigma \in W, \eta(q)$ the Dedekind eta function, and $H_{D S, \alpha+\hat{\lambda}}^{0}\left(\mathbb{V}_{p, \sqrt{p} \bar{\lambda}}\right)$ is the $\mathcal{W}^{k}(\mathfrak{g})$-module defined in $[$ ArF].

Remark 2. The author believe that the assumption $\left(\epsilon_{\lambda}\left(\sigma_{i_{k}} \ldots \sigma_{i_{1}}\right), \alpha_{i_{k+1}}\right)=0$ for $1 \leq k \leq N-1$ in Theorem 4.2 is not necessary: i.e. he expect that $H^{k}\left(\xi_{\lambda}\right)=0$ and the character formula above hold for all $\lambda \in \Lambda$ and $k \geq 1$. However, because of some technical difficulty in the proof of vanishing of higher cohomologies, he proved them on the restricted cases.

The following three theorems will be given in [S2].
Theorem 5. If $H^{0}\left(\xi_{\lambda}\right)$ is an irreducible $W(p)_{Q-m o d u l e, ~ t h e n ~} \mathcal{W}_{-\sqrt{p} \alpha+\lambda} \simeq \mathcal{W}^{k}(\mathfrak{g})|-\sqrt{p} \alpha+\lambda\rangle$. In other words, $\bigcap_{i=1}^{l}\left(\left.\operatorname{ker} f_{i}\right|_{\mathcal{F}_{0}}|-\sqrt{p} \alpha+\lambda\rangle\right)=\left(\bigcap_{i=1}^{l} \operatorname{ker} f_{i} \mid \mathcal{F}_{0}\right)|-\sqrt{p} \alpha+\lambda\rangle$. Moreover, when $\lambda=0, \mathcal{W}_{-\sqrt{p} \alpha}$ is the irreducible $\mathcal{W}^{k}(\mathfrak{g})$-module.

Definition 2. 1. For $\alpha \in P_{+} \cap Q$, let H_{α} be a nonzero element of $\mathcal{R}_{\alpha, 0} \otimes \mathbb{C}|-\sqrt{p} \alpha\rangle$, where $\mathcal{R}_{\alpha, 0}$ is the space of zero-weight vectors of \mathcal{R}_{α}.
2. Let $\left\{W_{i}\right\}_{i=2}^{l+1}$ be strong generators of $\mathcal{W}^{k}(\mathfrak{g})$ such that $\Delta_{W_{i}}=i$. We use the notation

$$
\begin{equation*}
\left(W_{i}\right)_{n}=\left(W_{i}\right)_{(n+i-1)} \tag{23}
\end{equation*}
$$

for $n \in \mathbb{Z}$ ．However，we often use the notation not $\left(W_{2}\right)_{n}$ but L_{n} for traditional reason．Moreover， for a fixed $\alpha \in P_{+} \cap Q$ ，we can assume that

$$
\begin{equation*}
\left(W_{i}\right)_{0}|-\sqrt{p} \alpha\rangle=0 \tag{24}
\end{equation*}
$$

for $3 \leq i \leq l+1$ by considering the new strong generators

$$
\begin{equation*}
\{\omega\} \cup\left\{W_{i}-\nabla_{\alpha, i} \omega\right\}_{i=3}^{l+1} \tag{25}
\end{equation*}
$$

of $\mathcal{W}^{k}(\mathfrak{g})$ ，where $\nabla_{\alpha, i} \in \mathbb{C}$ is defined by $\left(W_{i}\right)_{0}|-\sqrt{p} \alpha\rangle=\nabla_{\alpha, i}|-\sqrt{p} \alpha\rangle$ ．
3．For $a \in W(p)_{Q} \simeq \bigoplus_{\alpha \in P_{+} \cap Q} \mathcal{R}_{\alpha} \otimes \mathcal{W}_{-\sqrt{p} \alpha}$ ，denote by $\tilde{a} \in \mathcal{W}^{k}(\mathfrak{g})$ be the $\mathcal{W}^{k}(\mathfrak{g})$－component of a ．
Theorem 6．1．For the projection to the C_{2}－algebra $\pi: W(p)_{Q} \rightarrow R_{W(p)_{Q}}=W(p)_{Q} / C_{2}\left(W(p)_{Q}\right)$ ， we have $\operatorname{dim} \pi\left(W(p)_{Q} \backslash \mathcal{W}^{k}(\mathfrak{g})\right)<\infty$ ．In other words，if $a \in W(p)_{Q} \backslash \mathcal{W}^{k}(\mathfrak{g})$ ，then $\pi(a)$ is nilpotent． In particular，for $\alpha \in P_{+} \cap Q, \alpha \neq 0, \pi\left(H_{\alpha}\right)$ is nilpotent．
2．If $W(p)_{Q}$ is simple，then $W(p)_{Q}$ is strongly generated by $\left\{W_{i}\right\}_{i=2}^{l+1}$ and finitely many elements in $W(p)_{Q} \backslash \mathcal{W}^{k}(\mathfrak{g})$ ．In particular，if $W(p)_{Q}$ is simple and all $\pi\left(W_{i}\right)$ are nilpotent，then $W(p)_{Q}$ is C_{2}－cofinite．
3．For $\alpha \in P_{+} \cap Q$ ，$\left\{\left(\widetilde{\left.H_{\alpha}\right)_{(N)}} H_{\alpha^{\prime}}\right\}_{N \in \mathbb{Z}}\right.$ satisfy the following conditions：
（a）For $m \geq 0$ ，we have

$$
\begin{equation*}
\left(H_{\alpha}\right)_{(N+m)} H_{\alpha^{\prime}}=\frac{L_{m}\left(\widetilde{\left.H_{\alpha}\right)_{(N)}} H_{\alpha^{\prime}}\right.}{(m+1)\left(\Delta_{-\sqrt{p} \alpha}-1\right)-N+\delta_{m, 0} \Delta_{-\sqrt{p} \alpha}} \tag{26}
\end{equation*}
$$

（b）Moreover，for $3 \leq i \leq l+1, n \geq i-1$ and $N \in \mathbb{Z}$ ，we have

$$
\begin{equation*}
\sum_{k=0}^{i-1}(-1)^{k}\binom{i-1}{k} \frac{\left(W_{i}\right)_{n-k} L_{k}\left(H_{\alpha} \widetilde{(N)} H_{\alpha^{\prime}}\right.}{(k+1)\left(\Delta_{-\sqrt{p} \alpha}-1\right)-N+\delta_{k, 0} \Delta_{-\sqrt{p} \alpha}}=0 \tag{27}
\end{equation*}
$$

4．In the cases of types A_{1} or A_{2} ，the conditions（26）and（27）determines $\left\{\left(\widetilde{\left.H_{\alpha}\right)_{(N)}} H_{\alpha^{\prime}}\right\}_{N \in \mathbb{Z}}\right.$ uniquely up to scalar．Moreover，if $W(p)_{Q}$ is simple，then the conditions（26）and（27）determines $\left\{\left(H_{\alpha}^{)_{(N)}} H_{\alpha^{\prime}}\right\}_{N \in \mathbb{Z}}\right.$ uniquely up to nonzero scalar．

Remark 3．Theorem 6 claims that if $W(p)_{Q}$ is simple，the conditions（26）and（27）give an algorithm that enables us to calculate the nilpotent ideal in $\pi\left(\mathcal{W}^{k}(\mathfrak{g})\right)$ much easier than direct calculation．Applying it to the cases of type A_{2} with small p ，we obtain the following：

Theorem 7．Let us consider the cases when $\mathfrak{g}=\mathfrak{s l}_{3}$ and $p=2,3,4$ ．If $W(p)_{Q}$ is simple，then $W(p)_{Q}$ is C_{2}－cofinite．

参考文献

［AM1］D．Adamovic and A．Milas．On the triplet vertex algebra W（p），Advances in Mathematics 217 （2008），2664－2699．
［AM2］D．Adamovic and A．Milas．The N＝1 triplet vertex operator superalgebras，Communications in Mathematical Physics， 288 （2009），225－270．
［AM3］D．Adamovic and A．Milas．The structure of Zhu＇s algebras for certain W－algebras，Advances in Mathematics， 227 （2011）2425－2456．
[ArF] T. Arakawa, E. Frenkel. Quantum Langlands duality of representations of \mathcal{W}-algebras, arXiv:1807.01536 [math.QA].
[B] N. Bourbaki. Lie Groups and Lie Algebras. Chapter 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by Andrew Pressly. MR 1890629
[BM1] K. Bringmann and A. Milas. W-algebras, false theta functions and quantum modular forms I, International Mathematical Research Notices 21 (2015), 11351-11387.
[CG] T. Creutzig, D. Gaiotto. Vertex Algebras for S-duality, arXiv:1708.00875.
[CGR] T. Creutzig, A. M. Gainutdinov, I. Runkel. A quasi-Hopf algebra for the triplet vertex operator algebra, arXiv:1712.07260.
[Cr1] T. Creutzig. Logarithmic W-algebras and Argyres-Douglas theories at higher rank, arXiv:1809.01725.
[CRW] T. Creutzig, D. Ridout, S. Wood. Coset Construction of Logarithmic ($1, p$) Models, Letters in Mathematical Physics, May(2014), Vol.104, 553-583.
[CCFGH] M.C.N. Cheng, S. Chun, F. Ferrari, S. Gukov, S.M. Harrison. 3d Modularity, arXiv:1809.10148
[D] C. Dong. Vertex algebras associated with even lattices, J. Algebra 161 (1993) 245-265.
[FF] B. Feigin and E. Frenkel. Quantization of the Drinfeld-Sokolov reduction. Phys. Lett. B, 246(12): 75-81, 1990.
[FGR] V. Farsad, A. M. Gainutdinov, I. Runkel. SL(2,Z)-action for ribbon quasi-Hopf algebras, Journal of Algebras, March(2019), Vol.522, 243-308.
[FGST1] B. L. Feigin, A.M. Gainutdinov, A. M. Semikhatov, and I. Yu Tipunin. The Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logorithmic conformal field theories. (Russian) Teoret. Mat. Fiz. 148 (2006), no. 3, 398-427.
[FGST2] B. L. Feigin, A.M. Gainutdinov, A. M. Semikhatov, and I. Yu Tipunin. Logarithmic extensions of minimal models: characters and modular transformations. Nuclear Phys. B 757 (2006), 303343.
[FGST3] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu Tipunin. Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Comm. Math. Phys. 265 (2006), 47-93.
[FT] B. L. Feigin, I. Yu. Tipunin. Logarithmic CFTs connected with simple Lie algebras, arXiv:1002.5047.
[MN] J. Murakami, K. Nagatomo. Logarithmic knot invariants arising from restricted quantum groups, International Journal of Mathematics, Vol.19, No.10, 1203-1213, 2008.
[NT] K. Nagatomo and A. Tsuchiya. The Triplet Vertex Operator Algebra W (p) and the Restricted Quantum Group at Root of Unity, Exploring new structures and natural constructions in mathematical physics, 149, Adv. Stud. Pure Math., 61, Math. Soc. Japan, Tokyo, 2011., arXiv:0902.4607.
[S1] S. Sugimoto. On the Feigin-Tipunin conjecture, In preparation.
[S2] S. Sugimoto. In preparation.
[TW] A. Tsuchiya. S. Wood. On the extended W-algebra of type $\mathfrak{s l}_{2}$ at positive rational level, International Mathematics Research Notices, Vol.2015, 14, 5357-5435.

[^0]: * Research Institute For Mathematical Sciences, Kyoto University, Kyoto 606-8502 JAPAN
 \dagger shoma@kurims.kyoto-u.ac.jp

