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LEAFWISE COHOMOLOGICAL EXPRESSION OF 
DYNAMICAL ZETA FUNCTIONS ON  FOLIATED DYNAMICAL 

SYSTEMS 

JUNHYEONG KIM 

ABSTRACT. A Riemmanian foliated dynamical system of 3-dimension (RFDSり
is a closed Riemannian 3-manifold with additional structures: foliation, dynam-
ical system. In the context of arithmetic topology, it is a geometric/analytic 
analogue of an arithmetic scheme with a conjectural dynamical system sug-
gested by C. Deninger. In this paper, we show leafwise cohomological expres-
sion of dynamical zeta function on a Riemannian foliated dynamical system. 

1. INTRODUCTION 

In a series of papers (c.f. [1],[4],[6],[7],[8]), C. Derringer considered arithmetic 
schemes spec OK with a conjectural dynamical system for a number field K /Q. 
He interpreted the completed Dedekind zeta function心(s)of K in terms of 
infinite dimensio叫 cohomologygroups H, 品(spec叫尺）：

伍(s)= IJ detoo (凸-e)IH, 如(specO心））（一l)i+l'

i=O 

where det00 denotes the zeta-regularized determinant and 8 denotes an infinites-
imal generator of the flow. 

This idea is extended to smooth closed 3-manifold M with 1-codimensional 
foliation structure F, transverse flow¢and a bundle-like metric 9:F via Arith-
metic topology ([9]). We call the manifold with the additional structure a Rie-
mannian foliated dynamical system of 3 dimension, simply RFDS3. It is a 

geometric/dynamical analogue of the above arithmetic scheme with a conjectural 
dynamical system, where closed orbits correspond to finite primes. Note that dy-
namical zeta function corresponds to Dedekind zeta function in this context. The 
purpose of this paper is to show leafwise cohomological expression of dynamical 
zeta function on a Riemannian foliated dynamical system. We describe our main 
results in the following. 

Let (M,F,¢,g:F) be a RFDS3. The additional structures give a reduced 
leafwise cohomology厄(M)and an infinitesimal generator 8. Then we 
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consider infinite series 

品(s,z) := L (s -p)―z, 
pESp(8p) 

where 8 denotes the operator 8 acting on扉 (M). We have our first main p 

theorem: 

Theorem 1.1. The following assertions hold: 

(1) The series島(s,z) is absolutely convergent on Re(z) > > 0 for any s E C. 
(2) It extends to a meromorphic function of z E (C ands E (C which is holo-

morphic at z = 0. 

As a consequence of the theorem, the series defines a Hurwitz-type spectral 
zeta function associated with the infinitesimal generator. It follows that a zeta— 
regularized determinant can be defined since the spectral zeta function is regular 
at z = 0. 

For the second result, we define the dynamical zeta function for RFDS3. 

(F(s) = IT (1 -e―s-l('Y))五

where I runs over closed orbits of¢and l (,) is the length of ,. Here, E'Y denotes 
the index of a closed orbit. We give our second main theorem as follows: 

Theorem 1.2. The dynamical zeta function on a Riemmanian foliated dynamical 
system of 3 dimension has a leafwise cohological expression 

2 

(F(s) = IT d叫 (s-81島(M))C-1/H.

i=O 

The contents of this paper are organized as follows: In section 2, 3, 4, we 
introduce a Riemannian foliated dynamical system of 3 dimension (RFDSりand
basic notions: leafwise cohomology and infinitesimal generator. In section 5, we 
give a proof of the main theorem 1.1. In section 6, 7, we recall the zeta-regularized 
determinant and dynamical zeta function for RFDS3. In section 8, we show a 
leafwise cohomlogical expression of the dynamical zeta function on RFDS3. 

2. RIEMANNIAN FOLIATED DYNAMICAL SYSTEM (RFDSり

We consider a smooth, compact, orientable, closed 3-manifold M with addi-
tional structure: foliation F, transverse flow <j>. 

2.1. Foliation. A foliation F of d-codimension is a partition of sub-manifolds 
of d-codimension. Let M be a smooth, connected, closed and oriented manifold 
of n-dimension. It is equipped with a foliation of d-codimension as follows: let 
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(Ui, のよEIbe an atlas. The transition maps的：= </>j 0¢-; ―1 which are defined over 
Ui n Uj take forms 

的(x1,・ ・ ・, X小 Yd+i,・・・,Y砂=(¢;j(x1, ・ ・ ・, 四），...'吟(xi,・・・,四），

汀 (xi,... '叩，如+1,... '珈），吟(xi,・ ・・ ，叩，Yd+l,・ ・ ・ , Yn)) 

for i,j E I. By piecing together the stripes, where (x1, ・ ・・ ，叩） are constant, 
from chart to chart, we obtain a maximal immersed sub-manifold£whose first d 
local coordinates are constant on each Ui. We call the sub-manifold a leaf of the 
foliation. The foliation consists of the disjoint union of leaves. 

2.2. Transversal flow. A transverse flow¢is a smooth恥 actionon a manifold 
M 

¢: 股 xM→M

which maps leaves of a foliation to leaves. For any two points x and y in a s~me 
leaf£, there is a leaf£1 containing¢(t, x) and¢(t, y) for any t E艮 Let¢be
the vector field giving the velocity vector at a point. We denote by Wcp the dual 

1-form of the vector field砂．

23 .. Bundle-like metric. A Riemannian metric知 on(M, F, ¢) is called a 
bundle-like metric whose geodesics are perpendicular to all leaves whenever 
they are perpendicular to one leaf. Note that any 1-codimensional foliation with-
out singularities is Riemannian. 

We consider 3-manifolds with additional structures as follows: 

Definition 2.1. We define a foliated dynamical system on a 3-manifold by a 
triple (M,F,¢), where 

(1) M is a smooth, compact, orientable 3-manif old, 
(2) F is a 1-codimensional foliation on M, 
(3)¢is a smooth IR-action acting on M such that 

(a) The flow is transverse to the leaves of the foliation up to a finite 
number of compact leaves; 

(b) The囮 actionmaps leaves to leaves. 

The manifold and the flow may have boundaries and fixed-points. For this 
paper, we assume that the manifold is closed and the flow has no fixed-point. It 
is known that only mapping torus allows such a foliated dynamical system on 
itself. 

3. LEAFWISE COHOMOLOGY 

3.1. Leafwise de Rham complex. For the triple (M, F, ¢), let TF be a sub-
bundle of the tangent bundle T M  which is tangent to the leaves of the foliation. 
The restriction of T F on a leaf£is identified with the tangent bundle T£of the 
leaf. We call T F the leafwise tangent bundle. 
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We define the space of leafwise i-forms by 

n~(M) := r(M, 八tげ） C Di(M). 

Let d:r-(resp. d。)be the exterior derivative acting only along leaves (resp. the 
flow). Then the de Rham complex⑫ (M),dりhasa decomposition: 

••• 一宴(M)~ 写 (M)---+ ... 

＼↓ Ell~lEIJ 
••• 一瑞(M)~fl訂(M二．．．

where瑞(M)is the complement of葛(M).
We simply denote the restriction d" i+l loい(M)by d~. Since we have dF o dj:-= 0 

on偽(M), the pairs { (偽(M),d~)h form a cochain complex: 

d} d1 d2 
0→噂(M)→喝(M)ぷ噂(M)ふ 0.

We call the complex leafwise de Rham complex. 

3.2. Leafwise cohomology. We denote the kernel of dj:-by Z長(M)and the im-

age of d~by B戸（M). Note that a leafwise i-th form in Z長(M)(resp. BiJ1(M)) 
is called leafwise closed i-th form (resp. leafwise exact i-th form). 

Definition 3.1 (Leafwise cohomology). We define the i-th leafwise cohomology 
group by 

男(M):= Z}(M)/B}(M). 

The leafwise cohomology group is trivial for i > 2. 
Unfortunately, the leafwise cohomology group is of infinite dimension in general 

and not a Hausdorff space. We modify it by taking a quotient with respect to 
the closure in the smooth topology. 

恥(M):= Z}(M)/ B}(M). 

We call it the reduced leafwise cohomology group. 

3.3. Leafwise Hodge theorem. For a bundle-like metric 9F, we have the Hodge 
*-operator. If we denote by 8 the adjoint operator of the exterior derivative d, it 
has a decomposition into好 and8。

••• ←一切(M)←-亨(M)←ー・・・

＼↓① ~l· ヘ＼
••• ←―瑞(M)←ー叩(M)←ー・・・．

咋

Definition 3.2 (Leafwise Laplacian). An operator defined by 

△ F:=dF好＋好dFon O~(M) 
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is called the leafwise Laplacian. A leafwise form w E ker△ F is called a leafwise 
harmonic form. 

If we define△。 on葛(M)by 8。d。,the restriction of the Laplacian△ on偽(M)
can be represented by 

△ ln~(M) =ふ＋△。・

We have a significant proposition by Alvarez Lopez and Kordyukov ([3]): 

Proposition 3.3 (Leafwise Hodge theorem). Given a bundle-like metric, An leaf— 

wise cohomology class can be uniquely represented by a leafwise harmonic form. 
We have an isomorphism 

月}(M)竺 ker(△~)-

4. INFINITESIMAL GENERATOR 

Assume that the良 action¢isconformal on葛(M)with respect to the bundle-
like metric gF, i.e. 

誓 w,¢hrJ) = (w, rJ) for Vt ER  

It is easy to check thatが*on Hi (M)・ F 1s surjective and strongly contmuous, 1.e. 

閏訳[h]=¢t0*[h] for Vt。E恥 [h]E島(M).

Then the following lemma follows from the Stone's theorem 

Lemma 4.1 (Stone's theorem). We define the infinitesimal generator of (が*)tE股

by 

e--r 訳— id
.-1m 

t→ 0 t . 

Since (訳）tE艮 isthe strongly continuous one-parameter unitary group on the 
Hilbert space島(M),then A:= -i8 is self-adjoint on島(M)and we have 

訳=eitA = ete for Vt E股．

The infinitesimal generator is a first-order differential operator along the transver-
sal flow. Then the exterior derivative d。alongthe flow (resp. adjoint operator 
ふ） can be represented by 

心＝釦 /¥wか

6o(w八W,t,)= -8w. 

It leads the following lemma. 

Lemma 4.2. The negative square of the infinitesimal generator on a leafwise 
cohomology group coincide with the Laplacian on a space of leafwise harmonic 
forms 

-821島 (M)=△。Iker(ふ）

＝△ Iker(知）・
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Since M is compact and closed, the Laplacian has pure point spectrum which 
consists of non-negative eigenvalues with finite multiplicity. Hence the infinitesi-
mal generator has pure imaginary eigenvalues with finite multiplicity. 

For a leafwise harmonic form w:r-E kerふ， afundamental solution of the heat 
equation whose initial value is w:r-, i.e. 

｛（羞＋ふ） w!,~o, 
吟 =W瓦

is given by 

咋(x,Y, s)~{ j~, K(t, s, s')叫 x,y, .s') d.s'if (x, y, s) is periodic, 

Jげ (t,s, s')wF(x, y, s')ds' otherwise 

where K(t, s, s') is a factor of the heat kernel of the Laplacian△ . Hence we have 
an asymptotic expansion for the heat kernel around t = 0 

tr(e―△。tiker 今）偲 t―½(a。＋叫+a2t2 +・ ・ ・). 

Then the spectral zeta functionく△。(s)associated with△。 hasonly simple poles 
at s = 2 -n (n = 0, 1, 2, ・ ・ •). 

Fixing a positive number T > 0, we consider a series 

匹） = L epit 
Im(p)>T 

where p runs over the spectrum of 8 on月只M). It follows from the lemma 

4.2 that it is a partial sum of tr(e― 心tikerふ） • Since tr(e―v'Kotl kerふ） is the 
inverse Mellin transform of r(s)(△。（合） with simple poles at s = 1, -2n and double 
poles at s = -2n -1 (n = 0, 1, 2, ・ ・ ・), we deduce that the series V叫t)converges 
absolutely and has an asymptotic expansion around t = 0 as follows: 

N 

け (t)t,:!:_? at―1十L(bk+c炒logt)巴＋叩tN-1)+叩tN-1)tlogt.

k=O 

5. PROOF OF THEOREM 1.1 

Proof. We fix a positive number T > 0. We consider the 2 series for s E CC such 

that IIm(s)I < T 

的(t)=戸(t)e―s巴
外(t)=い(t)esit.

They play a role like a partition function. 
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We take the Mellin transform for the series and define the following functions 

勾(s,z) = ;::; 100的(t)tz-ldt,

e 
--iz 00 

e;(s, z) = r(z) 1 的(t)tz-ldt.

Sinceい(t)is convergent, we have for Re(z) > 1 

邸(s,z) =ど (s-p)―z, 
Im(p)>T 

e;(s, z) =区 (s-p)―z_ 
Im(p)<-T 

Next, we consider 

勾(s,z) = ;::; 100的(t)e-1dt

互ize2 
＝言 (1外(t)tz-ldt+ 100的(t)tz-ldt),

e 
ー 2ciz 00 

e;(s, z) = r(z) 1 0;(t)tz-1dt 

=~(:i; (11仰(t)e-1dt+ f 00仰(t)e-1dt)

Since VP(t) is of rapid decay at infinity, the second terms are convergent for any 
z E C. Hence we have 

芍 ze2 
勾(s,z) =言（［的(t)tz-ldt+ 100勾(t)tz-ldt)

= e~iz ( a _ asi + b。-b。si_ C゚ ＋・・・

r(z) z -1 z z + 1 (z + 1)2) 
ai 

＝＋加(s,z), 
z-1 

where加(s,z) is a meromorphic function of (s, z) for IIm(s)I < T and z E (C and 
is regular at z = 0. The meromorphic function加(s,z) has only simple poles at 

z = -2n -1 (n = 0, 1, 2, ・ ・ ・). The same result holds for e;(s, z) by the same 
argument: 

-ai 

合(s,z) = +瓜(s,z). 
z-1 

Note that加(s,z) is meromorphic in IIm(s)I < T and z E (C and is regular at 
z = 0. Since品(s,z) differs from et (s, z) + e; (s, z) by the sum of the finite terms, 
we have that品(s,z) is a meromorphic function for all IIm(s)I < T and all z E (C 

and is regular at z = 0. ロ
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6. ZETA-REGULARIZED DETERMINANT 

We recall the notion of the zeta-regularized determinant. Let 8 : V→ V be a 
linear operator acting on a complex vector space V of countable dimension. We 
assume that Vis the direct sum of finite-dimensional 8-invariant sub-spaces. Let 
Sp(8) be the set of eigenvalues of 8. The spectral zeta function associated with 
the operator 8 is defined by the analytic continuation of Dirichlet series 

(e(s) = L い with入―s= I入|―Se―is(Arg入），ー7fく Arg入三冗

浮 0ESp(8)

We assume that the Dirichlet series converges absolutely on some right-half plane 
and has an analytic continuation to the half plane Re(s) > -E  for some E > 
0 which is holomorphic at s = 0. Under these conditions, we define a zeta— 
regularized determinant by 

det00(8IV) := exp (-88くe(O)).

7. DYNAMICAL ZETA FUNCTION ON RFDS3 

Let (M,F,¢,g刃bethe foliated dynamical system with a bundle-like metric 
which we discussed above. We define the dynamical zeta function for a RFDS3 
by the analytic continuation of the infinite product 

(F(s) = Il(l -e―s-l(,))入

'Y 

where I runs over periodic orbits of¢and l('Y) is the length of 1. Here, E, is the 
index of a closed orbit. 

7.1. Index of a closed orbit. For a closed orbit I of¢, we set an index 

E, := sgn det(l -r四l(,)ITxF) forx E 1, 

where'I': 立： TxF→ Tが(x)Fis the differential of瓜 Itdoes not depend on the 
choice of the point x E 1. We call a closed orbit I non-degenerate in a sense 
that . E 1s non-zero. 'Y 

7.2. Absolute convergent condition. It is known that the in什niteproduct 
converges absolutely on Re(s) > h(¢) where h(¢)・ 1s topolog1cal entropy and 
only if it is finite. Note that the topological entropy h(¢) is defined by 

1 
h(¢) := lim -log N(T) 2: 0, 

T→ +oo T 

where N(T) denotes the cardinality of orbits whose length is less than or equal to 
T, i.e. N(T) = Card{'Yll('Y)~T}. We assume that the topological entropy h(¢) 
of a foliated dynamical system (M, F, ¢) is finite so thatく(s)converges absolutely 
on the right-half plane. 
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8. PROOF OF THEOREM 1.2 

8.1. Dynamical Lefschetz trace formula. For the foliated dynamical system 
(M, F, ¢, gF) whose closed orbits are all non-degenerate, Alvarez-Lopez and Ko-
rdyukov developed the dynamical Lefschetz trace formula: 

p ropos1tion 8.1 ([5]). For every test function <p E'D(股） = Ca°(股）， theoperator 

A'P = J 1.p(t)が*dt
股

on島(M)is of trace class. Setting: 

Tr(が*I島(M))(1.p)= trA<.p 

defines a distribution on罠. The following formula holds in'D1 (股）：

dimF 

ど（一l)iTr(¢t*叫 (M))= Xco(F,gF)<5。+Ll(,)区心bl・

i=O k繹 ¥0

Here xc0(F, μ) denotes Connes'Euler characteristic of the foliation with respect 
to the bundle-like metric (c.f. /2]} andふisthe Dirac delta function in V信）
which is non-zero at T. 

The lemma 4.1 (Stone's theorem) leads to the corollary: 

Corollary 8.1.1. The following equality holds in V1 (正o):

2 

L(-l)iTr(¢ □島(M))= L(-l)i L び．
i=O i=O pESp(8i) 

where ei denotes the operator 8 acting on H}(M). 

It is enough to show that the zeta-regularized determinant coincides with the 
infinite product of periodic orbits on some right-half plane of the topological 
entropy, i.e., 

(F (s) = IT (1 -e―sl('Y)戸

2 

= IT d!t(s -81島(M))(-l)H1 for Re(s) > P, 
i=O 

where Pis a sufficiently large number P > h(¢). Then the assertion follows from 
the uniqueness of analytic continuation. 

We apply the Laplace transform for the dynamical Lefschetz trace formula. We 
have 

£[竺—ll ぷ，） ,•-1e"'] (s)~r(z) 喜—llぷ，）(s -p)―" (1) 
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for the left hand side, and 

c[饂 l(,)心 hit'-'](s)~ どL~\JI~:国(,)Y-'(2)
"f nEN "f nEN 

for the right hand side. Both sides are defined for Re(z) > 1 over where the former 
infinite series (1) is defined from the proof of theorem 1.1, and Re(s) > h(の） over 
where the latter infinite series (2) is defined. We denote by P a sufficiently large 
number bigger than h(¢). 

Let 16_ be a contour consisting of the lower edge of the cut from―oo to -J, 
the circle t = J臼 for-7r ::; ¢::; 7r and the upper edge of the cut from -J to 
-oo. 

Jげt―zdt= 2isin(z1r) f00 e―V戸 dv+I
Lo-

where I denotes the integral along the circle t = IJI. Since I tends to zero as 
6→ 0, we have 

lim j e入tt―zdt= 2isin(z1r)「(1-z) 
ii--+0 Lか

2五

r(z) 

Hence we have the formula for入＞〇

入z-1 1 

「(z)= 21ri四18-e入tt―zdt.

By applying the formula for the series (2), we get 

土~~~~;[,;;国blY-'~土四L (~~l(叫e―nl(7)(,-l)) t―"dt 

-1'  
＝ 加i四18一言(s-t)t―zdt. 

Since the series (1) has a meromorphic extension and is holomorphic at z = 0 
from theorem 1. 1, we obtain the two equalities for -1r :S arg(t) :S 1r 

2 I 

2~(-1)'1;,(s,z)~ —K~ 四L~(s-l)l―'dl, 

1 
I 

ど（一1)撃 (s,O)= -lim j竺(s-t) log(ltlearg(t)i)dt 
i=O 21ri o→ O L5_〈r
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for Re(s) > P~h(cp). Hence the theorem 1.2 follows from the uniqueness of the 
analytic continuation. 
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