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On the Brocard-Ramanujan problem for 
homogeneous polynomials 

Wataru Takeda 

ABSTRACT. This is a report of the author's talk in RIMS Work-
shop 2019 "Analytic Number Theory and Related Topics". We 
summarize the author's talk in the first half of this report and ex-
plain our recent results related to the Brocard-Ramanujan problem 
in the second half. 

1. THE BROCARD-RAMANUJAN PROBLEM 

Brocard and Ramanujan conjectured that the only solutions of the 

equation 丑— 1 = l! are (x, l) = (5, 4), (11, 5) and (71, 7) independently 
[Br76, Br85, Ra13]. More generally, it is proposed that there are only 
finitely many solutions of the polynomial-factorial Diophantine equa— 
tion 

(1.1) P(x) = l!, 

where P(x) is a polynomial of degree 2 or more with integer coefficients. 

This problem excludes the case deg P = 1. In this case, we can 

observe that if a1 la。theequation a1x + a。=l! has infinitely many 
solutions (x, l), and otherwise has only finitely many solutions easily. 

Erdos and Oblath considered the equation砂土炉=l! as one of 
the generalizations of the equation x2 -1 = l!. They showed that for 

m 2: 3 the equation xm + ym = l! has no solution with gcd(x, y) = 1 
except for (x, y, l) = (1, 1, 2) and xm -ym = l! has no solution with 

gcd(x, y) = 1 except form= 4 [E037]. For the remaining case, Pollack 
and Shapiro showed that x4 — 1 = l! also has no solution [PS73]. 

Berend and Osgood dealt with all polynomial P(x) E Z[x] and 
showed that for any polynomial P of degree 2 or more with integer 

coefficients, the equation P(x) = l! has only a density O set of solutions 

l [B092], that is, 

#{lさnI there exists x E Z such that P(x) = l!} 
lim = 0. 
n→ oo n 
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In 2006, Berend and Harmse considered several related problems. They 
considered the equation P(x) = II, ぃwhereH1 is a function resembling 
the factorial function l!. They showed that for any polynomial P which 
is an irreducible polynomial or satisfies some condition, there exist only 
finitely many solutions of P(x) = Hz [BH06]. They chose the following 
four sequence as Hz, 

• Hz= l!. 
• Hz=[l,2, ... ,l], 
where [1, 2, ... , l] is the least common multiple of all positive 
integers less than or eq叫 tol. 

• Hz = P1P2・ ・ ・Pz, 
where 2 = P1く 四 <・・・<Plく・ • ・is the sequence of all 
pnmes. 

• For fixed integer a, 

Hz = (z'. ~~'l) =冒
In the author's talk, we focus on the equation 

n 

(1.2) Laぷ炉―i= II叫），
i=O 

where ai E Z and ITK is generalized factorial function over number 
fields. Let K be a number field and OK be its ring of integers. Then 
the function ITK(l) is defined by 

where沢a=#OK/a. 

瓜 (l)= II叫
a:ideal 
珈 '.','.l

We study the number of not (x, y, l) but l for which there exists a 
pair (x, y) such that aが炉＋・・.+a。炉=ITK(l) by the following rea— 
sons. It is known that when d is not a square integer x2 -dy2 = 1 has 
infinitely many solutions from the theory of Pell's equation. There-
fore, we can find x2 -dy2 = l! has infinitely many solutions (x, y, l) 
easily. To consider the relation between integers represented as poly-
nomial and those of factorial, we consider the number of l for which 
there exists a pair (x, y) such that aが戸十 ・・・+a。炉=ITK(l). In the 
case K = Q and y = 1, equation (1.2) is reduced to the generalized 
Brocard-Ramanujan's equation (1.1). Therefore, it is expected that our 
results give some improvement of the generalized Brocard-Ramanujan 
problem. 
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2. INTEGERS REPRESENTED AS POLYNOMIAL 

First, we recall some basic definitions and some propositions of al-
gebraic number theory. Let P(x) = an炉＋・..+ a。EZ[x] be an ir-
reducible polynomial with deg P = n and the discriminant△ p. When 
0:1, ... , an are roots of P, the splitting field Kp of Pis Q(o:1, ... , an)-
It is known that Kp/Q is a Galois extension and the Galois closure of 
Q(ai)/Q for all i = 1, ... , n. The Galois group Gp of Kp/Q plays a 
crucial role in splitting of primes in Q(ai) as follows. 
We call a subgroup H of Sn transitive if the group orbit H(i) = 

{<7(i) I <7 E H} is eq叫 to{1, ... ,n} for 1~i~n. From Galois 
Theory, Galois group Gp can be identified with a transitive subgroup 
H of the symmetric group品 ofdegree n. Forび EH, the cycle type 
of <7 is defined as the ascending ordered list [Ji, ... , fr] of the sizes of 
the cycles in the cycle decomposition ofび. For example, the cycle type 
of (1 2)(3 4)(6 7 8) = (1 2)(3 4)(5)(6 7 8)(9) EH  c S9 is [1, 1, 2, 2, 3]. 
Since if two permutations are conjugate in H then they have the same 
cycle type, we can define the cycle type of conjugacy class C = [<7] of 
H by the cycle type of a representative <7. We introduce a lemma for 
transitive subgroups of the symmetric group Sn, 

Lemma 2.1. Let H be a transitive subgroup of the symmetric group 
品 ofdegree n 2:: 2. Then there exists an elementび EH such that 
叫） i-i for all i = 1, ... , n. 

This lemma ensures that for any Galois group G i-{1} of splitting 
field of polynomial P, there exists an element such that it fixes no roots 
of P. 

Next, we review the definitions and properties of the Frobenius map. 
Let p be a prime and氾primeideal of OKp lying above p. For prime 
ideal平inOKp, we define the decomposition group D氾゜国 by{び€
Gp I <7(平） =~}. Since <7(平） =~and <7(0い=OKp forび E D料
<7 induces an automorphism百 ofOKp叩 overZ/pZ. Now we consider 
the Galois group Gal((OKp/氾）/(Z/pZ)). It is known that this group 
is cyclic and there exists an unique automorphismび： x→ 呼 which
generates it. Then the Frobenius map (p, Kp/Q) of pis the image of 
<7 in Galois group Gp. If the Frobenius map (p, Kp/Q) of p belongs 
to a conjugacy class C of GP, then we say that p corresponds to C. 
We denote the set of primes corresponding to C E C by P(C). The 
following theorem gives a relation between the cycle type of Frobenius 
map of p and the monic irreducible factorization of P(x) mod p, where 
p does not divide an△ p. 
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Theorem 2.2 (Frobenius). Let p be a prime such that p does not 
divide an△ p. We denote the cycle type of the Frobenius map (p, Kp/Q) 
of p by [!1, ... , f』.Then the monic irreducible factorization of P(叫
mod p is P(x) = an凡(x)・ ・ ・Pr(x) mod p, where Pi(x) are distinct 
and Ji= deg Pi(x). 

In the following, we introduce auxiliary lemmas to show the main 
theorems. The following lemmas characterize the prime factorization 
of integers which can be written as a polynomial. Let F(x, y) = 
an炉十 an-1Xn-ly+・ ・ ・+ a。炉 bean irreducible homogeneous polyno-
mial and KF the splitting field of F(x, 1). Also, we define the modified 
discriminant△ F,mod by 

△ 
△F 

Fmod = 
'gcd(an,an-1, ... ,a。¥'),,,_')'

where△ Fis the discriminant of F(x, 1). Let CF be the set of conjugacy 
classes C of the Galois group GF = Gal(KF/Q) whose cycle type 
[f 1, ... , fr] satisfies Ji 2: 2 for all i = 1, ... , r. This classification is very 
important to characterize integers represented as F(x, y). 

Lemma 2.3. Let F(x, y) = aご+an-lXn-ly +・ ・ ・+a。炉 bea homo-
geneous polynomial whose irreducible factorization is 

u 

F(x, y) = IT Fj(x, y) 
j=l 

and g = gcd(an, an-l, ... , ao)-Let N be an integer with 

N = 9Pl・ ・ ・ PsQ/・ ・ ·q~t, 

where Qi are distinct primes corresponding to C E Cち forall j with 
gcd(qi, an△ F,mod) = 1 or gcd(Qi, a。△F,mod) = 1 and Pi are the other 
primes. If N is represented as F(x, y) then nlli for all i. 

Next we change the assumption of Lemma 2.3 and give a necessary 
and sufficient condition for integers represented as F(x, y). We call 
a discriminantふ，modfundamental, if one of the following statements 
holds; 

• △ F,mod三 1mod 4 and is square-free, 
• △ F,mod = 4m, where m = 2 or 3 mod 4 and m is square-free. 

In the following, we assume that one of a and c is a prime number 
or 1 and the discriminant△ F,mod is fundamental. We characterize the 
prime factorization of integers which are expressed as a丑+bxy + cy乞
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Lemma 2.4. Let F(x, y) = a丑+bxy + cy2 be a positive definite 
quadratic form with fundamental modified discriminant△ F,mod and 

g = gcd(a, b, c). We denote the corresponding order to F(x,y) 
g 

by O and 

the set of principal ideals of Oby P0. Let N be an integer with 

aN = gp1・ ・ ・p心..,q叶...r~u' 

where Pi ramifies in Q(ylL応）， Qisplits completely in Q(J瓦り andri 
are distinct inert primes in Q (0幻） • If a is a prime number or 1, then 
N is represented as F(x, y) if and only if 

1. しareeven numbers. 
2. There exist prime ideals p1, ... ,ps, q1, ... , qt lying above 

P1, ... , Ps, Q1, ... , Qt respectively such that 

柘・ • ・Psql・ ・ ・qt(r1)倍...(和）号 EPo・

Remark 2.5. By swapping x and yin the binary form a炉+bxy+cy汽
we can replace a by c in Lemma 2.4 

In the following, we consider a Bertrand type estimate for primes 
corresponding to a conjugacy class C of Galois group G by follow-
ing the way of Hulse and Murty. They gave one of the generaliza-
tions of Bertrand's postulate, or Chebyshev's theorem, to number fields 
[HMl 7]. We can obtain the following theorem, which gives a Bertrand 
type estimate for prime ideals p corresponding to a conjugacy class C 
such that their ideal norm is of the form pf, by following the argument 
of Hulse and Murty [HMl 7]. 

Theorem 2. 6 (cf. [HM 1 7, Ta19]). Let L be the Galois closure of K / Q 
with k = [L : Q] and pa prime corresponding to a conjugacy class C 
of Gal(L/Q). For any A > 1 there exists an effectively computable 
constant c(A) > 0 such that for pf, > exp(c(A)k(log DL戸） there exists 
a prime ideal q with叩q= qf; E (pfi,Apfi), where q E P(C). 

3. MAIN RESULTS 

In this section, we explain the main theorems of the author's talk. 
First, we consider the equation aが戸十..,+a。炉=l!. 

Theorem 3.1. Let F(x, y) = aご+an-lXn-ly +・ ・ ・+ a。炉 bea 
homogeneous irreducible polynomial with deg F 2': 2, then there exist 
only恥 itelymany l such that l! is represented as F(x, y). 

Proof. Lemma 2.1 provides that CFヂ0.Let C E CF be a fixed conju-
gacy class of GF, The assumption degF 2': 2 and Lemma 2.3 lead that 
if N is represented as F(x, y) and plN for prime p corresponding to C 
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with gcd(qi, anふ，mod)=1 or gcd(qi,a。ふ，mod)= 1, then N is divided 
by p2 at least. In particular, F(x, y) = p! has no integer solution (x, y). 
Moreover, since the second smallest positive integer divided by pis 2p, 
l! is not of the form in Lemma 2.3 for p ::::; l < 2p, that is, there exists 
no pair (x, y) E Z2 such that F(x, y) = l! for p::::; l < 2p. 

Let a be a root of F (x, l) and let k be the extension degree of 
Kp/Q. We denote the ring of integers of Q(a) by Oa. Theorem 2.6 
states that there exists c > 0 such that for x > exp(ck(log D幻内
there is a prime ideal p of Oa corresponding to C with暉＝炉 E

(x, 2x). Let p be a prime ideal of Oa corresponding to C with暉＝
炉>max{exp(ck(logD応戸）， (an△F,mod)f, (a。△F,mod)1}. Since we 
have pf > exp(ck(log D応戸）， thereexists q corresponding to C with 
晰=qf E (pf, 2pり， thatis, there exists a prime q corresponding to C 
with q E (p, 2p). 

As well as the above, l! is not of the form in Lemma 2.3 for q ::::; l < 2q 
and there exists a prime q1 corresponding to C with q1 E (q, 2q). By 
induction, l! is not of the form in Lemma 2.3 for p::::; l. This shows the 
finiteness of l such that l! is represented as F(x, y). ロ

As a corollary of this theorem, we obtain the result of Berend and 
Harmse for irreducible polynomial. 

Theorem 3.2 (Theorem 3.1. of [BH06]). For any irreducible polyno-
mial P(x) E Z[x] with deg P ?:: 2, the equation P(x) =凡 hasonly 
finitely many solutions (x, l). 

Next we consider the general case F(x, y) = ITK(l). For a prime 
p and its Frobenius map (p, Kp/Q) with cycle type [fい...,fr], we 
define Gp(l; K) as the number of Ji such that Ji = l. If K/Q is a 
Galois extension with extension degree k, then Jら(f;K) = k for all 
primes p unramified in K, where J is the inertia degree of p in K. 
Therefore, we obtain the following theorem. 

Theorem 3.3. Let K be a Galois extension of Q and F(x, y) a poly-
nomial in Z[x, y] whose irreducible factorization is 

u 

F(x, y) = IT Fj(x, y). 
j=l 

Assume that there exist a conjugacy class C of Gal(K/Q), positive 
integers a and b > 1 such that P(C) n ni P(CFJっ{p:prime Ip三 a
mod b}. If deg F does not divide [ K : Q] then there exist only finitely 
many l such that恥 (Z)is represented as F(x, y). 
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Since the p-factor of the above H1 appears with regularity, we can 
replace ITK(l) with凡 inTheorem 3.3. When K = Q, the conjugacy 
class C in Theorem 3.3 is equal to {1} and deg F does not divide 
[K: Q]. Therefore, we obtain the following corollary. 

Corollary 3.4. Let F(x, y) a polynomial in Z[x, y] whose irreducible 
factorization is 

u 

F(x, y) = IT Fj(x, y). 
j=l 

Assume that there exist positive integers a and b > 1 such that 

nP(C叫つ {p: prime I p = a mod b}. 

Then there exist only finitely many l such that凡 isrepresented as 
F(x, y). 

Taking y = l in Corollary 3.4, we get the result of Berend and 
Harmse for reducible polynomials partially. To explain their result, we 
introduce the natural density d(S) for a subset S of the set of all primes 
defined by 

d(S) = lim 
1r(x, S) 

X→ oo 1r(x)' 

where 1r(x) is the number of primes p ::; x and 1r(x, S) is the number 
of those belonging to S. 

Theorem 3.5 (Theorem 4.1. of [BH06]). Consider the equation 

(3.6) P(x) = H1. 

Let Q(x) E Z[x] be any factor (irreducible or not) of P. Denote by 
S(Q) c P the set of all primes p for which the congruence Q(x)三 0

mod p has a solution. If d(S(Q)) < degQ then (3.6) has only finitely 
degP' 

many solutions. 

The assumption ni P(CFJっ{p:prime Ip三 amod b} in Corollary 
3.4 leads to d(S(F(x, 1))) < 1. Thus, Theorem 3.5 implies Corollary 
3.4 with y = 1. 

For special quadratic forms, we give a sufficient condition for the 
existence of infinitely many solutions. We denote the set of primes 

which is inert in Q(0ふbyP. •• 

Theorem 3.7. Let K be a number field with n = [K : Q] and Dx 
its discriminant. Let F(x, y) = a丑+bxy + cy2 be a positive definite 
quadratic form with fundamental modified discriminant△ F,mod, where 
one of a and c is a prime number or 1. We denote P. 心，DK=P. 心＼
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{plD砂.We assume that the class number of Q(.;;s;;,) equals 1. If 
for all p E P. 位 DK and for odd i, ら(i;K) is even, then there exist 
infinitely many l such that IIK(l) is represented as F(x, y). 

Proof. We assume for all p E P. 凸，DKand odd i, ら(i;K) is even. It 
suffices to show that the prime factorization of IIK(l) contains no prime 
p E P. △ F,DK raised to an odd power for infinitely many l. Let a(n) be 
the number of ideals of OK with叫=n It follows from the Chinese 
Remainder Theorem that the function a(n) satisfies the multiplicative 
property 

a(mn) = a(m)a(n) if gcd(m, n) = l. 

From this multiplicative property of a(n), it suffices to show a(p門 is
even for all primes p E P. 年，DK and odd m. The ideals n such that 
叫＝炉 isexpressed by product of prime ideals p with SJtp =炉(kさ

m). If n is expressed as p1・ ・ ・Ps and the number of朽 with叫凡=pi 
equals ai, then we have a1 +・ ・ ・+mam = m. By considering the number 
of combinations with reputation, we get 

m ら(i;K) + ai -1 . 
（門＝と I1a p o,+・・! 竺gm=•~i(a,) 

Now we assume Gp(i; K) is even for all odd i. Since m is odd, there 
exists an odd i such that ai is odd in each product. For this odd i 

（ら(i;K~~ 十佑ー1)
is even, since binomial coefficients (~), where e is an even number and 
o is an odd number, are always even. Accordingly, a(p門 isa sum of 
even numbers, a(p門 isalso even for all odd m. 

Ifら(i;K) is odd for some p E P. △ F ¥ P. 年，DKand some odd i, we 
denote m = min{i: odd I Gp(i, K) is odd}. As we mentioned above, 
a(p門 isodd. Chebotarev's density theorem says that for any number 
fields K there exist infinitely many primes splitting completely in K. 
Let q be a prime splitting completely in K. Then we have a(qり＝
(n+k-l). One can see easily that (n+k-l 

n-1 n-l) takes odd values infinitely 
many times and a(pm村） does. Since恥 ¥P.年，DKis a finite set, II叫）
satisfies the first condition in Theorem 2.4 infinitely many times. By 
assumption, the second condition in Theorem 2.4 is trivial. This shows 
the theorem. ロ
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4. GENERALIZATIONS 

In the previous sections, we deal with two variables homogeneous 
polynomial. Naturally, we have an interest in the Brocard-Rama叫 an
problem for multi-variable homogeneous polynomial. In this section, 
we consider many more variables polynomials. 

Since all positive integers n are expressed as the sum of four squares 
of integers, there are infinitely many l such that Z! is represented as 
丑＋炉＋丑+w2. Therefore, irreducibility of polynomials f (x1, ... , xn) 
is not important for the finiteness of the solutions of f(x1, ... , Xn) = l!. 

In this report, we consider the equation NA(x) = Hz, where NA is a 
norm form constructed from the field norm of a field extension K/Q. 
Let O be an order of number field K and { a1, ... , an} be their basis 

over Z. Then the norm form N°'1, ... ,an is defined by 

N.,, …，0JX1, ... , Xn)~ 』心）a(言叩}
There exists the matrix A converting from the basis { a1, ... , an} to 
the basis {1, a;, ... , a~} of 0. Also, since A E SLn(Z), an integer N is 
represented as Na1, …，°'n if and only if N is also represented as N1,a~, …,a佑
Therefore, it suffices to consider the case a1 = 1. 

Since all norm form is irreducible, we have considered the norm form 
of quadratic fields in previous sections. As one of corollary of Theorem 
3.1 we have 

Corollary 4.1. For any norm form Na1,a2 of quadratic fields, there 
exists only finitely many l such that凡 isrepresented as Na1,a2(x1五）．

We generalize this corollary to all norm forms by following the proof 
of Theorem 3.1 as follows. 

Theorem 4.2. For any order 0ナZof a number field and their basis 
{ a1, ... , an} over Z, there exists only finitely many l such that Hz is 
represented as N a1, …，an (x1, ... , Xn)-

More generally, we deal with the equation Na1, …，ctn (x1, ・ ・ ・, Xn) = l!s, 
where Z!s is the Bhargava factorial for S C Z. Bhargava introduced 
a generalization of the factorial function to generalize classical results 
in Z to Dedekind domains and unify them [Bh97, BhOO]. Since the 
ordinary factorial l! is one of the examples of the Bhargava factorial, 
we regard this equation as one of the generalizations of the Brocard-
Ramanujan problem. The Bhargava factorial is defined as follows. 
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Let S be an infinite subset of Z. First, we define~ordering of S. A 
~ordering of Sis any sequence { an} of elements of S that is formed as 
follows: 

• Choose any element a。ES;
• For k 2: 1 choose an element an E S such that 

Vp (且如ーい）＝悶い（且(x-ak)),

where Vp is the p-adic valuation defined by vp(pva) = v with an 
integer a relatively prime to p. 

For a p-ordering of S, we construct the p-sequence { Vp (n; S)} as 

叫； S)~v,(廿加—叫．
It is known that the associated p-s二゚:enceof) is independent of the 
choice of~ordering of S [8h00]. 
With these settings, we define the Bhargava factorial l!s by 

l!s = IT Pvs(l;p). 

p:pnme 

We give some examples of the Bhargava factorial. When S = Z, we 
can choose the natural ordering 0, 1, 2, 3, ... as a p-ordering of l!s for 
all primes p and find l!z is the ordinary factorial l!. This is why we 
can regard the equation P(x) = l!s as one of the generalizations of the 
Brocard-Ramanujan problem 丑— 1 = l!. Also, when S(a,b) = {an+ 
b I n E Z} for some a, b E Z then l!s(a,b) = aり!• Since we can apply the 
same way as the proof of Theorem 3.1 for the equation P(x) = l!s(a,b), 
we obtain the finiteness of solutions (x, l) for the equation P(x) = 

l' ・S(a,b)・ 
We point out that we can generalize Luca's result to the Bhargava 

factorial by following his proof. Luca showed that the Oesterle-Masser 
conjecture implies that the equation P(x) = l! has only finitely many 
solutions (x, l) [Lu02]. In the proof of this result, Luca used the facts 
that rad(l!) < 41 and the Stirling formula log l! ~ llog l as l→ oo to 
estimate rad(l!) and l!. Hence, if we estimate l!s and rad(l!s), we can 
judge whether or not we can apply t~e same argument with the proof of 
Luca's result. Since l!ll!s, for all pnmes p, the p-adic valuation vp(lls) 
tends to infinity as l→ oo. Therefore, we find that rad(l!s) = o(l!s) as 
l→ oo and obtain the following theorem. 
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Theorem 4.3 (cf. [Lu02]). Let P(x) E Z[x] be a polynomial of 
deg P 2: 2 and S be an infinite subset of Z. Then the Oesterle-Masser 
conjecture implies that the equation P(x) = l!s has only finitely many 
solutions (x, l). 

For some special case, we can show the finiteness of solutions for the 
equation P(x) = l!s unconditionally. Let f(x) = a丑+bx+cE Z[x] be 
a polynomial. Then we consider the Bhargava factorial for S = f(Z). 
Since we consider the case a = 0 above, it suffices to consider the case 
aヂ0.Let p be an odd prime not dividing a. Then we have 

#{f(n) I n E Z} = 
p+l 

2 

and we can choose an ordering f(n0), ... , f(np_1), ... satisfying the 
following three conditions: 

(1) {no, ... , np-l} = [O,p-1] n Z; 
(2)『(no)=0 mod p; 
(3) For O ::; i < j ::; 悶1,!(叫羊 J(nj) mod p. 

This ordering forms a p-ordering of Sand we can estimate vp(l!8) as 

叫!s)~{ 〗
Therefore, the same way with the proof of Theorem 3.1 also works for 
the equation P(x) = l!s. 

(4.4) 

if O < l < p-l 
- - 2' 

if悶1::::;z::::;p-1
if l = p. 

Theorem 4.5. Let Na1, …，aJx1, ... , Xn) be a norm form of number 
field K ヂQ.For a polynomial f(x) = ax2 +bx+ c with (a, b, c) E 

Z3 -{(O, 0, c) I c E Z} we denote S = f(Z). Then there exist only 
finitely many l such that l!s is represented as Na1, ... ,an (x1, ... , Xn), 

The case deg f~3, it depends on the base field K. 
when f(x) =企 thenwe find 

For example, 

mod p I n E Z} = { 

If K / Q is an abel extension, then the exists a positive integer D which 
characterizes the set of primes corresponding to a conjugacy class C C 

Gal(K/Q). Therefore, for any norm form NA of Kand we can show 
the finiteness of solutions for NA(x) = l!s. On the other hand, if K/Q 
is not an abel extension, then we cannot characterize the set of primes 
corresponding to a conjugacy class C C Gal(K/Q) by any modulus 
and it is difficult to show the finiteness of solutions in general. 

(4.6) ＃｛州
2
 

+
3
p
 

p
 

if p三 1
otherwise. 

mod 3, 
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