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ABSTRACT. This is a report of the author’s talk in RIMS Work-
shop 2019 “Analytic Number Theory and Related Topics”. We
summarize the author’s talk in the first half of this report and ex-
plain our recent results related to the Brocard-Ramanujan problem
in the second half.

1. THE BROCARD-RAMANUJAN PROBLEM

Brocard and Ramanujan conjectured that the only solutions of the
equation 2% — 1 = [! are (z,1) = (5,4), (11,5) and (71, 7) independently
[Br76, Br85, Ral3]|. More generally, it is proposed that there are only
finitely many solutions of the polynomial-factorial Diophantine equa-
tion

(1.1) P(z) =1,

where P(z) is a polynomial of degree 2 or more with integer coefficients.

This problem excludes the case deg P = 1. In this case, we can
observe that if a;|ay the equation a;z + ag = [! has infinitely many
solutions (z,1), and otherwise has only finitely many solutions easily.

Erdés and Oblath considered the equation 2™ + y™ = [! as one of
the generalizations of the equation 22 — 1 = [!. They showed that for
m > 3 the equation 2 + y™ = [! has no solution with ged(z,y) = 1
except for (z,y,l) = (1,1,2) and 2™ — y™ = [! has no solution with
ged(z,y) = 1 except for m = 4 [EO37|. For the remaining case, Pollack
and Shapiro showed that z* — 1 = [! also has no solution [PS73].

Berend and Osgood dealt with all polynomial P(z) € Z[z| and
showed that for any polynomial P of degree 2 or more with integer
coefficients, the equation P(z) = I! has only a density 0 set of solutions
[ [BO92|, that is,

I #{l < n | there exists € Z such that P(z) = !}
im =

n—o0 n

0.
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In 2006, Berend and Harmse considered several related problems. They
considered the equation P(z) = H;, where H; is a function resembling
the factorial function I!. They showed that for any polynomial P which
is an irreducible polynomial or satisfies some condition, there exist only
finitely many solutions of P(x) = H; [BHO6|. They chose the following
four sequence as Hj,

[ ] Hl == l'
o H=[12,...,1],
where [1,2,...,]] is the least common multiple of all positive

integers less than or equal to (.

o Hi =pip2-pi,
where 2 = p; < po < --- < pp < --- is the sequence of all

primes.
e For fixed integer a,

Hi= (z, al ,z) B <(Zl))|

In the author’s talk, we focus on the equation

(1.2) Zaimiy"*i = TIk(1),
i=0

where a; € Z and Ik is generalized factorial function over number
fields. Let K be a number field and Ok be its ring of integers. Then
the function Ik (1) is defined by

i) = ] M,

a:ideal
Na<l

where Ma = #0k /.

We study the number of not (z,y,1) but [ for which there exists a
pair (z,y) such that a,z" + --- + agy”™ = Ik (l) by the following rea-
sons. It is known that when d is not a square integer 22 — dy? = 1 has
infinitely many solutions from the theory of Pell’s equation. There-
fore, we can find 22 — dy* = I! has infinitely many solutions (z,y,1)
easily. To consider the relation between integers represented as poly-
nomial and those of factorial, we consider the number of [ for which
there exists a pair (z,y) such that a,z" + - - + apy™ = k(l). In the
case K = Q and y = 1, equation (1.2) is reduced to the generalized
Brocard-Ramanujan’s equation (1.1). Therefore, it is expected that our
results give some improvement of the generalized Brocard-Ramanujan
problem.



2. INTEGERS REPRESENTED AS POLYNOMIAL

First, we recall some basic definitions and some propositions of al-
gebraic number theory. Let P(z) = a,a™ + -+ + ag € Z[z] be an ir-
reducible polynomial with deg P = n and the discriminant Ap. When
ai, ..., are roots of P, the splitting field Kp of P is Q(ay, ..., ay).
It is known that Kp/Q is a Galois extension and the Galois closure of
Q(a;)/Q for all i = 1,...,n. The Galois group Gp of Kp/Q plays a
crucial role in splitting of primes in Q(«;) as follows.

We call a subgroup H of S, transitive if the group orbit H(i) =
{o(i) | o € H} is equal to {1,...,n} for 1 < i < n. From Galois
Theory, Galois group Gp can be identified with a transitive subgroup
H of the symmetric group S,, of degree n. For ¢ € H, the cycle type
of o is defined as the ascending ordered list [f1,..., f.] of the sizes of
the cycles in the cycle decomposition of . For example, the cycle type
of (12)(34)(678)=(12)(34)(5)(678)(9) € HC Syis[L,1,2,2,3].
Since if two permutations are conjugate in H then they have the same
cycle type, we can define the cycle type of conjugacy class C' = [o] of
H by the cycle type of a representative o. We introduce a lemma for
transitive subgroups of the symmetric group S,,.

Lemma 2.1. Let H be a transitive subgroup of the symmetric group
S, of degree n > 2. Then there exists an element 0 € H such that
o(i)#iforalli=1,... ,n.

This lemma ensures that for any Galois group G' # {1} of splitting
field of polynomial P, there exists an element such that it fixes no roots
of P.

Next, we review the definitions and properties of the Frobenius map.
Let p be a prime and 3 prime ideal of O, lying above p. For prime
ideal P in Ok, we define the decomposition group Dy of B by {0 €
Gp | o(B) = PB}. Since o(P) =P and 0(Ok,) = Ok, for o € Dy,
o induces an automorphism & of Ok, /P over Z/pZ. Now we consider
the Galois group Gal((Ok,./B)/(Z/pZ)). 1t is known that this group
is cyclic and there exists an unique automorphism o : x — xP which
generates it. Then the Frobenius map (p, Kp/Q) of p is the image of
o in Galois group Gp. If the Frobenius map (p, Kp/Q) of p belongs
to a conjugacy class C' of Gp, then we say that p corresponds to C.
We denote the set of primes corresponding to C' € C by P(C). The
following theorem gives a relation between the cycle type of Frobenius
map of p and the monic irreducible factorization of P(x) mod p, where
p does not divide a,Ap.
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Theorem 2.2 (Frobenius). Let p be a prime such that p does not
divide a, Ap. We denote the cycle type of the Frobenius map (p, Kp/Q)
of p by [fi,..., fr]. Then the monic irreducible factorization of P(z)
mod p is P(x) = a,Pi(x) - P.(x) mod p, where P;(z) are distinct
and f; = deg P;(x).

In the following, we introduce auxiliary lemmas to show the main
theorems. The following lemmas characterize the prime factorization
of integers which can be written as a polynomial. Let F(z,y) =
™ + Qp_12" "ty + - - - + agy™ be an irreducible homogeneous polyno-
mial and K the splitting field of F'(x,1). Also, we define the modified
discriminant Ap,,00 by

Ap

ng(an; Ap—1y .- -, a0)2n72>

AF,mod -

where A is the discriminant of F(z, 1). Let Cr be the set of conjugacy
classes C' of the Galois group Gr = Gal(Kr/Q) whose cycle type
[fi,..., [ satisfies f; > 2 foralli =1,...,r. This classification is very
important to characterize integers represented as F'(z,vy).

Lemma 2.3. Let F(z,y) = a,2" + a, 12" 'y + -+ aoy™ be a homo-
geneous polynomial whose irreducible factorization is

F(x,y) :HFj(x,y)

and g = ged(an, Gp-1,...,a0). Let N be an integer with

N =gpi---psgi - 41"
where ¢g; are distinct primes corresponding to C' € Cp, for all j with
ged(qi, anApmod) = 1 or ged(qi, aoArmoa) = 1 and p; are the other
primes. If N is represented as F'(x,y) then n|l; for all i.

Next we change the assumption of Lemma 2.3 and give a necessary
and sufficient condition for integers represented as F(z,y). We call
a discriminant Ap,,,q fundamental, if one of the following statements
holds;

® Apod =1 mod 4 and is square-free,
® Armod = 4m, where m = 2 or 3 mod 4 and m is square-free.
In the following, we assume that one of @ and ¢ is a prime number

or 1 and the discriminant Ag .4 is fundamental. We characterize the
prime factorization of integers which are expressed as az? + bxy + cy?.



Lemma 2.4. Let F(z,y) = ax® + bxy + cy® be a positive definite
quadratic form with fundamental modified discriminant Ag,,.q and
g = ged(a, b, ¢). We denote the corresponding order to % by O and
the set of principal ideals of O by Pp. Let N be an integer with

aN:gpl...psql...qtril.../ri“j

where p; ramifies in Q(v/Ar), ¢; splits completely in Q(v/Ar) and r;
are distinct inert primes in Q(v/Ap). If a is a prime number or 1, then
N is represented as F'(z,y) if and only if

1. [; are even numbers.
2. There exist prime ideals p1,...,ps, q1,- - -, q: lying above
D1y -5 Psy q1,s - - -, q Tespectively such that

151 lu
pl .. .psql e qt(rl)f e </r'u)l2 6 PO'

Remark 2.5. By swapping  and y in the binary form az? + bxy + cy?,
we can replace a by ¢ in Lemma 2.4

In the following, we consider a Bertrand type estimate for primes
corresponding to a conjugacy class C' of Galois group G by follow-
ing the way of Hulse and Murty. They gave one of the generaliza-
tions of Bertrand’s postulate, or Chebyshev’s theorem, to number fields
[HM17]. We can obtain the following theorem, which gives a Bertrand
type estimate for prime ideals p corresponding to a conjugacy class C'
such that their ideal norm is of the form p/, by following the argument
of Hulse and Murty [HM17].

Theorem 2.6 (cf. [HM17, Tal9]). Let L be the Galois closure of K/Q
with £ = [L : Q] and p a prime corresponding to a conjugacy class C
of Gal(L/Q). For any A > 1 there exists an effectively computable
constant ¢(A) > 0 such that for p/i > exp(c(A)k(log Dy)?) there exists
a prime ideal q with Nq = ¢/ € (p’s, Ap’?), where ¢ € P(C).

3. MAIN RESULTS

In this section, we explain the main theorems of the author’s talk.
First, we consider the equation a,z" + - - - + agy™ = [\

Theorem 3.1. Let F(z,y) = a,2" + a, 12" 'y + -+ + apy™ be a
homogeneous irreducible polynomial with deg F' > 2, then there exist
only finitely many [ such that [! is represented as F'(z,y).

Proof. Lemma 2.1 provides that Cr # (). Let C' € Cr be a fixed conju-
gacy class of Gp. The assumption deg F' > 2 and Lemma 2.3 lead that
if N is represented as F'(x,y) and p|N for prime p corresponding to C
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with ged(g;, anApmoed) = 1 or ged(gi, apApmed) = 1, then N is divided
by p? at least. In particular, F'(z,y) = p! has no integer solution (z,y).
Moreover, since the second smallest positive integer divided by p is 2p,
[!'is not of the form in Lemma 2.3 for p <[ < 2p, that is, there exists
no pair (z,y) € Z? such that F(x,y) = 1! for p <1 < 2p.

Let a be a root of F(z,1) and let k& be the extension degree of
Kr/Q. We denote the ring of integers of Q(«) by O,. Theorem 2.6
states that there exists ¢ > 0 such that for x > exp(ck(log D, )?)
there is a prime ideal p of O, corresponding to C' with p = p/ €
(x,2z). Let p be a prime ideal of O, corresponding to C' with 9p =
p/ > max{exp(ck(log Dr,)?), (anAFmoed)’s (a0AFmea)’}. Since we
have p/ > exp(ck(log Dk, )?), there exists q corresponding to C' with
Nq = ¢/ € (p/,2p7), that is, there exists a prime ¢ corresponding to C
with g € (p, 2p).

As well as the above, [! is not of the form in Lemma 2.3 for ¢ <1 < 2¢
and there exists a prime ¢; corresponding to C' with ¢; € (g,2q). By
induction, [! is not of the form in Lemma 2.3 for p < [. This shows the
finiteness of [ such that ! is represented as F'(z,y). O

As a corollary of this theorem, we obtain the result of Berend and
Harmse for irreducible polynomial.

Theorem 3.2 (Theorem 3.1. of [BHO06|). For any irreducible polyno-
mial P(x) € Z[z] with deg P > 2, the equation P(z) = H; has only
finitely many solutions (z,1).

Next we consider the general case F(x,y) = llg(l). For a prime
p and its Frobenius map (p, Kp/Q) with cycle type [fi,..., f.], we
define G,(l; K) as the number of f; such that f; = . If K/Q is a
Galois extension with extension degree k, then fG,(f; K) = k for all
primes p unramified in K, where f is the inertia degree of p in K.
Therefore, we obtain the following theorem.

Theorem 3.3. Let K be a Galois extension of Q and F'(x,y) a poly-
nomial in Z[x,y] whose irreducible factorization is

F(x,y) :Hﬂ(af,y)-

Assume that there exist a conjugacy class C' of Gal(K/Q), positive
integers a and b > 1 such that P(C) N[, P(Cr) D {p : prime | p =a
mod b}. If deg F' does not divide [K : Q] then there exist only finitely
many [ such that Iy () is represented as F'(x,y).



Since the p-factor of the above H; appears with regularity, we can
replace IIg (1) with H; in Theorem 3.3. When K = Q, the conjugacy
class C' in Theorem 3.3 is equal to {1} and degF does not divide
[K : Q]. Therefore, we obtain the following corollary.

Corollary 3.4. Let F(x,y) a polynomial in Z[x,y] whose irreducible
factorization is

F(z,y) =[] Fi(z.v).
j=1
Assume that there exist positive integers a and b > 1 such that

ﬂP(CFi) O {p:prime | p=a mod b}.

Then there exist only finitely many [ such that H; is represented as
F(z,y).

Taking y = 1 in Corollary 3.4, we get the result of Berend and
Harmse for reducible polynomials partially. To explain their result, we
introduce the natural density d(.S) for a subset S of the set of all primes
defined by

4(S) = tim ")

oo (1)
where 7(x) is the number of primes p < z and 7(z,S) is the number
of those belonging to S.

Theorem 3.5 (Theorem 4.1. of [BHO06]). Consider the equation
(3.6) P(x) = H,.

Let Q(z) € Z[z] be any factor (irreducible or not) of P. Denote by
S(Q) C P the set of all primes p for which the congruence Q(z) = 0
mod p has a solution. If d(S(Q)) < 32227 then (3.6) has only finitely
many solutions.

The assumption (), P(Cr,) D {p : prime | p = a mod b} in Corollary
3.4 leads to d(S(F(z,1))) < 1. Thus, Theorem 3.5 implies Corollary
3.4 with y = 1.

For special quadratic forms, we give a sufficient condition for the
existence of infinitely many solutions. We denote the set of primes

which is inert in Q(v/A) by Pa.

Theorem 3.7. Let K be a number field with n = [K : Q] and Dy
its discriminant. Let F(x,y) = ax® + bxy + cy® be a positive definite
quadratic form with fundamental modified discriminant Ap,,0q, where
one of a and ¢ is a prime number or 1. We denote Pa, p, = Pa, \
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{p|DK}. We assume that the class number of Q(v/Ar) equals 1. If
for all p € Pa, p, and for odd i, G,(i; ) is even, then there exist
infinitely many [ such that ITx (1) is represented as F'(z,y).

Proof. We assume for all p € Pa, p, and odd i, G,(i; K) is even. It
suffices to show that the prime factorization of IIx () contains no prime
p € Pa, p, raised to an odd power for infinitely many [. Let a(n) be
the number of ideals of Ok with 9ta = n It follows from the Chinese
Remainder Theorem that the function a(n) satisfies the multiplicative
property

a(mn) = a(m)a(n) if ged(m,n) = 1.

From this multiplicative property of a(n), it suffices to show a(p™) is
even for all primes p € Pa, p, and odd m. The ideals a such that
Na = p™ is expressed by product of prime ideals p with Mp = pk(k <
m). If a is expressed as p; - - - p, and the number of p; with 9p, = p’
equals a;, then we have a;+- - -+ma,, = m. By considering the number
of combinations with reputation, we get

a(p™) = Z H( K)+a; — 1)'

ar+--+mam=m i=1
a; >0

Now we assume G, (i; K) is even for all odd i. Since m is odd, there
exists an odd ¢ such that a; is odd in each product. For this odd i

(Gp(z';K) +a; — 1)

a;

is even, since binomial coefficients (z), where e is an even number and
o0 is an odd number, are always even. Accordingly, a(p™) is a sum of
even numbers, a(p™) is also even for all odd m.

If G,(i; K) is odd for some p € Pa, \ Pa, p, and some odd i, we
denote m = min{i : odd | G,(i, K') is odd}. As we mentioned above,
a(p™) is odd. Chebotarev’s density theorem says that for any number
fields K there exist infinitely many primes splitting completely in K.
Let ¢ be a prime splitting completely in K. Then we have a(¢*) =
(”:il) One can see easily that ("Jrk 1) takes odd values infinitely
many times and a(p™q¢") does. Since Pa, \ Pa, p, is a finite set, [ (1)
satisfies the first condition in Theorem 2.4 infinitely many times. By
assumption, the second condition in Theorem 2.4 is trivial. This shows
the theorem. O



4. GENERALIZATIONS

In the previous sections, we deal with two variables homogeneous
polynomial. Naturally, we have an interest in the Brocard-Ramanujan
problem for multi-variable homogeneous polynomial. In this section,
we consider many more variables polynomials.

Since all positive integers n are expressed as the sum of four squares
of integers, there are infinitely many [ such that [! is represented as
22 +y?+ 22 +w?. Therefore, irreducibility of polynomials f(z1,...,x,)
is not important for the finiteness of the solutions of f(xy,...,x,) =L

In this report, we consider the equation Na(x) = H;, where N4 is a
norm form constructed from the field norm of a field extension K/Q.

Let O be an order of number field K and {«y,...,a,} be their basis

,,,,,

Noy oo (T1, 0oy x) = H o (i ai:vi) .

seAut(K/Q) i=1

There exists the matrix A converting from the basis {aq,...,a,} to
the basis {1,a,...,al} of O. Also, since A € SL,(Z), an integer N is
represented as N, .., if and only if N is also represented as V. 1o,
Therefore, it suffices to consider the case o = 1.

Since all norm form is irreducible, we have considered the norm form
of quadratic fields in previous sections. As one of corollary of Theorem
3.1 we have

/.
::::: n

Corollary 4.1. For any norm form N,, ., of quadratic fields, there
exists only finitely many [ such that H; is represented as N, q, (71, 22).

We generalize this corollary to all norm forms by following the proof
of Theorem 3.1 as follows.

Theorem 4.2. For any order O # Z of a number ficld and their basis
{ai,...,a,} over Z, there exists only finitely many [ such that H; is
represented as No,. o, (T1,. .., Zp).

More generally, we deal with the equation Ny, . . (71,...,2,) = lg,
where [!g is the Bhargava factorial for S C Z. Bhargava introduced
a generalization of the factorial function to generalize classical results
in Z to Dedekind domains and unify them [Bh97, Bh00|. Since the
ordinary factorial ! is one of the examples of the Bhargava factorial,
we regard this equation as one of the generalizations of the Brocard-
Ramanujan problem. The Bhargava factorial is defined as follows.
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Let S be an infinite subset of Z. First, we define p-ordering of S. A
p-ordering of S is any sequence {a,} of elements of S that is formed as
follows:

e Choose any element ag € S
e For k > 1 choose an element a,, € S such that

n—1 n—1

Up (H(an - ak)) = inf v, (H(I - ak)) )
k=0 k=0

where v, is the p-adic valuation defined by v,(p’a) = v with an

integer a relatively prime to p.

For a p-ordering of S, we construct the p-sequence {v,(n;S)} as

n—1
vp(n; S) = vy (H(an — ak)> :
k=0
It is known that the associated p-sequence of S is independent of the
choice of p-ordering of S [Bh00].
With these settings, we define the Bhargava factorial {!g by

llg = H pvs(l;P)'

p:prime

We give some examples of the Bhargava factorial. When S = Z, we
can choose the natural ordering 0,1, 2,3,... as a p-ordering of l!g for
all primes p and find [!z is the ordinary factorial {!. This is why we
can regard the equation P(x) = l!g as one of the generalizations of the
Brocard-Ramanujan problem 22 — 1 = [!. Also, when S(a,b) = {an +
b | n € Z} for some a,b € Z then g, = a'll. Since we can apply the
same way as the proof of Theorem 3.1 for the equation P(z) = g4,
we obtain the finiteness of solutions (x,[l) for the equation P(z) =
“S a,b)-

%Ve) point out that we can generalize Luca’s result to the Bhargava
factorial by following his proof. Luca showed that the Oesterlé-Masser
conjecture implies that the equation P(z) = [! has only finitely many
solutions (z,[) [Lu02|. In the proof of this result, Luca used the facts
that rad(l!) < 4' and the Stirling formula log!! ~ llogl as [ — oo to
estimate rad(l!) and {!. Hence, if we estimate [l and rad(l!s), we can
judge whether or not we can apply the same argument with the proof of
Luca’s result. Since !|l!g, for all primes p, the p-adic valuation v,(I!s)
tends to infinity as | — oo. Therefore, we find that rad(l!ls) = o(llg) as
[ — oo and obtain the following theorem.



Theorem 4.3 (cf. [Lu02]). Let P(x) € Z[z] be a polynomial of
deg P > 2 and S be an infinite subset of Z. Then the Oesterlé-Masser
conjecture implies that the equation P(x) = l!g has only finitely many
solutions (z,1).

For some special case, we can show the finiteness of solutions for the
equation P(x) = l!g unconditionally. Let f(x) = ax®+bx+c € Z[x] be
a polynomial. Then we consider the Bhargava factorial for S = f(Z).
Since we consider the case a = 0 above, it suffices to consider the case
a # 0. Let p be an odd prime not dividing a. Then we have

p+1

#U(”)\”GZ}:T

and we can choose an ordering f(ng),..., f(n,-1),... satistying the
following three conditions:

(1) {no,...,np—1}=1[0,p—1NZ;

(2) f'(no) =0 mod p;

(3) For 0 <i<j <=, f(ni) # f(n;) mod p.

This ordering forms a p-ordering of S and we can estimate v,(l!s) as

0 ifo<i<ed
(4.4) v(lls) =¢ 1 ifEE <i<p-—1,

2 ifl=np.

Therefore, the same way with the proof of Theorem 3.1 also works for
the equation P(z) = llg.

Theorem 4.5. Let Ny, .. (21,...,2,) be a norm form of number
field K # Q. For a polynomial f(z) = ax? + bx + ¢ with (a,b,c) €
Z? — {(0,0,¢) | ¢ € Z} we denote S = f(Z). Then there exist only
finitely many [ such that l!g is represented as Ny, ., (T1,. .., Zp).

The case deg f > 3, it depends on the base field K. For example,
when f(x) = 23 then we find

P2 e
(4.6)  #{n’ modprnez}:{ 2 ifp=1 mod3,

p  otherwise.

If K/Q is an abel extension, then the exists a positive integer D which
characterizes the set of primes corresponding to a conjugacy class C' C
Gal(K/Q). Therefore, for any norm form N4 of K and we can show
the finiteness of solutions for N4 (z) = l!s. On the other hand, if K/Q
is not an abel extension, then we cannot characterize the set of primes
corresponding to a conjugacy class C' C Gal(K/Q) by any modulus
and it is difficult to show the finiteness of solutions in general.
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