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ON  EVEN-ODD AMICABLE PAIRS 

Yuta Suzuki (鈴木雄太）

Graduate School of Mathematics, Nagoya University 
（名古屋大学多元数理科学研究科）

1. INTRODUCTION 

Is it possible to have a friendship between a male and a female? - This is a 
long-standing unsolved problem in daily life asked in an innumerable number of times 

in literature, TV drama, movie, … and even in psychology. For Pythagoreans, who 
associated numbers to real-life objects, males are represented by odd numbers, females 

are represented by even numbers and friendships are represented by amicable pairs. 
Mysteriously (too silly to say?), one of the unsolved problems in number theory also 
asks whether there are any even-odd amicable pairs or not. 

An amicable p叫 isa pair of positive integers (M, N) such that the sum of the 

proper divisors of each member is equal to the other member. By writing a(n) for 
the sum of the divisors of n and s(n) := a(n) -n for the sum of the proper divisors 

of n, this definition can be rephrased into the simultaneous equations 

s(M) = N and s(N) = M 

or, equivalently, 

a(M) = a(N) = M + N. 
Each member of an amicable pair is called an amicable number. The smallest amicable 

pair (220,284) is famous to be used as an example of "friendship" by Pythagoras. 
Even though they have been known since ancient greek, most of the properties 

of amicable pairs are unknown. For example, it is not known whether there are 
infinitely many amicable pairs. For this problem, although it is a little bit ironic, 

several upper bounds of the number A(X) of amicable numbers up to a given real 
number X has been obtained. The trivial bound for A(X) is given by, of course, 

A(X)~X. In 1955, Erdos [3] obtained the first non-trivial result, the asymptotic 
density of amicable numbers is zero, i.e. A(X) = o(X) as X→ oo. Erdos indicated 
that his method may imply more quantitative result and such a quantitative result 
was given by Rieger [14] and by Erdos and Rieger [4]. The method of Erdos and 
Rieger was sharpened by Pomerance [11] and it yielded that 

A(X)≪X exp(-c(log log log X log log log log X)打

with some constant c > 0. Then, in 1981, a big leap was given by Pomerance [12]. 
He introduced a new method to bound A(X) and arrived at 

(1) A(X)≪X exp(-c(log X log log X)り

with some constant c > 0. In particular, this bound (1) shows that the sum of 
the reciprocals of amicable numbers converges. Also, the bound (1) settled Erdos' 
conjecture [3]: A(X)≪k X(log x)-k for every positive integer k. The current best 

possible bound 

1 
(2) A(X)≪X exp (-(ぅ+o(l)) (log X log log log X)½) as X→ OO 
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is (again!) due to Pomerance [13]. (The triple logarithm on the right-hand side is not 
a typographical error for the double logarithm.) 
We now return to the problem stated at the beginning of this note: even-odd 
amicable pairs, i.e. amicable pairs (M, N) for which M and N have the opposite 
parity. One of the reason why they are rare among all amicable pairs is partially 
explained by Lemma 1 below, which tells us that, roughly speaking, the even-odd 
amicable pairs are distributed at most quadratically with respect to all amicable pairs. 
Thus, for the number B(X) of even-odd amicable pairs up to X (or, more clearly, the 
number of amicable pairs (M, N) with M 争N (mod 2) and min(M, N) ::::; X), the 

trivial bound is given by B(X)≪X2. As far as the author knows, the only known 
non-trivial bound for B(X) is given by a remark of Pollack [10], which pointed out 
that the method of Iannucci and Luca [8] may be used to bound B(X). The method 
of Iannucci and Luca gives 

B(X)≪ い(logX)―J+a(l) as X→ 00. 
The author announces that he obtained the following non-trivial bound for B(X): 

Theorem 1 (S.). We have 

B(X)≪X2 exp(-c(logXlogloglogX)2) 

with some constant c > 0. 

Hence, friendships between a male and a female, at least in the world of integers, 
is infrequent than was known before. Theorem 1 is comparable to the current best 
possible bound (2) for the usual amicable numbers. The proof of Theorem 1 mainly 
follows the line of Pomerance's argument [13] with some additional features to deal 
with the quadratic nature and a bound (see Lemma 3) for the smooth values ofび（砧）．
Therefore, the method of Pomerance in [13] is extended quadratically in some sense. 
In this note, instead of the proof of Theorem 1, we sketch a simpler argument 
following [12] to obtain a bound comparable to (1): 

Theorem 2 (S.). We have 

B(X)≪X2 exp(-c(log X log log X) a) 

with some constant c > 0. 

Unfortunately, we cannot give some details of the proof and, in particular, cannot 
give the proof of Theorem 1 and Lemma 3 because of the page limitation. Those 
proofs will be given in the forthcoming preprint of the author. Also, in the proof of 
Theorem 2, the author couldn't follow the line of Pomerance's argument [12] fully for 
even-odd amicable pairs and we still appeal to Lemma 3, which was more directly 
handled in the paper [12, step (v), p.185-187]. 

2. NOTATION AND CONVENTION 

For positive integers d and n, we write d II n if d I n and (d, ~) = 1. A positive 
integer d is said to be square-free if p I d⇒ p 11 d for every prime p and to be 
square-full if p I d⇒ p2 I d for every prime p. 
We use the following arithmetic functions defined for positive integers n: The 
functionび(n)is the usual sum-of-divisors function, i.e. び(n)is the sum of all positive 
divisors of n. Let s(n) := a(n) -n. The function T(n) denotes the number of positive 
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divisors of n. The function Pmax (n) is defined by the largest prime factor of n if n > 1 
and by Pmax(l) = 1 if n = 1. Let 

(3) sq廿(n)== IT炉 and sqD(n) := ITP 

Pvlln Plln 
v>2 

Note that sq廿(n)is the largest square-full divisor of n, sq枷） and sq囁） are coprirne 
and n = sqij(n)sqD(n). 

The letter X, L, K always denote real numbers with X, L, K~4. We define 

(4) 
logX logL 

u := and v := 
logL logK 

and let 

(5) 
w(X,L) := #{n~XI Pmax(n)~L}, 

葛(L,K):= #{nさLIn: square-free, Pmax(u(n2))~K}. 

We will define several sets denoted in the calligraphic style叫湧覧， etc.For such 
sets, we denote their cardinalities by the corresponding roman style letters A, B, C, 
etc. 
If Theorem, Lemma, Claim, etc. is stated with the phrase "where the implicit 
constant depends on a, b, c, ... ", then every implicit constant in the corresponding 
proof also depends at most on a, b, c, ... unless otherwise indicated. 

3. PRELIMINARY LEMMAS 

Lemma 1. Let (A, B) be an amicable pair. If A is even and B is odd, then there 
exist positive integers a, M, N such that 

A=  2a炉， B= N2, M,N: odd. 

Proof. Since (A, B) is an amicable pair, we have 

(6) a(A) = a(B) =A+ B. 

By the assumption that A is even and Bis odd, we find that A+  Bis odd. By (6), 
we find that both of a(A) and a(B) are odd. Suppose that pis an odd prime and 
pe II A. Then, a(pe) I a(A) so a(pりshouldbe odd. Since p is odd, this implies 

1三a(が）三 1+p+・・・+pe三e+ 1 (mod 2), 

i.e. e is even. This shows that A = 2a記 forsome positive integer a and odd number 
M. We can deal with B similarly. This completes the proof. ロ

Lemma 2. For real numbers X,L with X,L:::, 4 and L:::, logX, we have 

w(X, L)≪X exp(-ulog(u + e)), 

where u is given by (4), ¥[! (X, L) is given by (5) and the implicit constant is absolute. 

Proof. This is well-known. For example, combine Theorem 7.6 of [9, p. 207] with 
Theorem 1 of [6] by using the asymptotic formula (1.8) given in [2]. ロ

The next lemma corresponds to Theorem 1.1 of [l]. We omit the proof because 
of the page limitation. This lemma can be proven using the same strategy as in 
Section 3 of [1] by using Hmyrova's result [7] on smooth values of polynomials at 
prime numbers. (Actually, the author couldn't follow Hmyrova's argument [7]. In 
particular, the inequality (24) at p. 117 of its English translation is obtained in a 
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(1) 
too convenient circumstance, which seems not the case for general q,, . However, we 
may apply the method of Friedlander [5] to prove Hmyrova's result.) Note that the 
admissible range K 2". log L of the next lemma is narrower than that of Theorem 1. 1 
of [1], which is K 2". (loglogL)l+0 for any c > 0. This defect is caused since the 
author couldn't extend the method of Section 2 of [1] to the next lemma. 

Lemma 3 (S.). For real numbers L,K with L,K 2". 4 and K 2". logL, we have 

葛(L,K)≪L exp(-v log log(v + e)), 

where v is given by (4), 羽(L,K) is given by (5) and the implicit constant is absolute. 

The next lemma is a higher-degree analog of the estimate (1) of [13]. 

Lemma 4. For X 2': 1, a positive integer k and a prime number P, 

こ匂―e≪(logX)2 p-½. 
匂•::;x

Plcr(rok') 

where the summation variables w and e runs through prime numbers and positive 

integers, respectively, and the implicit constant depends only on k. 

Proof. We first classify the terms according to the value of e as 

(7) 

O(logX) 

こ匂―e= L L 匂―e
匂•:c:;x

Plcr(rok') 
e=l 1 
w'.oXe 
Plu(roke) 

and then we estimate the inner sum. We first observe that 

p I c,(wke)⇒ p:::; c,(wke) <'Wke(l十匂―1+ ...):::; 2口ke_
Thus, we can restrict the range of口 as

こ匂―e= ▽[] 
℃ 
-e 

ロ<X,
Pla(wke) 

By dissecting the sum dyadically, 

と匂―eくく (logXり
w::=;x, 
Pla(wke) 

1 1 
(P/2)応＜匂:<;Xe
Plu(roke) 

sup 
1 1 

L w―e 
(P/2) 応 ~U~Xe U<匂翌U

Plu(ro•') 

くく (logXり sup u-e 
1 1 

(P/2)応 :<;U:<;X,
L 
U<w'.'o2U 

wke+ .. •+l三O(mod P) 

1. 

Since P is prime, the congruence wke +• • • + 1 = 0 (mod P) has only ke solutions at 
most. Thus, we can continue the above estimate as 

こ匂―e≪(log灼） Sup eU-e(up-l + 1) 

匂 '.oXe (P/2)三区Xe

Plcr(rok') 

=(logX) sup (u1-ep-1+u-e). 

(P/2)応 '.oU'.oXe
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Since the exponents of U on the right-hand side are non-positive, the supremum is 

attained at U = (P/2)点 Therefore,

こ匂―e≪(logX)((P句P)戸＋戸） ≪(logX)P士
ro'.:'.X• 
Pla(wke) 

On inserting this estimate into (7), we obtain the lemma. ロ
Lemma 5. For a E N and odd integers m and n, there are at most four odd prime 
pairs (p, q) such that the pair (2a炉厨，q叩） is amicable and (p,m) = (q,n) = 1. 

Proof. Assume that an odd prime pair (p, q) is given such that the pair (2ap2記，q叩）
is amicable and (p,m) = (q,n) = 1. Since the pair (2a炉叫，q叩） is amicable, 

び(2ap2記） =u(q叩） and u(2ap2記）ー2ap2記 =q叩．

By using abbrevationsμ:= 2a而 andv := n汽wemay rewrite the last equations to 

u(p切） = u(q2v) and u(p2μ) -p切=q2v. 

By using u(pり=p2+p+l, we can further rewnte these equat10ns to 

(8) p2u(μ) + pu(μ) + u(μ) = q2u(v) + qu(v) + u(v) 

(9) p2s(μ) + pu(μ) + u(μ) = q2v. 

By mutiplying (8) and (9) by v and u(v), respectively, and taking the difference, 

p2(u(μ)v -s(μ)u(v)) -pu(μ)s(v)一 u(μ)s(v)= qu(v)v十u(v)v,

or, equivalently, 

2 p (u(μ)v -s(μ)u(v)) -pu(μ)s(v) -(u(μ)s(v) + u(v)v) = qu(v)v. 

By taking the square, 

(p2(u(μ)v -s(μ)u(v)) -pu(μ)s(v) -(u(μ)s(v) + u(v)v))2 = q2v• u(v)2v 

By substituting (9) again here, 

(p2(u(μ)v -s(μ)u(v)) -pu(μ)s(v) -(o一(μ)s(v)+ u(v)v))2 

-(p2s(μ) + pu(μ) + u(μ))u(v)2v = 0. 
(10) 

If we regard this equation as the quartic equation of the indeterminate p, then the 
linear term coefficient on the left-hand side is 

(11) 20"(μ)s(v)(O"(μ)s(v) + O"(v)v) -O"(μ)O"(v)2v. 

This is odd since v = n2 is odd and u(μ),u(v) are odd by u(μ) = u(2a厨） and 
叫） = u(n2). In particular, the coefficient (11) is non-zero. Thus, the equation (10) 
is not trivial. This implies that for a given (a, m, n), there are at most four possible 
values for p. For each of those p, the value of q is uniquely determined by (9). This 
completes the proof. ロ

Lemma 6. For X, K ;:::: 4, we have 

L 
1 
ーと—

1 logX 

pら Q 
≪ 
K'  

P>K6 
炉 <Q<X2
Pla(Qり

where P, Q runs through prime numbers and the implicit constant is absolute. 



132

Proof. We first decompose the sum as 

(12) L 
1 

P>K6 
戸こ合＝区+L2'
炉<Q<X½
Pla(Qり

where 

区：= L -;- L — 
1 

P>K6 
Pぅ Q' 
記<Q~min(P,X2)
Plcr(Qり

The sum I:1 can be estimated by using w(n)≪1 + logn as 

(13) L1~L 
1 

Q 
ー L -;-~ くこ平(Qり） logX 

Pぅ
;i_ ＜＜ K'  

即<Q~x½Plcr(Q2)
1 Q2 

Q~P 
K2<Q~X2 

On the other hand, for the sum I:2, we bound the inner sum as 

L 
1 
-≪(logX) sup u-1 L 1≪ 

logX 

l Q l p 
P<Q~X> P<U<X百 U<Q~W 

Plcr(Qり 炉+Q+lニO(modP) 

since U / P ;::: 1 in the above supremum. Therefore, 江 canbe bounded by 

(logX) logX 
(14) L2≪L  

P百
3≪ K3. 

P>K6 

By combining (12), (13) and (14), we obtain the lemma. 

L2==L~2_ 
P>K6 
P2 L 1 Q' 
P<Q<X2 

Plパりり

口

4. PROOF OF THE MAIN THEOREM 

Let X~4 be a large real number, a be a fixed positive integer and 

湧=00 (X, a) 
(15) 
:= {(M,N) I (2aM2,Nり： amicable, max(2a M汽Nり::::;X, M,N: odd}. 

We discard several parts of this set to introduce useful restrictions to the variables 
M, N and estimate the size of the discarded parts. 
We first want to introduce the restriction 

(16) min(Pmax(M),Pmax(N)) > L尺
for some real number L~4 chosen later, We decompose 00 as 00 =釈1)ug(i), where 

釘）：= {(M, N) E 00 I min(Pmax(M),Pmax(N)) >び｝，

砂：= {(M, N) E 00 I min(Pmax(M),Pmax(N))~ か}.

In the subsequent argument, we denote the part of 00 remaining after the i-th step of 
our discarding process by知） and the part of 00 discarded at the i-th step by砂）．
We refer to each lemma for the i-th step of the discarding process by "Claim i". 

Claim 1. We have 

砂≪幻 exp(—嘉ulogu+O(u)),
where the implicit constant is absolute. 
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Proof. It suffices to bound the sizes of the sets 

(17) {(M, N) E吸II Pmax(M)~ か}, {(M,N) E吸II Pmax(N)~ が｝

since these sets cover g(l). For (M, N) E湧， thevalue of M is determined uniquely 
by N and the value of N is determined uniquely by M. Also, recall that the variables 
M, N are bounded as M, N さ x½in (15). Thus, the sizes of (17) are bounded as 

さ#{nさXらIPmax(n)~ が}= iir(Xい，が）．

Then, the claim follows by Lemma 2. 

We then want to introduce the restriction 

ロ

(18) max(s叶(M),sqij(N)) :S K2 

for some real number K ::::: 4 ch。senlater, 吐細吋国ぉ如血叫邸 m⑲ T゚ thぉ
end, we introduce a decomposition叩）＝か） LJ g(2), where 

叩）：= {(M,N)這 1(1)I max(s叶(M),sqij(N)) ::::; Kり，
gC2) := {(M, N) E湧(l)I max(sqij(M), sqij(N)) >炉｝．

Claim 2. We have 
EC2l«X½K-l, 

where the implicit constant is absolute. 

Proof. Note that every square-full number d can be written as d = eゲ withpositive 
integers e, f. Thus, for real number z > 0, we have 

00 

L 
1 1 
d=L戸こ―

1 00 1 e3 2 1 

d>z e=l 心>z/e3 e=l 
d2≪L砂し）≪互・

d: square-full 

Therefore, similarly to the proof of Claim 1, the assertion is reduced to the bound 

#{n :S x½I sqij(n) >炉｝：：：：： L L l:S 
d>K2 t 

d: square-full 
n:<::;X2 
din 

L d>K2 
d: square-full 

x½ 

d 
≪xらK-1_

This completes the proof. 

We next introduce the restriction 

ロ

(19) Pmax(M,N)~K汽

where Pmax(M, N) := Pmax((M, N)). (We denote the greatest common divisor of M 
and N by (M, N).) We then decompose知） as炉） =~(3) LJ g(3), where 

~(3l := {(M,N)這 (2)I Pmax(M, N) ::::; 炉｝，

g(3) := {(M, N) E⑰ (2) I Pmax(M, N) >炉｝．

Claim 3. We have 

E(3l≪X打logX)2K-1, 
where the implicit constant is absolute. 
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Proof. For (M, N) E如）， since(2叩，Nりisamicable, we have 

(N覧 (Nり） = (N汽s(Nり） = (N2, 2a記）

so that 

Pmax(M, N) > K2⇒ Pmax(N冒 (Nり） >K乞
Therefore, since N determines M uniquely, we have 

E(3) さ #{N~Xら I Pmax(N覧 (Nり）＞炉｝．

On writing Pmax(N2, び(Nり） = P, this quantity can be bounded by 

▽
 

▽/] 
i:::: L ~1. 

幻 <P:s;x2 N<X2 K2<P:s;x2 N:s;x2 
Pmax(N危 (Nり）=P Pl(N覧 (N2))

For a positive integer N, the condition P I cr(Nりimpliesthe existence of some prime 
powerか suchthat匂 eII N and P I er(臼）• Note that in this case, er(口2e)is coprime 
tow so (匂e,P) = 1, which implies匂eP I N. Therefore, the last quantity is further 
bounded by using Lemma 4 with k = 2 as 

くこ L L l~Xも L p-l L 匂―e

1 1 1 1 1 
K2<P<X百ロベX互 PN<X2 炉 <P<X2 町 <X2- I 

も 1Pia(記り roP N Pia(匂 2e)

≪x打logX)2 L p-! ≪X打logX)2K―1.
1 

K2<P<X2 

This completes the proof. 

In the following argument, we always assume 

(LK) L > K. 

Then, by (16), (18) and (LK), for every (M, N) E知）， wehave Pmax(m) II m and 
Pmax(n) II n and so we can write (M, N) as 

口

(20) 
M = pm, N = qn, p := Pmax(M), q := Pmax(N), 

with conditions max(Pmax(m), が） < p and max(Pmax(n), が） < q. 

Note that this factorization is clearly unique and we have (2p,m) = (2q,n) = 1 in 
this factorization. Also, if (M, N) E知）， thenwe have 

(21) max(m,n) :<:: Xらmin(p,q)―i :<:: X江—s_

We next introduce the restriction 

(22) min(m, n) > L4 

under the notation (20). Write叩）＝釘） LJ g(4), where 

釘）：= {(M,N) E~(3) I min(m,n) > L4}, 

g(4) := {(M,N) E湧(3)I min(m, n) :::; び｝．

Claim 4. We have 
EC4)«X江—4,

where the implicit constant is absolute. 
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Proof. By (21), it suffices to bound the sizes of 

{(M,N) E湧(3)I m ::::; L 4, n ::::; X江—8}, {(M,N) E湧(3)I m::::;x½ い， n::::;が｝．

By Lemma 5, the sizes of these sets are 

::::; 4#{(m,n) E N2 Im::::; L4, n::::; X江—s}«X九—4_

This completes the proof. 

We further introduce the restriction 

ロ

(23) max(Pmax(a(sqD (m)2)), Pmax(a(sqD (n)2)))) > K6 

under the notation (20). Let籾）＝駅） LJ g(5), where 

9hl(5) := {(M,N) E 9hl(4) I rnax(Pmax(u(sqD(m)り），Pmax(u(sqD (n)り））） >Kり，

g(5) := {(M,N) E 9hl(4) I rnax(Pmax位(sqD(m)り），Pmax(u(sqD(n)り）））さ;Kり．

Claim 5. We have 

1 
EC5)≪X打logX)2exp (— 3v log log v + 0(v)), 

where the implicit constant is absolute. 

Proof. It suffices to bound the sizes of 

{(M,N) E湧(4)I Pmax(u(sqD(m)り）：：：：：炉｝，

{(M,N) E湧(4)I Pmax(び(sず(n)り）：：：：：炉｝．

By writing 

d := sqij(m), μ:= sqD(m), e := sq伽）， v:= sqD(n), 

we can uniquely write M = pdμand N = qev with p, q given in (20), square-full 
integers d, e and square-free numbersμ, v with (pd,μ) = (qe, v) = 1. By recalling 

max(M, N) :S: X丸(18),(22), (LK) and that Mand N determines their values each 
other, we find that it suffices to bound 

#{(p, d, m) I pdμ'.S豆 d'.SK汽dμ>L4, μ: square-free, Pmax(u(μ り）：：：：：炉｝
：：：：： #{ (p, d, m) I pdμ'.S幻， μ>L汽μ:square-free, Pmax(u(μ り）：：：：：炉｝．

By Lernrna 3, this cardi叫 itycan be bounded as 

：：：：： L L 葛 (x½K6)::::: L L 
,sx ! dSX ! /,L' 戸, ,sx! むx!;,L' 号 exp(—;log log jj) 

1 
≪X2 (logX)2 exp (-3vloglogv + O(v))-

This completes the proof. 

We finally estimate the size of the whole remaining part叩）：

Claim 6. We have 
B(5l≪X打logX)4K-1,

where the implicit constant is absolute. 

口
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Proof. We decompose the remaining part into two parts: 

湧炉：= {(M,N) E 913(5) Ip> q}, 湧炉：= {(M,N) E湧(5JIP< q}, 
where we used the notation (20) and we do not have p = q by (16), (19) and (LK). 

We only consider the part湧炉 sincethe part湧炉 canbe estimated in a similar 
manner. Take (M, N) E 湧 ~5) arbitrarily. By (23), we can find a prime number P with 
P > K6 such that PI O"(sq0(m)2). Then, since sq0(m) is square-free, there is an odd 

prime number Q such that Q I sq0 (m) and P I O" (Qり=Q2 + Q + 1. This also implies 
Q2 + Q + 1 ::::: p > K6 > K4十K2+ 1 so止乱 Q>K乞A恥血⑬吋伍)II m and 
(2p,m) = 1, we have PI O"(sq0(m)2) I O"(m2) I 0"(2aM2). Recalling that (2aM2,N2) 
is amicable, we have P I 0"(2a M2) = O"(Nり.Therefore, there is an odd prime power 
Re such that Re II N and P I O"(R2e). Note that R~Pmax(N) = q < p. If e :::=: 2, 
then by (18), K6 < P~O"(R2e)~2R2e~2sqij(n)2~2K4, which cannot hold, 
so that R II N. This, in turn, implies P I O"(Rり＝だ+R + 1. This also implies 
だ +R+l:::::P>炉 >K4+炉+1 so that R > K2. We then recall M = pm and 
then the definition of amicable pairs implies 

N2 =0"(2叩）ー2叩=s(2a記）p2 + 0"(2a記）p + 0"(2a厨）

so by taking (mod R) reduction, 

(24) s(2a記）p2 +0"(2a記）p + 0"(2a記）三 0(mod R). 

Let況(a,m,R)c託 bethe set of solutions of this congruence (24). Define f E {O, 1} 
by紺：= (s(2a厨）,0"(2a而），R).Since Rf I 0"(2a叫）一 s(2a叩） = 2a叩 andR is 

odd, we have Rf I m2. If f = 1, then RI Mand RI N, which contradicts R > K2 
and (19) so that f = 0. Therefore, (24) is a quadratic or linear equation in the finite 
field lF R and so we have 

(25) X(a, m, R) ::; 2. 

By combining the above arguments, we find an injective correspondence M→ (P, Q, R, m,p) 
with the restriction 

M=pm, P>K6, 炉 <Q:SX丸炉<R <p :<::; x½, 

Plu(Qり， PIu(Rり， QI m, p (mod R) E咲(a,m, R) 
Therefore, we have 

(26) 
B~5)::; L >

]
 
>'] 
>[- ▽
 

1. 

P>K6 1 
炉 <Q<X>炉 <R:<oX>m:':: 幻 R<p:<oX>/m
Plu(か） Pla(Rり Qlm p (mod R)E究(a,m,R)

By taking care of the condition R < p and using (25), we find that 

X互L L 1≪L X2 logX 
―≪  
mR QR . 

m<X> R<p:<o幻 /m m<X2 
Qlm p(mod R)E究(a,m,R) Qlm 

On inserting this estimate into (26), we obtain 

叩≪L L L 
P>K6 1 1 
記 <Q<::X2記＜尼x2
Pia(か） Pla(Rり

xいogX
QR 
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By using the e = 1 part of Lemma 4 to the sum over R and then using Lemma 6, 

B(5) P≪X2 (log X)3 L戸こ豆≪K . 1 1 X2(logX)4 

P>K6 炉 <Q::oXら
Plu(Qり

This completes the bound for Bp . (5) 

We can now combine the above紅 gumentsto obtain Theorem 2: 

Proof of Theorem 2. It suffices to prove 

#{(A,B) E N2 I (A,B): amicable, A: even, B: odd, max(A,B)さX}

≪X  2 exp(-c(log X log log log X)百）

with some c > 0 since if (A, B) is an amicable pair and min(A, B) ::::; X, then 

max(A,B) = s(min(A,B))::::; O'(min(A,B))≪XloglogX. 

By using Lemma 1 and recalling (15), we have 

#{(A,B) E N2 I (A,B): amicable, A: even, B: odd, max(A,B)::::; X} 

口

O(logX) 

= L B(X,a) = L B(X,a) + ▽
 

B(X, a). 
a=l l<aく厨X

- - loglogX 
logX 
log logX <a≪logX 

Since for (M, N) E 00 (X, a), N is uniquely determined by a and M, we have 

B(X, a):::; #{MEN IM::; 2―g幻}:::; 2青x½

so that 

L B(X,a) ::;xら L a r2≪x百exp -c 
logX 

心~fa:x <a≪log X lo閏fa:x <a≪log X 
(CoglogX)) 

with some c > 0. Thus, it suffices to show 

(27) ~ 
1 

B(X, a)≪X2 exp(-c(logXlogloglogX)百）

区a::;心~ra:x

by using our preceding arguments. Choose the parameters L and K by 

L := exp((log X log log X) i) and K := exp((log L)½) = exp((log X log log X)み）

Then, for sufficiently large X, this choice satisfies (LK) so this choice is available in 
our preceding arguments. Also, we have 

(28) 
1 

ulogu~ ー(logX log log X) a and v log log v~(log X log log X)百
4 

for large X. By definitions of sets釘） and g(i), we have B(X, a)= 区~=l砂 +BCsJ.
By Claim 2, Claim 3, Claim 4, Claim 6, we have 

EC2l, EC3l, EC4l, BC5l≪X打logX)4 exp(-(log X log log X)り．
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By Claim 1, Claim 5, (28), we have 

≪xぅexp --砂） 1 (1 
128 
(log X log log X)百），

1 
E(5)≪ 幻 exp(— 4 (log X log log Xド）

for large X. Combining the above estimates, we arrive at (27) with c = 128・ ロ
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