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PARAMETRIZATION OF KLOOSTERMAN SETS AND 
SL3-KLOOSTERMAN SUMS 

EREN MEHMET KIRAL1, MAKI N AKASU JI2 

1. INTRODUCTION 

We give explicit and comprehensible formulas for the SL3 long word Kloosterman sum, 
and related mathematical objects. This proceeding is a survey of the results in [KN20]. 

Our work is motivated by aesthetic considerations, believing that a beautiful expression 
for a Kloosterman sum would increase its comprehensibility and its recognizability when 
encountered elsewhere in nature. We hope that this work encourages the use of the explicit 
form of the Kloosterman sum, and leads to deeper results, better bounds and discovery of 
new identities for moments of£-functions. 

1.1. Definitions. The generalized Kloosterman sums are defined as certain exponential 
sums on Ur(Z)-double-cosets on matrix groups SLr(Z). Here we denote the group of r x r 
unipotent matrices, i.e. upper triangular matrices with l's on the diagonal entries, by Ur. 
We will drop the r from the notation when we fix its value throughout a section. 

For a vector c E (股•y-1 define, t(c) := diag(c1心 /c1,c3/c鉛..., 1/cr_i) and w E W a 
Weyl group element of SLr, define 

叫 (c):= {四wt(c)匝 ESL喜）：四国 Eじ｝．

For a matrix A E SLr(Z) n BwB the c; are integers given by minors of A, and they not 
changed upon multiplication by elements of U from either side. Therefore we obtain the 
stratification 

V(Z)¥BwB n SLr(Z)/ U(Z) = LJ U(Z)¥広 (c)/U(Z).
cEzr-1 

of the double U(Z)-coset Bruhat cell into finite sets indexed by integral lattice points. 
Letn=(巧，四..., nr-I) E zr-l and define the additive character'l/Jn as follows: Let u 

be a unipotent matrix, where for i < j its entries are denoted by ui,j・Then 

叫(u)= e(n団 1,2+叫2,3+・・・＋匹叫1,r)•

For m, n E zr-l the us叫 Kloostermansum is defined as 

(1.1) ふ(m,n; c) := L 応叫四）1/Jn(u砂
AEU(Z)¥糾 (c)/U(Z)

A=uLwt(c)un 
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This sum is well defined if m and n satisfy certain conditions. 
Specifically, the Kloosterman sets of the "big cell" in SL3 are written as 

C1 SI_ 

(1.2) 叫 (c直） = { A E SL3(Z) : A E U⑰) Wo (ci古）い(Z)}'

where c1, c2 are nonzero integers and the set of conditions on m and n that need to be satisfied 
is void. The long word SL3 Kloosterman sum with modulus c = (c1, c2) can be described 
邸 asum over叫 (c1,c2). In this paper we give a finer decomposition of (1.2) via the sets 
f2(d1, d2, f) defined邸 follows.Given d1, d2, f nonzero integers, define, 

(1.3) f2(d1, d2, f) := { A E SL3(Z)I gcd(A31, A32) = f, A31 = dif, M{23},{12} =必f}.

These sets stratify the coarse Kloosterman set邸 follows,

Ow0(c1, c砂=Jlgc旦，c2)O (> y,t).
The sets on the right hand side of this finer decomposition are invariant under the action 
of U(Z) from both sides, thus the decomposition carries over to U(Z) double-cosets. This 
stratification gives a decomposition of the long word SL3 Kloosterman sum into what we call 
fine Kloosterman sums. In order to distinguish it, we denote by script趾：

(1.4) 

(1.5) Sw0(m,n;d1,d2,J) := >] 
翡n(四）咋(u砂

AE戸 ¥rl(d1,d辺）Iに
AEuL wot(dif,d2flun 

This finer decomposition is inspired by a reduced word decomposition of w。andthe sub-
sequent Bott-Samelson factorization of flag varieties. Thus we are able to write the usual 
(coarse) Kloosterman sum as a sum of fine Kloosterman sums, 

(1.6) s 釘 C2
w0(m,n;(c噂））＝区 Sw0(m,n;-, ― 

fl gcd(c,,c2) 
f !'1). 

1.2. Statement of Results. We parametrize D(d1, d2, f), thus obtaining nice expressions 
for Sw0 (m, n; d1, d2, f). 

Theorem 1.1. Let n1, n2叫匹 E Z. The Kloosterman sum Sw0(m,n;d1,d2,J) is zero 
unless (m占 f)= (n叫，f).If this is satisfied, then the Kloosterman sum equals, 

f
 

区
X泣 3 (mod f) 

X3y3三1(mod f) 
m2必+n叫1Y3三0 (mod f) 

S(n1, (m2d2 + n2d1y3)/ f; d1)S(m1, (n2d1 + m2d2x3)/ f; d叫．

(1.7) Sw0(m, n; d1, d2, J) = J 区 S(n1, N(y)叫）S(m1, M(x); d吐
x,y (mod f) 

xy三1(mod f) 
m2必+n叫,y三0 (mod f) 

Notice that when f = 1 this simplifies to S(n1, m2d2; d1)S(m1, n2d1; d砂．
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Note that (1.6) and (1.7) together give us that Sw0(m, n, (cぃ位）） lies in a real algebraic 
number field. In fact it lies in a compositum of fields of the form (Q(cos (翌））， forvarious 

primes p and integers k. 
Another application is the following explicit formula for the triple divisor sum. Let us 

define 

心，s2(n1匹）=LLと e?叫髯・
叫n1e2ln2 eal図2

These arithmetic functions are multiplicative and show up in the Fourier coefficients of 
叫 Eisensteinseries. Their values at prime powers are also related to Schur polynomials. 

Substituting n1 = 1 the above lemma simplifies as follows 

rJs,,s2(l,n) = Las2 L 籾= L 后噂，
aln bla n=e, e匹 3

and in particular d3(n) = o-0,0(1, n). 
Now using the expression for the Kloosterman sum in Theorem 1.1, we write the Ramanu-

jan sum. Compare with [Bum84, (6.3)]. 

Lemma 1.2. Given c1, c2 E z>0, let us call Rc1,c2(n1匹） = Sw0 (0, n; (c1, c砂） the Ramanujan 
sum. Then, 

Rc,,c2(n心） = L f Cc,!J(n1)cい）Cc2/f (亨）．
JI gcd(ci,c2) 
flユ

Now using the same identity as Bump [Bum84] we start to calculate the sum 

Rci,c2 (n1, 四）
((sぶ（疇（釘+S2 -1)区 s1 s2 

C C 
ci,c2>0 1 2 

in order to obtain as,,s2(n1, 匹） • Such equality can be justified via a study of Fourier co-
efficients S13 Eisenstein series. Yet, this is an elementary statement expressing a divisor 
function as a double Dirichlet series of finite exponential sums. Discovering the form of the 
formula took us through S13; however, as we see in the proof of the next proposition, an 
elementary proof can also be given. 

p ropos1t10n 1.3. For Re(s1), Re(s2) > 1, we have the identity 

(1.8) び1-s1,1-s2(l,n) = ((sぷ(sぷ(s1+ S2 -1) f~ 芯〗こ勺(n)cd2(苧）
1 2 

f釘十s2-l ・

d1,d2=l fld1n 

where cq(n) is the classical Ramanujan sum. 

This proposition will be proved in Section 3. 
Stevens, in [Ste87], has bounded the coarse long word Kloosterman sums as 

(1.9) ISw0(m, n; (c1, c2))I :ST(釘）T(c2)(m1四，叫(m四1,叫 (c1,c2)勾忍，
where C = lcm(c1, c2). See [But13, Theorem 4] for the above formulation. 

Using the Weyl bound on the classical Kloosterman sum for the Kloosterman sum decom-
position we get the following theorem. 
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Proposition 1.4. Given m, n E Z2 -(0, 0), and c1, c2 > 0, we may bound the long word 
coarse Kloosterman sum as 

1 

ISw0(m,n;c)I :Sy冨 (C1,C2戸T((c1,C砂）T(c1)T(c2) min{A, B}, 

where T(c) is the number of divisors of c and 

A=  (m四 1,C1戸(n叩 1,位）丸

B=  (m叩 1,c2)2(n四 1,c1)2.

Notice that this is still stronger than (1.9) in its m and n dependence and only weaker 
in its c dependence by a very small factor of r((c1, c2)). This is despite the fact that in the 
above proof we used many potentially not sharp inequalities. 

As an example we may see that using this proposition we obtain the bound 

Swo((l,p), (1,p); (p2,p)) = O(p5/2), 

which is sharp. The bound (1.9), on the other hand, would imply an upper bound on the 
order of Oc(p3+0). 

Let f0(N)こSL孔Z)be the congruence subgroup consisting of matrices such that the 
bottom row is congurent to (0 0 *)) modulo N. We note that the pieces of our stratification 
(1.6) encodes the level structure in a simple manner. The fine Kloosterman sums appearing 
in Bruggeman-Kuznetsov trace formula for the congruence group f0(N) are exactly those fine 
Kloosterman sums Sw0(n, m; d1, d2, f) with Nlf-This is a simple condition, which implies 
Nlc1 and Nlc2 in the notation of (1.6), but is not conversely implied by it. 

1.3. The historical background and the previous literature. The exponential sum 

S(m,n; c) ,~ 立〗三、\C (";;'+ "I')' 
is called the classical Kloosterman sum, first introduced by H. D. Kloosterman in [Klo27] 
in the context of bounding the error term arising from the circle method of G.H. Hardy, J. 
E. Littlewood and S. Ramanujan [HL19, HR18]. Here we use the notation e(z) = e2"iz, for 
z E (C. 

A second context in which the Kloosterman sums appear is in exponential sums over 
1 = (~ ~) ESL立）， forexample in the computation of the Fourier coefficients of the classical 
Poincare series. 

In this second context the presence of Kloosterman sums on the geometric side of the 
Petersson and Bruggeman-Kuznetsov trace formulas, forges a connection with the spectral 
theory of automorphic forms. Thus Kloosterman sums are abound in works estimating 
£-function moments, obtaining hyperbolic equidistribution results, quantum ergodicity on 
hyperbolic spaces. For 812 automorphic forms, the Bruggeman-Kuznetsov /Petersson trace 
formulas have been the workhorse of virtually any result in analytic number theory concerning 
a family of automorphic forms and£-functions. 

Given the central importance of Kloosterman sums in the rank 1 theory, attention has 
turned also to higher rank calculations. In the seminal work of [BFG88], the authors used 
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Plucker coordinates to parametrize the double cosets of the Bruhat cells of S13. This for-
mulation has recently has been used in myriad applications, especially in the context of S13 
Kuznetsov trace formula, see [Blo13], [GK13], [You16], [BBMl 7], [BB]. For the general higher 
rank case, the explicit calculation of certain Kloosterman sums in SLr have been performed 
in [Fri87], [Ste87]. 

The work of [Fri87] notices the general rank r hyperkloosterman sum as the Kloosterman 
sum associated to the cyclic element (12・ ・ ・r) of the Weyl group Symr of SLr. Our work 
shares the use of the exterior algebra in determining the coordinates of various factorizations. 

1.4. Method of Proof. Our calculation is heavily influenced by, but does not directly use, 
the Bott-Samelson decomposition of a flag variety. We saw this approach first in the work 
of Brubaker and Friedberg in [BF15], in the context of calculating the Fourier coefficients of 
metaplectic Eisenstein series. Especially for the GL3 case, the Bott-Samelson factorization 
has also been studied by Bump and Choie [BC14]. They have done this in the context of 
Schubert Eisenstein series, a new object introduced by the authors where the summation of 
the Eisenstein series is not over the full flag variety but over a Schubert cell. Given a Weyl 
group element w and w = Sa1・ ・ ・sa, a reduced word decomposition of w, we can write 

(1.10) BwB = (Bsa,B)(Bsa2B)・・ ・(BsaeB). 

In fact we can accomplish this in quite a generality, see [Gar05]. Our approach in this work 
is to find the necessary conditions such that given an A E BwB n SLr(Z), we can write 

伍（叫・・・伍，（叫€ に Afoo, 

where 1; E S12, in the big cell, i.e. with a nonzero lower left entry. It would be simplest 
if we could independently choose each 1; E U2(Z)¥B (1 -l) B n SL2(Z)/ U2(Z). However, 
the reality is subtler. In this paper, we work out the various integrality conditions and the 
interdependencies among the 1;'s. 

1.5. Discussion. Historically Kloosterman introduced his sum [Klo27], in the context of the 
circle method applied to the sum of four squares. The problem had no Bruhat decomposition 
in sight. An understandable formula for a S13 (or higher rank) Kloosterman sum may allow 
researchers to recognize Kloosterman sums when they see them in their research. Thus, 
for the researchers working on more complicated problems involving the circle method, the 
exponential sums they obtain may signal to them that there may be a hidden connection to 
higher rank automorphic forms. 

We expect that our detailed investigation into the structure of the higher rank Kloosterman 
sums will also lead to a refined understanding of higher rank automorphic forms. As an 
example, recently there has been a flurry of activity in spectral reciprocity formulas, see 
[BLM19], [BK19], [AK18], [Zac19], [Pet15] and of course the seminal work of Motohashi 
[Mot93]. These are formulas where both sides contain a moment, or a twisted moment 
of a family of£-functions with possibly some correction terms. One way to obtain these 
results is to pass from either side, perhaps via a trace formula, to a sum of exponential 
sums and connect these exponential sums. At this step precise and practical knowledge of 
the exponential sums is necessary. Great insight is to be gained from finding connections 
between various moments. 



175

EREN MEHMET KIRAL1, MAKI NAKASUJI2 

In a more straightforward way we also expect our results to be useful in the spectral theory 
of higher rank automorphic forms. Even though there have been deep results concerning 
higher rank automorphic forms, see [Lill], [BLM19], [LY12], these have all used the SL2 
spectral theory and Bruggeman Kuznetsov formula. The notable exceptions to these are 
[Blo13], [BBMl 7], and [You16] where the sums are over SL3 automorphic forms. We should 
note however that most of these results have used only upper bounds on Kloosterman sums, 
and not their explicit form. 

Also we can use the methods of this paper to consider the metaplectic case. As noted 
in [BF15] and [BBFll] the decomposition of A = IT:=1しa,((悶岱）） helps us easily write the 

Kubota symbol此(A)using砂 powerresidue symbols (急）n multiplicatively. 

In [Mot97, Chapter 5.4, p.215] Motohashi has noted that just as the Ramanujan formula 
for the divisor function was used in an essential manner in obtaining the spectral formula for 
the fourth moment of the Riemann zeta function in [Mot93], its generalization for the triple 
divisor function forms a connection between the sixth moment of the Riemann zeta function 
and the SL孔Z)theory, and continues to emphasize that " ... it is highly desirable to have 
an honest extension to SL(3, Z)。1the theory developed in Chapters 1-3". Bump in [Bum84] 
has found such a formula, as Motohashi notes, even though this establishes the connection 
to the SL孔Z)theory, the exact form of the divisor formula was not amenable to concrete 
calculations. 

Notice that for s1 = s2 = 1 the left hand side of (1.8) is the triple divisor function 
乃(n)=~ 叩 2れs=n1. Our formula gives a way to expand乃(n)into a double Dirichlet series 
of exponential sums, which hopefully can be useful in separating additive terms that appear 
in shifted convolution sums such as区n≪X乃(n)乃(n+ h). 

2. MAIN CALCULATIONS 

First, some notation. 
Let V be an r dimensional vector space, with e1, ... , er as standard basis vectors. Given 

an element A E GLr the action of A on elements of the k-fold wedge product are defined as 

A (V1 /¥ V2 /¥・ ・ ・/¥ V砂=(Avi) I¥ (A四）八・・ ・I¥(Av砂．

For subsets J = {行く砂<••• < ik} <;;;;; {1, ... , r} the vectors er := e;1八・・・I¥e;k, form a 

basis of/¥ kV. The action of A is calculated explicitly via the minors as, 

Aer = L Mr,JeJ・
J<;{l, …，r} 
IJl=k 

Writing ej := e* /¥ e* /\• ・ ・/¥ e* E Jl ]2 ]k (f¥ kV)*竺 I¥k V*, where ei, ... , e* are the dual standard 

basis elements of V*, we can also write Mr,J =〈ej,Aeか

2.1. Reduced Word Decomposition and the parametrization of the fine Klooster-
man cells. In the symmetric group S3, let us call the simple transpositions sa = (12), s13 = 
(23). Using the reduced word decomposition w0 = SaSf3Sa we parametrize the fine Klooster-
man sets, that is, given 

(2.1) 衿＝（エ t~)' 祁= (t~)'/1 = (闊 t~)'
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we use the product 

(2.2) 叫訊(3(,3)叫叫

to express elements of O(d1, d2, f). 
Every product of the form (2.2) with the matrices (2.1) in SL2(Z) gives an element of 

O(d1, d2, J). It is, however not true that any element of O(d1, d2, J) can be expressed as such 
a product. Firstly it is sometimes necessary to pick the matrices (2.1) in SL殴），andsecondly 
some matrices A cannot be obtained in such a manner as can see by taking a matrix with 
D = 0 in the notation of Proposition 2.1 below. However it is possible to find a representative 
A'Eに Ar00 that factorizes. 

Call A33M33 -1 = f D. Dis an integer. Multiplying with an element of U3(Z) element on 
either side we can make sure that Dヂ0.

Given a vector space V with a three dimensional basis, and using the action of A = 
四 w0tuR,on various basis elements e1 of the exterior algebra/¥ V, one obtains this explicit 
Bruhat decomposition 

(2.3) A~C M~(M,, ~: 心）,,,, C"性
ー
／
f

ー
—
_
\

＼

ー

）l-Mls 

A32/A31 
1 虚信）

comparing coordinates from both sides of the action. 

Proposition 2.1. Let A be an integral matrix in the big Bruhat cell. Assume (by changing to 
a different element in the double coset U孔Z)AU⑰)if necessary) that JD:= A33M33-l =J 0. 
We have the explicit decomposition, 

A=  ea (竺If)凸（必）ea (り~D) e13 (り） s13h13(f) 

X e13 (号） ea (M~:D) sふ (d1)ea(A~: f)  

This proposition states that the double cosets 

U3(Z)伍(,2)し13(,3)しab1)u孔Z),

with'Yi as in (2.1) with bi = x誓―1for i = 1, 2 and妬＝叩y}―1= D and互 Y1,Xふ仰，妬 EZ

and x1如 E肛Zgives a surjective map onto r 00 ¥!l(d1, d2, J)/「00. Furthermore it is enough 
to take a single representative y1 (mod d1), 四 (modd2) and xふ y3(mod J). 

We omit the details of the proof. The result is achieved by first assuming that A is 
of the form伍 b2)しfJ(73)伍 (11)with the coordinates of ry2, ry3 and ry1 as in (2.1). Using the 
word-based factorization coordinates we calculate the action on various basis elements of the 
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exterior algebra. We get that A31 = dif, M13 = dd, as well as, 

(2.4) 

An A12 
〈ei,3,Ae1,2〉 A31 A32 

X2 = f = f '  

功＝〈ei,2,Ae1,2〉=
An A12 
A21 A22' 

An A13 
〈eb,Ae1,3〉 A21 A23 

X1 = D = D'  

〈e;,Ae3〉 A23
Y2= =-

D D' 

仰＝〈e;,Ae砂=A33, 

〈e3,Ae分 A32
Y1 = =—. 

f f 
Also from the fact that f divides A32 and M23 we deduce that x□ 3,Yふ Y1E Z and 

Y2, X1 E鰐・
Multiplying these gets A back, justifying our assumption. 
Let us now express the coordinates of the Bruhat decomposition using these coordinates. 

So we write A = uLw0tuR and also A =如伍）し13(乃）叫叫．
From (2.3) we know that 

四 ~('~::f:) and 

＼

）

 
）
 二

T

>
tl1ー（

＼

 
＝
 

R
 

u
 

Denoting u = x1必十y四3d1,and v = x1y3d2 + Y2d1, we have 

〈ei,3,Ae叫＝四f, 〈e;,3,Ae1,3〉=X1Y西 +d1y2=v,

〈e;,Ae砂=yif, 〈e;,Aeり=X1d2 + Y2X西 =u,

and 

〈e;:,A叫=(x心＋叫叫）＝ ， 
X2U -X3d1 

d2 
〈e;,Ae砂=y3. 

Notice that u, v E Z. Combining these calculations, we obtain the following result. 

Propos1t10n 2.2. Given a matrix A E SL⑫)， choose d1, d2, f as in (1.3). After replacing 
A with A'~ A if necessary, we can write A =叫叫叩心(71)with'Yi as in (2.1), and 
u, v E Z as above its Bruhat decomposition has the coordinates 

(2.5) A~C 予言）(, 1 1) Cd麿力）C予¥),
with all the visible parameters integral, x2, y1, xふ y3relatively prime to d1dd, and x3y3三 1
(mod!). 

In the next proposition we give the conditions under which the coordinates in (2.5) give 
rise to the same U3(Z)-double coset. 

p ropos比10n2.3. Given nonzero integers d1,d2,f and y1 E (Z/d1Z)*, x2 E (Z/d2Z)* and 
Xふ y3E Z/ JZ satisfying x3y3 = 1 (mod f), the product in (2.5) gives rise to an integral 
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matrix if and only if the following congruence conditions are satisfied: 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

UX2三 d心 (moddか
匹 1=必 (moddリ，

匹凶1=d汀叫 +d2四 (mod d心），

v三 如 (mod dif), 

VX2三 uy3砂 +d1(l-x叫） (mod d心J).

Furthermore a matrix B that formed in the same way from the coordinates Y1, X2, U, V and 
Xふ y3is in U3(Z)A U孔Z)if and only if 

Y1 =坊 (modd1), 

X2三ふ (mod dか
u三 U (mod d心 f),

v三 V (mod d心f).

Remark 1. If we choose y1, 四 tobe relatively prime to d心f(which we can via switching 
to a different matrix in the U(Z) double coset if necessary) then (2.8) and (2.10) imply the 
remaining congruence relations. 

From now on we will assume x2 and y1紅 echosen to be relatively prime to d西 f.
Since the equation (2.8) determines u up to d1屯 butu determines the double coset up to 

modulo d心 f,the set of allowed solutions are 

(2.11) u三 d心3巧十 d2祈 +d西 k (mod d心f),

with k E Z/ JZ. 
This then determines v (mod d1dd) completely and we have for each such u, 

V = (d1X3巧 +d叩 +d心 k)y3+ d1(l -X如）巧三 d叩 Y3+ d国+d1d2y3k (mod d心 f).

This g・ 1ves a parametnzat10n of the fine Kloosterman cells. 

Corollary 2.4. Let d1, d2, f be nonzero integers, and fix the sets Yd, and心， acomplete 
set of reduced residue class representatives y1 (mod d1)*, x2 (mod d2)* such that x2, y1, are 
relatively prime to d心 f.Let巧={(x3如） E {J + 1, ... , 2f}lx甜3三 1(mod f)} and let 
k E K,f simply run through integers from O to f -l. There is a bijection 

晶2xYd, x巧XK,F -----+ 

(x公 lh,(xふ11,),k) c--> い(Z)(~
di] 

U3(Z)¥D(d1, d2, f)/ U3(Z) 

，
 

‘‘,＇’/ z
 

（
 

3
 

u
 

＼

ー

）

、̀
j3
 

y
 

[警的
必2

 
x
 

difyl 

yl

必

咬
s
＿

didlyl 

＿
U
 

ーy
 

2
 

x
 

"-

where u = d心3巧十 d巫 +d心 kand v = d2祈ぬ十 d1巧十 did凶3k.

Remark 2. The condition that f < x3如く 2fis not important. Any fixed set of reduced 
residue classes would work as long as x3y3 -1ヂ0.
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Corollary 2.5. The number of elements in叫。(c1,c2) is given by 

1r =叫(c噂）;r』=L¢ い）¢い）の(f)f.
fl(c1,c2) f f 

2.2. Evaluation of Fine Kloosterrnan Sums. According to this parametrization we eval-
uate Sw0 (rn, n; d1, d2, f). The k sum will give us a restriction on the set of (xふ y3)pairs as 
well as the condition that (n2d1, f) = (m2d2, f). 

Proof of Theorem 1.1. We calculate by using the definition of the fine Kloosterman sum, the 
coordinatization of the Kloosterman set from 2.4, and the explicit form of the superdiagonal 
elements in the unipotent factors of the Bruhat decomposition in terms of these coordinates 
as in (2.5), 

Sw0(m,n;d1,d2,J) = L 心(m1,加）（四）ゆ(n,,四）(u叫
"/Er=¥rl(d1,dぁ!)fr=
"fEUL wot(d1f, 必f)uR

f-1 
I: I: ど □ 2十四u+呻 1+四 ． 

匹叫 (xs,ys)E巧 k=O ( 必 di] d1 必1)
y, 叫

Then we plug in the values for u and v in terms of the given coordinates, 

鯰(m,n;d叫f)~;苔::("S~F, C (":;'+ n~'? + m戸）

xe(警+m~~ 戸 +nデ）旦 (m西~四 d1y3k) 
The innermost sum over k gives us the congruence condition 

(2.12) m西＋ 叫IY3三 0 (mod f), 

for otherwise the sum vanishes. Some y3 E (Z/ JZ)* satisfies this if and only if (m叫!)= 
（疇!).Thus, 

Sw0(m,n;dぃd2,f) = f (xa~ 巧 y;苔:,e (n~~1 + (疇:~;鱗）祈）

加必＋疇1Ya=O (mod f) 

X~e(三 (m2晒＋鴫）巧
疇心2 d2 十 必f )・ 

Let y3 be chosen so that (2.12) is satisfied. Define the integers N = N(y3) := (m2あ＋
n2d叩）/f and M = M(叫：＝（四麟＋疇）/ f. These are both integers, due to the 
condition on (xふ y3). Note that if x3 = x~(mod f) then M(x3) = M(x~) (mod d1) and 
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similarly for N (y砂.The fine Kloosterman sum is 

Sw0(m, n; di, d2, J) = f L 
X3函 (modf) 

硲 Ya三1(mod f) 
m西 +n叫 Ya三0 (mod f) 

S(n1, N(y3砂）S(m1,M(巧）泌）． ロ

Let us show just how explicitly we can calculate coarse Kloosterman sums using the above 
result. We calculate, for an odd prime p, 

Swo((l,p), (l,p); (p2,p)) = Swo((l,p), (l,p);p2,p, 1) + Swo((l,p), (l,p);p, l,p). 

The first term with f = l is easy to calculate, we can take x3 = y3 = 0 in (1.7) and get, 

Swo((l,p), (l,p);p2,p, 1) = S(l,p2;p)S(l,p3;p) =μ(p2)μ(p) = 0. 

The second fine Kloosterman sum can be evaluated as 

Sw0((l,p), (l,p);p, l,p) = P L S(l, 二臨·s1~-1
p 

, p) (, P ,)  = p(p -l)S(l, l;p), 
工3Y3三1(modp) 

p+y3p仁 0 (modp) 

since (p -1) many (xふ y3)pairs all yield the same answer. Thus we get 

(2.13) Sw0((l,p), (l,p); (p汽p))= p(p -l)S(l, 1; p). 

Another example would be Sw0((l, 1), (p,p), (p,p)) = 2 -p. 
Finally let's take integers m1, m2, n1, n2 all coprime top. 

Sw0(m, n; (p,p)) = Sw0(m, n;p,p, 1) + Sw0(m, n; 1, 1,p). 

The f = 1 case is simply S(n1,m2p;p)S(mぃ巧p;p)= cp(n1)叫叫） =μ(p)2 = 1 and the 
f = p case is pS(n1, (m2 + n2y3)/p; l)S(m1, (m2玲＋巧）/p; 1) for the unique (xふ y3)pair 
modulo p, that makes the second arguments integers. Thus we get p. Together we get the 
identity [BB, (1.3)], i.e. that S(m, n; (p,p)) = p + 1. 

3. PROOFS 

We now include proofs of statements made in the Section 1.2 

Proof of Lemma 1.2. Simply by using (1.6) and Theorem 1.1, we write, 

R叩 c2(閉，叫＝区 fS (0 n-
臼 C2

wo''―, ―, f) 
fl gcd(ci,c2) J J 

= L L fs(凡，疇Y3

fl gcd(c1,c2)四 (modf) 

f ,d1) S (o, n~d\d2) 

fin叫1 gcd(x3 ,f)=l 
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Here d1 := 9. and d2 :=笠.We can evaluate the y3 sum as 

Y3と:f) s (妬， n2~1Y3, di) = u (と〗,/ (nJ;)四ど:f) e (n2;X3) 

芯 e(n;;) c1(m弧）
u (mod d1) 

= cd,(ni)叫叫．

In the last line, we used the fact that c1(m国）＝叫加） • We can do this because we have 
freedom to choose u as any element of the reduced residue classes (mod d2), so豆canbe a 
large prime, and in particular we can assume冠isan integer relatively prime to f. This gives 
the result. ロ

Elementary proof of Proposition 1.3. In this proof we use the simplified notation (a, b) = 
gcd(a, b). 

Substituting the form of the general Rama叫 ansum from Lemma 1.2, we start our cal-
culation 

((sぷ(s瓜(s1+ S2 -1) 文炉ld•2 区国（王（四）叫鴫2di/f) 
1 2 d1,d2=l fin叫1

00 

=((sぷ(s1+ S2 -1)と和区1 cd, (n1)c1(n2)びl-s2(n叫 If).
f釘十s2-l

d1=l fin叫1

Here we used the classical Ramanujan identity (i.e. び1-s(n)= ((s)~~1 C£(n)い） on the 
drsum. Let us assume閃 =1 now, so that cd, (n1) =μ(d1). Also put (f, n2) = e. This gives 

gcd(乃/e, f / e) = 1, and so ! I d1. Changing variables f / e f--t f we have, 

く（疇（釘＋砂ー l)Le釘十1s2-l 文 µ~~,1) L 叩(njs~ニ心舟）
e匹 d1=l fld, 

(f, 四 /e)=l

=〈(sぷ（釘＋的ー l)L が,:s2-l 喜）g文 µ~;11) L µ(J)~1~s2(.e f) 
血血

eln2 gle di =1 fld1 
(f叩 /g)=l

Here we inserted cq (n) =区Yl(q,n)/L(~)g, noting that (Je, 叫=e. The coefficient of the 
d1-Dirichlet series is almost a multiplicative function. We note that for a fixed n the function 
叩 (nd)/ua(d)is a truly multiplicative function of d. Exchanging the order of the e and g 
sum we obtain, 

く(sぷ（釘＋的ー l)Lg紅 ;s,-2Lµ(e);~~::~: 竺）文μ誓） E μ(!)い（宇れtl
応 eln2/g d1=l 1 Jld1 f釘十s2-lびl-s2(----Z-) 

(f, 四 /g)=l
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For a cleaner notation we drop the subscripts at this point, and write d, n. Using the fact 
that the coefficients of the Dirichlet seris in the d-variable are multiplicative, this sum equals 

く(sぷ（釘十砂ー l)L
1μ(e)a1-s2(宇）

g釘 +s2-2L es1+s2-l 
gin eln/g 

Xリ(・ ~(び•-~(q) q釘十',,_,))リ(・ ;¾; :::,¥ご）
The q factor is 

1 1 1 1 1 
1―石― qs1+s2-l十 q2s1+s2-l= (l―石） (l -qs1+s,-l)' 

which cancel with the Euler factors of the two zeta functions. 
So let us assume n = pとIfg = n then the e sum is simply 1 =び1-s2(n/g).Now if g =J n, 

we have the e sum as, 

（びl-sJn/g)_ a1-s,(pn/g) _い（乎）＋び1-sJn/g))
psi p紅 +s2-l p恥 +s2-l . 

We then apply the Hecke relation for divisor sums, i.e. that if pin, 

叫 np)=四(n)O'a(P)-P冗 (n/p).

Thus we have 

（びl-s2(n/g)-O't-s2(n/g)い (p)+びl-s2(乎）ー O't-s2(乎） 0'1-s2(n/g) 
psi ps1+s2-l ps1+s2-l + p2s叶 s2-l)

1 
＝い(n/g)(1--(1+ + 

1 1 
p•1 p幻 1) p2s叶 s2-l)

＝（土1応(s1+砂ー l)0'1-s2(n/g).

Here (p(s) = (1 -p-•)-1, is the p-Euler factor, that cancels with the Riemann zeta function. 
Th f ere ore we obtain that the whole sum 1s ，Lgln戸デ虹s2(n/g). ロ

Proof of Proposition 1.4. Given the decomposition of Kloosterman sum as a sum of product 
of two classical Kloosterman sums as in Theorem 1.1, and using the Weyl bound on individual 
terms, 

ISw0 (m, n;(c1, c砂） 1

~Lt >
]
 

伽叫）ら（四，必）バ伍孟T(d1)T(d2)

(3.1) 
fl(ci,c2) x3y3eel (mod f) 

m叫2+ys四 d戸 0 (mod f) 

VI L Jl(ci,c2) 
(m叫2,f)=(四 dぃf)

1 

(J, m2d2)(n1, d1)う(m1,d2)う亭T(d1)T(d2)-
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Here d; = c;/ f and we bounded the number of solutions to the congruence equation m2必十
y叩 2d1三 0(mod J) with y3 E (Z/ JZ)* by simply (m』2,J). 

Notice that this answer is not symmetric in the variables. However the decomposition of 
ふ intothe stratification induced by w0 = Sf!SaSf! comes to the rescue. 

Given A = la(,2)lf!(而）伍（円） the involution At := w0(tA-1) Wo is a homomorphism fix-
ing U(Z), and therefore it preserves U(Z)-double cosets. This involution does not preserve 
our finer decomposition, however it sends the stratification based on one reduced word de-
composition to the other. Indeed At = lf! (,2加（而）lfJ(,1). The entries of At are given by 

が＝（鸞息聾:)• The Kloosterman sums based on this fine decomposition are written 
the same way except we exchange m1⇔ m2, n1⇔ n2 and d1⇔ d2, So we get 

(3.2)', ( • WQ  , (1, c2))::; 区 (f,m心） (m2,d由 (n2,d2)2 ✓忍 T(d出(d叶m ff C 

Jl(c1,c2) 
(n直 f)=(m直 f)

Since we are adding over f such that (m2d2, f) = (n2d1, !), we write in (3.1), 

(f,m2d2戸=(!, m2d2)(f, n2d1) = (!, d2)(f, dリ ((!~2), m2)((!~,), n2)). 

Combining this with ( (d2,f)'加）(d1, n1) ::; (dif, m叩） = (c1,m如）， andsimilarly with 

(cln匹）(d2, m1) ::; (c2, m西） we get the term v (dぃf)(d2,!)A. Assume that c1 = pk and 

C2 =炉 with£::;k. Then as f runs through powers of p, the maximum value of (d1, f)(d2, f) 
is achieved for f =が with£< k 

2 - - 2 r < -and that value is < pe. By multiphcativity we get 
that, 

(f , f) (f , f) ::; (C1'位）．max 旦竺

Jl(c1,c2) 

There are at most T((c1, c2)) many summands. This gives us the bound with A. Starting 
with (3.2) instead, we get the bound with B. Considered together, we obtain the given 
statement. ロ
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