Anabelian geometry of complete discrete valuation fields and ramification filtrations

京都大学 数理解析研究所

Research Institute for Mathematical Sciences
 KYOTO UNIVERSITY，Kyoto，Japan

Anabelian geometry of complete discrete valuation fields and ramification filtrations

Takahiro Murotani

Abstract

As previous studies on anabelian geometry over p-adic local fields suggest, "ramifications of fields" play a key role in this area. In the present paper, more generally, we consider anabelian geometry of complete discrete valuation fields with perfect residue fields from the viewpoint of "ramifications of fields". Concretely, we establish mono-anabelian reconstruction algorithms of various invariants of these fields from their absolute Galois groups with ramification filtrations. By using these results, we reconstruct group-theoretically the isomorphism classes of mixed-characteristic complete discrete valuation fields with perfect residue fields under certain conditions. This result shows that these types of complete discrete valuation fields themselves have some "anabelianness". Moreover, we also investigate properties of homomorphisms between the absolute Galois groups of complete discrete valuation fields with perfect residue fields which preserve ramification filtrations.

Contents

Introduction 1
Acknowledgments 3
0 . Notations and conventions 4

1. Preliminaries 5
2. Absolute Galois groups with ramification filtrations of GMLF's and GPLF's, and homomorphisms preserving ramification filtrations 11
3. Anabelian results for profinite groups of R-GMLF and R-GPLF-type 26
References 32

Introduction

Grothendieck, who is the originator of anabelian geometry, considered that anabelian geometry should be developed over fields finitely generated over prime fields as seen in his conjecture given in 1980s. In 1990s, his conjecture for hyperbolic curves over fields finitely generated over \mathbb{Q} was solved affirmatively by Nakamura (the case of hyperbolic curves of genus 0 , cf. [Nak1, Theorem C], [Nak2, (1.1)]), Tamagawa (the case of affine hyperbolic curves, cf. [T, Theorem 0.3]) and Mochizuki (the general case, cf. [Mo1, Theorem A]). Moreover, Mochizuki gave two important anabelian results over p-adic local fields. One is a certain analogue of the theorem of Neukirch-Uchida for the absolute

[^0]Galois groups with ramification filtrations of p-adic local fields (cf. [Mo2, Theorem 4.2]), and the other is (the relative version of) the Grothendieck conjecture for hyperbolic curves over p-adic local fields (cf, [Mo3, Theorem A]). (Furthermore, in [Mo4, Theorem 4.12], Mochizuki also proved (the relative version of) the Grothendieck conjecture for hyperbolic curves over generalized sub-p-adic fields (i.e., fields isomorphic to subfields of fields finitely generated over the quotient field of the Witt ring with coefficients in an algebraic closure of \mathbb{F}_{p}).) Since then, anabelian phenomena over p-adic local fields have been one of main issues in anabelian geometry. However, in anabelian geometry over these fields, there are many difficulties which are not found in the finitely generated fields (especially, number fields) cases. For example, though number fields are reconstructed from their absolute Galois groups even in the sense of mono-anabelian reconstruction (i.e., a mono-anabelian version of the theorem of Neukirch-Uchida, cf. [Ho2, Theorem A]), the analogue of the theorem of Neukirch-Uchida for p-adic local fields fails to hold as it is. This failure of the analogue of the theorem of Neukirch-Uchida makes it difficult to study the absolute version of the Grothendieck conjecture for hyperbolic curves over p-adic local fields (which holds over number fields (cf. [Mo5, Corollary 1.3.5])). There are many studies trying to overcome these difficulties (see, e.g., [Mo6, §3], [Ho3] and [Mu1]). These studies and the above result of Mochizuki (an analogue of the theorem of Neukirch-Uchida) suggest that "ramifications of fields" play a key role in anabelian geometry over p-adic local fields.

On the other hand, Grothendieck's conjecture and developments of anabelian geometry over p-adic local fields raise the following question:

What kinds of fields are suitable for the base fields of anabelian geometry?
This question is a main theme of the present paper and [Mu2]. In the present paper, we consider this problem for complete discrete valuation fields with perfect residue fields from the viewpoint of "ramifications of fields". (In [Mu2], we consider this problem for higher local fields.) We mainly treat mixed-characteristic complete discrete valuation fields with perfect residue fields (which we shall abbreviate to GMLF's (cf. Definition 1.12 (i))). Concretely, we consider the following problems:
(A) Which invariants of GMLF's are reconstructed from the absolute Galois groups with ramification filtrations in the sense of mono-anabelian reconstruction?
(B) Does the analogue of the theorem of Neukirch-Uchida for GMLF's and the absolute Galois groups with ramification filtrations hold?
Moreover, we also investigate properties of homomorphisms between the absolute Galois groups of complete discrete valuation fields with perfect residue fields which preserve ramification filtrations.

For (A), we prove the following theorem:
Theorem A (cf. Propositions 2.8, 3.6)
Let K be a GMLF, \mathfrak{G}_{K} the filtered absolute Galois group of K with the ramification filtration (cf. Definition 1.3 and Remark 1.4), and G_{K} the underlying profinite group of \mathfrak{G}_{K} (i.e., the absolute Galois group of K). Then there exist mono-anabelian reconstruction algorithms of the following invariants from \mathfrak{G}_{K} :

- the characteristic p of the residue field of K;
- the absolute ramification index e_{K} of K;
- whether or not K contains a primitive p-th root of unity;
- the modulo p cyclotomic character $\chi_{p}: G_{K} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times}$.

By this theorem, in some special cases, the filtered absolute Galois group \mathfrak{G}_{K} of a GMLF K and the isomorphism class of the residue field of K determine the isomorphism class of K (which gives an answer to (B)):

Theorem B (cf. Theorems 3.9, 3.10)
Let K be a GMLF with perfect (resp. algebraically closed) residue field k, \mathfrak{G}_{K} the filtered absolute Galois group of K with the ramification filtration, G_{K} the underlying profinite group of \mathfrak{G}_{K} (i.e., the absolute Galois group of K), and e_{K} the absolute ramification index of K. Set $p:=$ char k. Suppose that there exists a finite extension L of K satisfying the following conditions:
(a) L is a totally ramified extension of K.
(b) $e_{L}=p-1$ (resp. $e_{L}=(p-1) n$, where n is a positive integer prime to p), where e_{L} is defined similarly to e_{K}.
(c) L contains a primitive p-th root of unity.

Then the isomorphism class of K is completely determined by \mathfrak{G}_{K} and the isomorphism class of k.

Note that, in the situation of Theorem B, we may determine whether or not a finite extension L of K satisfying the conditions (a), (b) and (c) exists from the (filtered) group-theoretic data \mathfrak{G}_{K} by Theorem A. Moreover, in the case where k is an algebraically closed field, the existence of L satisfying the above three conditions is equivalent to the condition that e_{K} is prime to p.

We shall review the contents of the present paper. In Section 1, we define R-filtered profinite groups, which are main objects of Sections 2 and 3. In Section 2, we discuss some generalities on complete discrete valuation fields with positive residue characteristic and their absolute Galois groups with ramification filtrations. We also obtain some injectivity results (cf. Propositions 2.13 and 2.16) on homomorphisms between the filtered absolute Galois groups of GMLF's (by using the theory of fields of norms and local class field theory), and prove a certain "Hom-version" of an analogue of the theorem of Neukirch-Uchida for complete discrete valuation fields with finite residue fields (and for the absolute Galois groups with ramification filtrations) (cf. Theorem 2.18), which is an improvement of Abrashkin's result. Moreover, by applying this result, we prove a certain "semi-absolute Hom-version" of the Grothendieck conjecture for hyperbolic curves over p-adic local fields (cf. Theorem 2.21), which is an improvement of Mocihzuki's result. In Section 3, by using theories in Section 2, we treat the problems (A) and (B), and prove Theorems A and B.

Acknowledgments

The author would like to express deep gratitude to Professor Akio Tamagawa for his helpful advices and encouragement. Also, he would like to thank Shota Tsujimura for
informing him of the fact in Remark 3.7. The author was supported by JSPS KAKENHI Grant Number 19J10214. This research was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

0. Notations and conventions

Numbers:

We shall write

- \mathbb{Z} for the set of integers;
- \mathbb{Q} for the set of rational numbers;
- \mathbb{R} for the set of real numbers;
- $\mathfrak{P r i m e s}$ for the set of prime numbers.

For $a \in \mathbb{R}$ and $\mathbb{X} \in\{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$, we shall write $\mathbb{X}_{\geq a}\left(\right.$ resp. $\mathbb{X}_{>a}$, resp. $\mathbb{X}_{\leq a}$, resp. $\mathbb{X}_{<a}$) for

$$
\{b \in \mathbb{X} \mid b \geq a \text { (resp. } b>a \text {, resp. } b \leq a, \text { resp. } b<a)\}
$$

Fields:

For $p \in \mathfrak{P r i m e s}$ and $n \in \mathbb{Z}_{>0}$, we shall write

- \mathbb{Z}_{p} for the p-adic completion of \mathbb{Z};
- \mathbb{Q}_{p} for the quotient field of \mathbb{Z}_{p};
- $\mathbb{F}_{p^{n}}$ for the finite field of cardinality p^{n}.

Profinite groups:

Let G be a profinite group and $p \in \mathfrak{P r i m e s}$. Then we shall write G^{ab} for the abelianization of G (i.e., the quotient of G by the closure of the commutator subgroup of G), and $G(p)$ for the maximal pro- p quotient of G. For a subset X of G, we shall write \bar{X} for the closure of X in G. For a closed subgroup H of G, we shall write

$$
Z_{G}(H):=\{g \in G \mid g \cdot h=h \cdot g, \text { for any } h \in H\}
$$

for the centralizer of H in G.
We shall say that

- G is slim if for every open subgroup $H \subset G$, the centralizer $Z_{G}(H)$ is trivial;
- G is elastic if every topologically finitely generated closed normal subgroup $N \subset$ H of an open subgroup $H \subset G$ of G is either trivial or of finite index in G.
We denote the cohomological p-dimension of G by $\operatorname{cd}_{p} G$, and set:

$$
\operatorname{cd} G:=\sup _{p \in \mathfrak{P r i m e s}} \operatorname{cd}_{p} G
$$

1. Preliminaries

In this section, suppose that K is a complete discrete valuation field. Moreover, we shall write

- p_{K} for the characteristic of K;
- $K^{\text {sep }}$ for a separable closure of K;
- G_{K} for the Galois group $\operatorname{Gal}\left(K^{\text {sep }} / K\right)$;
- \mathcal{O}_{K} for the ring of integers of K;
- \mathfrak{M}_{K} for the maximal ideal of \mathcal{O}_{K};
- v_{K} for the valuation of K such that $v_{K}\left(K^{\times}\right)=\mathbb{Z}$;
- $k=\mathcal{O}_{K} / \mathfrak{M}_{K}$ for the residue field of K;
- p_{k} for the characteristic of k;
- $k^{\text {sep }}$ for the separable closure of k in the residue field of $K^{\text {sep }}$;
- G_{k} for the Galois group $\operatorname{Gal}\left(k^{\text {sep }} / k\right)$.

Note that $\mathcal{O}_{K}, \mathfrak{M}_{K}, v_{K}, k$ and p_{k} are uniquely determined by K.
For $a \in \mathcal{O}_{K}$, we denote the image of a in k by \bar{a}.
Let L be a finite Galois extension of K with Galois group G. For $\sigma \in G$, set:

$$
\begin{aligned}
i_{G}(\sigma) & :=\inf _{a \in \mathcal{O}_{L}} v_{L}(\sigma(a)-a) \\
s_{G}(\sigma) & :=\inf _{a \in L^{\times}} v_{L}\left(\sigma(a) a^{-1}-1\right)
\end{aligned}
$$

where \mathcal{O}_{L} is the ring of integers of L and v_{L} is the valuation of L such that $v_{L}\left(L^{\times}\right)=\mathbb{Z}$. Then, for $u \in \mathbb{R}_{\geq-1}$, the lower ramification subgroups of G are defined as

$$
G_{u}:=\left\{\sigma \in G \mid i_{G}(\sigma) \geq u+1\right\}
$$

For generalities on lower ramification subgroups, see [Se, IV] and [XZ, §1.1].
Lemma 1.1 (cf. [Hy, Lemma (2-16)], [XZ, §2.1])
Suppose that $p_{k}>0$ and set $p:=p_{k}$. Let L be a cyclic extension of K of degree p with Galois group G and $\sigma \in G$ a generator of G. Note that $i_{G}(\sigma)$ and $s_{G}(\sigma)$ are independent of the choice of σ.
(i) Suppose that $p_{K}=0$ and K contains a primitive p-th root of unity. Put $e_{K}:=$ $v_{K}(p)$. By Kummer theory, there exists an element $a \in K$ such that $L=K\left(a^{\frac{1}{p}}\right)$. We can choose a with $v_{K}(a)=1$ or $v_{K}(a)=0$. In the latter case, we require that $l=v_{K}(a-1)$ is maximal. Then one (and only one) of the following occurs:
(I) If $v_{K}(a)=1$, then L / K is a wild extension and

$$
s_{G}(\sigma)=\frac{p e_{K}}{p-1}
$$

(II) If $v_{K}(a)=0$ and $\bar{a} \notin k^{p}$, then L / K is a ferocious extension and

$$
s_{G}(\sigma)=\frac{e_{K}}{p-1} .
$$

(III) If $v_{K}(a)=0, \bar{a}=1, l<\frac{p e_{K}}{p-1}$ and p does not divide l, then L / K is a wild extension and

$$
s_{G}(\sigma)=\frac{p e_{K}}{p-1}-l .
$$

(IV) If $v_{K}(a)=0, \bar{a}=1, l<\frac{p e_{K}}{p-1}$ and p divides l, then L / K is a ferocious extension and

$$
s_{G}(\sigma)=\frac{1}{p}\left(\frac{p e_{K}}{p-1}-l\right)
$$

(V) If $v_{K}(a)=0, \bar{a}=1$ and $l \geq \frac{p e_{K}}{p-1}$, then L / K is an unramified extension and hence

$$
s_{G}(\sigma)=0
$$

(In this case, in fact, we have $l=\frac{p e_{K}}{p-1}$. .)
(ii) Suppose that $p_{K} \neq 0$ (hence $p_{K}=p$). For $x \in K$, set $\wp(x):=x^{p}-x$. By Artin-Schreier theory, there exists an element $a \in K$ such that $L=K(x)$, where $\wp(x)=a$. We require that $v_{K}(a)$ is maximal. Then one (and only one) of the following occurs:
(I) If $v_{K}(a) \geq 0$, then L / K is an unramified extension and hence

$$
s_{G}(\sigma)=0
$$

(In this case, in fact, we have $v_{K}(a)=0$ since $\mathfrak{M}_{K} \subset \wp(K)$.)
(II) If $v_{K}(a)<0$ and p does not divide $v_{K}(a)$, then L / K is a wild extension and

$$
s_{G}(\sigma)=-v_{K}(a)
$$

(III) If $v_{K}(a)<0$ and p divides $v_{K}(a)$, then L / K is a ferocious extension and

$$
s_{G}(\sigma)=-\frac{v_{K}(a)}{p} .
$$

In the remainder of this section, we assume that k is a perfect field. In this case, for any finite Galois extension L of K and for any $\sigma \in \operatorname{Gal}(L / K)$, we have

$$
s_{\mathrm{Gal}(L / K)}(\sigma)= \begin{cases}i_{\mathrm{Gal}(L / K)}(\sigma)-1, & \left(i_{\mathrm{Gal}(L / K)}(\sigma)>0\right) \\ 0, & \left(i_{\mathrm{Gal}(L / K)}(\sigma)=0\right)\end{cases}
$$

For $v \in \mathbb{R}_{\geq-1}$ and a finite Galois extension L of K with Galois group G, the upper ramification subgroups of G are defined as

$$
G^{v}:=G_{\psi_{L / K}(v)}
$$

where the function $\psi_{L / K}: \mathbb{R}_{\geq-1} \rightarrow \mathbb{R}_{\geq-1}$ is the inverse function of the function $\varphi_{L / K}$: $\mathbb{R}_{\geq-1} \rightarrow \mathbb{R}_{\geq-1}$ given by

$$
\varphi_{L / K}(u):=\int_{0}^{u} \frac{d t}{\left(G_{0}: G_{t}\right)}
$$

Note that the function $\psi_{L / K}: \mathbb{R}_{\geq-1} \rightarrow \mathbb{R}_{\geq-1}$ is given by

$$
\psi_{L / K}(v)=\int_{0}^{v}\left(G^{0}: G^{w}\right) d w
$$

Let L^{\prime} be a finite separable extension of K (not necessarily Galois) and $L^{\prime \prime}$ a finite Galois extension of K containing L^{\prime}. Then we define functions $\varphi_{L^{\prime} / K}, \psi_{L^{\prime} / K}: \mathbb{R}_{\geq-1} \rightarrow \mathbb{R}_{\geq-1}$ as follows:

$$
\begin{aligned}
& \varphi_{L^{\prime} / K}:=\varphi_{L^{\prime \prime} / K} \circ \psi_{L^{\prime \prime} / L^{\prime}}, \\
& \psi_{L^{\prime} / K}:=\varphi_{L^{\prime \prime} / L^{\prime}} \circ \psi_{L^{\prime \prime} / K} .
\end{aligned}
$$

Note that these functions coincide with $\varphi_{L^{\prime} / K}, \psi_{L^{\prime} / K}$ defined above in the case where L^{\prime} is Galois over K and do not depend on the choice of $L^{\prime \prime}\left(c f .[\mathrm{XZ}, \S 1.1]\right.$). For $v \in \mathbb{R}_{\geq-1}$ and an infinite Galois extension L of K with Galois group G, the upper ramification subgroups of G are defined as

$$
G^{v}:={\underset{K^{\prime}}{\prime}}_{\lim } \operatorname{Gal}\left(K^{\prime} / K\right)^{v}
$$

where K^{\prime} runs through the set of finite Galois subextensions of L / K. For generalities on upper ramification subgroups, see [Se, IV] and [XZ, §3].

Let $\left\{G_{K}^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ be the absolute Galois group of K with the upper ramification filtration. We shall write $I_{K}:=\overline{\bigcup_{\varepsilon \in \mathbb{R}>0} G_{K}^{-1+\varepsilon}}$ (resp. $P_{K}:=\overline{\bigcup_{\varepsilon \in \mathbb{R}>0} G_{K}^{0+\varepsilon}}$) for the inertia subgroup (resp. the wild inertia subgroup) of G_{K}.

Remark 1.2

We have the following two natural splitting short exact sequences:

$$
\begin{aligned}
& 1 \longrightarrow P_{K} \longrightarrow I_{K} \longrightarrow \hat{\mathbb{Z}}^{p_{k}^{\prime}}(1) \longrightarrow 1, \\
& 1 \longrightarrow I_{K} \longrightarrow G_{K} \longrightarrow G_{k} \longrightarrow 1,
\end{aligned}
$$

where $\hat{\mathbb{Z}}^{p_{k}^{\prime}}$ is the maximal prime-to- p_{k} quotient of $\hat{\mathbb{Z}}$ (if $p_{k}=0$, we set $\hat{\mathbb{Z}}^{p_{k}^{\prime}}=\hat{\mathbb{Z}}$). Note that, if $p_{k}>0$, then P_{K} is a non-trivial pro- p_{k} group. On the other hand, if $p_{k}=0$, we have $P_{K}=\{1\}$ and hence $I_{K} \simeq \widehat{\mathbb{Z}}(1)$.

Now we introduce a notion which gives a generalization of ramification filtrations:

Definition 1.3

For a profinite group G, a filtration of R-type on G (where " R " is understood as an abbreviation for "ramification") consists of the following data:
(i) A collection of closed normal subgroups $\mathfrak{G}=\left\{G^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ of G satisfying the following conditions:
(a) $G^{-1}=G$.
(b) If $v_{1}, v_{2} \in \mathbb{R}_{\geq-1}$ satisfy $v_{1} \geq v_{2}$, then $G^{v_{1}} \subset G^{v_{2}}$.
(c) $\bigcap_{v \in \mathbb{R}_{\geq-1}} G^{v}=\{1\}$.
(ii) For any closed subgroup H of G such that $H G^{v}$ is an open subgroup of G for any $v \in \mathbb{R}_{\geq-1}$, a collection of closed normal subgroups $\mathfrak{H}=\left\{H^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ of H satisfying the following conditions:
(a) $H^{0}=G^{0} \cap H$.
(b) For $v \in \mathbb{R}_{\geq-1}$, we have

$$
H^{\psi_{G / H}(v)}=G^{v} \cap H,
$$

where $\psi_{G / H}: \mathbb{R}_{\geq-1} \rightarrow \mathbb{R}_{\geq-1}$ is the function given by the following formula:

$$
\psi_{G / H}(v)= \begin{cases}\int_{0}^{v}\left(G^{0}: H^{0} G^{w}\right) d w, & (v \geq 0) \\ v, & (-1 \leq v<0)\end{cases}
$$

Moreover, denote the inverse map of $\psi_{G / H}$ by $\varphi_{G / H}$. (Note that clearly we have $\lim _{v \rightarrow \infty} \psi_{G / H}(v)=\infty$.)
We shall say that such H is a subgroup of APF-type (where "APF" is understood as an abbreviation for "arithmetically profinite").
(iii) For any closed normal subgroup H of G, a collection of closed normal subgroups $\left\{(G / H)^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ of G / H such that, for any $v \in \mathbb{R}_{\geq-1}$,

$$
(G / H)^{v}=G^{v} H / H
$$

(iv) For any open normal subgroup H of G (in particular, a subgroup of APF-type), a collection of (closed) normal subgroups $\left\{(G / H)_{u}\right\}_{u \in \mathbb{R} \geq-1}$ of G / H such that, for any $u \in \mathbb{R}_{\geq-1}$,

$$
(G / H)_{u}=(G / H)^{\varphi_{G / H}(u)} .
$$

Note that the data in (ii), (iii) and (iv) are completely determined by the filtration $\mathfrak{G}=\left\{G^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ defined in (i). We shall say that $\mathfrak{G}=\left\{G^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ is an R-filtered profinite group and G is the underlying profinite group of \mathfrak{G}.

Remark 1.4

Suppose that G is the absolute Galois group of a complete discrete valuation field K with perfect residue field. Then the upper ramification filtration on G clearly determines a filtration of R-type on G. Let H be an open subgroup of G and L the finite separable extension of K corresponding to H. Then $\psi_{G / H}$ and $\varphi_{G / H}$ defined in Definition 1.3 (ii) coincide with $\psi_{L / K}$ and $\varphi_{L / K}$ defined in the argument following Lemma 1.1.

Definition 1.5

Let \mathfrak{G} be an R-filtered profinite group, G its underlying profinite group and H a closed subgroup of G of APF-type. Note that \mathfrak{G} determines a filtration of R-type on H. Denote the resulting R-filtered profinite group by \mathfrak{H}. We shall say that \mathfrak{H} is an R-filtered closed subgroup (of APF-type) of \mathfrak{G}, and use the notation $\mathfrak{H} \subset \mathfrak{G}$. In this case, if H is a(n) open (resp. normal) subgroup of G, we shall say that \mathfrak{H} is an R-filtered open (resp. normal) subgroup of \mathfrak{G}. Moreover, if H is a closed subgroup of G of infinite index, we shall say that \mathfrak{H} is an R-filtered closed subgroup of \mathfrak{G} of infinite index.

Definition 1.6
Let \mathfrak{G} be an R-filtered profinite group and G its underlying profinite group. For a finite
quotient H of G and an element $\sigma \in H$, set:

$$
s_{H}(\sigma):= \begin{cases}0, & \left(\sigma \notin H_{u} \text { for any } u \in \mathbb{R}_{>-1}\right) \\ \sup \left\{u \in \mathbb{R}_{\geq-1} \mid \sigma \in H_{u}\right\}, & \text { (otherwise) }\end{cases}
$$

Remark 1.7

Let $\mathfrak{G}_{K}=\left\{G_{K}^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ be the absolute Galois group of K with the upper ramification filtration (which is clearly an R-filtered profinite group). In the case where $\mathfrak{G}=\mathfrak{G}_{K}$, for any finite quotient H of $G=G_{K}$ and any $\sigma \in H, s_{H}(\sigma)$ defined in the paragraph preceding Lemma 1.1 coincides with $s_{H}(\sigma)$ defined in Definition 1.6.

Definition 1.8

Let $\mathfrak{G}_{1}=\left\{G_{1}^{v}\right\}_{v \in \mathbb{R}>-1}$ and $\mathfrak{G}_{2}=\left\{G_{2}^{v}\right\}_{v \in \mathbb{R} \geq-1}$ be R-filtered profinite groups, G_{1} and G_{2} their underlying profinite groups, and $\alpha: G_{1} \rightarrow G_{2}$ a homomorphism of profinite groups. We shall say that α is a homomorphism of R-filtered profinite groups if $\alpha\left(G_{1}\right)$ is a subgroup of APF-type of G_{2} and for any $v \in \mathbb{R}_{\geq-1}$, the following condition holds:

$$
\alpha\left(G_{1}^{\psi_{G_{2} / \alpha\left(G_{1}\right)}(v)}\right)=G_{2}^{v} \cap \alpha\left(G_{1}\right),
$$

or, equivalently, for any $v \in \mathbb{R}_{\geq-1}$,

$$
\alpha\left(G_{1}^{v}\right)=\alpha\left(G_{1}\right)^{v} .
$$

In this case, we use the notation $\alpha: \mathfrak{G}_{1} \rightarrow \mathfrak{G}_{2}$.

Remark 1.9

Let $\alpha: \mathfrak{G}_{1} \rightarrow \mathfrak{G}_{2}$ and $\beta: \mathfrak{G}_{2} \rightarrow \mathfrak{G}_{3}$ be homomorphisms of R-filtered profinite groups. Then $\beta \circ \alpha$ (the composite as homomorphisms of profinite groups) is not necessarily a homomorphism of R-filtered profinite groups (cf. Remark 2.14).

Definition 1.10
Let $\alpha: \mathfrak{G}_{1} \rightarrow \mathfrak{G}_{2}$ be a homomorphism of R-filtered profinite groups and \mathfrak{G} an R-filtered profinite group.
(i) We shall say that α is $\mathrm{a}(\mathrm{n})$ isomorphism (resp. open homomorphism, resp. injection, resp. surjection) of R-filtered profinite groups if α is a(n) isomorphism (resp. open homomorphism, resp. injection, resp. surjection) as a homomorphism of profinite groups.
(ii) We shall say that α is quasi-injective (resp. quasi-surjective) if, for any R-filtered profinite group \mathfrak{H} and any homomorphism of R-filtered profinite groups $\beta: \mathfrak{H} \rightarrow$ $\mathfrak{G}_{1}\left(\right.$ resp. $\left.\beta: \mathfrak{G}_{2} \rightarrow \mathfrak{H}\right), \alpha \circ \beta$ (resp. $\beta \circ \alpha$) is also a homomorphism of R-filtered profinite groups.
(iii) We shall say that \mathfrak{G} is R-filtered hopfian if every surjective homomorphism $\mathfrak{G} \rightarrow \mathfrak{G}$ of R-filtered profinite groups is an isomorphism.

Remark 1.11

Let α be a homomorphism of R-filtered profinite groups. If α is injective (resp. surjective), it is clear that α is quasi-injective (resp. quasi-surjective).

Definition 1.12 (cf. [Ho1, Definition 3.1])
Let K be a field, G a profinite group and \mathfrak{G} an R -filtered profinite group.
(i) We shall say that K is a(n) $M L F$ (resp. GMLF, resp. PLF, resp. GPLF) if K is isomorphic to a finite extension of \mathbb{Q}_{p} for some prime number p (resp. a complete discrete valuation field of characteristic zero whose residue field is perfect and of positive characteristic, resp. a complete discrete valuation field of positive characteristic whose residue field is finite, resp. a complete discrete valuation field of positive characteristic whose residue field is perfect) (where "MLF" (resp. "GMLF", resp. "PLF", resp. "GPLF") is understood as an abbreviation for "Mixed-characteristic Local Field" (resp. "Generalized Mixed-characteristic Local Field", resp. "Positive-characteristic Local Field", resp. "Generalized Positive-characteristic Local Field")).
(ii) We shall say that G is of MLF-type (resp. GMLF-type, resp. PLF-type, resp. GPLF-type) if G is isomorphic, as a profinite group, to the absolute Galois group of a(n) MLF (resp. GMLF, resp. PLF, resp. GPLF).
(iii) We shall say that \mathfrak{G} is of R-MLF-type (resp. R-GMLF-type, resp. R-PLF-type, resp. R-GPLF-type) if \mathfrak{G} is isomorphic, as an R -filtered profinite group, to the absolute Galois group of $\mathrm{a}(\mathrm{n})$ MLF (resp. GMLF, resp. PLF, resp. GPLF) with the upper ramification filtration.

We give a group-theoretic characterization of profinite groups of MLF-type among profinite groups of GMLF-type:

Proposition 1.13

Let G be a profinite group of GMLF-type. Then G is of MLF-type if and only if G is topologically finitely generated.

Proof.

We will prove this proposition in a similar way to the proof of [MT1, Lemma 3.5].
If G is of MLF-type, then it is well-known that G is topologically finitely generated. Suppose that G is topologically finitely generated. Let K be a GMLF whose absolute Galois group is isomorphic to G, and $\mathfrak{M}_{K}, k, p_{k}$ as in the beginning of this section. Set $p:=p_{k}(>0)$. It suffices to show that k is a finite field. Note that we have an isomorphism:

$$
K^{\times} \simeq \mathbb{Z} \times k^{\times} \times\left(1+\mathfrak{M}_{K}\right)
$$

By taking an open normal subgroup of G if necessary, we may assume that K contains a primitive p-th root of unity. Then, by Kummer theory, we have:

$$
H^{1}(G, \mathbb{Z} / p \mathbb{Z}) \simeq K^{\times} /\left(K^{\times}\right)^{p} \simeq \mathbb{Z} / p \mathbb{Z} \times\left(1+\mathfrak{M}_{K}\right) /\left(1+\mathfrak{M}_{K}\right)^{p}
$$

(Note that k is perfect.) Since $1+\mathfrak{M}_{K}^{2} \supset\left(1+\mathfrak{M}_{K}\right)^{p}$, we have a surjection:

$$
\left(1+\mathfrak{M}_{K}\right) /\left(1+\mathfrak{M}_{K}\right)^{p} \rightarrow\left(1+\mathfrak{M}_{K}\right) /\left(1+\mathfrak{M}_{K}^{2}\right) \simeq k .
$$

If k is an infinite field, then $H^{1}(G, \mathbb{Z} / p \mathbb{Z})$ is an infinite dimensional $\mathbb{Z} / p \mathbb{Z}$-vector space. However, since (we have assumed that) G is topologically finitely generated, we obtain a contradiction. This completes the proof of Proposition 1.13.

Remark 1.14

A similar statement to Proposition 1.13 for profinite groups of GPLF-type and PLF-type
does not hold. It is not clear to the author at the time of writing whether or not there exists a group-theoretic characterization of profinite groups of PLF-type among profinite groups of GPLF-type. However, we prove that there are no open homomorphisms of R-filtered profinite groups from R-filtered profinite groups of PLF-type to R-filtered profinite groups of GPLF-type which are not of PLF-type later (cf. Proposition 2.16).

Proposition 1.15

Let \mathfrak{G} be an R-filtered profinite group of R-GMLF or R-GPLF-type and $\mathfrak{H} \subset \mathfrak{G}$ an R-filtered closed subgroup of APF-type of \mathfrak{G} of infinite index. Then \mathfrak{H} is an R-filtered profinite group of R-GPLF-type.

Proof.
Immediate from the theory of fields of norms (cf. [FW1, §2], [FW2, §4] and [Wi, Corollaire 3.3.6]).

2. Absolute Galois groups with ramification filtrations of GMLF's and GPLF's, AND HOMOMORPHISMS PRESERVING RAMIFICATION FILTRATIONS

In this section, we discuss some generalities on GMLF's and GPLF's, and their absolute Galois groups with ramification filtrations.

For a GMLF or GPLF K, we shall write

- p_{K} for the characteristic of K;
- $K^{\text {sep }}$ for a separable closure of K;
- G_{K} for the Galois group $\operatorname{Gal}\left(K^{\text {sep }} / K\right)$;
- $\mathfrak{G}_{K}=\left\{G_{K}^{v}\right\}_{v \in \mathbb{R} \geq-1}$ for the R -filtered profinite group with underlying profinite group G_{K} determined by the ramification filtration on G_{K};
- $I_{K} \subset G_{K}$ for the inertia subgroup of G_{K};
- $P_{K} \subset I_{K} \subset G_{K}$ for the wild inertia subgroup of G_{K};
- \mathcal{O}_{K} for the ring of integers of K;
- \mathfrak{M}_{K} for the maximal ideal of \mathcal{O}_{K};
- U_{K}^{i} for the multiplicative group $1+\mathfrak{M}_{K}^{i}\left(i \in \mathbb{Z}_{>0}\right)$;
- v_{K} for the valuation of K such that $v_{K}\left(K^{\times}\right)=\mathbb{Z}$;
- $k_{K}=\mathcal{O}_{K} / \mathfrak{M}_{K}$ for the residue field of K (by the definitions of GMLF and GPLF, k_{K} is perfect);
- $p_{k_{K}}(>0)$ for the characteristic of k_{K};
- $\overline{k_{K}}$ for the residue field of $K^{\text {sep }}$, which is an algebraic closure of k_{K};
- $G_{k_{K}}$ for the Galois group $\operatorname{Gal}\left(\overline{k_{K}} / k_{K}\right)$.

Moreover, if K is a GMLF, for a prime number p, let $\zeta_{p} \in K^{\text {sep }}$ be a primitive p-th root of unity.

Proposition 2.1

Let K be a GMLF and set $p:=p_{k_{K}}>0$.
(i) We have $1 \leq \operatorname{cd}_{p} G_{K} \leq 2$.
(ii) Suppose that $k_{K}=\overline{k_{K}}$. Then we have $\operatorname{cd}_{p} G_{K}=1$. Moreover, the maximal pro- p quotient $G_{K}(p)$ of G_{K} is a free pro-p group of infinite rank.
(iii) G_{K} and I_{K} are slim and elastic. Moreover, I_{K} is a projective profinite group.
(iv) P_{K} is a free pro-p group of infinite rank. In particular, P_{K} is slim and elastic.
(v) Suppose that k_{K} is p-closed (i.e., k_{K} has no Galois extensions of degree p) and K contains a primitive p-th root of unity. Then the maximal pro-p quotient $G_{K}(p)$ of G_{K} is a free pro-p group of infinite rank.

Proof.
First, let us consider (ii). The portion of (ii) concerning $\operatorname{cd}_{p} G_{K}$ is immediate from [NSW, Theorem 6.5.15]. In particular, $G_{K}(p)$ is a free pro- p group. Let k_{0} be the algebraic closure of \mathbb{F}_{p} in k_{K}, and K_{0} (resp. K_{00}) the quotient field of the Witt ring with coefficients in k_{K} (resp. k_{0}) (therefore, $k_{K_{0}}=k_{K}$ and $k_{K_{00}}=k_{0}$). Then G_{K} is isomorphic to an open subgroup of $G_{K_{0}}$. Note that the natural inclusion $k_{0} \hookrightarrow k_{K}$ induces an inclusion $K_{00} \hookrightarrow K_{0}$ (by the functorial property of Witt rings). By considering ramification indices, this inclusion induces a surjective homomorphism $G_{K_{0}} \rightarrow G_{K_{00}}$. Therefore, we obtain a surjection $G_{K_{0}}(p) \rightarrow G_{K_{00}}(p)$. On the other hand, we have an open homomorphism $G_{K}(p) \rightarrow G_{K_{0}}(p)$. So, to show the infiniteness of the rank of $G_{K}(p)$, it suffices to prove that $G_{K_{00}}(p)$ is a free pro- p group of infinite rank (note that $G_{K_{00}}(p)$ is a free pro- p group since k_{K} (hence also k_{0}) is algebraically closed). Let F be a subfield of k_{0} which is a finite extension of \mathbb{F}_{p}, and K_{F} the quotient field of the Witt ring with coefficients in F. Then the inclusion $F \hookrightarrow k_{0}$ induces a homomorphism $G_{K_{00}}(p) \rightarrow$ $G_{K_{F}}(p)$. Let $J_{K_{F}}$ be the image of $I_{K_{F}}$ in $G_{K_{F}}(p)$. Then the above homomorphism $G_{K_{00}}(p) \rightarrow G_{K_{F}}(p)$ induces a surjection $G_{K_{00}}(p) \rightarrow J_{K_{F}}$ (cf. the discussion concerning the surjectivity of $\left.G_{K_{0}} \rightarrow G_{K_{00}}\right)$. By local class field theory, we have the following homomorphism:

$$
G_{K_{F}}(p)^{\mathrm{ab}} \simeq\left(1+\mathfrak{M}_{K_{F}}\right) \times \mathbb{Z}_{p}
$$

Moreover, the natural morphism $G_{K_{F}}(p) \rightarrow G_{K_{F}}(p)^{\text {ab }}$ induces a surjection $J_{K_{F}} \rightarrow 1+$ $\mathfrak{M}_{K_{F}}$. In particular, the image of the composite of $G_{K_{00}}(p) \rightarrow G_{K_{F}}(p)$ and $G_{K_{F}}(p) \rightarrow$ $G_{K_{F}}(p)^{\text {ab }}$ coincides with $1+\mathfrak{M}_{K_{F}}$ (note that $G_{K_{00}}(p) \rightarrow J_{K_{F}}$ is a surjection). Since $1+\mathfrak{M}_{K_{F}} \simeq \mathbb{Z}_{p}^{\oplus\left[F: \mathbb{F}_{p}\right]} \oplus$ (torsion elements), there exists a surjection $G_{K_{00}}(p) \rightarrow \mathbb{Z}_{p}^{\oplus\left[F: \mathbb{F}_{p}\right]}$. Since k_{0} is algebraically closed (hence, in particular, an infinite extension of \mathbb{F}_{p}), for any $N \in \mathbb{Z}_{>0}$, there exists an intermediate field F of k_{0} / \mathbb{F}_{p} (which is a finite extension of \mathbb{F}_{p}) such that $\left[F: \mathbb{F}_{p}\right]>N$. This shows the infiniteness of the rank of $G_{K_{00}}(p)$, as desired.
(iv) follows immediately from (ii) (note that we may regard I_{K} as the absolute Galois group of the completion of the maximal unramified extension of K, and that P_{K} surjects onto $I_{K}(p)$).

For (i), consider the following exact sequence (cf. Remark 1.2):

$$
1 \longrightarrow I_{K} \longrightarrow G_{K} \longrightarrow G_{k_{K}} \longrightarrow 1
$$

By (ii), we have $\operatorname{cd}_{p} I_{K}=1$ (hence $\operatorname{cd}_{p} G_{K} \geq 1$). Moreover, since k_{K} is of characteristic $p, \operatorname{cd}_{p} G_{k_{K}} \leq 1$ (cf. [NSW, Proposition 6.5.10]). Therefore, we obtain $\operatorname{cd}_{p} G_{K} \leq 2$. So (i) follows.

The portion of (iii) concerning the slimness and elasticity of G_{K} and I_{K} follows from [MT1, Theorem C]. By considering the first exact sequence in Remark 1.2 and the cohomological p-dimension of I_{K} (cf. (ii)), we have $\operatorname{cd} I_{K}=1$. Therefore, I_{K} is projective.
(v) follows from [MT1, Proposition 3.7] and its proof.

Proposition 2.2

Let K be a GPLF and set $p:=p_{K}=p_{k_{K}}(>0)$.
(i) We have $\operatorname{cd}_{p} G_{K}=1$.
(ii) G_{K} and I_{K} are slim and elastic. Moreover, I_{K} is a projective profinite group.
(iii) P_{K} is a free pro-p group of infinite rank. In particular, P_{K} is slim and elastic.
(iv) The maximal pro-p quotient $G_{K}(p)$ of G_{K} is a free pro-p group of infinite rank.

Proof.
First, (iv) is immediate from [NSW, Proposition 6.1.7].
(i) is immediate from [NSW, Proposition 6.5.10] and (iv).
(iii) is immediate from (i) and (iv) (note that we may regard I_{K} as the absolute Galois group of the completion of the maximal unramified extension of K, and that P_{K} surjects onto $I_{K}(p)$).

The portion of (ii) concerning the slimness and elasticity of G_{K} and I_{K} follows from [MT1, Theorem C]. The projectivity of I_{K} follows from a similar argument to the proof of (iii) of Proposition 2.1.

The following proposition plays a key role in relating various invariants of GMLF's to ramification filtrations:

Proposition 2.3 (cf. [MW, Theorems 1, 2, 3])
Let K be a GMLF, L a cyclic extension of K of degree $p:=p_{k_{K}}$ and σ a generator of $\operatorname{Gal}(L / K)$. Suppose that L / K is a wild extension. Then we have

$$
s_{\operatorname{Gal}(L / K)}(\sigma) \leq\left\lfloor\frac{p v_{K}(p)}{p-1}\right\rfloor,
$$

where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x. The equality holds if and only if K contains a primitive p-th root of unity and $L=K(\alpha)$ where α is a root of $X^{p}-\beta \in K[X]\left(\beta \in K^{\times}, v_{K}(\beta) \notin p \mathbb{Z}\right)$.

Moreover, if K does not contain a primitive p-th root of unity, then $s_{\operatorname{Gal}(L / K)}(\sigma) \notin p \mathbb{Z}$.

Now we can recover the absolute ramification index of K and determine whether or not a GMLF K contains a primitive $p_{k_{K}}$-th root of unity from the (filtered) group-theoretic data \mathfrak{G}_{K} :

Proposition 2.4

Let K be a GMLF and set $p:=p_{k_{K}}$. Then K contains a primitive p-th root of unity if and only if there exists a cyclic wild extension L / K of degree p such that $s_{\operatorname{Gal}(L / K)}(\sigma) \in$ $p \mathbb{Z}$, where σ is a generator of $\operatorname{Gal}(L / K)$. In particular, the (necessarily open normal) subgroup $G_{K\left(\zeta_{p}\right)}$ of G_{K} (possibly equal to G_{K}) is recovered from the R-filtered profinite group \mathfrak{G}_{K}.

Moreover, the absolute ramification index $v_{K}(p)$ is also recovered from \mathfrak{G}_{K}.

Proof.

Note that, if K contains a primitive p-th root of unity, then $p-1$ divides $v_{K}(p)$. So, the equivalence follows immediately from Proposition 2.3. $G_{K\left(\zeta_{p}\right)}$ is characterized as the maximal open normal subgroup of G_{K} satisfying the latter condition of the equivalence. (Note that p is characterized as the unique prime number such that $P_{K}=\bigcup_{\varepsilon \in \mathbb{R}>0} G_{K}^{0+\varepsilon}$ is a pro-p group (cf. Lemma 3.2 and Proposition 3.6, see also Remark 3.7).)

Next, let us consider the absolute ramification index. Note that the subgroup $G_{K\left(\zeta_{p}\right)} \subset$ G_{K} is already recovered and hence the R-filtered profinite group $\mathfrak{G}_{K\left(\zeta_{p}\right)}=\left\{G_{K\left(\zeta_{p}\right)}^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ is also recovered. Set:

$$
s:=\max \left\{s_{G_{K\left(\zeta_{p}\right)} / H}\left(\sigma_{H}\right) \mid H \text { is an open normal subgroup of } G_{K\left(\zeta_{p}\right)} \text { of index } p\right\},
$$

where σ_{H} is a generator of $G_{K\left(\zeta_{p}\right)} / H$. By Proposition 2.3, we have:

$$
v_{K\left(\zeta_{p}\right)}(p)=\frac{s(p-1)}{p}
$$

Since $v_{K\left(\zeta_{p}\right)}(p)=\left(I_{K}: I_{K\left(\zeta_{p}\right)}\right) v_{K}(p)$, this completes the proof of Proposition 2.4.

Remark 2.5

Let K be a GMLF and set $p:=p_{k_{K}}$. Consider the following analogue of Proposition 2.3 for primitive p^{n}-th roots of unity for $n>1$:

Let L be a totally ramified cyclic extension of K of degree p^{n}, K_{m} the intermediate field of L / K such that $\left[K_{m}: K\right]=p^{m}$ for $0 \leq m \leq n$, and σ_{m} a generator of $\operatorname{Gal}\left(K_{m+1} / K_{m}\right)$ for $0 \leq m \leq n-1$. Then we have

$$
s_{\mathrm{Gal}\left(K_{m+1} / K_{m}\right)}\left(\sigma_{m}\right) \leq\left\lfloor\frac{p v_{K_{m}}(p)}{p-1}\right\rfloor=\left\lfloor\frac{p^{m+1} v_{K}(p)}{p-1}\right\rfloor(0 \leq m \leq n-1)
$$

The equality holds for all $0 \leq m \leq n-1$ if and only if K contains a primitive p^{n}-th root of unity and $L=K(\alpha)$ where α is a root of $X^{p^{n}}-\beta \in$ $K[X]\left(\beta \in K^{\times}, v_{K}(\beta) \notin p \mathbb{Z}\right)$.
By Proposition 2.3, the above inequality clearly holds. Moreover, the "if" part of the above assertion is also clear. However, the "only if" part of the above assertion does not hold.

Let us construct a counterexample. Assume that k is algebraically closed and K contains a primitive p-th root of unity. We must prove that there exists a cyclic extension L of K of degree p^{n} satisfying the following condition $(*)_{L / K}$ even if K does not contain primitive p^{n}-th roots of unity:

Let K_{m} be the intermediate field of L / K such that $\left[K_{m}: K\right]=p^{m}$ for $0 \leq m \leq n$, and σ_{m} a generator of $\operatorname{Gal}\left(K_{m+1} / K_{m}\right)$ for $0 \leq m \leq n-1$. Then, for $0 \leq m \leq n-1$,

$$
s_{\operatorname{Gal}\left(K_{m+1} / K_{m}\right)}\left(\sigma_{m}\right)=\frac{p^{m+1} v_{K}(p)}{p-1}
$$

More generally, we shall construct a \mathbb{Z}_{p}-extension L of K satisfying the following condition:

Let K_{m} be the intermediate field of L / K such that $\left[K_{m}: K\right]=p^{m}$ for $m \in \mathbb{Z}_{\geq 0}$, and σ_{m} a generator of $\operatorname{Gal}\left(K_{m+1} / K_{m}\right)$ for $m \in \mathbb{Z}_{\geq 0}$. Then, for $m \in \mathbb{Z}_{\geq 0}$,

$$
s_{\mathrm{Gal}\left(K_{m+1} / K_{m}\right)}\left(\sigma_{m}\right)=\frac{p^{m+1} v_{K}(p)}{p-1} .
$$

Let $N(\geq 1)$ be the integer such that K contains a primitive p^{N}-th root of unity and does not contain primitive p^{N+1}-th roots of unity. Let us take a uniformizer π_{K} of K. We shall construct a \mathbb{Z}_{p}-extension L by constructing K_{m} by induction on m. For $m \leq N$, we take K_{m} as $K\left(\pi_{K}^{\frac{1}{p^{m}}}\right)$. Suppose that we have constructed K_{m} (for $m \geq N$) satisfying the condition $(*)_{K_{m} / K} . K_{m} / K$ is a cyclic extension of degree p^{m}. Moreover, we have $i_{K}\left(\zeta_{p}\right)=\frac{v_{K}(p)}{p-1}$, where we shall write $i_{K}(a)=v_{K}(a-1)$ for $a \in U_{K}^{1}$. Since we have assumed that $s_{\operatorname{Gal}\left(K_{1} / K\right)}\left(\sigma_{0}\right)=\frac{p v_{K}(p)}{p-1}$, it holds that $\psi_{K_{m} / K}(\nu)=\nu$ for $\nu \leq \frac{p v_{K}(p)}{p-1}$. On the other hand, since k is algebraically closed, for any $n \in \mathbb{Z}_{>0}$, we have

$$
N_{K_{m} / K}\left(U_{K_{m}}^{\psi_{K_{m} / K}(n)}\right)=U_{K}^{n}, N_{K_{m} / K}\left(U_{K_{m}}^{\psi_{K_{m} / K}(n)+1}\right)=U_{K}^{n+1}
$$

(cf. [Se, V, $\S 6$, Corollary 3].) Therefore, we can take $x \in U_{K_{m}}^{1}$ such that $i_{K_{m}}(x)=\frac{v_{K}(p)}{p-1}$ and $N_{K_{m} / K}(x)=\zeta_{p}$. Since $N_{K_{m} / K}\left(x^{p}\right)=1$, by Hilbert's theorem 90, we can take $a \in K_{m}^{\times}$such that $x^{p}=\frac{\tau(a)}{a}$, where τ is a generator of $\operatorname{Gal}\left(K_{m} / K\right)\left(\simeq \mathbb{Z} / p^{m} \mathbb{Z}\right)$. By [Wy, Proposition 19], $K_{m+1}:=K_{m}\left(a^{\frac{1}{p}}\right)$ is a cyclic extension of K of degree p^{m+1}. So, it suffices to show that

$$
s_{\operatorname{Gal}\left(K_{m+1} / K_{m}\right)}\left(\sigma_{m}\right)=\frac{p^{m+1} v_{K}(p)}{p-1}
$$

where σ_{m} is a generator of $\operatorname{Gal}\left(K_{m+1} / K_{m}\right)$. Since it holds that $i_{K_{m}}(x)=\frac{v_{K}(p)}{p-1}<$ $\frac{v_{K_{m}}(p)}{p-1}$, we have $i_{K_{m}}\left(x^{p}\right)=\frac{p v_{K}(p)}{p-1}$. This shows that $v_{K_{m}}(a) \notin p \mathbb{Z}$. Indeed, if $v_{K_{m}}(a) \in$ $p \mathbb{Z}$, by multiplying a power of π_{K} if necessary, we may assume that $v_{K_{m}}(a) \geq 0$. Then we can write $a=u \pi_{K_{m}}^{\mu p}$ for some uniformizer $\pi_{K_{m}}$ of $K_{m}, u \in \mathcal{O}_{K_{m}}^{\times}$and $\mu \in \mathbb{Z}_{\geq 0}$. Moreover, by multiplying a suitable lift of an element of k^{\times}to \mathcal{O}_{K}^{\times}, we may assume that $u \in U_{K_{m}}^{1}$. On the other hand, we have

$$
x^{p}=\frac{\tau(a)}{a}=\frac{\tau(u)}{u} \cdot\left(\frac{\tau\left(\pi_{K_{m}}\right)}{\pi_{K_{m}}}\right)^{\mu p} .
$$

Since $u \in U_{K_{m}}^{1}$, by [Wy, Theorem 22], $i_{K_{m}}\left(\frac{\tau(u)}{u}\right)>\frac{p v_{K}(p)}{p-1}$. Moreover, since $\pi_{K_{m}}$ generates $\mathcal{O}_{K_{m}}$ as an $\mathcal{O}_{K^{-}}$-algebra, we have $i_{K_{m}}\left(\frac{\tau\left(\pi_{K_{m}}\right)}{\pi_{K_{m}}}\right)=\frac{p v_{K}(p)}{p-1}$ and hence $i_{K_{m}}\left(\left(\frac{\tau\left(\pi_{K_{m}}\right)}{\pi_{K_{m}}}\right)^{\mu p}\right)>$ $\frac{p v_{K}(p)}{p-1}$. These contradict the condition $i_{K_{m}}\left(x^{p}\right)=\frac{p v_{K}(p)}{p-1}$. Therefore, we obtain
$v_{K_{m}}(a) \notin p \mathbb{Z}$. This shows that there exists a uniformizer $\pi_{K_{m}}^{\prime}$ of K_{m} such that $K_{m+1}=$ $K_{m}\left(\left(\pi_{K_{m}}^{\prime}\right)^{\frac{1}{p}}\right)$. So, we have

$$
s_{\mathrm{Gal}\left(K_{m+1} / K_{m}\right)}\left(\sigma_{m}\right)=\frac{p v_{K_{m}}(p)}{p-1}=\frac{p^{m+1} v_{K}(p)}{p-1}
$$

as desired.

Contrary to Proposition 2.3, we have the following for GPLF:

Proposition 2.6

Let K be a GPLF. Set $p:=p_{K}=p_{k_{K}}$. Then, for any $N \in \mathbb{Z}_{>0}$, there exists a cyclic extension L of K of degree p such that $s_{\operatorname{Gal}(L / K)}(\sigma)>N$, where σ is a generator of $\operatorname{Gal}(L / K)$.

Proof.
Let us take an integer $M \in \mathbb{Z} \backslash p \mathbb{Z}$ such that $M>N$ and an element $a \in K$ such that $v_{K}(a)=-M$. Note that $a \notin \wp(K)$ (cf. Lemma 1.1). Clearly, we have the following:

$$
-M=\max \left\{v_{K}(a+b) \mid b \in \wp(K)\right\} .
$$

Let L be an extension of K generated by x satisfying $\wp(x)=a$. By Lemma 1.1 (ii), it follows that $s_{\operatorname{Gal}(L / K)}(\sigma)=M(>N)$, where σ is a generator of $\operatorname{Gal}(L / K)$.

Proposition 2.7

Let K_{1} be a GMLF and K_{2} a GPLF. For $i=1,2$, set $p_{i}:=p_{k_{K_{i}}}(>0), G_{i}:=G_{K_{i}}$ and $\mathfrak{G}_{i}:=\mathfrak{G}_{K_{i}}$. Then there exist no open homomorphisms of R-filtered profinite groups from \mathfrak{G}_{1} (resp. \mathfrak{G}_{2}) to \mathfrak{G}_{2} (resp. \mathfrak{G}_{1}).
Proof.
Suppose that there exists an open homomorphism of R-filtered profinite groups α : $\mathfrak{G}_{1} \rightarrow \mathfrak{G}_{2}$ (resp. $\beta: \mathfrak{G}_{2} \rightarrow \mathfrak{G}_{1}$). Since $P_{K_{i}}$ is a (non-trivial) pro- p_{i} group, we may assume that $p:=p_{1}=p_{2}$. By replacing G_{2} by $\alpha\left(G_{1}\right)$ (resp. G_{1} by $\beta\left(G_{2}\right)$), we may assume that α (resp. β) is a surjection.

First, we consider α. By Proposition 2.6, there exists an open normal subgroup $H \subset G_{2}$ of index p such that $s_{G_{2} / H}(\sigma)>\frac{p v_{K_{1}}(p)}{p-1}$, where σ is a generator of G_{2} / H. Then $\alpha^{-1}(H)$ determines a cyclic extension of K_{1} of degree p which violates Proposition 2.3. So, such α cannot exist.

Next, we consider β. There exists an open normal subgroup H_{1} of G_{1} of index n (n divides $p-1$) such that the extension L of K_{1} corresponding to H_{1} contains a primitive p-th root of unity. So, by replacing G_{1} and G_{2} by H_{1} and $\beta^{-1}\left(H_{1}\right)$ if necessary, we may assume that K_{1} contains a primitive p-th root of unity. Then, by Proposition 2.4, there exists an open normal subgroup $H \subset G_{1}$ of index p such that $s_{G_{1} / H}(\sigma) \in p \mathbb{Z}_{>0}$, where σ is a generator of $G_{1} / H . \beta^{-1}(H)$ determines a cyclic extension of K_{2} of degree p, and we have $s_{G_{2} / \beta^{-1}(H)}(\tau) \in p \mathbb{Z}_{>0}$, where τ is a generator of $G_{2} / \beta^{-1}(H)$. However, since K_{2} is of characteristic p, in light of Lemma 1.1 (ii), we obtain a contradiction (note that the residue field of K_{2} is perfect).

By the following proposition, we may recover the modulo $p_{k_{K}}$ cyclotomic characters of GMLF's K (filtered) group-theoretically:

Proposition 2.8

Let K be a GMLF. Set $p:=p_{k_{K}}>0$. Then the modulo p cyclotomic character χ_{p} : $G_{K} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times}$is recovered from \mathfrak{G}_{K}.

Proof.

To show this proposition, it suffices to recover the isomorphism class of μ_{p} as a $G_{K^{-}}$ module, where μ_{p} is the group of p-th roots of unity. Let \mathfrak{G}_{L} be an R-filtered open normal subgroup of \mathfrak{G}_{K} such that the corresponding finite Galois extension L of K contains a primitive p-th root of unity. (Note that this is clearly a (filtered) grouptheoretic condition by Proposition 2.4.) Then, by Kummer theory, we have a canonical isomorphism of G_{K}-modules

$$
\varphi: L^{\times} /\left(L^{\times}\right)^{p} \xrightarrow{\sim} H^{1}\left(G_{L}, \mu_{p}\right) .
$$

Let us take an isomorphism of G_{L}-modules $\theta: \mu_{p} \xrightarrow{\sim} \mathbb{Z} / p \mathbb{Z}$ and write

$$
\psi: H^{1}\left(G_{L}, \mu_{p}\right) \xrightarrow{\sim} H^{1}\left(G_{L}, \mathbb{Z} / p \mathbb{Z}\right)=\operatorname{Hom}\left(G_{L}^{\mathrm{ab}} / p G_{L}^{\mathrm{ab}}, \mathbb{Z} / p \mathbb{Z}\right)
$$

for the isomorphism of G_{L}-modules induced by θ. On the other hand, we have the following exact sequence of G_{K}-modules:

$$
\begin{equation*}
1 \longrightarrow \mathcal{O}_{L}^{\times} /\left(\mathcal{O}_{L}^{\times}\right)^{p} \longrightarrow L^{\times} /\left(L^{\times}\right)^{p} \longrightarrow \mathbb{Z} / p \mathbb{Z} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

where the surjection is induced by v_{L}. Set $W_{L}:=\mathcal{O}_{L}^{\times} /\left(\mathcal{O}_{L}^{\times}\right)^{p} \subset L^{\times} /\left(L^{\times}\right)^{p}, W_{L, \mu_{p}}:=$ $\varphi\left(W_{L}\right)$, and $W:=\psi\left(W_{L, \mu_{p}}\right)$. Note that the subgroup $W \subset \operatorname{Hom}\left(G_{L}^{\text {ab }} / p G_{L}^{\text {ab }}, \mathbb{Z} / p \mathbb{Z}\right)$ does not depend on the choice of θ.

We claim that the subgroup $W \subset \operatorname{Hom}\left(G_{L}^{\mathrm{ab}} / p G_{L}^{\mathrm{ab}}, \mathbb{Z} / p \mathbb{Z}\right)$ is recovered from \mathfrak{G}_{L} (hence from $\left.\mathfrak{G}_{K}\right)$. Let f be a non-trivial element of $\operatorname{Hom}\left(G_{L}^{\mathrm{ab}} / p G_{L}^{\mathrm{ab}}, \mathbb{Z} / p \mathbb{Z}\right)$, and $H:=\operatorname{Im} f(=$ $\mathbb{Z} / p \mathbb{Z})$. Note that f determines a cyclic extension L^{\prime} of L of degree p. By Lemma 1.1 (i), f belongs to W if and only if the following condition holds:

$$
s_{H}(\sigma)<\frac{p v_{L}(p)}{p-1}
$$

where σ is a generator of H.
On the other hand, since the exact sequence (2.1) splits as an exact sequence of abelian groups, we have the following exact sequence of G_{K}-modules:

$$
0 \longrightarrow \operatorname{Hom}\left(\mathbb{Z} / p \mathbb{Z}, \mu_{p}\right) \longrightarrow \operatorname{Hom}\left(L^{\times} /\left(L^{\times}\right)^{p}, \mu_{p}\right) \longrightarrow \operatorname{Hom}\left(W_{L}, \mu_{p}\right) \longrightarrow 0
$$

Moreover, by the Pontryagin duality, we have a canonical isomorphism of G_{K}-modules $\nu: \operatorname{Hom}\left(L^{\times} /\left(L^{\times}\right)^{p}, \mu_{p}\right) \xrightarrow{\sim} G_{L}^{\mathrm{ab}} / p G_{L}^{\mathrm{ab}}$. Set:

$$
M:=\left\{\tau \in G_{L}^{\mathrm{ab}} / p G_{L}^{\mathrm{ab}} \mid f(\tau)=0 \text { for all } f \in W\right\} \subset G_{L}^{\mathrm{ab}} / p G_{L}^{\mathrm{ab}}
$$

(Note that, since W is recovered from \mathfrak{G}_{K}, M is also recovered from \mathfrak{G}_{K}.) Then we obtain the following commutative diagram:

where the horizontal sequences are exact, the vertical arrows are the isomorphisms of $G_{K^{-}}$modules induced by ν. Note that since the upper sequence is an exact sequence of G_{K}-modules, the lower sequence is also an exact sequence of G_{K}-modules. In particular, we obtain an isomorphism of $G_{K^{-}}$modules $\operatorname{Hom}\left(\mathbb{Z} / p \mathbb{Z}, \mu_{p}\right)\left(=\mu_{p}\right) \xrightarrow{\sim} M$. Since M is (filtered) group-theoretic, this completes the proof of Proposition 2.8.

Remark 2.9

In the case where K is an MLF, by using the Tate duality, Mochizuki recovered the $p_{k_{K}}$-adic cyclotomic character group-theoretically ([Mo2, Proposition 1.1]). However, we cannot apply this method to the case where K is a GMLF.

In the remainder of this section, we consider properties of homomorphisms between the absolute Galois groups of GMLF's and GPLF's which preserve ramification filtrations. By Remark 1.2, for a GMLF or GPLF K, we have the following exact sequence:

$$
1 \longrightarrow I_{K} \longrightarrow G_{K} \longrightarrow G_{k_{K}} \longrightarrow 1
$$

This exact sequence determines a homomorphism $\rho: G_{k_{K}} \rightarrow$ Out I_{K}.
Proposition 2.10
The above homomorphism $\rho: G_{k_{K}} \rightarrow$ Out I_{K} is injective.
Proof.
Set $p:=p_{k_{K}}(>0)$. Denote the maximal unramified extension of K by $K^{\mathrm{ur}}\left(\subset K^{\text {sep }}\right)$.
Consider the case where K is a GMLF. First, suppose that K contains a primitive p-th root of unity. In this case, by Kummer theory, we have an isomorphism of G_{K}-module $H^{1}\left(I_{K}, \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{\sim}\left(K^{\mathrm{ur}}\right)^{\times} /\left(\left(K^{\mathrm{ur}}\right)^{\times}\right)^{p}$. ρ determines an action of $G_{k_{K}}$ on $H^{1}\left(I_{K}, \mathbb{Z} / p \mathbb{Z}\right)$ and the above isomorphism is $G_{k_{K}}$-equivariant (note that $G_{k_{K}} \simeq \operatorname{Gal}\left(K^{\mathrm{ur}} / K\right)$). On the other hand, in a similar way to the proof of Proposition 1.13, we obtain a $G_{k_{K}}$-equivariant surjection

$$
H^{1}\left(I_{K}, \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{\sim}\left(K^{\mathrm{ur}}\right)^{\times} /\left(\left(K^{\mathrm{ur}}\right)^{\times}\right)^{p} \rightarrow \overline{k_{K}} .
$$

Since it is clear that $G_{k_{K}}$ acts faithfully on $\overline{k_{K}}$, this shows the injectivity of ρ in the case where K contains a primitive p-th root of unity.

Next, suppose that K does not necessarily contain a primitive p-th root of unity. Set $L:=K\left(\zeta_{p}\right)$. Since k_{K} is of positive characteristic, $G_{k_{K}}$ is torsion-free (see, e.g., [Nag, VI, Exercise, §2, 1]). Therefore, to prove the injectivity of ρ, it suffices to show the injectivity of the restriction of ρ to an open subgroup of $G_{k_{K}}$. So, we may assume that $k_{K}=k_{L}=: k$. Then we have the following commutative diagram:

where the horizontal sequences are exact and the vertical arrows are the natural inclusions. This exact sequence determines a homomorphism $\rho_{L}: G_{k} \rightarrow$ Out I_{L}. By the first case, ρ_{L} is injective. Moreover, by Proposition 2.1 (iii), we can naturally identify I_{K}, I_{L} with $\operatorname{Inn} I_{K}, \operatorname{Inn} I_{L}$, respectively. Set:

$$
\operatorname{Aut}_{I_{L}} I_{K}:=\left\{\alpha \in \operatorname{Aut} I_{K} \mid \alpha \text { preserves } I_{L}\right\} .
$$

(In fact, by the choice of L, I_{L} is a characteristic subgroup of I_{K}, hence $\operatorname{Aut}_{I_{L}} I_{K}=$ Aut I_{K}.) By considering a section $s: G_{k} \hookrightarrow G_{L}$ (cf. Remark 1.2), we obtain a homomorphism $\varphi: G_{k} \rightarrow \operatorname{Aut}_{I_{L}} I_{K} / \operatorname{Inn} I_{L}$ (note that φ does not depend on the choice of s). So, we obtain the following commutative diagram:

where the horizontal arrow is the natural homomorphism induced by the natural injection $\operatorname{Aut}_{I_{L}} I_{K} \hookrightarrow \operatorname{Aut} I_{K}$.

On the other hand, we have the following commutative diagram:

where the horizontal arrow is the natural homomorphism induced by the natural homomorphism $\operatorname{Aut}_{I_{L}} I_{K} \rightarrow \operatorname{Aut} I_{L}$. Since ρ_{L} is injective, φ is also injective. Let σ be an element of $\operatorname{Ker} \rho$. Then $\varphi(\sigma) \in \operatorname{Inn} I_{K} / \operatorname{Inn} I_{L} \simeq I_{K} / I_{L}$. Since I_{L} is an open normal subgroup of I_{K}, σ is a torsion element of G_{k} (note that φ is injective). Since k is of positive characteristic (hence G_{k} is torsion-free), we obtain $\sigma=1$. This completes the proof of Proposition 2.10 in the case where K is a GMLF.

Finally, suppose that K is a GPLF. By Artin-Schreier theory, we have an isomorphism of G_{K}-module $H^{1}\left(I_{K}, \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{\sim} K^{\mathrm{ur}} / \wp\left(K^{\mathrm{ur}}\right) . \rho$ determines an action of $G_{k_{K}}$ on $H^{1}\left(I_{K}, \mathbb{Z} / p \mathbb{Z}\right)$ and the above isomorphism is $G_{k_{K}}$-equivariant. Let $\mathcal{O}_{K^{\text {ur }}}$ be the ring of integers of $K^{\text {ur }}, \mathfrak{M}_{K^{\text {ur }}}$ the maximal ideal of $\mathcal{O}_{K^{\text {ur }}}$ and $v_{K^{\text {ur }}}$ the valuation of $K^{\text {ur }}$ such that $v_{K^{\mathrm{ur}}}\left(\left(K^{\mathrm{ur}}\right)^{\times}\right)=\mathbb{Z}$ (note that K^{ur} is a henselian discrete valuation field with residue field $\left.\overline{k_{K}}\right)$. Since the residue field of K^{ur} is algebraically closed, by Hensel's lemma, we have $\mathcal{O}_{K^{\mathrm{ur}}} \subset \wp\left(K^{\mathrm{ur}}\right)$. So, we obtain a natural surjection $K^{\mathrm{ur}} / \mathcal{O}_{K^{\mathrm{ur}}} \rightarrow K^{\mathrm{ur}} / \wp\left(K^{\mathrm{ur}}\right)$ (which is clearly $G_{k_{K}}$-equivariant). This surjection induces an injection $\mathfrak{M}_{K \text { ur }}^{-1} / \mathcal{O}_{K^{\text {ur }}} \hookrightarrow$ $K^{\mathrm{ur}} / \wp\left(K^{\mathrm{ur}}\right)$. Indeed, let us take an element $a \in \mathfrak{M}_{K^{\mathrm{ur}}}^{-1} \backslash \mathcal{O}_{K^{\mathrm{ur}}}$, and suppose that there exists an element $b \in K^{\text {ur }}$ such that $\wp(b)=a$. Clearly, we have $v_{K^{\mathrm{ur}}}(b)<0$ and hence
$v_{K^{\mathrm{ur}}}(\wp(b)) \in p \mathbb{Z}_{<0}$. This is a contradiction. On the other hand, since $\mathfrak{M}_{K^{\text {ur }}}^{-1} / \mathcal{O}_{K^{\text {ur }}} \simeq \overline{k_{K}}$ and $G_{k_{K}}$ acts faithfully on $\overline{k_{K}}$, it follows that ρ is injective. This completes the proof of Proposition 2.10 in the case where K is a GPLF, hence of Proposition 2.10.

Corollary 2.11

Let K be a GMLF or GPLF. Then, for any open subgroup J of I_{K},

$$
Z_{G_{K}}(J)=\{1\} .
$$

Proof.
Immediate from Propositions 2.1 (iii), 2.2 (ii), and 2.10, and the fact that the absolute Galois group of a field of positive characteristic is torsion-free (cf. the proof of Proposition 2.10).

Lemma 2.12

Let G be a profinite group and N a closed subgroup of G which is a non-trivial pro-p group (for some $p \in \mathfrak{P r i m e s}$). Then there exists an open subgroup H of G such that $N \subset H$ and the image of N in $H(p)^{\text {ab }}$ is non-trivial.

Proof.
Since N is a non-trivial pro- p group, $N(p)^{\text {ab }}\left(=N^{\mathrm{ab}}\right)$ is also non-trivial. On the other hand, since $N=\underset{N \subset H}{\lim _{N \subset H}} H=\bigcap_{N \subset H} H$ (where H runs through the set of open subgroup of G containing N), we obtain

$$
N(p)^{\mathrm{ab}}=\lim _{\underset{N \subset H}{ }} H(p)^{\mathrm{ab}}
$$

The converse of Remark 1.11 holds for open and quasi-injective homomorphisms of R-filtered profinite groups of R-GMLF-type:

Proposition 2.13

For $i=1,2$, let K_{i} be a GMLF, and set $\mathfrak{G}_{i}:=\mathfrak{G}_{K_{i}}$. Let $\alpha: \mathfrak{G}_{1} \rightarrow \mathfrak{G}_{2}$ be an open quasi-injective homomorphism of R-filtered profinite groups. Then α is an injection.
$\frac{\text { Proof. }}{\text { Set }}$ trivial pro- $p_{k_{K_{i}}}$ group for $i=1,2$ (cf. Proposition 2.1 (iv)), it follows that $p_{k_{K_{1}}}=p_{k_{K_{2}}}$. Set $p:=p_{k_{K_{1}}}=p_{k_{K_{2}}}$. By replacing G_{2} by $\alpha\left(G_{1}\right)$, we may assume that α is surjective. Let $N \subset G_{1}$ be the kernel of α. To prove this theorem, it suffices to show that $I_{1} \cap N=\{1\}$. Indeed, if $I_{1} \cap N=\{1\}$, α induces an isomorphism $I_{1} \xrightarrow{\sim} I_{2}$, and we obtain the following commutative diagram:

where the horizontal arrows are induced by α and the vertical arrows are the homomorphisms discussed in the argument preceding Proposition 2.10. Since ρ_{1} is injective by Proposition 2.10, the image of N in $G_{k_{K_{1}}}$ is trivial.

Therefore, for $i=1,2$, by replacing K_{i} by the completion of the maximal unramified extension of K_{i} if necessary, we may assume that $G_{i}=I_{i}$. Then α induces the following commutative diagram (cf. Remark 1.2):

Since G_{1} / P_{1} and G_{2} / P_{2} are isomorphic as abstract profinite groups and topologically finitely generated (hence hopfian), it holds that $G_{1} / P_{1} \rightarrow G_{2} / P_{2}$ is an isomorphism. Therefore, we have $N \subset P_{1}$. Suppose that N is non-trivial. By Lemma 2.12, there exists an open subgroup H of G_{1} such that $N \subset H$ and the image of N in $H(p)^{\text {ab }}$ is non-trivial. By replacing G_{1} and G_{2} by H and $\alpha(H)$, we may assume that the image of N in $G_{1}(p)^{\text {ab }}$ is non-trivial. Let \bar{N} be the (non-trivial) image of N in $G_{1}(p)^{\text {ab }}$. Then we have the following commutative diagram:

where the horizontal sequences are exact and the vertical arrows are the natural surjections. By Proposition 2.1 (iii), G_{2} is a projective profinite group. Therefore, the upper exact sequence splits, and hence also the lower exact sequence splits. In particular, there exists a retract $s: G_{1}(p)^{\mathrm{ab}} \rightarrow \bar{N}$. On the other hand, since $G_{1}(p)^{\text {ab }}$ is a (non-trivial) torsion-free pro- p abelian group by Proposition 2.1 (ii), \bar{N} is a non-trivial torsion-free pro- p abelian group. Therefore, \bar{N} is isomorphic to $\prod_{\lambda \in \Lambda} \mathbb{Z}_{p}$ for some non-empty set Λ. So, there exists a surjection $\pi: \bar{N} \rightarrow \mathbb{Z}_{p}$. By composing π with s, we obtain a surjection $\pi \circ s: G_{1}(p)^{\text {ab }} \rightarrow \mathbb{Z}_{p}$ whose restriction to \bar{N} is also a surjection. Let $H_{1} \subset G_{1}$ be the kernel of the composite of the natural surjection $G_{1} \rightarrow G_{1}(p)^{\text {ab }}$ and $\pi \circ s$. Clearly, H_{1} is a closed normal subgroup of G_{1} of APF-type, and hence determines an arithmetically profinite extension of K_{1} (cf. [FW1, 1.3 (b)]). Let $\mathfrak{H}_{1} \subset \mathfrak{G}_{1}$ be the resulting R-filtered profinite group and $\iota: \mathfrak{H}_{1} \rightarrow \mathfrak{G}_{1}$ the natural inclusion. By Proposition 1.15, \mathfrak{H}_{1} is of R-GPLF-type. Moreover, the composite $\alpha \circ \iota: \mathfrak{H}_{1} \rightarrow \mathfrak{G}_{2}$ is a surjective homomorphism of R-filtered profinite groups (note that α is quasi-injective). Since \mathfrak{G}_{2} is of R-GMLF-type, this contradicts Proposition 2.7. This completes the proof of Proposition 2.13.

Remark 2.14

By Proposition 2.13, we obtain an open homomorphism of R-filtered profinite groups which is not quasi-injective. Indeed, for $i=1,2$, let k_{i} be an algebraically closed field of characteristic $p(>0)$ such that $k_{2} \subsetneq k_{1}$. Denote the set of Laurent polynomials over
k_{i} as in [NSW, Lemma 6.1.6] by \mathcal{L}_{i}. Suppose that the cardinality of \mathcal{L}_{1} is greater than that of \mathcal{L}_{2}. Let K_{i} be the quotient field of the Witt ring with coefficients in $k_{i}, G_{K_{i}}$ the absolute Galois group of K_{i} and $\mathfrak{G}_{K_{i}}$ the R-filtered profinite group with underlying profinite group $G_{K_{i}}$ determined by the ramification filtration on $G_{K_{i}}$. Then the inclusion $k_{2} \hookrightarrow k_{1}$ induces an inclusion $K_{2} \hookrightarrow K_{1}$ (by the functorial property of Witt rings). By considering ramification indices, this inclusion induces a surjective homomorphism of R-filtered profinite groups $\alpha: \mathfrak{G}_{K_{1}} \rightarrow \mathfrak{G}_{K_{2}}$. We shall prove that α is not quasi-injective. By Proposition 2.13, it suffices to prove that α is not injective. Let us take a surjection $\pi: G_{K_{2}} \rightarrow \mathbb{Z}_{p}$ (cf. Proposition 2.1 (ii)). Let H_{1} (resp. H_{2}) be the kernel of $\pi \circ \alpha$ (resp. π). α induces a surjection $\alpha^{\prime}: H_{1} \rightarrow H_{2}$. It suffices to show that α^{\prime} is not injective. Suppose that α^{\prime} is injectve (hence an isomorphism). In particular, we have $H_{1}(p) \simeq H_{2}(p)$. On the other hand, for $i=1,2, H_{i}$ is a closed normal subgroup of $G_{K_{i}}$ of APF-type, and hence determines an arithmetically profinite extension of K_{i} (cf. [FW1, 1.3 (b)]). By the theory of fields of norms (cf. [FW1, §2] and [FW2, §4]), H_{i} is isomorphic to the absolute Galois group of $k_{i}((t))$ (note that k_{i} is algebraically closed). So, by [NSW, Theorem 6.1.4, Proposition 6.1.6], $H_{i}(p)$ is a free pro- p group of rank $\sharp \mathcal{L}_{i}$. However, this contradicts the assumption on the cardinalities of \mathcal{L}_{1} and \mathcal{L}_{2}.

Lemma 2.15

Let G_{i} be a profinite group for $i=1,2$, and $\alpha: G_{1} \rightarrow G_{2}$ a homomorphism of profinite groups. Suppose that G_{1} is a prosolvable group. Moreover, suppose that α satisfies the following condition:

For any open subgroup $U_{2} \subset G_{2}$, set $U_{1}:=\alpha^{-1}\left(U_{2}\right)$. Let $\alpha_{U}: U_{1} \rightarrow U_{2}$ be the homomorphism induced by α. Then α_{U} induces an injection α_{U}^{ab} : $U_{1}^{\text {ab }} \hookrightarrow U_{2}^{\text {ab }}$.
Then α is an injection.
Proof.
Let $N \subset G_{1}$ be the kernel of α. Then we have $N=\underset{U_{2} \subset G_{2}}{\lim _{t}} \alpha^{-1}\left(U_{2}\right)$, where U_{2} runs through the set of open subgroups of G_{2}. By assumption, α induces an injection $\alpha^{-1}\left(U_{2}\right)^{\mathrm{ab}} \hookrightarrow U_{2}^{\mathrm{ab}}$ for any open subgroup U_{2} of G_{2}. Therefore,

$$
N^{\mathrm{ab}}=\lim _{U_{2} \subset G_{2}}\left(\alpha^{-1}\left(U_{2}\right)^{\mathrm{ab}}\right) \hookrightarrow \lim _{U_{2} \subset G_{2}} U_{2}^{\mathrm{ab}}=\{1\}
$$

Therefore, $N^{\mathrm{ab}}=\{1\}$. On the other hand, since G_{1} is prosolvable, N is also prosolvable. This implies that $N=\{1\}$, as desired.

Let K_{i} be a GMLF or GPLF for $i=1,2$, and let us consider an open homomorphism of R-filtered profinite groups $\mathfrak{G}_{K_{1}} \rightarrow \mathfrak{G}_{K_{2}}$. If we suppose that K_{1} is an MLF or PLF, we may show the injectivity of open homomorphisms of R-filtered profinite groups without assuming the quasi-injectivity (cf. Proposition 2.13):

Proposition 2.16

For $i=1$, 2, let K_{i} be a GMLF or GPLF, and set $\mathfrak{G}_{i}:=\mathfrak{G}_{K_{i}}$. Suppose that K_{1} is an MLF (resp. a PLF). Suppose, moreover, that there exists an open homomorphism
$\alpha: \mathfrak{G}_{1} \rightarrow \mathfrak{G}_{2}$ of R-filtered profinite groups. Then K_{2} is an MLF (resp. a PLF) and α is an injection.

Proof.
Set $G_{i}:=G_{K_{i}}, I_{i}:=I_{K_{i}}$ and $P_{i}:=P_{K_{i}}$ for $i=1,2$. Since P_{i} is a non-trivial pro- $p_{k_{K_{i}}}$ group, it follows that $p_{k_{K_{1}}}=p_{k_{K_{2}}}=: p$. By replacing G_{2} by $\alpha\left(G_{1}\right)$, we may assume that α is surjective.

Note that, by Proposition 2.7, if K_{1} is an MLF (resp. a PLF), then K_{2} is automatically a GMLF (resp. a GPLF). First, suppose that K_{1} is an MLF. Then G_{1} is topologically finitely generated (cf. Proposition 1.13). Since α is surjective, G_{2} is also topologically finitely generated. By Proposition 1.13, this shows that K_{2} is an MLF. Next, suppose that K_{1} is a PLF. For $i=1,2$, set $Q_{i}:=G_{i}^{\mathrm{ab}} / p G_{i}^{\mathrm{ab}}$, and let $\mathfrak{Q}_{i}=\left\{Q_{i}^{v}\right\}_{v \in \mathbb{R}>-1}$ be the R-filtered profinite group with underlying profinite group Q_{i} determined by the natural surjection $G_{i} \rightarrow Q_{i}$. By Artin-Schreier theory, we have an isomorphism $K_{i} / \wp\left(K_{i}\right) \simeq$ $H^{1}\left(Q_{i}, \mathbb{Z} / p \mathbb{Z}\right)=\operatorname{Hom}\left(Q_{i}, \mathbb{Z} / p \mathbb{Z}\right)$ for $i=1,2$. Moreover, by Lemma 1.1 and the HasseArf theorem, we have the following isomorphisms for $i=1,2$:

$$
\begin{aligned}
\mathcal{O}_{K_{i}} /\left(\mathcal{O}_{K_{i}} \cap \wp\left(K_{i}\right)\right) & \simeq\left\{f \in \operatorname{Hom}\left(Q_{i}, \mathbb{Z} / p \mathbb{Z}\right) \mid Q_{i}^{1}=Q_{i}^{0} \subset \operatorname{Ker} f\right\}=: R_{i}^{1} \subset \operatorname{Hom}\left(Q_{i}, \mathbb{Z} / p \mathbb{Z}\right), \\
\mathfrak{M}_{K_{i}}^{-1} /\left(\mathfrak{M}_{K_{i}}^{-1} \cap \wp\left(K_{i}\right)\right) & \simeq\left\{f \in \operatorname{Hom}\left(Q_{i}, \mathbb{Z} / p \mathbb{Z}\right) \mid Q_{i}^{2} \subset \operatorname{Ker} f\right\}=: R_{i}^{2} \subset \operatorname{Hom}\left(Q_{i}, \mathbb{Z} / p \mathbb{Z}\right)
\end{aligned}
$$

By definition, we have the following commutative diagram for $i=1,2$:

where the horizontal sequences are exact, and the vertical arrows are the natural homomorphisms. By the Pontryagin duality, we have the following commutative diagram for $i=1,2$:

where the horizontal sequences are exact. Therefore, for $i=1$, 2 , we obtain the following isomorphism:

$$
Q_{i}^{1} / Q_{i}^{2} \simeq \operatorname{Hom}\left(R_{i}^{2} / R_{i}^{1}, \mathbb{Z} / p \mathbb{Z}\right)
$$

Moreover, we have $R_{i}^{2} / R_{i}^{1} \simeq \mathfrak{M}_{K_{i}}^{-1} / \mathcal{O}_{K_{i}} \simeq k_{K_{i}}$. On the other hand, α induces a surjection $Q_{1}^{1} / Q_{1}^{2} \rightarrow Q_{2}^{1} / Q_{2}^{2}$. Since K_{1} is a PLF, $k_{K_{1}}$ (hence also Q_{1}^{1} / Q_{1}^{2}) is finite. Therefore, Q_{2}^{1} / Q_{2}^{2} (hence also $k_{K_{2}}$) is finite. This shows that K_{2} is also a PLF. This completes the proof of the portion of Proposition 2.16 concerning the type of K_{2}.

We shall show the portion of Proposition 2.16 concerning the injectivity of α. Let N be the kernel of α. Then N is contained in P_{1}. Indeed, α induces a surjection $G_{k_{K_{1}}} \rightarrow G_{k_{K_{2}}}$. Since $k_{K_{i}}$ is finite, $G_{k_{K_{i}}}$ is isomorphic to $\hat{\mathbb{Z}}$, and in particular, hopfian for
$i=1,2$. Therefore, the above surjection is an injection and hence N is contained in I_{1}. Moreover, a similar argument to the proof of Proposition 2.13 shows that $N \subset P_{1}$.

Set $H_{i}:=G_{K_{i}}^{\mathrm{ab}}$ for $i=1,2$. Let $\mathfrak{H}_{i}=\left\{H_{i}^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ be the R-filtered profinite group with underlying profinite group H_{i} determined by the natural surjection $G_{i} \rightarrow H_{i}$ for $i=1,2$. Let $f_{i} \in \mathbb{Z}_{>0}$ be the integer such that the cardinality of $k_{K_{i}}$ is $p^{f_{i}}$. α induces a surjection $\alpha^{\text {ab }}: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$. If $\alpha^{\text {ab }}$ is an injection, by applying similar arguments to all open subgroups U_{2} of $G_{K_{2}}$ and $\left.\alpha\right|_{\alpha^{-1}\left(U_{2}\right)}: \alpha^{-1}\left(U_{2}\right) \rightarrow U_{2}$, this proposition follows from Lemma 2.15 (note that G_{1} is a prosolvable group). So, it suffices to show that $\alpha^{\text {ab }}$ is an injection. For any $v \in \mathbb{R}_{\geq-1}, \alpha^{\mathrm{ab}}$ induces a surjection $\left(\alpha^{\mathrm{ab}}\right)^{v}: H_{1}^{v} \rightarrow H_{2}^{v}$.

First, we claim that $f_{1}=f_{2}$. Indeed, $\left(\alpha^{\mathrm{ab}}\right)^{0}: H_{1}^{0} \rightarrow H_{2}^{0}$ induces a surjection $H_{1}^{0} / H_{1}^{1} \rightarrow$ H_{2}^{0} / H_{2}^{1}. Since the image of P_{1} in H_{1} is H_{1}^{1} by local class field theory, this surjection is an injection (note that N is contained in P_{1}). On the other hand, again by local class field theory, we have $H_{i}^{0} / H_{i}^{1} \simeq \mathcal{O}_{K_{i}}^{\times} / U_{K_{i}}^{1} \simeq k_{K_{i}}^{\times}$for $i=1$, 2. This shows that $f_{1}=f_{2}$.

Next, we claim that $\left(\alpha^{\mathrm{ab}}\right)^{1}: H_{1}^{1} \rightarrow H_{2}^{1}$ is an injection. Indeed, let us take any nontrivial element $g \in H_{1}^{1}$. Let $n \in \mathbb{Z}_{>0}$ be an integer such that $g \in H_{1}^{n} \backslash H_{1}^{n+1}$. α induces the following commutative diagram:

By local class field theory, we have $H_{i}^{n} / H_{i}^{n+1} \simeq U_{K_{i}}^{n} / U_{K_{i}}^{n+1} \simeq k_{K_{i}}$ for $i=1,2$. Since $f_{1}=f_{2}$, the lower horizontal arrow is an injective. Therefore, g cannot belong to the kernel of $\left(\alpha^{\mathrm{ab}}\right)^{1}$. This and the above argument show that $\left(\alpha^{\mathrm{ab}}\right)^{0}$ is also an injection (hence an isomorphism).

Now, we have the following commutative diagram:

where the horizontal sequences are exact and the vertical arrows are induced by α and surjective. By local class field theory, we have $H_{i} / H_{i}^{0} \simeq \hat{\mathbb{Z}}$. Therefore, the right vertical arrow is injective. This shows that $\alpha^{\text {ab }}$ is injective, as desired.

Remark 2.17

Let K be an MLF or PLF. If K is an MLF, it is well-known that G_{K} is hopfian (hence \mathfrak{G}_{K} is R-filtered hopfian). (Note that G_{K} is topologically finitely generated.) Proposition 2.16 shows that \mathfrak{G}_{K} is R -filtered hopfian also in the case where K is a PLF.

Theorem 2.18

For $i=1,2$, let K_{i} be a GMLF or GPLF. Suppose that K_{1} is an MLF or PLF. Write $\operatorname{Hom}\left(K_{2}, K_{1}\right)$ for the set of homomorphisms from K_{2} to $K_{1}, \operatorname{Hom}^{\mathrm{R} \text {-op }}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)$ for the set of open homomorphisms of R-filtered profinite groups from $\mathfrak{G}_{K_{1}}$ to $\mathfrak{G}_{K_{2}}, \operatorname{Inn}\left(\mathfrak{G}_{K_{2}}\right)$
for the group of inner automorphisms of $\mathfrak{G}_{K_{2}}$. Then the natural map

$$
\operatorname{Hom}\left(K_{2}, K_{1}\right) \rightarrow \operatorname{Hom}^{\mathrm{R}-\mathrm{op}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right) / \operatorname{Inn}\left(\mathfrak{G}_{K_{2}}\right)
$$

is bijective.
Proof.
Let $\operatorname{Hom}^{\text {R-op-inj }}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)$ be the set of open injective homomorphisms of R-filtered profinite groups from $\mathfrak{G}_{K_{1}}$ to $\mathfrak{G}_{K_{2}}$. Then Proposition 2.16 shows that the natural inclusion

$$
\operatorname{Hom}^{\mathrm{R}-\mathrm{op}-\mathrm{inj}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right) \hookrightarrow \operatorname{Hom}^{\mathrm{R}-\mathrm{op}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)
$$

is bijective. Moreover, in the case where $\operatorname{Hom}^{\mathrm{R} \text {-op-inj }}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)$ is not empty, K_{2} is automatically an MLF (resp. a PLF) if K_{1} is an MLF (resp. a PLF). So, by [A1, Theorem A] and [A2, Theorem A], the natural map

$$
\operatorname{Hom}\left(K_{2}, K_{1}\right) \rightarrow \operatorname{Hom}^{\mathrm{R}-\mathrm{op-inj}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right) / \operatorname{Inn}\left(\mathfrak{G}_{K_{2}}\right)
$$

is bijective. This completes the proof of Theorem 2.18.

Remark 2.19

As we see in the proof of Theorem 2.18, Theorem 2.18 is an improvement of [A1, Theorem A] and [A2, Theorem A].

Remark 2.20

In the situation of Theorem 2.18, suppose that K_{1} is an MLF. Write $\operatorname{Hom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)$ for the set of homomorphisms of R-filtered profinite groups from $\mathfrak{G}_{K_{1}}$ to $\mathfrak{G}_{K_{2}}$. Then the natural map

$$
\operatorname{Hom}\left(K_{2}, K_{1}\right) \rightarrow \operatorname{Hom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right) / \operatorname{Inn}\left(\mathfrak{G}_{K_{2}}\right)
$$

is bijective. Indeed, it suffices to show that the natural inclusion

$$
\operatorname{Hom}^{\mathrm{R}-\mathrm{op}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right) \hookrightarrow \operatorname{Hom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right) \cdots(*)
$$

is bijective. We may assume that $\operatorname{Hom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)$ is not empty. Suppose that an element $f: \mathfrak{G}_{K_{1}} \rightarrow \mathfrak{G}_{K_{2}}$ of $\operatorname{Hom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)$ is not open. Then, by Proposition 1.15, f gives a surjective homomorphism of R -filtered profinite groups from $\mathfrak{G}_{K_{1}}$ to an Rfiltered profinite group of R-GPLF-type. This contradicts Proposition 2.7. (In fact, (*) is bijective even if K_{1} is a GMLF (not necessarily an MLF). (Note that, in the above proof of the bijectivity of $(*)$, we do not need to assume that K_{1} is an MLF.))

In the remainder of this section, for $i=1,2$, we shall write

- K_{i} for a GMLF;
- $\overline{K_{i}}$ for an algebraic closure of K_{i};
- $G_{K_{i}}$ for the Galois group $\operatorname{Gal}\left(\overline{K_{i}} / K_{i}\right)$;
- X_{i} for a hyperbolic curve over K_{i};
- $\pi_{1}\left(X_{i}\right)$ for the étale fundamental group of X_{i} (for some choice of basepoint);
- $\Delta_{X_{i}}=\pi_{1}\left(X_{i} \times_{\text {Spec } K_{i}} \operatorname{Spec} \overline{K_{i}}\right)$ for the geometric fundamental group of X_{i} (for some choice of basepoint).

By Theorem 2.18, we obtain a slight generalization of a part of [Mo6, Corollary 3.8]:

Theorem 2.21

Suppose that K_{1} is an MLF. Write $\operatorname{Hom}^{\mathrm{dom}}\left(X_{1} / K_{1}, X_{2} / K_{2}\right)$ for the set of dominant morphisms of schemes from X_{1} to X_{2} lying over a morphism $\operatorname{Spec} K_{1} \rightarrow \operatorname{Spec} K_{2}$, and $\operatorname{Hom}^{\mathrm{SA}-\mathrm{RF}}\left(\pi_{1}\left(X_{1}\right), \pi_{1}\left(X_{2}\right)\right)$ for the set of semi-absolute homomorphisms ϕ of profinite groups from $\pi_{1}\left(X_{1}\right)$ to $\pi_{1}\left(X_{2}\right)$ satisfying the following condition:

The open homomorphism $\psi: G_{K_{1}} \rightarrow G_{K_{2}}$ induced by ϕ (cf. the condition that ϕ is semi-absolute) preserves ramification filtrations (i.e., determines a homomorphism of R-filtered profinite groups with respect to ramification filtrations).
(For the definition of semi-absolute homomorphisms, see [Mo6, Definition 2.4 (ii)].) Moreover, write $\operatorname{Inn}\left(\pi_{1}\left(X_{2}\right)\right)$ for the group of inner automorphisms of $\pi_{1}\left(X_{2}\right)$. Then the natural map

$$
\operatorname{Hom}^{\mathrm{dom}}\left(X_{1} / K_{1}, X_{2} / K_{2}\right) \rightarrow \operatorname{Hom}^{\mathrm{SA}-\mathrm{RF}}\left(\pi_{1}\left(X_{1}\right), \pi_{1}\left(X_{2}\right)\right) / \operatorname{Inn}\left(\pi_{1}\left(X_{2}\right)\right)
$$

is a bijection.
Proof.
If $\operatorname{Hom}^{\mathrm{SA}-\mathrm{RF}}\left(\pi_{1}\left(X_{1}\right), \pi_{1}\left(X_{2}\right)\right)$ is empty, the statement follows immediately. So, suppose that $\operatorname{Hom}^{\mathrm{SA}-\mathrm{RF}}\left(\pi_{1}\left(X_{1}\right), \pi_{1}\left(X_{2}\right)\right)$ is non-empty. Then we have that K_{2} is also an MLF (cf. Proposition 2.16). Therefore, by Theorem 2.18, for any $\phi \in \operatorname{Hom}^{\mathrm{SA}-\mathrm{RF}}\left(\pi_{1}\left(X_{1}\right), \pi_{1}\left(X_{2}\right)\right)$, the induced homomorphism $\psi: G_{K_{1}} \rightarrow G_{K_{2}}$ is geometric, i.e., arises from a unique morphism of schemes Spec $K_{1} \rightarrow$ Spec K_{2}. By applying [Mo3, Theorem A] to the homomorphism $\pi_{1}\left(X_{1}\right) \rightarrow \pi_{1}\left(X_{2} \times_{\text {Spec } K_{2}} \operatorname{Spec} K_{1}\right)=\pi_{1}\left(X_{2}\right) \times_{G_{K_{2}}} G_{K_{1}}$ induced by ϕ, we obtain the desired bijection.

Remark 2.22

In fact, $\operatorname{Hom}^{\text {dom }}\left(X_{1} / K_{1}, X_{2} / K_{2}\right)$ in Theorem 2.21 is equal to the set $\operatorname{Hom}^{\mathrm{dom}}\left(X_{1}, X_{2}\right)$ of dominant morphisms of schemes from X_{1} to X_{2}.

Remark 2.23

By [Mo6, Example 2.13], for any X_{2}, there exist an X_{1} and an absolute homomorphism $\phi: \pi_{1}\left(X_{1}\right) \rightarrow \pi_{1}\left(X_{2}\right)$ which is not semi-absolute. So we need to consider homomorphisms which are semi-absolute in Theorem 2.21.

3. Anabelian results for profinite groups of R-GMLF and R-GPLF-type

In this section, we establish mono-anabelian reconstruction algorithms of various invariants of GMLF's and GPLF's from their absolute Galois groups with ramification filtrations. Moreover, by using these results, we reconstruct the isomorphism classes of GMLF's under certain conditions.

Let $\mathfrak{G}=\left\{G^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ be an R-filtered profinite group of R-GMLF or R-GPLF-type, and G the underlying profinite group of \mathfrak{G}. In this section, we shall write

- $I(\mathfrak{G})$ for the closure of $\bigcup_{\varepsilon \in \mathbb{R}>0} G^{-1+\varepsilon}$;
- $P(\mathfrak{G})$ for the closure of $\bigcup_{\varepsilon \in \mathbb{R}>0} G^{0+\varepsilon}$;
- $\underline{G}(\mathfrak{G})$ for $G / I(\mathfrak{G})$.

For a GMLF or GPLF K, we shall write

- p_{K} for the characteristic of K;
- $K^{\text {sep }}$ for an separable closure of K;
- G_{K} for the Galois group $\operatorname{Gal}\left(K^{\text {sep }} / K\right)$;
- $\mathfrak{G}_{K}=\left\{G_{K}^{v}\right\}_{v \in \mathbb{R}_{\geq-1}}$ for the R-filtered profinite group with underlying profinite group G_{K} determined by the ramification filtration on G_{K};
- $I_{K} \subset G_{K}$ for the inertia subgroup of G_{K};
- $P_{K} \subset I_{K} \subset G_{K}$ for the wild inertia subgroup of G_{K};
- v_{K} for the valuation of K such that $v_{K}\left(K^{\times}\right)=\mathbb{Z}$;
- k_{K} for the residue field of K (by the definitions of GMLF and GPLF, k_{K} is perfect);
- $p_{k_{K}}(>0)$ for the characteristic of k_{K};
- k_{K} for the residue field of $K^{\text {sep }}$, which is an algebraic closure of k_{K};
- $G_{k_{K}}$ for the Galois group $\operatorname{Gal}\left(\overline{k_{K}} / k_{K}\right)$.

Moreover, for a GMLF K, we shall write

- $\zeta_{p_{k_{K}}} \in K^{\text {sep }}$ for a primitive $p_{k_{K}}$-th root of unity;
- e_{K} for the absolute ramification index $v_{K}\left(p_{k_{K}}\right)$;
- b_{K} for 0 (resp. 1) if K does not contain (resp. contains) $\zeta_{p_{k_{K}}}$.

Remark 3.1

Note that, by Proposition 2.7, an R-filtered profinite group of R-GMLF-type (resp. R-GPLF-type) is not of R-GPLF-type (resp. R-GMLF-type).

Lemma 3.2

There exists a uniquely determined prime number p such that $P(\mathfrak{G})$ is a pro-p group.
Proof.
Immediate from Remark 1.2. (Note that, if K is a GMLF or GPLF such that $\mathfrak{G} \simeq \mathfrak{G}_{K}$, it holds that $P(\mathfrak{G}) \simeq P\left(\mathfrak{G}_{K}\right)\left(=P_{K}\right)$.)

Definition 3.3

We shall write $\underline{p}(\mathfrak{G})$ for the uniquely determined (cf. Lemma 3.2) prime number such that $P(\mathfrak{G})$ is a pro-p$\underline{p}(\mathfrak{G})$ group.

Lemma 3.4

\mathfrak{G} is of R-GMLF-type (resp. R-GPLF-type) if and only if there exists (resp. does not exist) an open subgroup $H \subset G\left(=G^{-1}\right)$ such that, for some open normal subgroup H^{\prime} of H of index $p(\mathfrak{G})$, it holds that $s_{H / H^{\prime}}(\sigma) \in \underline{p}(\mathfrak{G}) \mathbb{Z}_{>0}$, where σ is a generator of H / H^{\prime}. Moreover, if \mathfrak{G} is of R-GMLF-type, then there exists a unique maximal subgroup H_{0} of G satisfying the above condition for H.
Proof.
Immediate from Lemma 1.1 (ii) and Proposition 2.3. (Note that, if K is a GMLF or GPLF such that $\mathfrak{G} \simeq \mathfrak{G}_{K}$, it holds that $\underline{p}(\mathfrak{G})=p_{k_{K}}$. .

Definition 3.5

(i) We shall write

$$
\bar{p}(\mathfrak{G}):= \begin{cases}0, & (\mathfrak{G} \text { is of R-GMLF-type }) \\ \underline{p}(\mathfrak{G}), & (\mathfrak{G} \text { is of R-GPLF-type })\end{cases}
$$

(cf. Lemma 3.4.)
(ii) If $\bar{p}(\mathfrak{G})=0$, we shall denote the uniquely determined maximal subgroup H_{0} of G in Lemma 3.4 by $G_{[1]}(\mathfrak{G})$.
(iii) If $\bar{p}(\mathfrak{G})=0, \mathfrak{G}$ determines a filtration of R-type on $G_{[1]}(\mathfrak{G})$. We shall denote the resulting R-filtered profinite group of R-GMLF-type by $\mathfrak{G}_{[1]}$.
(iv) If $\bar{p}(\mathfrak{G})=0$, set:
$s(\mathfrak{G}):=\max \left\{s_{G_{[1]}(\mathfrak{G}) / H}\left(\sigma_{H}\right) \mid H\right.$ is an open normal subgroup of $G_{[1]}(\mathfrak{G})$ of index $\left.\underline{p}(\mathfrak{G})\right\}$, where σ_{H} is a generator of $G_{[1]}(\mathfrak{G}) / H$. Then we define:

$$
e(\mathfrak{G}):=\frac{s(\mathfrak{G}) \cdot(\underline{p}(\mathfrak{G})-1)}{\underline{p}(\mathfrak{G}) \cdot\left[I(\mathfrak{G}): I\left(\mathfrak{G}_{[1]}\right)\right]} .
$$

(v) If $\bar{p}(\mathfrak{G})=0$, we define:

$$
b(\mathfrak{G}):= \begin{cases}0, & \left(G_{[1]}(\mathfrak{G}) \neq G\right) \\ 1, & \left(G_{[1]}(\mathfrak{G})=G\right)\end{cases}
$$

Proposition 3.6

Let K be a GMLF or GPLF. Then it holds that

- $I_{K}=I\left(\mathfrak{G}_{K}\right)$;
- $P_{K}=P\left(\mathfrak{G}_{K}\right)$;
- $G_{k_{K}}=\underline{G}\left(\mathfrak{G}_{K}\right)$;
- $p_{k_{K}}=p\left(\mathfrak{G}_{K}\right)$;
- $p_{K}=\bar{p}\left(\mathfrak{G}_{K}\right)$.

Moreover, if K is a GMLF, the following hold:

- $e_{K}=e\left(\mathfrak{G}_{K}\right)$;
- $b_{K}=b\left(\mathfrak{G}_{K}\right)$;
- $\mathfrak{G}_{K\left(\zeta_{p}\right)}=\left(\mathfrak{G}_{K}\right)_{[1]} ;$
where $p:=p_{k_{K}}=\underline{p}\left(\mathfrak{G}_{K}\right)$.
Proof.
The assertions for I_{K}, P_{K} and $G_{k_{K}}$ are immediate from definitions. The assertion for $p_{k_{K}}$ follows from Remark 1.2 and Definition 3.3. The assertion for p_{K} follows from the definition of $\bar{p}(\mathfrak{G})$. The assertion for e_{K} follows from Propositions 2.3, 2.4, the proof of the latter proposition and the definition of $e(\mathfrak{G})$. The assertion for b_{K} follows from Propositions 2.3, 2.4, the proof of the latter proposition and the definition of $b(\mathfrak{G})$. The last assertion follows from Propositions 2.3, 2.4, the proof of the latter proposition and Definition 3.5.

Remark 3.7

As was pointed out to the author by Shota Tsujimura, for a GMLF or GPLF K, it is possible to reconstruct the residue characteristic $p:=p_{k_{K}}$ of K from G_{K} (i.e., without using the ramification filtration) in the sense of mono-anabelian reconstruction. Indeed, if G_{K} is topologically finitely generated, then K is an MLF (cf. Propositions 1.13, 2.2 (iv)), and hence a mono-anabelian reconstruction algorithm of p is given in [Ho1, Proposition 3.6]. So, we may assume that G_{K} is not topologically finitely generated. We claim that p coincides with the unique prime number l satisfying the following condition:

For any open subgroup $H \subset G_{K}, H(l)$ is very elastic (i.e., elastic and not topologically finitely generated).

If K is a GMLF (which is not an MLF), by [MT2, Theorem A], the prime number p satisfies the above condition. On the other hand, if K is a GPLF, Proposition 2.2 (iv) shows that p satisfies the above condition. Consider the case where $l \neq p$. Set $L:=K\left(\zeta_{l}\right)$ (possibly equal to K), where $\zeta_{l} \in K^{\text {sep }}$ is a primitive l-th root of unity. Let J_{L} be the image of the natural homomorphism $I_{L}(l) \rightarrow G_{L}(l)$. Then J_{L} is a topologically finitely generated closed normal subgroup of $G_{L}(l)$ (note that $I_{L}(l) \simeq \mathbb{Z}_{l}$ (cf. Remark 1.2)). However, it is clear that J_{L} is not trivial (consider the extension $L\left(\pi_{L}^{\frac{1}{L}}\right)$, where π_{L} is a uniformizer of $L)$. Therefore, $l(\neq p)$ does not satisfy the above condition.

Proposition 3.8

For $i=1,2$, let $\mathfrak{G}_{i}=\left\{G_{i}^{v}\right\}_{v \in \mathbb{R} \geq-1}$ be an R-filtered profinite group of R-GMLF or R -GPLF-type, and G_{i} the underlying profinite group of \mathfrak{G}_{i}. Suppose that there exists an open homomorphism $\alpha: \mathfrak{G}_{1} \rightarrow \mathfrak{G}_{2}$ of R-filtered profinite groups.
(i) It holds that $\underline{p}\left(\mathfrak{G}_{1}\right)=\underline{p}\left(\mathfrak{G}_{2}\right)$ and $\bar{p}\left(\mathfrak{G}_{1}\right)=\bar{p}\left(\mathfrak{G}_{2}\right)$. In particular, \mathfrak{G}_{1} is of R-GMLF (resp. R-GPLF)-type if and only if \mathfrak{G}_{2} is.
(ii) Suppose that at least one of the \mathfrak{G}_{i} is (hence both of the \mathfrak{G}_{i} are) of R-GMLF-type. Then it holds that

- $b\left(\mathfrak{G}_{1}\right) \geq b\left(\mathfrak{G}_{2}\right)$;
- $e\left(\mathfrak{G}_{1}\right) \geq e\left(\mathfrak{G}_{2}\right)$.

Proof.

Since α is open and $P\left(\mathfrak{G}_{i}\right)$ is a non-trivial pro- $\underline{p}\left(\mathfrak{G}_{i}\right)$-group, the assertion (i) for $\underline{p}\left(\mathfrak{G}_{i}\right)$ follows immediately. Set $p:=\underline{p}\left(\mathfrak{G}_{1}\right)=\underline{p}\left(\mathfrak{G}_{2}\right)$. Then $\bar{p}\left(\mathfrak{G}_{i}\right)(i=1,2)$ is either 0 or p. So, the assertion (i) for $\bar{p}\left(\mathfrak{G}_{i}\right)$ follows from Proposition 2.7.

Next, we consider the assertion (ii). Set $H:=\alpha\left(G_{1}\right)$. Then H is an open subgroup of G_{2}, and \mathfrak{G}_{2} determines a filtration of R-type on H. We shall denote the resulting R-filtered profinite group of R-GMLF-type by \mathfrak{H}. Then α decomposes into a surjection $\mathfrak{G}_{1} \rightarrow \mathfrak{H}$ and an injection $\iota: \mathfrak{H} \rightarrow \mathfrak{G}_{2}$ of R-filtered profinite groups. By definition, it is clear that $b\left(\mathfrak{G}_{1}\right) \geq b(\mathfrak{H})$. In the case where $b(\mathfrak{H})=1$, it follows immediately that $e\left(\mathfrak{G}_{1}\right) \geq e(\mathfrak{H})$. If $b(\mathfrak{H})=0$, by considering $\mathfrak{H}_{[1]}$ and the inverse image of $\mathfrak{H}_{[1]}$ in \mathfrak{G}_{1}, the inequality $e\left(\mathfrak{G}_{1}\right) \geq e(\mathfrak{H})$ follows also in this case. Let K be a GMLF such that there exists an isomorphism of R-filtered profinite groups $\varphi: \mathfrak{G}_{K} \rightarrow \mathfrak{G}_{2}$, and L the finite extension of K corresponding to $\varphi^{-1}(H)$. Then we have the following commutative diagram:

Clearly, we have that $b_{L} \geq b_{K}$ and $e_{L} \geq e_{K}$. Therefore, by Proposition 3.6, we obtain the following:

$$
b(\mathfrak{H})=b\left(\mathfrak{G}_{L}\right)=b_{L} \geq b_{K}=b\left(\mathfrak{G}_{K}\right)=b\left(\mathfrak{G}_{2}\right)
$$

Moreover, we also have a similar inequality for $e(\mathfrak{H})$ and $e\left(\mathfrak{G}_{2}\right)$. This completes the proof of the assertion (ii), hence of Proposition 3.8.

The following two theorems give mono-anabelian reconstruction algorithms of the isomorphism classes of GMLF's under certain conditions:

Theorem 3.9

Let K be a GMLF with (perfect) residue field $k\left(:=k_{K}\right)$ and K_{0} the quotient field of the Witt ring with coefficients in k. Set $p:=\operatorname{char} k=p\left(\mathfrak{G}_{K}\right)$ (cf. Proposition 3.6). Suppose that there exists an R-filtered open subgroup \mathfrak{H} (with underlying profinite group H) of \mathfrak{G}_{K} satisfying the following conditions:
(a) $\left[G_{K}: H\right]=\left[I\left(\mathfrak{G}_{K}\right): I(\mathfrak{H})\right]$.
(b) $e(\mathfrak{H})=p-1$.
(c) $b(\mathfrak{H})=1$.

Set $L_{0}:=K_{0}\left(\zeta_{p}\right)$. Define a field $K\left(\mathfrak{G}_{K}\right)$ as the unique intermediate field of L_{0} / K_{0} such that $\left[K\left(\mathfrak{G}_{K}\right): K_{0}\right]=e\left(\mathfrak{G}_{K}\right)$. Then we have $K \simeq K\left(\mathfrak{G}_{K}\right)$.

Proof.
Let L be the finite extension of K corresponding to \mathfrak{H}. By the assumption on \mathfrak{H}, in light of Proposition 3.6, it is immediate that $L \simeq L_{0}$. Hence K is isomorphic to an intermediate field of L_{0} / K_{0}. On the other hand, since L_{0} / K_{0} is a totally ramified cyclic extension, $K\left(\mathfrak{G}_{K}\right)$ as in the statement is the unique intermediate field of L_{0} / K_{0} such that $e_{K\left(\mathfrak{G}_{K}\right)}=e\left(\mathfrak{G}_{K}\right)=e_{K}$ (cf. Proposition 3.6). This completes the proof of Theorem 3.9 .

Theorem 3.10

Let K be a GMLF with algebraically closed residue field $k\left(:=k_{K}\right)$ and K_{0} the quotient field of the Witt ring with coefficients in k. Set $p:=\operatorname{char} k=p\left(\mathfrak{G}_{K}\right)$ (cf. Proposition 3.6). Suppose that $e\left(\mathfrak{G}_{K}\right)$ is prime to p. Define a field $K\left(\mathfrak{G}_{K}\right)$ as $K_{0}\left(p^{\frac{1}{e\left(\mathfrak{G}_{K}\right)}}\right)$. Then we have $K \simeq K\left(\mathfrak{G}_{K}\right)$.
Proof.
This theorem is proved in a similar way to the proof of Theorem 3.9. (Note that, since k is algebraically closed, for $n \in \mathbb{Z}_{>0} \backslash p \mathbb{Z}_{>0}, K_{0}$ has only one tamely ramified extension $K_{0}\left(p^{\frac{1}{n}}\right)$ of degree n.)

The above two theorems give the following two bi-anabelian results:

Theorem 3.11

For $i=1,2$, let K_{i} be a GMLF with (perfect) residue field $k_{i}\left(:=k_{K_{i}}\right)$. Suppose that the field k_{1} is isomorphic to the field k_{2}. Set $p:=\operatorname{char} k_{1}=\operatorname{char} k_{2}=p\left(\mathfrak{G}_{K_{1}}\right)=p\left(\mathfrak{G}_{K_{2}}\right)(c f$. Proposition 3.6). Suppose that, for $i=1,2$, there exists an R-filtered open subgroup \mathfrak{H}_{i} (with underlying profinite group H_{i}) of $\mathfrak{G}_{K_{i}}$ satisfying the following conditions:
(a) $\left[G_{K_{i}}: H_{i}\right]=\left[I\left(\mathfrak{G}_{K_{i}}\right): I\left(\mathfrak{H}_{i}\right)\right]$.
(b) $e\left(\mathfrak{H}_{i}\right)=p-1$.
(c) $b\left(\mathfrak{H}_{i}\right)=1$.

Then the following conditions are equivalent:
(I) The field K_{1} is isomorphic to the field K_{2}.
(II) There exists a surjective and quasi-injective homomorphism $\mathfrak{G}_{K_{1}} \rightarrow \mathfrak{G}_{K_{2}}$ of R filtered profinite groups.
(III) There exists an isomorphism $\mathfrak{G}_{K_{1}} \xrightarrow{\sim} \mathfrak{G}_{K_{2}}$ of R-filtered profinite groups.

Proof.
The implication $(\mathrm{I}) \Longrightarrow(\mathrm{II})$ is immediate. (Note that, for $i=1,2, \mathcal{O}_{K_{i}}$ is uniquely determined by K_{i}.) The implication (II) \Longrightarrow (III) follows from Proposition 2.13. The implication $(\mathrm{III}) \Longrightarrow(\mathrm{I})$ follows immediately from Proposition 3.6 and Theorem 3.9.

Theorem 3.12

For $i=1,2$, let K_{i} be a GMLF with algebraically closed residue field $k_{i}\left(:=k_{K_{i}}\right)$. Suppose that the field k_{1} is isomorphic to the field k_{2}. Set $p:=\operatorname{char} k_{1}=\operatorname{char} k_{2}=\underline{p}\left(\mathfrak{G}_{K_{1}}\right)=$ $p\left(\mathfrak{G}_{K_{2}}\right)$ (cf. Proposition 3.6). Suppose that, for $i=1,2$, $e\left(\mathfrak{G}_{K_{i}}\right)$ is prime to p. Then the following conditions are equivalent:
(I) The field K_{1} is isomorphic to the field K_{2}.
(II) There exists a surjective and quasi-injective homomorphism $\mathfrak{G}_{K_{1}} \rightarrow \mathfrak{G}_{K_{2}}$ of R filtered profinite groups.
(III) There exists an isomorphism $\mathfrak{G}_{K_{1}} \xrightarrow{\sim} \mathfrak{G}_{K_{2}}$ of R-filtered profinite groups.

Proof.
The implication $(\mathrm{I}) \Longrightarrow(\mathrm{II})$ is immediate. (Note that, for $i=1,2, \mathcal{O}_{K_{i}}$ is uniquely determined by K_{i}.) The implication (II) \Longrightarrow (III) follows from Proposition 2.13. The implication (III) \Longrightarrow (I) follows immediately from Proposition 3.6 and Theorem 3.10.

Finally, for future work, we formulate Isom and Hom-versions of Grothendieck conjectures for GMLF's and the absolute Galois groups with ramification filtrations:

Question 3.13

For $i=1,2$, let K_{i} be a GMLF. Then do the following assertions hold?
(i) Write $\operatorname{Isom}\left(K_{2}, K_{1}\right)$ for the set of isomorphisms from K_{2} to $K_{1}, \operatorname{Isom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)$ for the set of isomorphisms of R-filtered profinite groups from $\mathfrak{G}_{K_{1}}$ to $\mathfrak{G}_{K_{2}}$ and $\operatorname{Inn}\left(\mathfrak{G}_{K_{2}}\right)$ for the set of inner automorphisms of $\mathfrak{G}_{K_{2}}$. Set $\operatorname{Out}{ }^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right):=$ $\operatorname{Isom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right) / \operatorname{Inn}\left(\mathfrak{G}_{K_{2}}\right)$. Then the natural map

$$
\operatorname{Isom}\left(K_{2}, K_{1}\right) \rightarrow \operatorname{Out}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)
$$

is bijective.
(ii) Write $\operatorname{Hom}\left(K_{2}, K_{1}\right)$ for the set of homomorphisms from K_{2} to $K_{1}, \operatorname{Hom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right)$ for the set of homomorphisms of R-filtered profinite groups from $\mathfrak{G}_{K_{1}}$ to $\mathfrak{G}_{K_{2}}$ and $\operatorname{Inn}\left(\mathfrak{G}_{K_{2}}\right)$ for the set of inner automorphisms of $\mathfrak{G}_{K_{2}}$. Then the natural map

$$
\operatorname{Hom}\left(K_{2}, K_{1}\right) \rightarrow \operatorname{Hom}^{\mathrm{R}}\left(\mathfrak{G}_{K_{1}}, \mathfrak{G}_{K_{2}}\right) / \operatorname{Inn}\left(\mathfrak{G}_{K_{2}}\right)
$$

is bijective.

Remark 3.14

If (ii) of Question 3.13 is affirmative, then clearly (i) of Question 3.13 is affirmative.

Remark 3.15

(i) and (ii) of Question 3.13 for MLF's (and similar assertions for PLF's) are known affirmatively (cf. [Mo2, Theorem 4.2], [A1, Theorem A], [A2, Theorem A], Theorem 2.18 and Remark 2.20).

References

[A1] Victor A. Abrashkin, On a local analogue of the Grothendieck conjecture, Internat. J. Math. 11 (2000), no. 2, 133-175.
[A2] Victor A. Abrashkin, Modified proof of a local analogue of the Grothendieck conjecture, J. Théor. Nombres Bordeaux 22 (2010), no. 1, 1-50.
[FW1] Jean-Marc Fontaine, Jean-Pierre Wintenberger, Le "corps des normes" de certaines extensions algébriques de corps locaux, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 6, A367-A370.
[FW2] Jean-Marc Fontaine, Jean-Pierre Wintenberger, Extensions algébriques et corps des normes des extensions APF des corps locaux, C. R. Acad. Sci. Paris Sér A-B 288 (1979), no. 8, A441-A444.
[Ho1] Yuichiro Hoshi, Introduction to mono-anabelian geometry, RIMS Preprint 1868 (January 2017).
[Ho2] Yuichiro Hoshi, Mono-anabelian reconstruction of number fields, RIMS Kôkyûroku Bessatsu B76 (2019), 1-77.
[Ho3] Yuichiro Hoshi, Topics in the anabelian geometry of mixed-characteristic local fields, Hiroshima Math. J. 49 (2019), no. 3, 323-398.
[Hy] Osamu Hyodo, Wild ramification in the imperfect residue field case, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math. 12, NorthHolland, Amsterdam, 1987, 287-314.
[MW] Robert E. MacKenzie, George Whaples, Artin-Schreier equations in characteristic zero, Amer. J. Math. 78 (1956), 473-485.
[MT1] Arata Minamide, Shota Tsujimura, Anabelian group-theoretic properties of the absolute Galois groups of discrete valuation fields, RIMS Preprint 1919 (June 2020).
[MT2] Arata Minamide, Shota Tsujimura, Anabelian group-theoretic properties of the pro-p absolute Galois groups of Henselian discrete valuation fields, RIMS Preprint 1952 (August 2021).
[Mo1] Shinichi Mochizuki, The profinite Grothendieck conjecture for closed hyperbolic curves over number fields, J. Math. Sci. Univ. Tokyo 3 (1996), no. 3, 571-627.
[Mo2] Shinichi Mochizuki, A version of the Grothendieck conjecture for p-adic local fields, Internat. J. Math. 8 (1997), no. 4, 499-506.
[Mo3] Shinichi Mochizuki, The local pro-p anabelian geometry of curves, Invent. Math. 138 (1999), no. 2, 319-423.
[Mo4] Shinichi Mochizuki, Topics surrounding the anabelian geometry of hyperbolic curves, Galois groups and fundamental groups, Math. Sci. Res. Inst. Publ. 41, Cambridge Univ. Press, Cambridge, 2003, 119-165.
[Mo5] Shinichi Mochizuki, The absolute anabelian geometry of hyperbolic curves, Galois theory and modular forms, Dev. Math. 11, Kluwer Acad. Publ., Boston, MA, 2004, 77-122.
[Mo6] Shinichi Mochizuki, Topics in absolute anabelian geometry I: generalities, J. Math. Sci. Univ. Tokyo 19 (2012), no. 2, 139-242.
[Mu1] Takahiro Murotani, A p-adic analytic approach to the absolute Grothendieck conjecture, Publ. Res. Inst. Math. Sci. 55 (2019), no. 2, 401-451.
[Mu2] Takahiro Murotani, A study on anabelian geometry of higher local fields, RIMS Preprint 1944 (March 2021).
[Nag] Masayoshi Nagata, Theory of commutative fields, Translations of Mathematical Monographs 125, American Mathematical Society, Providence, RI, 1993.
[Nak1] Hiroaki Nakamura, Rigidity of the arithmetic fundamental group of a punctured projective line, J. Reine Angew. Math. 405 (1990), 117-130.
[Nak2] Hiroaki Nakamura, Galois rigidity of the étale fundamental groups of punctured projective lines, J. Reine Angew. Math. 411 (1990), 205-216.
[NSW] Jürgen Neukirch, Alexander Shmidt, Kay Wingberg, Cohomology of number fields; Second edition, Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag, Berlin, 2008.
[Se] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics 67, Springer-Verlag, New YorkBerlin, 1979.
[T] Akio Tamagawa, The Grothendieck conjecture for affine curves, Compositio Math. 109 (1997), no. 2, 135-194.
[Wi] Jean-Pierre Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. École Norm. Sup. 16 (1983), no. 1, 59-89.
[Wy] Bostwick F. Wyman, Wildly ramified gamma extensions, Amer. J. Math. 91 (1969), 135-152.
[XZ] Liang Xiao, Igor Zhukov, Ramification of higher local fields, approaches and questions, St. Petersburg Math. J. 26 (2015), no. 5, 695-740.
(Takahiro Murotani) Department of Mathematics, Tokyo Institute of Technology, Tokyo 152-8551, Japan

E-mail address: murotani.t.aa@m.titech.ac.jp

[^0]: 2020 Mathematics Subject Classification. Primary 11S20; Secondary 11S15, 14G20, 14H30.
 Key words and phrases. anabelian geometry, complete discrete valuation field, Grothendieck conjecture, hyperbolic curve, mono-anabelian reconstruction, ramification filtration.

