
KIER DISCUSSION PAPER SERIES 

KYOTO INSTITUTE 

OF 

ECONOMIC RESEARCH 

Discussion Paper o. 1053 

"Optimal Minimax Rates of Specification Testing 

with Data-driven Bandwidth" 

Kohtaro Hitomi, Masamune Iwasawa and Y oshihiko ishiyama 

J anuary 2021 

KYOTO UNIVERSITY 

KYOTO, JAPAN 



Optimal !Iinimax R.ates of Specification Testing 

with Dat a-driven Bandwidth 

Kohtaro Hitomi* lVIasamune Iwasawat Yoshihiko ishiyamat 

January 29 2021 

*Kyo o Institu e of Technology, Matsugasaki , Sakyo-ku , Kyoto, 606- 5 5, JAP , hit
omi@ki .ac.jp 

tcorresponding au hor: !lasamune lwasawa, Department of Economics, Otaru Diversity of 
Commerce, 3-5-21 Midori, 0 aru, Hokkaido 047- 501, Japan, Tel:+ 1(0)134275324, masamune
iwasawa@res.o aru-uc.ac.jp 

lfustitute of Economic Research , Kyoto University, Yoshidahonmachi Sakyoku, Kyoto, 606-
501, J APA , nishiyama.yoshihiko.3u@kyoto-u.ac.jp 

1 



Abstract 

This study investigates optimal minimax rates of specification testing 

for linear and non-linear instrumental variable regression models . The rate 

implies that the uniform power of tests reduces when the dimension of instru

ments is large. The test constructed by non-parametric kernel techniques 

can be rate optimal when bandwidths satisfy two order conditions that de

pend on the dimensions of instruments and the smoothness of alternatives. 

Since bandwidths are often chosen in a data-dependent way in empirical 

studies, the rate optimality of the test with data-driven bandwidths are in

vestigated. Bandwidths selected by t he least squares cross-validation can 

satisfy conditions for the rate optimality. 

K eywords: optimal minimax rate; specification tes · instrumental variable re

gression; non-parametric kernel method; bandwidth selection 

JEL Classification: C12· C14 

4804 Words 

1 Introduction 

In t he context of specifica ion tests for the functional form of regression models 

he minimax approach can be used to investigate uniform power against a set of 

al ernatives (Ingster, 1993). In this approach a set of alternatives can be defined 

o approach t he null model at a specific rate. The maximum rate at which a test 

can uniformly de ect any alternatives in this set is called t he op imal minimax rate. 

Al hough the investigation of uniform power provides a deeper unders anding of 

specifica ion es ing, research in this area is limited. 
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The op imal minimax rates for regression models have been investigated by 

Guerre and Lavergne (2002). Recently a test based on the commonly used non

parametric K -nearest neighbors technique was shown to be rate opt imal (H. Li , Li 

& Liu, 2016). Hi omi, Iwasawa, and ishiyama (2020) showed t hat a test based 

on t he distance between non-parame ric and parametric variance estimators is 

rate optimal against a se of non-smoo h alternatives. However, optimal minimax 

rates of specification testing for other models, such as instrumen al variable (IV) 

regression models , and rate optimali y of o her types of tests such as kernel-type 

es s, have no been investiga ed. 1 

This study investigates t he optimal minimax rates of specification t esting for 

IV regression models. We find hat t he optimal minimax rate is n-2(s+k)/[lz+4(s+k)] 

where n is t he sample size s + k represents t he smoothness of alterna ives, as 

explained later in detail and lz is t he dimension of instrument z when t he set of 

al ernatives is smooth such t hat s + k ~ lz/ 4. The rate implies that t he uniform 

power of ests reduces when t he dimension of instruments is large. 

We adapt he kernel- ype test proposed by Zheng (1996) for IV regression mod

els. This test is based on t he non-parametric kernel est imator for the conditional 

mean of the error term given ins ruments. The proposed t est weakly converges 

to he s andard normal distribu ion under the null hypothesis and is ra e opti-
. s+k 

mal when bandwidth h for the kernel satisfies hmm{qk,k+Qz }l 2n 1z+4<•+k) = 0(1) and 
- 2 

h-1n 1z+4<•+kJ = 0 (1) where t he density of instruments is qz-times continuously 

different iable and the qkth-order kernel is used. 

In practice, bandwidths are often chosen by using data-driven methods such 

1 In the adaptive framework, in which he smoothness of the classes of alternatives is unknown, 
Horowitz and Spokoiny (2001 ) showed that their test based on non-parametric kernel techniques 
is rate optimal. This point will be discussed la er in detail . 
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as the least squares cross-valida ion. In he non-parametric kernel estimator for 

he regression function when the original bandwidth is replaced with one selected 

by a da a-driven method, asymptotic normality still holds if some additional as

sump ion are made (see Racine & Li 2004). However, it is not clear whether t he 

rate opt imality of the kernel-type t est remains t he same when data-driven band

wid hs are used. Thus we investiga e t he rate op imality of the kernel-type est 

when da a-driven bandwidths h are used instead of h. We find hat some addi-

ional assumptions regarding he kernel lead to parallel conditions on bandwidt hs 

hat , in turn ensure ha he test is ra e optimal. Furthermore we show t hat 

the conditions are satisfied by bandwidths selected by t he cross-validation when 

4(s + k) :-=; lz + 8 and min{qk k + qz}[lz + 4(s + k)] ~ 2(lz + 4)(s + k). This implies 

hat bandwidths selec ed by the leas squares cross-validation method can ensure 

hat he es is ra e optimal, although t he procedure is designed for estimation 

rather t han esting. In t his sense this s udy complements the results from Gao 

and Gijbels (2008), in which a bandwidt h selection method that maximizes the 

power against a Pi man-type local alternative is proposed. 

Specification tests for IV regression models were first developed by Donald 

Imbens, and ewey (2003) and Tripathi and Kitamura (2003). 2 Tripathi and 

Kitamura (2003) proposed a smoothed empirical likelihood ratio-based test. Fol

lowing Hardle and Mammen (1993) and Ait-Sahalia, Bickel and Stoker (2001) 

Holzmann (2008) proposed a est for IV regression models using the squared dis-

ance between the parame ric model and its non-parametric kernel estimates. The 

es proposed by Horowitz (2006) takes a form resembling t he IC I[ t est. G~rgens 

2For a recent review of he development of specification testing, see Gonzalez-Manteiga and 
Crujeiras (2013). 
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and \i\ iirt z (2012) proposed anot her type of t est based on a sequence of Lagrange 

mul iplier (L f) st atistics. However , opt imal minimax rates for IV regression mod

els in a fram ework comparable wit h Guerre and Lavergne (2002) have not been 

investiga ed o date. 

Specification es s tha use a non-parametric kernel estimat or are considered 

by Hardle and Mammen (1993), Zheng (1996), and Horowitz and Spokoiny (2001) 

among o hers. Horowit z and Spokoiny (2001) proposed a t est t hat is adaptive t o 

he unknown smoo hness of he set of alterna ives and showed t he rate optimality 

of t he test in the adap ive framework. T he authors consider a family of test statis

tics, say, {Tn(h), h E Hn}, where Hn represents finite set s of bandwidth values 

and t he cs s atistic is defined by T = maxhEHn Tn ( h). The adapt iveness and t he 

rate op imality of t heir t est result from i s use of t he set of bandwidt hs. T he choice 

of t he se is important also for empir ical studies since the larger the set is more 

intensive t he computation become. However , the bandwidth selection approaches 

commonly used in applied research , such as t he least squares cross-validation find 

a single bandwidt h. 3 T hus from t he pract ical point of view charact eris ics of 

he kernel- ype test with a single bandwidth is of great int erest . onetheless 

the ra e optimali y of t hese est s is yet to be formally validat ed in the lit erature. 

To he best of our knowledge his is t he first study t hat considers the optimal 

minimax ra e of the kernel- ype cs wit h data-driven bandwidths. It is notable 

that t he ra e optimali y of cst s wit h da a-driven bandwidths is not t rivial, even 

if t he opt imality of t ests wit h a determinis ic sequence of bandwidt hs has been 

investiga ed. The core con ribution of t his paper is o show hat t he test can be 

3To the bes of our knowledge, how to select an appropriate set of bandwidth values Hn is 
an open question. 



rate optimal when i is evalua ed with bandwidths select ed using the leas squares 

cross-valida ion method . 

The remainder of his paper is organized as follows. Section 2 introduces t he 

model and testing framework. Section 3 shows t he opt imal minimax rate for t he 

IV regression model. Section 4 proposes a kernel smoothing test and exemplifies 

its rat e opt imality under de erminis ic and data-driven bandwidths. Section G 

reports simula ion results tha demonst rat e the t est s encouraging finite sample 

performance. Following Horowitz (2006) the size and power proper ies of t he 

proposed tes are compared wi h t hose of various existing tests. Section 6 concludes 

the paper and discusses fu urc research avenues. 

2 Framework 

Le (Y, X , Z ) E ~ x ~l,, x ~lz be random variables. We consider parame ric models 

Y = g(X ,0) + u (1) 

where g(X , 0) is a known function defined up to paramet ers 0 E 8 8 is a compact 

subset of ~lo wi h l0 ::; lz, and u is an error term. The hypotheses t o be tested are 

H0 : E (u lZ ) = 0. 

The null hypothesis is equivalent t o saying t hat here exist s 00 E 8 that satisfies 

E (Y IZ) = E[g (X , 00)I Z] almost surely (a.s.) . The null hypo hesis considers regres

sion models when Z = X , and instrumental regression models when Z includes a 

subset of X , along wi h some other exogenous variables. 
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We examine t he asymptotic power properties of testing by employing t he min

imax approach of Ings er (1993) in which the alternative hypothesis is a set of 

funct ions belonging to a smoothness class. Let M L,s,k be a class of functions 

defined on a compact set rl , such t hat: 

{ 
k IID8m(x) - D13m(y)II } 

M L,s,k = m: L sup_ sup IID.Bm(x) II + sup sup II _ lls :::; L , 
j=O I.Bl=J xEn J.BJ=k x,yEn X Y 

This applies fo r some smoo hness index s E (0 1] a non-negative integer k and 

a positive cons ant L , where II · II denotes he Euclidean norm. D!3m(x) indicates 

1/3 1-times par ial derivatives of m(-). T hen the alternative hypothesis is defined 

as follows: 

Hn,1: M (pn) = { m(·) E M L,s,k : j~l E {[m(Z) - E[g(X 0) IZ]]2} 2': P~- } 

where m(Z ) E(YIZ). The minimax approach finds t he fastest rate at which Pn 

approaches 0, while assuring t he uniform detection of alternatives in M (pn)- The 

al ernatives considered in t his study are parallel to hose in Guerre and Lavergne 

(2002). 

The following nota ions are used t hroughout t he paper . The true parameter 

00 of the parametric model is defined such t hat m(Z) = E [g(X 00 )I Z]. We denote 

b0(Z ) m(Z ) - E [g(X, 0) IZ] and w Y - m(Z) where E(wlZ) = o by definit ion . 

The variance of u is denoted by a2 (z) - E(u2 IZ = z). For any -Jn-consistent 

estimator 0 of 0 residuals of he parametric model are denoted by u = Y - g(X, 0) . 
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3 Optimal Minimax Rate 

vVe list t he assumptions to establish t he optimal minimax rn e for N regression 

models. 

A ssumpt ion 1. {1'i , X i, Zi}l~1 are a random sample on (Y, X , Z) E IR x ffi.1x x ffi.12 , 

where lx and lz are finite. E (w2 IZ = z ) is continuously differentiable and bounded 

away from zero. A positive constant M < exists such that E (lwl 4IZ) < M 

almost surely. 

A ssumpt ion 2. The density of Z denoted by f(·) : JR.12 • JR., has compact 

support {without loss of generality [O , l jlz ), satisfies O < 1 :S f( z ) :S f < for 

any z E [O , 1]1z, and is qz-times continuously differentiable on (0 l )lz, where qz > l. 

A ssumpt ion 3. For each x, g(x 0) is twice continuously differentiable with respect 

to 0. 

A ssumpt ion 4. For each 0 E 8 , E[g(X , 0)4] is bounded from above. 

A ssumpt ion 5. E [sup0Ee II f0 g(X 0) 11 2] is bounded from above. 

A ssumpt ion 6. E [sup0Ee II 80i0,g(X 0)11 4] is bounded from above. 

A ssumpt ion 7. For each 0 E 8 , E[g(X 0)2IZ] < a.s. 

A ssumpt ion 8 . For each 0 E 8 E[g(X 0)IZ = z] E M LM ,s,k for some s , k , and 

LM :SL. 

A ssumpt ion 9. For each 0 E 8 , Go f0 E [g(X , 0)I Z = z] is Lipschitz continuous 

with respect to z with support on Z and E( G0G~) is non-singular. 
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A ssumption 10. Under the null hypothesis, we have a -Jn-consistent estimator 

0n of Bo . 

A ssumption 11. {i) For each m(·) E M L,s ,k, there exists a unique pseudo-true 

value 0;1 with respect to 0. 

{ii) y'ri, (0 - 0:n) = Op(l ) uniformly with respect tom( ·) E M L,s,k 

{iii) For each m( ·) E ML ,s,k and a bounded function h( · ·) , a positive constant c 

exists such that 110:n - Bo ll :::; c J JE[h(· z )800 (-)]lf(z)dz . 

Assumpt ions 1 o 9 are s andard in he literature (Guerre & Lavergne, 2002). 

Exceptions arc dominance conditions that is assumptions 5 and 6 which guar

an cc uniform convergence of¾ L~=i llg0g(Xi 0) 112 and ¾ L~=i llao~0,g(Xi, 0)1!2 

together wit h Assumption 3. T he dominance condi ions do not exclude he pos-

sibility tha g(-, 0) is linear, while linear models wit h unbounded regTessors (e .g., 

normally distribu ed regTessors) are excluded in Guerre and Lavergne (2002). T he 

dominance condition for the firs derivative is a standard assumption required for 

the asympto ic normality of commonly used estimators such as t he generalized 

method of moments (GMM). Assumpt ion 9 is a key assumption for t he existence 

of a parameter t hat satisfies infoEe E [8o(Z )2]. 

A sumpt ion 10 requires a -Jn-consistent parametric estimator 0n of 00 under 

he null hypothesis. Assump ion 11 restricts the bchavior of t he estimator under 

the al crnative hypothesis. We illustrate t hese assumpt ions with two examples. 

For no ational simplicity, subscripts are omi ted. T hat is, Bn = 0 and 0:n = 0* in 

all equations where no confusion will arise from his simplification. 

Example 1. (GMM estimators) Note that the null model is defined in terms of 
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conditional moment restrictions, while the objective function of the GMM estimator 

is based on a finite number of unconditional moment restrictions. If g( ·) is linear 

in parameters and the dimensions of the parameter vector are equal to the dimen

sions of the instrument, the GMM {two-stage least squares) estimator based on a 

finite number of unconditional moment restrictions satisfies A ssumption 10 under 

regularity conditions (Hansen, 1982) . When g(·) is non-linear, however, the GMM 

estimator based on a finit e number of unconditional moment restrictions may be 

inconsistent (Dominguez €3 Lobato, 2004). The existence of the unique pseudo

true value in Assumption 11 (i) implicitly demands the identification condition 

that, for each m(·) E M L,s,k , Qm(0:n) < Qm(0) for all 0 E 8\0:n, where Qm(0) 

is the GMM objective function in the population. The uniformity in Assumption 

11 (ii) is essential for rate optimality and a similar condition is assumed in pre

vious studies of rate optimal testing (Guerre €3 Lavergne, 2002 Horowitz, 2006) . 

Further, the asymptotic behaviors of the GMM estimator in misspecified models 

depend on the weighting matrix. For example, Hall and Inoue {2003) showed that 

a fe;ed weighting matrix or a sequence of weighting matrices with ,Jn-asymptotic 

normality is required for the fa asymptotic normality of the GMM estimator. 

To investigate A ssumption 11 (iii), let us consider the first-order condition of the 

minimization problem for the GMM estimator, which is H~* W E (Zu*) = 0 where 
1n 

Ho E [Z 8~,g(X ,0)], W is a lz x lz weighting matrix, and u* Y - g(X 0:n). 

Applying the mean value theorem to the first-order condition yields 

(2) 

where 0 is a segment between 0:n and 00 . Thus, given the existence of the inverse 
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of H~* W H0, we obtain IIB:n - Ba ll ~ clE[h(Z }500 (Z)] I, where h (Z ·) = Z and 
m 

C = ll(H~;;. WH0)-1 IIIIH0;;.ll lllVII < 

Example 2 . Estimators using a continuum of unconditional moment restrictions 

such as those defined in Carrasco and Florens {2000) and Dominguez and Lobato 

{2004) are known to be ,Jn-consistent under the null hypothesis. Let us con

sider the estimator described by Dominguez and Lobato {2004) . The pseudo-true 

value B:n of the estimator is defined as the minimizer B E 8 of J E l[m(Z) -

g(X , B) ]]_ { Z ~ z } l2 f( z )dx. The first-order condition of the minimization problem 

is J E{ [m( Z ) - g(X B:n)]ll { Z ~ z }} H0;,, (z )f(z )dx = 0, where we define H0(z ) 

E [g0g(X , B)]. {Z ~ z}]. Applyingthemeanvaluetheoremyieldsm(Z )- g(X , B:n) = 

m(Z ) - g(X , B0 ) - 8~,g(X, 0) (B:n - B0 ) where B is the segment between B;n and B0 

which implies 

(07n - Bo) = [/ Ho;:, (z) Ho(z)' f (z)dx ]-! / E[0,0 (Z )li { Z S z ) ]H,~ (z) f (z)dx . 

(3) 

Thus, given the existence of the inverse of E [Ho;,. (Z )H0(Z )'], we obtain, for some 

constant c > 0, II B:n - Boll~ c f IE [o00 (Z )h(Z z )]lf(z)dx where h(Z z ) = ].{ Z ~ 

z}, since H0;J z) is bounded by A ssumption 5. 

The fo llowing Theorem shows the opt imal minimax rate of specification t est ing 

for IV regression models. 

Theorem 1. (Optimal Minimax Rate) Suppose A ssumptions from 1 to 11 hold. 

Ifs+ k ~ lz/4, the optimal minimax rate against Hn,l is n-2(s+k)/ [lz+4(s+k)] _ 

To prove the optimal minimax rate we first show t hat no t est has more 
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han t rivial uniform power against M (j5n) for any Pn that approaches zero faster 

han n-2(s+k)/[l z+4(s+k)]_ T his is called the lower bound. Then we modify t he 

es proposed by Guerre and Lavergne (2002) for IV regression models and show 

hat t he modified es has non-trivial uniform power against M (pn), where Pn = 

n-2(s+k)/ [lz+4(s+k)]_ The proof is given in Appendix A. 

Theorem 1 shows hat the optimal minimax rate n-2(s+k) /[lz +4(s+k)] depends 

on t he dimension of ins ruments and t he smoothness of t he set of alternatives. 

T he ra e implies t hat the uniform power of t ests reduces when the dimension of 

ins ruments is large. 

Theorem 1 considers the case of smooth al ernatives (s + k 2:'. lz/4). W hen s + 

k < lz/4, the lower bound is n-1/ 4 as shown in Appendix A. However t he opt imal 

minimax ra e is unknown because no specification tes is shown to have non-trivial 

uniform power against such irregular non-smooth alternatives when evaluated with 

n-1/ 4 _ Guerre and Lavergne (2002) argued t hat against such irregular alternatives 

he op imal minimax rate may differ from n-1/ 4 and may depend on the smoothness 

of alt ernative classes. Hitomi et al. (2020) showed the set of non-smooth functions 

against which t he opt imal minimax rate is n-1/ 4 _ Their non-smooth alternative 

consists of bounded func ions and no smoothness restrict ions are imposed on t hose 

derivatives. 
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4 Smoothing-type Test 

vVe adapt he es proposed by Zheng (1996) for IV regression models. The test 

is based on t he sample analogue of E[u E (ul Z )f(Z )]. We define 

where K (-) is a product kernel function (e.g. a Gaussian kernel) that satisfies he 

assumption below and h is t he smoothing parameter (bandwidth). 

A ssumpt ion 12 . We have a qkth-order symmetric kernel k(-) with qk ~ 2 that 

satisfies J k(u)du = 1, J lk(u)l du < oo supu lk(u)I < , and luk(u)I • 0 if 

u • . The product kernel is denoted by K (-) = k(-)k( -) · · · k( -). 

The asymp otic normali y of t he test statistic n hlzf2Tn under H0 is shown 

in Theorem 1 of Zheng (1996) under he regression set up. This result can be 

extended to he IV regTession set up by making minor modifications to t he proof. 

We res ate he asymptotic normali y results under t he current set up as follows: 

P roposit ion 1. {Asymptotic Normality) Suppose Assumptions 1, 2, 3, 5, 6, 10, 

and 12, hold. If h • 0 and nhlz • , under the null hypothesis, nhlzl2Tn con-

verges weakly to N(O I:), where I: 2 J K (u)2du J[o-2(z)]2 f (z)2dz . The asymp

totic variance I: can be consistently estimated by 

n ( )2 t = 2 ~ ~ J_K zj - zi u%2 _ 

n(n - 1) D D J-,,lz h i J 
i=l jc/ci 

The es is one-sided . The null hypo hesis is rejected when t -112n h1zl2Tn ~ Zo: 

where Zo: i the 1 - a quantile of the s andard normal distribution. 
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The null hypothesis will be rejected if here is misspecification when instru

men s are valid. To see t his , decompose t he test using ui = [½ - g(Xi, 0*)] + 

[g(Xi, 0*) - g(Xi, 0)]. The term that includes [½ - g(Xi, 0*) ][1j - g(Xj 0*) ] con

verges to he normal distribut ion under t he null and diverges under t he alternative. 

T he remaining terms include g(Xi, 0*) - g(Xi, 0), which is asymptotically negli

gible under Assump ion 10 or 11 with differentiability of g(Xi , ·). T he existence 

of valid instruments is implicitly assumed. As long as ins ruments are valid, t he 

source of power comes from t he L2-distance between m(Zi) and E[g(Xi 0*)1Zi] in 

he first term. When ins ruments are invalid, however, biased parameter estimates 

con aminate t he source of power. In this case t he rejection of the null hypothesis 

may be caused by invalid instruments misspecification or both . 

The following theorem shows that t he test is rate optimal when s + k > lz/4. 

Theorem 2. (Rate Optimality) Suppose Assumptions 1, 2, 3, 5, 7, 8, 11 , and 

12 hold. Let Pn = n-Z(s+k)/[lz+4(s+k)J, s + k ~ lz/4, and the bandwidth h satisfies 

prescribed bound f3 E (0, 1 - a), a constant K, exists such that 

sup P (nhlz/Z't,-lfZTn::; z0 ) ::; (3 + 0(1). 
mEM(1,,pn) 

Theorem 2 shows the orders of bandwidths t hat ensure t he rate optimality of 

he proposed test. Unfor unately however t hey do not disclose t he value of h and 

hus , in practice, t he choice of t he bandwidth may rely on data-driven me hods. 

Note hat data-driven bandwid hs are random variables. It is not trivial whether 

T heorem 2 holds analogously for the test wit h a data-driven bandwidth h. 
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Let Tn(h) be a version of Tn , in which h is replaced by h; t hat is 

" 1 ~ "' 1 (Z·-Z) T,i(h) = ( ) ~ ~ -,_ K 1 ,_ i u(uj. 
n n - 1 hlz h 

i=l #i 

(4) 

In t he same manner le E(h) be a version of E in which his replaced by h. 

The fo llowing proposit ion shows t hat the results of T heorem 3 hold analo

gously, even when h is replaced with a data-driven bandwidth h. In t he following 

proposi ion, he s-t h de1iva ive of t he kernel k is denoted by k(s). 

Theorem 3. Suppose the Assumptions in Theorem 1; Proposition 1 and Theorem 

2 hold. Let the kernel k be m -times differentiable. We assume that f( (s) ( zj~Z; ) 
hs :;.K ( ZJ~Z; ) satisfies J IK(s)(u) ldu < supu IK (s)(u) I < and luK (s)(u)I • 

0 ifu • for all s = 1, ... , m. In addition, suppose that h = h0 + op(h0 ) for 

some deterministic sequence h0 that converges to zero and Ji-tz(h/h0 - l )m = op( l ). 

Then, the test with a data-driven bandwidth t(Ji)-112n h,lzl 2Tn(h) is rate optimal 

min{qk k+q }/2 s+k ( ) 1 - 2 ( ) when ho satisfies ho ·, z n 1z+4 (s+k) = 0 1 and ho n 1z+•l( s +k) = 0 1 . 

We show hat t he bandwidths selected by t he least squares cross-valida ion can 

satisfy t he conditions in Theorem 3. T his method is one of t he most widely used 

selec ion methods in which one selects h t hat minimizes 

n 

CV(h) = L [¾ - m-i(Zi)]2w(Zi), (5) 
i=l 

where m_i(Zi) = L N,i K ( z1 ~Z; ) ~/ L N,i K ( zj~Z; ) is t he leave-one-out kernel 

estimator of m(Zi), and O ~ w(·) ~ 1 is a weight function. Let hcv deno e t he 

value of h selected by cross-valida ion. It is well known t hat a unique, positive 

and finite sequence h0 exists such t hat hcv = h0 + op(h0 ) where ho = O(n-I/(lz+4)) 

L..> 



(see Theorem 2.3 of Q. Li & Racine, 2007) and hcv/h0 - 1 = Op(n-min{lz/2 ,2}/(4+lz) ) 

(see Theorem 2.2 of Racine & Li, 2004). T hen , t he following corollary holds. 

Corollary 1. For a sufficiently smooth kernel such that lz < mmin{lz/2, 2} and 

k ~ 2, the bandwidth chosen by cross-validation satisfies h-;;/;z ( hcv / ho - 1 )m = 

op(l) . Moreover, the test statistic evaluated with the bandwidth chosen by the cross

validation method t(hcv) - 1!2nf1,lzl 2T,i(hcv) is rate optimal when 4(s + k) ::::; lz + 

and min{qk , k + qz} [lz + 4(s + k)] ~ 2(lz + 4)(s + k). 

Corollary 1 shows tha t he est evaluated with hcv has rate optimal uniform 

power under hese wo conditions. Let us consider a higher-order kernel such t hat 

min { qk, k + qz} = k + qz. Then he second condition holds when t he density of Zi 

is sufficiently smoo h , such t hat qz ~ 3 - k for lz = {1 , 2} qz ~ 4 - k for lz = {3, 4} 

and so on. When he first condit ion is satisfied the second condition is satisfied for 

any lz , when qz ~ 10 (see Appendix for the derivation of the sufficient condition) . 

T he firs condit ion 4( s + k) ::::; lz + 8 implies t hat rate optimality is achieved only 

against he set of alt ernatives that are not too smooth. Intuitively, t his condi ion 

arises because the optimal minimax rates depend on t he smoothness of alternatives 

(whereby he ra e is faster for smoother alternatives), while t he convergence rate 

of hcv = ho + op(n-l/(lz+4)) does not depend on t his smoothness. T his condi ion 

substan ially restricts the cases in which Tn(hcv) is rate optimal. In practice 

however bandwidths selec ed by he cross-validation method can perform well in 

terms of size and power , as shown in the simulation study below. 
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5 Simulation 

The simula ion aims to investiga e and compare the size and power of several 

es s. We adapt he simulation set up of Horowitz (2006) so that the results are 

comparable wi h existing specification tests for ins rumen al variable regression 

models, including ICM-type tests (Bierens 1982 and Bierens & Ploberger, 1997) 

and Horowitz (2006) and he exponential tilting test of Donald et al. (2003). 

We test t he null hypotheses t hat 

g(x) = f3o + f31x, 

and 

g(x) = /3o + f31x + f32x2. 

The true models are (7) if (6) is H0 and 

if (6) or (7) is H0 . 

Data are genera ed by 

X = <I> (pv1 + (1 - p2)112v2) , 

Z = <I> (v1) , 

U = 0.2<l> ( 'f"/V2 + (1 - ry2)1f 2v3) 

(6) 

(7) 

(8) 

where <I> ( -) is the standard normal dis ribution function. v1 v2 and v3 are drawn 
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randomly from N(O, 1). 

Ou comes are genera ed by y = g(x) + u. In all experiments, /30 = 0 and 

/31 = O.v. When (7) i the correct model, /32 = - 0.5. \ i\Then (8) is the correct 

model, /32 = - 1, /33 = 1 if (6) is H0 , and /33 = 2 if (7) is H0 . 

There are two parameters p and T/ for which t he values vary among experi

ments. T he paramet er p balances the strengths of endogeneity and instrumental 

relevance. rJ modulates the exogenous component in ui . We consider three sets of 

data genera ing processes (DGPs) called DGP 1, DGP 2 and DGP 3: DGP 1: 

p = 0.8 and 'r/ = 0.1; DGP 2: p = 0.8 and T/ = 0.5· DGP 3: p = 0.7 and T/ = 0.1. 

In this experiment , X is endogenous and is instrumented by Z . The instru

mcn s to estimate (6) and (7) arc (1 Z ) and (1 Z Z 2 ) respectively. 

The kernel is Gaussian k(v) = (21r)-112 exp (- v2/2). Bandwidths are selected 

by he least squares cross-valida ion denoted by hCl/. We also report results ob

ained using t he optimal bandwidth denoted by hopt that minimizes the leading 

erm of t he cross-validation objective function .4 ote that using t he opt imal band

wid h is infeasible in practice. 

Crit ical values are ob ained based on either the standard normal distribution 

or using the empirical distribution from B = 1000 simulation runs where he t est 

statistic in each simulation is computed using bootstrap observations as per Gao 

and Gijbels (2008). 5 T he sample size is n = 500 and the nominal level is 0.05. 

Size and power arc ob ained by M = 1000 simulation runs in each experiment . 

4 Although we know he DGP, the explicit form of the true IV regression function is not 
straightforward . Thus, op imal bandwidths are calculated using a random sample of size 150000. 

5A bootstrap sample is {Xi, Zi, Y/}f=l> where Y/ is generated by Y,_b = Y; + a~ e;, in which 
Y; are predicted values, au is he residual standard error from the IV estimator under the null 
hypothesis, and { e:} f=l is a sequence of random samples drawn from he standard normal 
distribution. 
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[Table 1 near here.} 

Table 1 shows t he simulation results. When H0 is true t he test t ends to under

reject t he null hypo hesis when critical values are obtained from the standard 

normal distribution. The under-rejections are severe for all set-ups , which may 

come from the well-known results t hat asymptotic approximations of IV estimators 

for linear models can be poor. In contrast the t est with hcv t ends to over-reject 

he null hypothesis when crit ical values are obtained by boo strapping. The size 

dis ortions reduce when the sample size is increased to n = 1000 as shown in 

he supplemental ma erial. The size is around the nominal level when opt imal 

bandwidths are employed. 

The power of Tn with hcv is close to 1 when the null is (6). The power of tes ing 

(7) against ( ) is remarkably low when DGP 3 is applied. Table 1 of Horowitz 

(2006) shows t hat the power of existing ests is low when DGP 3 is employed for 

all cases. Since he powers of ~ 1 is close to 1 even under DGP 3 when the null is 

(6), he kernel- ype t est can be considered to complement other existing tests. 

6 Conclusion 

This s udy shows hat t he op imal minimax rate for linear and non-linear IV re

gression models is n-2(s+k)/[lz+4(s+k)) when s + k 2:: lz/ 4 implying t hat rate opt imal 

results in Guerre and Lavergne (2002) hold for more general IV regTession frame

works, including linear models. The es nh}zl 2"t- 1l 2Tn based on non-parametric 

kernel techniques is rate opt imal when a deterministic sequence of bandwidt hs 
. s+k - 2 

satisfy hrrun{qk ,k+qz }l 2n 1z +4(s+ k) = 0(1) and h-1n 1z +4(s+k) = 0(1). foreover, if 

he test i evaluated wi h a data-driven bandwidth h t hat can be described by 
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h = h0 + op(h0 ) for some deterministic sequence ho it is also rate optimal when h0 

satisfies t he conditions above. Commonly applied bandwidth selection procedures 

such as t he least squares cross-validation method can satisfy these conditions. A 

simulation study furt her valida es hat he proposed t est can complement existing 

es s. 

A possible fu ure research direction is to consider the optimal minimax rate for 

specifica ion t est ing agains non-smooth alternatives (s + k ::; lz/4). Against such 

al ernatives) Guerre and Lavergne (2002) showed hat the optimal minimax rate 

is n-1/ if he structure of t he error variance condi ional on regressors is known. 

Without his additional struc ure however it is unknown if any t est exists t hat has 

non-t rivial uniform power against non-smooth alternatives. Using a different set 

of non-smoo h al ernatives Hitomi e al. (2020) showed that t he optimal minimax 

rate is n-114, and a test based on the difference between he non-parametric and 

parametric variance estima ors is ra e op imal even when t he structure of t he 

error va.J.·iance is unknown. However research in t his area is limited. 

Additionally, t he task of developing bandwidth selection procedures t hat max

imize the uniform power of specification t esting is left for future research. The 

power-maximizing selection procedure of Gao and Gijbels (200 ) is based on a 

sequence of local alt ernatives t hat approach the null model as the sample size in

creases. A selec ion procedure based on maximizing t he uniform power of testing 

is unknown. 

Acknowledgm ents : This work was supported by JSPS KAKE HI Grant 

Numbers 17K036v6 19H01473, 19K23186 20K01589 and J oint Usage and Re

search Project of Instit ut e of Economic Research , Kyoto University. We would like 

20 



o t hank Yoichi Arai Songnian Chen Andrew Chesher , Jesus Gonzalo Emmanuel 

Guerre, Hidehiko Ichimura, Hiroyuki Kasahara Kengo Kato Shakeeb Khan Toru 

Kitagawa, 1young-J ae Lee, Arthur Lewbel, Qingfeng Liu, Vadim tlarmer , Ya

sumasa Matsuda, Tomoya Ma sumoto Ryo Okui Peter Robinson, aoya Sueishi 

Shinya Tanaka Takuya ra, Yoshihiro Yajima, and the participants of t he several 

mee ings and conferences for t heir useful comments. 

References 

Ai -Sahalia, Y. , Bickel, P. J. & Stoker T . M. (2001). Goodness-of-fit tests for 

kernel regression wi h an applica ion to option implied volatilities. Journal 

of Econometrics, 105(2) , 363- 412. 

Bierens H. J. (1982). Consisten model specification tests. Journal of Economet

rics, 20{1), 105- 134. 

Bierens H. J. & Ploberger W. (1997) . Asymptotic t heory of integra ed condi

ional moment tests. Econometrica 65(5) 1129- 1151. 

Carrasco, M. & Florens J.-P. (2000). Generalization of GMM to a continuum of 

moment condi ions. Econometric Theory, 16(6), 797- 34. 

Dominguez, . A., & Lobato, I. . (2004). Consistent estimation of models defined 

by conditional moment rcs rictions. Econometrica 72(5), 1601- 1615. 

Donald , S. G. , Imbens, G. W ., & Newey W . K. (2003). Empirical likelihood 

estimation and consistent tests with conditional momen restrictions. Journal 

of Econometrics, 117(1), 55- 93. 

Gao, J. , & Gijbels, I. (2008). Bandwidth selec ion in nonparametric kernel testing. 

Journal of the American Statistical A ssociation, 103(484), 1584- 1594. 

21 



Gonzalez-Man eiga W . & Crujeiras, R. M. (2013) . An updated review of 

goodness-of-fit tests for regression models. Test 22, 361- 411. 

G~rgens, T. , & WiiI z, A. (2012). Testing a parametric function against a non

parametric al ernative in IV and GMM settings. Econometrics Journal 

15{3), 462- 489. 

Guerre, E ., & Lavergne, P. (2002) . Optimal minimax rates for nonparametric 

specifica ion testing in regression models. Econometric Theory , 18(5), 1139-

1171. 

Hall, A. R. , & Inoue, A. (2003). The large sample behaviour of he generalized 

method of moments estima or in misspecified models. Journal of Economet

rics, 114(2) 361- 394. 

Hansen, L. P. (1982). Large sample propert ies of generalized method of momen s 

estimators. Econometrica 5 0 ( 4), 1029- 1054. 

Hfu·dle, vV. , & ammen E. (1993) . Comparing nonparametric versus parametric 

regTession fits. Annals of Statistics 21 (4) 1926- 1947. 

Hi omi, K. , lwasawa, ., & ishiyama Y . (2020). Optimal minimax rates against 

non-smooth alternatives. KIER Discussion Paper Series No .1051 . 

Holzmann, H. (2008) . Testing parametric models in t he presence of instrumental 

variables. Statistics and Probability Letters, 78{6) 629--636. 

Horowi z, J. L. (2006). Testing a parametric model against a nonparametric 

al ernative with ident ification hrough instrumental variables. Econometrica 

74{2), v21- v38. 

Horowi z, J. L., & Spokoiny, V. G. (2001). An adaptive, rate-opt imal est of 

a parametric mean-regTession model against a nonparametric alterna ive. 

Econometrica, 69{3), 599- 631. 

22 



Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparamet

ric alterna ives. I, II III. Mathematical Methods of Statistics, 2(2) 85- 114. 

Li, H. , Li , Q. , & Liu R. (2016). Consistent model specification t est s based on 

k-nearest-neighbor es imation method. Journal of Econometrics 194 (1) 

187- 202. 

Li, Q. , & Racine, J. S. (2007). Nonparametric econometrics: Theory and practice. 

Prince on niversi y Press. 

Racine, J ., & Li, Q. (2004). onparame ric estimation ofregression functions wi h 

both cat egorical and con inuous da a. Journal of Econometrics 119(1) , 99-

130. 

Tripathi , G., & Kitamura Y . (2003). Testing conditional moment restrictions. 

Annals of Statistics 31 (6) 2059- 2090. 

Zheng, J. X. (1996). A consistent test of functional form via nonparametric 

estimation techniques. Journal of Econometrics 75(2) 263-289 . 

23 



APPENDIX A: Proofs 

A-1 Proof of Theorem 1 

To prove Theorem 1, three proposi ions that complete the proof are given be

low. Proposition Al shows he lower bound. We modify t he t est proposed by 

Guerre and Lavergne (2002) for IV regression models denoted by T,;!L. Asymp-

otic normality of ~f L under H0 is given in P roposition A2. Finally, Proposition 

A3 shows tha T,;!L ha non-trivial uniform power against Hn,I evaluated wi h 

n-2(s+k) /[lz+4(s+k )]_ P roofs of t he propositions are given in the supplemental mate

rial. 

Proposit ion Al. (Lower Bound) Suppose Assumptions 1 2 3 D 8 and 9 hold. 

Le Pn = n-2(s+k) /[l z+4(s+k) ] if s + k ;:::: lz/4 Pn = n-1/ 4 ifs+ k < lz/4. If each wi is 

N(0, 1) condit ionally upon Zi for any t est tn with supmEHo P (tn > Za) :s; a + o( l ) 

sup P(tn :s; Za) ;:::: 1 - a + o(l), whenever Pn = o(f3n) -
mEM(Pn ) 

Let h = IT~~1 [kj hn, (kj + l )hn) be dyadic cubes that part it ion the support of 

ins ruments Zi into K;: cubes where Kn is an integer hn 1/ Kn is t he bandwid h 

that determines t he number of cubes, and t he index k = ( k1 . . . k1z )' E K C JN1z 

satisfies 0 :s; kj :s; Kn - 1 for j = 1, ... , lz. 

Following Guerre and Lavergne (2002), a test statistic is based on the average 

of the estima ed parametric residuals ui in each cube: 
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where Nk I:::=1 ]_ { Zi E h} is the number of observations of instrumen s in h . 

The estimator of t he variance of T;!L is 

where t he second summation is taken over i and j =/= i that satisfies { Zi, Zj} E h 

hat is, L ZiEh x i = L~=l ]_ {Zi E Ik} Xi. 

Proposition A2. (Asympto ic ormality) Suppose Assumptions 1 2 3 5, 6, and 

10, hold, Kn • , and n/(K;: logK;: ) • . Under the null hypo hesis t he t est 

~fL /vn converges to N(O , 1) weakly. 

Proposition A3. (Ra c Op imality of T;;L) Suppose Assumptions 1, 2, 3 4 5 

6 7 8 and 11 hold Let p = n-Z(s+k)/ [lz+4(s+k)] s + k > l /4 and K = h-1 = ,,, · n , _ z, n n 

(>.p~/(s+k) )-1 fo r some constan >. > 0. For any prescribed bound /3 E (0, 1 - a) a 

constant i<i, exists such hat 

sup P(v;;,1T;;L ::; Za )::; /3 + o(l). 
mEM (1,, pn) 

A-2 Proof of Proposition 1 

Proof of Proposition 1. Using ui = ~ - g(Xi, 0) = g(Xi 0) - g(Xi 0) + ui the t est 

statistic can be decomposed as follows: 



Under the null hypothesis T1 converges to t he normal distribution T2 = op(l ) 

and T3 = op (l ), as shown in Lemmas 1 2, and 3 respect ively. The proof for 

the asymptotic normali y of T1 is consistent with hat for Lemma 3.3a of Zheng 

(1996). T2 and T3 include bo h covariates and instruments, which make the proof 

different from hat for the regression set-up in Zheng (1996). Proofs are given in 

the supplemcn al ma crial. 

Lemma 1. Under Assumptions 1, 2, and 12, T1 ~ N (0, 2JC(O)E{[CT2 (Z)] 2 f(Z)}) 

where JC (O) denotes the convolution product. 

Lemma 2. Under Assumptions 1, 2, 3, 6, 10, and 12, we have T2 = op(l) . 

Lemma 3. Under Assumptions 1, 2, 3, 5, 10, and 12, we have T3 = op(l). 

Lemma 4 shows hat E is a consis ent estimator for ~ under the null hypothesis. 

A proof of Lemma 4 is given in he supplemental mat erial. 

Lemma 4. Under Assumptions 1, 2, 3, 5, 10 and 12, we have E = ~ + op(l). 

• 
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A-3 Proof of Theorem 2 

Proof of Theorem 2. Proofs of all lemmas used in t his proof are given in t he sup-

plemental material. nder Hn 1 we have 
' 

n h1zl2 ~ ~ 1 (Z· -Z·) = n(n - 1) Lt Lt hlz K J h ,,, [½ - g(X i, 0*)][1'; - g(X i 0*)] 
i = l J#i 

2n hlzl2 ~ ~ 1 (Z· -Z·) A + n(n _ 1) Lt Lt hlz K 1 h ,,, [½ - g(X i, 0*)] [g (X i 0*) - g(X i 0)] 
i=l Jf1, 

n h1zl2 ~~ 1 (Z· -z) A A + n(n _ l ) Lt Lt h,lz K 1 h ,,, [g(Xi, 0*) - g(X i, 0)l[g(X i 0*) - g(X i 0)] 
i=l Jf1, 

(A .1) 

The convergence of (0 - 0*) = Op(n-1/ 2 ) in Assump ion 11 and other assumpt ions 

leads o A3 = op(l ). The fo llowing lemma holds for A2 . 

Lemma 5 . Suppose A ssumptions 2; 31 51 81 111 and 12 hold. Then1 A2 + A 3 = 

The probability limi of f; under Hn,l can be shown as follows. 

Lemma 6. Suppose A ssumptions 11 2 31 51 71 111 and 12 hold. Let O"i.(z i) 

E (ul21Zi) 1 where u; = ½ - g(X i 0*). Then under Hn,Ii we obtain f; = t+op(l )1 

where E = 2 J K (u)2 du E{[O"i.(z i)] 2 f (Zi )} is unif ormly bounded in m E M ("-Pn)-

These result s imply, for arbitrary small E a const ant C > 0 and z~ exist such 
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hat 

< sup P(A1::; z~ + ~{E[ot.(Zi)]}112C) + c. 
mEM(i,,pn) 

When E (A1 ) - z~ - ~{E[ot.(Zi)]}1!2C > 0 Chebyshev s inequality yields 

P (A- < z' + ~{E[o2 (Z )] }l/2C) < var(A1) 
l - a 0* i - [E (A1) - z~ - vn!Jz{E[oi.(z i)]}1/2C]2. 

(A.2) 

Thus, it suffices to show that the following inequalities hold uniformly in m E 

E (A1) - z~ - ~ {E[o:.(z i)]}112c > 0 

var(A1) < 
[E (A1) - z~ - vn!Jz{E[ot.(Zi)]}1/2C]2 - /3. 

First, we show (A.3). To this end, we decompose A1 as follows: 

(A.3) 

(A.4) 

nh1z/2 ~ ~ 1 (Z· -Z·) 
A1 = n(n _ l ) -8_ f;: htz K 1 h i [m(Zi) - g(Xi 0*)l[m(Zj) - g(Xj 0*) ] 

nh1z/ 2 n 1 (z -Z·) 
+ n(n - 1) L ~ hlz K J h i [m(Zi) - g(Xi 0*)]wj 

i=l Jf=i 

nh1z/2 ~~ 1 (Z · - Z-) + n(n - 1) 6 ~ hlz K J h i [m(Zj) - g(Xj, 0*)]wi 
i=l Jf=i 
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Obviously, we have E (A1 ,2) = E (A1,3) = E (A1,4) = 0. Let q min{qk k + qz} . A 

change of variables under Assumptions 2, 8, and 12 yields6 

E (A1,1) = nh-lzl2E [K (zj ~ z i ) 80.(Zi)80.(Zj)l 

= nh1zl2 E [80• (Zi)2 f (Zi) ] + 0 (nh}z/2+q)E [80.(Zi)]. (A.5) 

E (A1) - z~ - ~ {E[82.(Zi)]}1!2C 
nhlz/2 E[ 80• ( Zi)2] 

> nh1zl2E [80.(Zi)2][ + 0 (nh}z/2+q)E [80.(Zi)] - z~ - v'n1Jz{E[oi.(z i)]}1l 2C 
- nh}zl2E [8o*( Zi)2] 

~ j - ~o (hqn 1z!:i~k) ) - I_o (h-lzl2nlz+~t:+k)) - o(l ) 
- l'i, l'i,2 

~~~) ~~ 

where p~ = n 1z+4l•+kJ . When we chose h that satisfies bo h hq/2n 1z+4 <•+kJ = 0 (1) 
- 2 

and h-1n 1z+4 <•+kJ = 0 (1) the lower bound is increasing in K, and posit ive when K, 

and n are large enough, which implies equa ion (A.3). 

ext , we show equation (A.4). A1 is a second-order -statistic: 

A1 = nh-tz/2 2 ~ ~ K (zi - z i ) [½ - g(Xi 0*)l[Y:• - g(X · 0*)] 
n(n - 1) {--~ h 1 1 

i=l J <i 

2 n 

nh-lz/2 n(n - l ) LI: Hn(Wi Wj), 
i=l J <i 

6For the deriva. ion , see Lemma. ?? in the supplemental ma.teria.l. 
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where Wi = {½, Xi, Zi}. Let us define g(Wi) = Q(Wi) - Q where Q(Wi) 

E [Hn(Wi, Wi) IWi] and Q E[H11(Hli Hli)] and 77(Wi Wi) = Hn(Wi, Wi) - g(Wi) 

g(Wi) - Q, where E [g(Wi)] = 0, E[77(Wi Wi)] = 0 and E[77(Wi, Wi)77(Wi Wk)] = 0 

for j -=/= k. Then t he Hoeffding decomposition of second-order U-s atistics and 

some calculations yield 

= O(nh-1z)E[g(Wi)2 ] + O(h-1z) (E[Hn(Wi Wj)2] - Q2 - E[Q(Wi)2]) . 

(A.6) 

Equation (A.5) implies for any i -=/= j, = O(h1z) E[o0.(Zi)2] + O(htz+q)E[o0.(Zi)]. 

Since Q(Wi) = E[Hn(Wi, Wi) IWi] = [½- g(Xi 0*) ]E{K(zj~zi )[1'j - g(Xi 0*)]1Wi} = 

[½ - g(Xi, 0*)]E{K(zi ~zi )00. (Zi)IWi}, we have 

E[Q(W,)' J = E (1v. - g(X, 0')[2 {/ K ( z ~ z,) 08,(z)J (z)dz } ' ) 

= h21z E (a-i.(z i) {00.(Zi) f (Zi) + O(hq)} 2) 

= O(h21z E[o0.(Zi)2]) + O(h21z+2q) + O(h2lz+q) E [o0.(Zi)]), 

where a-2. (Zi) is bounded almost surely by Assumpt ions 1 and 7 under Hn,l Then 

E[g(Wi)2] = E [Q(Wi) 2 - 2Q(Wi)Q + Q2 ] = E[Q(Wi)2] - Q2 

~ O(h21z E[o0• (Zi)2]) + O(h21z+2q) + O(h2tz+q) E [o0• (Zi)]) . 
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A change of variables under Assump ions 1 2 7 and 12 yields 

These resul s together with equation (A.6) yield 

var(A1 ) ::; 0(nhtz)E[oo.(Zi )2] + 0(nh1z+2q) + 0(nh1z+q) E[oo. (Zi)] + 0 (1) 

+ 0(h1z)E[oo*(Zi)2]2 + 0(h1z+2q)E[oo. (Zi)]2, 

which implies 

------ < -0 n Lz+4(s+k) h2q + -0 ntz+4(s+k)h-lz . var(A1) 1 ( - tz+4(s+k) ) 1 ( - 2/z ) 

n2h}z E[o0• (Zi)2]2 - r,,4 r,,4 

The upper bound is a decreasing function of r,, , when h is chosen such t hat 
- lz/4+(s+ k) - 2 

n lz+4(s+k) hq/2 = 0 (1) and ntz+4(s+k) h-1 = 0(1). 

Therefore, equations (A.3) and (A.4) hold if the bandwidth value sa isfies the 

following condi ions: 

s+k / ntz+4(s+k) hq 2 = 0(1) 

- 2 
n tz+4(s+k) h-1 = 0(1). 

(A .7) 

(A.8) 

The source of power, represented by t he first term of the right hand side of 

equation (A.5), requires tha nh}z/2 E[oo. (Zi )2] ~ nh1zl2 p; = n1z/ [lz+4(s+k)] hlz/2 does 

not shrink, which constrains t he bandwidth to converge to zero at a rate slower 

han n-2/ [lzH(s+k)] _ This requiremen is reflected by condition (A.8) . Thus for 

example, we can choose he bandwidth t hat is h = cn-2/ [lz+4(s+k)] for some constant 
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c > 0, which satisfies condit ion (A.8) . T his choice of bandwidth also satisfies 
( s+k )-q (s+k) -min{qk ,k + qz } 

condi ion (A.7) when n 1z + 4 <• + k ) = n 1z+4 <•+k) = 0(1) , which holds when 

(s + k)::; min{qk, k + qz} which is equivalent to (s + k)::; qk since s < qz. 

• 

A-4 Proof of Theorem 3 

Proof. Proofs of all lemmas used in t his proof a.re given in the supplemental mate

rial. T heorem 2 shows he rate optimality of nhlzl2't,- 1!2Tn in which his treated 

as a deterministic sequence. Since da a driven bandwidths a.re random variables 

it is not t rivial whe her T heorem 2 holds analogously. Thus we first show t he rate 
h 

optimali y of testing in which h is replaced by a data-driven bandwidth h. To this 

end, we decompose t he test statistic as follows. 

h 

Le mma 7. Suppose Assumptions 1 5, 7, 11, and 12 hold. Let h be data-driven 

bandwidth such that h = h0 + op(h0 ) for some deterministic sequence h0 that con

verges to zero and i,,-lz(h/h0 - 1)111 = op(l) . We assume that the kernel k be m

times differentiable and f< (s) (z1~zi) hs:;. K (z1~zi) satisfies J lf<(s)(u) ldu < 

, supu lf<(s)(u)I < , and luf<(s)(u)I • 0 if u • oo for alls = 1 ... m. Then, 

the test statistic can be decomposed as follows . 

h 1o (' )
lz 

~ i(h) = l1, Tn(ho) + Op (Tn(ho)). (A.9) 

Lemma 7 and equation (A.1) imply that 

(A.10) 
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where .A1 = ( h0 /h) lz A1 + op(l )A1 and A = op(A2 + A3). 

The following lemma shows asymp otic behavior of the variance of t est statistic. 

Lemma 8 . Suppose A ssumptions 1, 2, 3, 5, 1, 11, and 12 hold let h be data

driven bandwidth such that h = h0 +op(h0 ) for some deterministic sequence h0 that 

converges to zero and 1-,,-lz(h / h0 - l )m = op(l ). We assume that the kernel k be m

tim es differentiable and f( (s) (zi;zi) hs:;. K (zi;zi) satisfies J IK(s)(u)ldu < 

, supu IK(s)(u) I < , and luk(s)(u)I • 0 if u • oo for alls = 1 .. . m. Then, 

we have 

These results and (h0 /Ji)lz(A2 + A3) = Op(~){E[c5i*(Zi)]}112 by Lemma;:, 

imply that, for arbitrary small E, a cons ant C > 0 and z~ exist such that 

sup P (nhlzl2[E(h) J- 112Tn(h) ~ z0 ) 

mEM("'Pn) 

sup P (.A1 ~ [E(/i)] 112z0 - ( ho/h) lz (A2 + A3) - .A) 
mEM (KPn) 

< sup P (A1 ~ z~ + ~{E[c55.(Zi)]}112C) + E. 
mEM("'Pn) 

Since A1 = [(h0 /h)lz + op(l)]A1 = [1 + op(l)]A1, for arbitrary small E, a constant 

c > 1 exists such hat 

when n i large enough. The right hand side of the above equation is equivalent 
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o t he left hand side of equation (A.2) up to t he constant c. Thus t he opt imal 

minimax rate of he est with stochastic bandwidt h Ii can be derived analogously 

o hat given in T heorem 2 which implies t hat t he test is rate optimal when h0 

satisfies nhk • and he following conditions: 

A-5 Proof of Corollary 1 

(A.11) 

(A.12) 

• 

Proof. It is well known that a unique posit ive, and finite sequence ho exists such 

hat hcv = h0 + op(h0 ), where h0 = O (n-l/(lz+4)) (see T heorem 2.3 of Q. Li & 

Racine 2007) and hcv / h0 - 1 = O p(n-min{lz/2,2}/ (Hlz) ) (see Theorem 2.2 of Racine 

& Li 2004). Thus, h-;/;z (hcv/h0 - l)m = Op n Lz+4 ( 
l z-Tn min {lz/2,2} ) 

which converges zero 

in probability when lz ::; m min{lz/ 2 2} . 

Recall hat ho = 0 ( n ,;~4 ) • Then first 

(A.13) 

which is 0 (1), if 4(s + k) ::; lz + 8. Second , 

(A.14) 

which is 0 (1), if min{qk, k + qz}[lz + 4(s + k)] 2:: 2(lz + 4)(s + k) . 
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Suppose t hat we use a higher-order kernel such that min{ qk k + qz} = k + qz. 

T hen (A.14) is 0 (1) if (k + qz)[lz + 4(s + k)] ?: 2(lz + 4)(s + k) , which holds if t he 

density of Zi is smoot h enough (qz is large enough). 

For example, if qz ?: 10, (A.14) is 0 (1) for any lz such that lz ::; 4(s +k) ::; lz+8. 

To see t hi , we replace 4(s + k) in he left hand side of (k + qz)[lz + 4(s + k)] ?: 

2(lz + 4)(s + k) wi h lz. T his yields a sufficient condition which is (k + qz)lz ?: 

(lz+4)(s+k). Simple calculation and using 4(s+ k) ::; lz+ yields qz ?: / lz+ s+ 1 

which holds as long as qz ?: 8/lz + 2. Substitut ing lz = 1 yields qz ?: 10. 

• 



Table 1 

Table 1: Size and power of T,1 wi h n = 500. 

Bootstrap Normal 

Ho H1 p 'fJ hcv hapt hcv hapt 

H0 is true 
(6) DGP 1 0.8 0.1 0.059 0.046 0.020 0.029 

DGP 2 0. 0.5 0.062 0.042 0.025 0.029 
DGP 3 0.7 0.1 0.05 0.050 0.01 0.02 

(7) DGP 1 0.8 0.1 0.067 0.050 0.016 0.018 
DGP 2 0.8 0.5 0.05 0.040 0.015 0.023 
DGP 3 0.7 0.1 0.076 0.044 0.018 0.019 

H0 is false 
(6) (7) DGP 1 0.8 0.1 1.000 0.934 1.000 0.902 

DGP 2 0.8 0.5 1.000 0.905 0.999 0. 61 
DGP 3 0.7 0.1 0.990 0.498 0.949 0.370 

(6) (8) DGP 1 0.8 0.1 0.999 0.842 0.999 0.781 
DGP 2 0.8 0.5 0.999 0.797 0.998 0.726 
DGP 3 0.7 0.1 0.972 0.192 0.944 0.147 

(7) (8) DGP 1 0.8 0.1 0.903 0.609 0.741 0.527 
DGP 2 0.8 0.5 0.886 0.506 0.717 0.437 
DGP 3 0.7 0.1 0.434 0.204 0.177 0.144 

Note: Critical values are obtained from bootstrapping (columns labeled by 
Bootstrap) and the normal distribution ( columns labeled by ormal). 
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Supplemental material for the paper entitled 

)) Optimal Minimax Rates of Specification Testing with Data-driven 

Bandwidth ' 

Supplemental Material: P roof of P ropositions 

S-1 P roof of P roposition A l 

The proof of Proposition Al goes along with that of Theorem 1 of Guerre and Lavergne 

(2002). 

Proof of Proposition Al. Let cp (-) be a map from ]Rlz to lR with support [0,p]lz for 

p > 0 that is infinitely differentiable, cp(z ) < for any z E [0, pjlz, J cp(z)dz = 0, and 

cp(-) E M (L- LM )/2,s,k· Guerre and Lavergne (2002) give an example that satisfies these 

conditions. 

We define the dyadic cubes that partition [0 , 1jlz into Kn(P)lz = [1/(Phn)]lz non

overlapping cubes, where intersections of any two cubes are empty and 1/(phn) is as

sumed to be an integer. 7 To define the cubes, let Kn(P) denotes a collection of all 

possible distinct values for "' = ("'1 . . . "'tJ' such that Kn(P) = { 1>: E 'ZZ}z : 0 ::; l>:j ::; 

1/(phn) - 1,j = 1, 2 ... , Zz}, which indicates that Kn(P) contains Kn(Piz elements. For 

K, E Kn(P) , we define IK,P = IT~~1[P"'Jhn,P("'J + l)hn). Then, LJKEKn(p) IK,P = [0, l ]lz and 

IK,P n Ijp = 0 for all 1>,,j E Kn(P) when "' =/= j. The number of partitions are determined 

by hn , and we define that hn = (>.pn)lf(s+k) for some constant >. > 0. 

For "' E Kn (p) , let <PK ( ·) : JRlz -+ lR be a function such that <PK ( z) = h;;,lz/2 cp ( z-K:hn) . 
Then, <PK(z) takes non-zero value only when z E IK,P· Thus, t he functions <PK (-) s are 

orthogonal with disjoint supports IK,p, namely, <PK(z)cpK,(z) = 0 as long as "' =/= "''· For 

7When 1/(phn) is not an integer, define Kn(p) to be the maximum integer smaller th8J1 1/(phn)-
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any sequence {B,,J1'EKn(p) with IB/\; I = 1, we define 

mn(·) = E [g(X , Bo)I·] + On(-) , On(-) = >..pnh~12 L BI\; </>/\;{-) 
1'EKn(p) 

Let 0mn satisfies inf0Ee E[o0(Zi)2] = E[o0 (Zi)2]. We show that a positive constant 
"'n 

C and a bounded function h(·) exist such that ll0mn - Bo ll ~ CIE[h(Zi)On(Zi)]I , so that 

0mn satisfies Assumption 11 (iii) for any n . Under Assumption 3, the definition of 0mn 

yields 

O = E { G0"'Jo0mn (Zi)]} = E ( G 0"'n {mn(Zi) - E[g(Xi, Bmn )IZi]}) 

= E ( G0"'n {on(Zi) + E[g(Xi, Bo)IZi] - E[g(Xi, Bmn)IZi]}) , 

where G0 = 880 E[g(Xi, B) IZi]l0=0 . Taylor expansion yields 
mn mn 

E [ G0"'n on(Zi)] = E ( G0"'n {E[g(Xi , Bmn)IZi] - E[g(Xi, Bo)IZi]}) 

= E ( G0=n c~J (0mn - Bo) 

for some iin E 0. Since 0mn • Bo as n • , the dominated convergence theorem under 

Assumptions 2, 3, and 9 yields limn• E(G0 G'0- ) = E(G00 G~0 ). We obtain 
=n n 

Since E (G00G00) is invertible by Assumption 9, a constant C exists such that ll0mn -

Bo ll < CIE[G0 On(Zi)] I, where G0 is bounded for any n by Assumptions 2 and 9. 
mn mn 

Lemma S .9 . Under Assumptions 1, 2, 3, 5, 8, and 9, E[mn(Zi)4] is bounded and 

m 71 (Zi) is in M (pn) when>.. and n are large enough. 

Proof. it suffices to show that (i) mn(Zi) E ML ,s,k and (ii) i1tl0Ee E[80(Zi)2] 2: p~. 
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(i) Since E [g(Xi, 0o)I Zi] E MLM ,s,k by Assumption 8, it suffices to show that <5n(Zi) 

is in ML-LM,s,k · For any z E I,.,,p, we have 

- , } -k IB ,1..(k) (z -pK-'hn) I - APn 1n K-1 'f' h , 
n 

where <J>Ck)( z i) is k-times derivative of </>(Zi) - If z and y are in a same bin J,.,,p, 

because </> E M (L-LM)/2,s ,k and hn = (APn)l/(s+k). If z E I ,.z,P and y E I ,.y,P for 

IDk<5n(z) - Dk<5n(Y)I = Apnh;;k IB ,.z</>(k) ( Z - ~7zh,i) - B t-y<P(k) ( Y - ~=yhn) I 
< A h-k IB .. ,1..(k) (z -PK-zhn) _ B .. ,1..(k) (y -PK-zhn) I _ Pn n t-z'f' hn f>z'f' hn 

+ A } -k IB- ,1..(k) (z -PK-yhn) - B - ,1..(k) (y -pn,yhn) I Pn 1n K-y 'f' hn K-y 'f' hn 

::; (L - LM) llz - Yl ls, 

where we use the fact that <J>,.Y(z) = 0 when z E J,.z,P• Therefore, J11 (Zi) E 

M L-LM,s ,k for any n and A. 

(ii) We have inf0E8 E[Jo(Zi)2] = E[J0 (Zi) 2]. Then, Minkowski's inequality yields 
mn 
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~ {E[Jn(Z,)21) 112 -{ E ( E [ 89~· 0t,ujm,. - Oo)I zr) r 
2: {E[Jn(Z,)21) 112 - ( E { 11

8"~/tJ}) 112 
[IBm,. - 60 [1 

= {E[8n(Zi)2]}112 - O(l) IIBmn - Boll, (S.l) 

where Assumption 3 guarantees the mean value theorem for g(Xi, ·) for an interior 

point 0 between Bo and 0mn, and the last equality holds by Assumption 5. The first 

term in the right hand side of equation (S.1) is E[8n(Zi)2] = >-.2 p';,;p-lz f (O) J </J(u)2du+ 

o(l) = >-.2p~p-1zC2 + o(l ), for some positive constant C, where the density f is 

bounded by Assumption 2 and J </J(u)2du is bounded by its definit ion. F\·om As

sumption 11 (iii) , a positive constant C' exists such t hat IIBmn - Bo ll = C' IE[h(Zi)8n(Zi)] [, 

where 

[ ( Zi - P"-hn) ] IE[h(Zi)8n(Zi)][ = APn L B1.E h(Zi)</J hn 
t-EX::n(P) 

~ ApnKn(Pf If h(z)<p ( z - ("-hn) f (z)dzl 

= ApnKn(P/z lh~ f(O)h(O) J </J(u)du + o(h~)I 

= APnP-lzo(l). (S.2) 

The last equality holds because J </J(z)dz = 0. Thus , (S.1) and (S.2) implies t hat 

which is bounded from below by Pn when >-. and n a.re large enough. 

D 

In what follows we construct a Bayesian a priori measure by using the result of Le1mna 
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S.9 and show even the optimal Bayesian test that has the smallest errors of testing does 

not have non-trivial power. Replacing the minimax problem by a Bayesian problem is 

standard arguments to show the lower bound of testing power (see for example lngster 

1993; Spokoiny, 1996; Lepski & Spokoiny, 1999; Lepski & Tsybakov, 2000; Guerre & 

Lavergne, 2002; Abramovich , Feis, Italia, & Theofanis, 2009· lngster & Sapatinas, 2009). 

To prove Proposition Al , it suffices to show that 

sup P (tn ::; Za) + sup P(tn > Za) 2: 1 + o(l) . (S.3) 
mEM(Pn) mEHo 

To give a lower bound of the left hand side of equation (S.3), we consider a Bayesian 

a priori measure over Ho and Hn,1 by regarding m(·) as a random variable defined on 

Ho U Hn,1· 

First , let Ilo be the priori distribution defined on Ho that has Dirac mass: 

Ilo{m(-) = E[g(X 0o)I ·]} = 1. 

Second , let B 1,, be an i.i.d. Rademacher random variable independent of the observations 

with P (B 1,, = 1) = P (B 1,, = - 1) = 1/2. For a sequence {b1,, E {- 1 1} }1,,EKn(p), let IIn,1 

be the priori distribution defined on H n,1: 

IIn,1 [m(·) = E[g(X , 0o) I·] + >.pnh~12 L b1,, cp1,,( ·)l = IT P (B 1,, = b1,,) 
K.EKn(P) K.EKn(p) 

where Lemma S.9 guarantees IIn,1 to be an a priori measure over Hn,1• Then, IIn = 

Ilo + Iln,1 is an a priori Bayesian measure over Ho U Hn,1 · 

This gives t he lower bound 

sup P (tn ::; Za) + sup P (tn > Za) 2: j P (tn ::; Za)dIIn ,1 +j P (tn > Za) dIIo. (S.4) 
mEM(pn) mEHo 
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The right hand side of the above equation is the Bayes error of the test tn that is the 

sum of type I and type II errors of testing. It is known that the optimal Bayesian t est 

based on the likelihood ratio has the smallest error , which we now introduce. 

Let Y and Z be the set of observations Y and Z , respectively, where the joint distri

bution of Y and Z (specifically, the conditional mean of Y given Z) is described by m(-) , 

which suggests that the relation between Y and Z depends on m(-) . Then, we denote 

by Pm(Y, Z) the joint density of Y and Z. Average densities under the null and al

ternative hypotheses are Po(Y, Z) = f Pm(Y, Z)dITo and Pn,1(Y, Z) = f Pm(Y, Z)dITn,I, 

respectively. Let Ln denotes the likelihood ratio of the optimal Bayesian test , which is 

L _ Pn,1(Y,Z) _ f Pm(YIZ)dITn,1 = Pn,1(Y IZ) 
n - Po(Y, Z) - J Pm(YIZ)dITo - Po(YIZ) · 

By using t he The Bayesian error of the optimal Bayes test (see, T heorem 13.3.1 of 

Lehmann & Romano, 2005, p.528) , Guerre and Lavergne (2002) show t hat (S.3) holds if 

j L~po(Y IZ)dY = Eo(L~IZ) ~ 1, (S .5) 

where Ea is the expectation under po. 

By assumption, each wi is standard normal conditionally upon Zi, where w i = 

}"i - m(Zi) - Under Il0 , the conditional density of Y given Z is normal with mean 

E[g(Xi,0o)I Zi]- Since we haven observations, 

where Wi,O = Yi - E[g(Xi,0o)I Zi]- Since Wi = Yi - m(Zi) = Yi - mn(Zi) almost surely 

under H1,n, we yield 

Pn,1(YIZ) 
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~ (2w)-n/2 J exp (-~ t,[Y; -m,.(Z,)]2) dll,,,1(m) 

~ (2w )-n/2 J exp ( -~ t,[Y; -E[g( X,, 80] Z;)] + E[g( X,, 80 ] Z,) [ - m.n( Z,) [2) dI!n,1 ( m) 
~ (2w)-ni2 J exp(-~ t, [w,,o -On(Z,)]2) dII,,,1(m) 

-n/ 2 l 2 1 2 ( 
n n n ) 

= (27r) / exp - 2 ~ w i,O + ~ Wi,oOn(Zi) - 2 ~ On(Zi) dIIn,1(m) 

( 
n 1 n ) 

= Po(Y IZ ) J exp ~ Wi,oOn( Zi) - 2 ~ On(Zi)2 dIIn,1(m) . 

Recall that 

n n "'w· o' (Z·) = \ p htz/2 "' "'w· oB ,1. (Z ·) L.....,; i, Un i A n n L.....,; L.....,; i, K'l'K i , 

i=l 

and 

t on(Zi) 2 = A2p;h~ t [ L Br;,</>r;,( Zi)l 2 = A2p; h~ t L </>r;, (Zi)2 . 

i=l i = l KEX::n(p) i =l KEX::n(p) 

Thus, 

Pn,1(Y Z) 
Po(Y,Z ) 

~ J exp ( t, w,,oOn( Z,) - ~ t, On ( Z,)2 ) dII,,,1 ( m ) 

~ J exp (t, w,,oOn(Z,) ) exp (- ~ t,On(Z,)') dI!n,1(m) 

= J exp (Apnh~12 L t wi,o B,,,</>,,,(Zi) ) exp ( - ~A2p;h~ t L </>,,, (Zi) 2 ) dIIn,1(m) 
KEX::n(p) i=l i=l KEKn(p) 
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Thus, 

£2 
n 

= exp (->..2/;Ji~ t L </>K,(Zi)2) 

i =l K-E.ICn(p) 

X IT l [exp ( 2>.pnh~12 t Wi,O</>K- ( Zi)) + 2 + exp (- 2>.pnh~/2 t Wi,O</>K-( Zi) ) l · 
K-E.ICn(P) i=l i=l 

Conditionally on Z , {2>.pnh!t12wi,o</>K,(Zi)}f=1 is independent centered Gaussian for 

all"' E Kn(P) with condit ional variance given by 4>.2 p~h~</>K,(Zi)2 . Since E [exp(u)] = 

exp(o-2 /2) for any random variable u that follows centered gaussian with variance a-2 

we get 

Eo(L;IZ) 

= exp (- >.2p;h~ t L </>K,( Zi)2) 

i =l K-E.ICn(p) 

x IT l [exp (2>.2p;h!t t </>K,(Zi) 2) + 2 + exp (2>.2/;h~ t </>K,(Zi) 2) ] 

K-E.ICn(P) i= l i=l 

= exp (->. 2 p;h~ t L </>K,(Zi)2) IT 1 [exp ( 2>.2p;h~ t </>,-(Zi) 2) + 1] 
i=l f.E.ICn(p) f.E.ICn(p) i=l 

= IT exp (->.2p;h!t t </>,.( Zi)2 ) 1 [exp (2>.2p;h!t t </>,.(Zi)2 ) + 1] 
K-E.ICn(P) i=l i=l 

= IT 1 [exp ( >.2p;h~ t </>K,( Zi) 2) + exp (->. 2p;h~ t </>K,(Zi) 2) ] 

K-E.ICn(P) i=l i=l 
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where cosh (·) is t he hyperbolic cosine function . By using 1 :S cosh (z) :S exp(z2), we 

obtain,8 

Then , (S.5) holds if 

We see t his by considering the expectation of this posit ive random variable. We obtain 

E { L [p; h~ t <Pr.(Z i)2] 2 } = p~h;;z L E { [t <Pr.( Z i) 2] 2 } 

r.E.K:n(P) i=l r.E.K:n(P) i=l 

= p~h;;z L E { t t </J,,_(Zit )2</J,,_(Zi2)2 } 
r.EK:n(P) i1 = 1 i2=l 

= p~h;;z L { nE[</J,,.(Z)4] + n(n - l )E[</J,,.(Z)2] 2 } . 

r.EK:n(P) 

Since f < f by Assumption 2, we have E [</J,,.(Z)4 ] = h;;,21z J </) [(z - P"'hn)/hn]4 f (z)dz :S 

h;;_1z ff </J(u)4du = O(h;;_1z), and E [</J,,.(Z)2] = h;;_1z f </) [(z - P"'hn)/hn] 2 f (z)dz :S f f </J(u)2du = 

0 (1). Since K n(P) = 1/(Phn) = 1/(p(.\pn) 1f(s+k)) = O (p;;,1/(s+k)) and hn = O(pif(s+k)), 

E { L [p; h~ t </J,,.( Zi)2l 2} :S L { nO(p~h~) + n(n - l )O(p~h; 1z) } 
r.E.K:n(p) i=l r.E.K:n(p) 

= O(p:;;,lz/(s+k)) { nO(p~p!tf(s+k)) + n(n _ l )O(p~p;;z/(s+k)) } 

8cosh(x) = T 1 [exp(x) +exp (-x)]. On the one hand Maclaurin expansion yields cosh(x) = l +x2 /2!+ 
x4 /4!+ .... On t he other hand, Maclaurin expansion of exp (x2/2) yields exp(x2 /2) = l+x2 /2!+2x4 /4!+ 
.... Therefore, we yield cosh(x) ~ exp(x2 /2) ~ exp (x2) . 
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= O(p;;lz/(s+k)) { nO(pJ~(s+k)+lz)/(s+k)) + n(n _ l)O(pWs+k)+2lz)/(s+k))} 

= { nO(p~) + n(n - l)O(p~(s+k)+lz)/(s+k))} . 

Then, we consider the following cases: 

(i) s + k 2: lz/4: since Pn = o(pn) = o(n-2(s+k)/(lz+4(s+k)l), it holds that np~ 

o(nllz-4(s+k)]/[lz+4(s+k)l) = o(l) and n20 (pJ1(s+k)+lzl /(s+k)) = n2o(n-2) = o( l ). 

(ii) s + k < lz /4: since Pn = o(pn) = o(n-114), we have np~ = no(n-1l) = o(l ) and 

n20(p~(s+k)+lz)/(s+k)) = n2o(n-[4(s+k)+lz)/4(s+k)) = o(n[4(s+k)-lz]/4(s+k)) = o(l). 

• 

S-2 Proof of P roposition A2 

Proof of Proposition A2. We first show asymptotic behavior of Vn under the null hy-

h . -.. u d fi 2 1 ~ (Nk - 1J1{Nk > 1} [E( 2
1
z I )]2 pot es1s. vv e e ne Vn = Kf u kEIC Nk w i i E k . 

Lemma S .10. Under Assumptions 1, 2, 3, 5, 6, and 10, v~ is bounded from above, 

stochastically bounded from below uniformly in m E M L,s,k, and satisfies v~ - v~ = op(l). 

Proof. From Assumption 2, w have P (Zi E Ik) = fz;Eh f( z )dz ~ fh!; . In t he same 

way, we obtain P (Zi E Ik) 2: i_h~. T hen , we obtain 

where the right hand side is bounded by a constant by Assumption 1. 

ate that (Nk - l) li {Nk > 1 }/ Nk = (1 - 1/ k)li{ k 2: 2} 2: 1/2. It can be 

shown that P ( minkE/C JI. { Nk > 1} = 1) • 1 when n/ ( K ~z log K;{) • under As

sumptions 1 and 2 (see, Lemma 4 in Guerre & Lavergne, 2002). T hus, it holds that 
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v~ 2: 2J ~z L kE,dE(w;J z i E Jk)] 2 2: h P(Zi E Ik) L kE,dE(w;J z i E Jk)]2 2: 2] P (Zi E 

h ) L kEX:: P (Zi E Jk)2 [E (w}J Zi E Jk)] 2 = 21 P(Zi E h )[E (wt)] 2 > 0 with probability 

one. 

ow, v~ is decomposed as follows 

+4wi[g(Xi,0o) - g(Xi,0)l[g(Xj, 0o ) - g(Xj, 0)] 2 + 2wt[g(Xj, 0o ) - g(Xj, 0)] 2 

- - 2 D R = Vn + n + '11,, 

where R-n represents smaller terms due to g(Xi, Bo ) - g(Xi, 0) = Op(l / fa) by Assump-

tions 3, 5, and 10 under the null hypothesis. 

First, we show that Dn = op( l ). Decompose Dn 

0)'Dnfo(0o - 0), where 

11 

fo(0o - 0)'Dn + fo(0o -



for some 0 between 00 and 0. For some positive constant C , 

where E(w;IZi E Ik) = E(w;li{Zi E Jk}) is bounded by Assumption 1 and E[lwil ll8g(Xj, 0)/8011] 
is bounded by Assumptions 1 and 5. Furthermore, 
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{ ( 1 ) ( 1 ) } l /
2 

- 0 -- + 0 -- -ol - K ;t n2 K;._l zn - ( ) 

are bounded by Assumptions 1 and 6. Furt her, we use the fact t hat , given li{Nk > 1} = 

1, (Nk - 1)/Nk < 1 and (Nk - l)(Nk - 2)/Nk < Nk. Thus, Dn = op( l ). 

ext , we show ii~ - v~ = op( l ). Sine we hav i.i.d. observation, 

[E (w; [Zi E Ik)]2 = [E (w;li{Zi E Ik})] 2 

Thus, 

= E(w; li {Zi E Ik})E(w] li {Zi E Ik}) 

k( ~ - l ) L _ . E(w; li {Zi E Ik})E(w] li {Zj E Ik}). 
{Z,,ZJ}Eh ,i#J 
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=E{-l ~ ]_{Nk > 1} 
K l z L.., N2 

n kEK. k 
L {w;wJ- E(w;IZi E h)E(wJIZj Eh)} 

2

} 

{Z,,ZJ}Eh ,i#j 

< - 1- ~ E { l {Nk > l } 
- K 2l, L.., N4 

n kEK. k 
L {wfwJ - E(wf IZi E h)E(wJ IZJ E I k)} 

2
} 

{Z,,Zj }Elk ,i#j 

= - 1- ~ E { l {Nk > l } 
K2l, L.., N4 

n kEK. k 

+ ; 1, L E { ]_{N~: l } L L E(wf, IZi, E I k)E(wJ, IZJ, E I k) 
K n kEK. k {Z, , ,zi , }E / 1, {Z, 2 ,ZJ2}E /k 

i ,#J, i2#h 

~ O(K;;1• ) + O(K;;1• )E { E(wf, IZi, E h)E(w;, IZj, Eh)}+ O(K ,-;-1• ) 

= O(h1• ) = o(l) 

Assumption 1. This together with D11 = op(l) yields v~ - v~ = op(l). 

14 

(S.6) 

• 



The test statistic can be decomposed as follows ; 

yGL 
n 

I is straightforward to show t hat TfL = op(l ) by using g(Xj , 0o) - g ( X i, 0) = Op(l / yn) 

that holds by Assumptions 3, 5, and 10 under t he null hypothesis. Tf L = op(l ) can be 

shown analogously to Lemma S.16 under Assumptions 1, 3, 5, 6 and 10.9 We show the 

asymptotic heavier of TfL_ 

Lemma S.11. Under As umption 1, 2, 3, 5, and 10, T f L /vn ~ N (O, l). 

Proof. We follow and extend the proof of Theorem 2 in Guen e and Lavergne (2002) 

into IV setup. Let 11 .. . , l n be any reanangement of the indices i = 1, . .. , n such that 

XJi E I k if and only if (iff) L l<k l < Ji ::; L l :-::;k l- Let F n,k = {Y1 ... , YJ; K, : 

L l<k N1 < Ji ::; L l:-::; k l, k E IC} be a increasing sequence, where x:, = { k : k E 

V} d r.GL _ 1 '""" li {Nk, > 1} '""" Th {T.GL T k 
I\., an 3nk = rn t /2 L...,k' <k N L..., {Z Z}E/ i...L3•WiWj . en , 3,n,k, F n,k, E , , V 2l(nz - k' t, 1 k ' , -,-

IC , n ~ l} is zero-mean square integrable martingale aJ.Tay. ote t hat Tf,!:,k - T3~/:.k-l = 

9 ote t hat we consider asymptotic behavior of Tf L under the null hypothesis, while Lemma S.16 is 
under t he alternative. Thus, A1 term, that comes form misspecification, in t he proof of Lemma S.16 
does not appear here. Only to show is A2 with 17; replaced with w; to be op(l ). 

15 



(2K;{)-112 D.{ ~ >l} ~ {Z- Z}EI i-'-J. wiwj = (2K;.z)-112wk denotes the martingale differ-
k 1, J k: r 

ences. To prove TfL /vn .!!+ N(0 , 1), it suffices to show t hat 

v;;2 L E [(2K~z)-1wi ]_{ l(2K;{)-112wkl > EVn }I F n,k-1] ~ 0 for all E > 0, (S.7) 
kEK. 

and 

v;;2 L E [(2K;:)-1wil-0i,k-1] ~ 1, (S. ) 
kEK. 

by Corollary 3.1 in P. Hall and Heyde (1980, p.58). Square of the left hand side of (S.7) 

is bounded from above by 

because v~ ~ v~ from Lemma S. 10 and for some constant C , we have 

~ ].{N~: l } L L E(wt1 IF n,k-1)112 E (wJ1 IF n,k-1) 112 

k {Zi t ,Zit }Elk,il-/i t {Zt2,Zi2}Eh,i2-/i2 

( 4 I ) 112 ( 4 I ) 112 X E Wi2 F n,k-1 E Wj2 F n,k-1 

~ ].{Nk > 1} [E (wti I F n,k-1)] 2 < C, 

where t he second equality comes from the orthogonality between wi and Z i - T hus, 

16 



equation (S.7) holds. Equation (S.8) is implied by 

and Lemma S.10. • 

• 

S-3 Proof of Proposit ion A3 

Proof of Proposition A 3. We first show asymptotic behavior of Vn under the alternative 

hypothesis. We define v;? = -;;r;<\ L kEK: (Nk-l¼ {Nk>l} [E(u; 21zi E Ik)]2, where u; = 
} n k 

Yt - g(X i, 0*). 

Lemma S .12. Under Assumptions 1, 2, 3, 4, 5, 7, 8, and 11, v~2 is bounded from above, 

stochastically bounded from below uniformly in m E ML,s,k, and satisfies v~- v~2 = op(l) . 

by Assumptions 

1 and 4, it can be show similar to Lemma S.10 that E (u;2 1Zi E Ik) is bounded from 

above uniformly in m E /vlL ,s,k under the alternative by replacing Wi in Lemma S.10 

with u;. 
Similar to Lemma S.10, by applying Lemma 4 in Guerre and Lavergne {2002) , we 

can show that v~2 is stochastically bounded from below uniformly in m E ML,s,k· 

ow, v~ can be decomposed as follows 

17 



= _1_ ~ 1{N k > 1} ~ u?u2 
K lz L.., N 2 L.., i 1 

n kEJC k {Zt,Zi }Eh,ih 

= - 1 ~ 1{ k > 1} ~ , 2 , 2 
L.., L.., [g(Xi, 0*) - g(Xi, 0) + u;J [g(XJ, 0*) - g(XJ, 0) + uj] 

K~z kEJC N f {Z Z } I ·_;. · t, i E k,irJ 

1 ~ 1{N k > 1} ~ { * , 2 * , 2 = K~z f- Nl L.., . . [g(Xi, 0 ) - g(Xi , 0)] [g(Xj, 0 ) - g(X j, 0)] 
kEJC {Z,,Zj } El k,i#J 

+4ut [g (Xi, 0*) - g(Xi, 0)l[g(XJ, 0*) - g(XJ, 0)]2 + 2u12 [g(XJ, 0*) - g(XJ, 0)]2 

+4u;uj2[g(Xj, 0*) - g(Xj, 0)] + 4u;uj [g(Xi, 0*) - g(Xi, 0)][g(Xj, 0*) - g(X j, 0)] + u;2uj2 } , 

where g(Xi, 0*) - g(Xi, 0) = Op( l / fa) by Assumpt ions 3, 5, and 11 . Similar to t he proof 

f L S lo th d · t d t · , 2 · -*2 - 1 " L{Nk> l} " *2 •2 o emma . , e omma e erm m vn 1s vn = K;f u kEJC NZ u {Zt,Zj}Eh ,i#J ui uj . 

T he convergence of v~2 is resulted by E (lv~2 - v~2 12 ) = o(l ), whose proof goes along with 

equation (S.6) in Lemma S.10 and replacing w with u*. • 

Under the alt ernative hypothesis, 

where A = O(~){E[Jt*(Zi) ]}112 by Lemma S.16 in the supplement al mat erial for 

lemmas and B denotes smaller terms t hat is Op(l ), which is shown by using lg(Xi, 0*) -

18 



g(Xi , 0)1 = Op(n- 112 ) by Assumptions 3, 5, and 11. Then we obtain 

for some positive positive constants C and C. Further, 

P (- [T,fL* - E(T~L*)] 2 E(~fL*) - C - C~{E[oJ*(Zi)]}1/ 2) + o(l ) 

< var (TfL*) 

- [E(TifL*) - c - c~{E[oJ. (Zi )]}1/ 2]2 ' 

if E (TfL*) - C - C~{E[8J. (Zi)]}112 > 0. Then, it is sufficient to show t hat"' can 

be chosen so that 

E (T~L*) - c - c~{E[oi*(Zi )]}112 > o 

var (TfL*) < 

[E (TifL*) - c - c~{E[oJ.(Zi)]}112 ]2 - /3, 

uniformly in m E M (K-Pn)- Now, 

19 
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It is obvious that E (~ f,f*) = 0 and E (T;:,f*) = 0. Then 

where the last inequality holds for large n and some constant C1 > 0 under Assumption 

2 by using Proposition 7 in Guerre and Lavergne (2002). By using this, we yield 

which is increasing in "'and posit ive for "' large enough . 

ext, let µk = l {~: l} I:: {Z;,Zj }Eh,ih[½ - g(Xi , 0*)][Yj - g(Xj, 0*)] Then, we can 

write T[!L* = ,12J i,;12 I:: kEK: µk where µk s are uncorrelated given NK: = {Nk, k E JC} . 

Note that (Nk - l )n{Nk > l} = Nk - l + n{Nk = 0} , since Nk - l = ( k - l )n{Nk > 

1} + ( k - l )D.{Nk ~ l } = (Nk - l )D.{Nk > 1} - ].{ k = 0}. We have 
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and 

which implies 

From the law of total variance, we obtain 

Notethat , given ]_ { k > l }, wehave - (Nk - 1)(2 k - 3)/ k < kand4( k - l )(Nk - 2)/ k < 

Nk. Since E(Nk]_{Nk > 1}) = E( k) - E( k]_ { k::; 1})::; E(Nk) , we obtajn 
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+~ L E ( 4(Nk - I)(Nk - 2) li{Nk > l }{E [80* (Zi)I Zi E Ik]} 2 E [u:2Izi E Ik] ) 
2Knz kEK Nk 

1 """"' (2 (Nk - 1) ( *2 ) 2) + - 1 D E N 1{Nk > l}[E ui IZi E Ik] 
2K7{ kEK k 

~--;; L E (Nk1 {Nk > l}){E [80*(Zi)I Zi E Ik]} 2{E[80*(Zi)I Zi E Ik]} 2 

K n kEK, 

+-;- L E (Nk1{Nk > l}{E [80*(Zi) IZi E Ik]} 2E [u;21zi E Ik]) + E (v~2 ) 
K nz kEK 

~ 27z L P (Zi E Ik) E [8t*( Zi)I Zi E Ik] E [8t*(Zi)I Zi E Ik] 
K n kEK 

+ 20t) L P (Zi E Ik)E [8t*(Zi)I Zi E Ik] + E (v~2 ) 

K n kEK 

2n """"' [ 2 ] 2 l [ 2 ] ( *2) ~ -----r; D E 80*(Zi) +O(l )nh~E 80*( Zi) +E vn 

K n kEK 

~ O(n){ E [8t*(Zi))}2 + O(nh!n E [8t*( Zi)] + E (v~2 ) , 

where E [u12 [Zi E Ik] is uniformly bounded by Assumptions 1 and 7 under t he alterna-

. h h . d *2 - i " CNk-1)1 {Nk> 1} [E ( *21z I )]2 . l i· . f A t1ve ypot es1s an vn = K;f u kEK Nk ui i E k 1s t 1e 1m1t o Vn 

under the alternative. 

~var [LE (µkl NK)l 
2Kn kEK 

= ~var ( L (Nk - l) lL { k > l }{E [80*(Zi)I Zi E Ik]} 2) 
2K ,{ kEK 

= ~ L {E [80*( Zi)I Zi E Ik]}4var ((Nk - 1)1{ k > 1}) 
2KJ kEK 

+ - 1-1 L {E [80* (Zi) [Zi E Ik]}2{E [80* (Zi)I Zi E Ik' ]} 2cov (( k - 1)]_ { k > l }, (Nk' - 1) ]. { k' > l}) 
2KJ kc/k' 
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where we use the results of Lemma 3 in Guerre and Lavergne (2002) that is , var((Nk -

l)]_{Nk > 1}) :S 2nP(Zi E Ik) and cov ((Nk - l)]_{Nk > 1 }, (Nk' - l )]_{Nk' > 1}) :S 

2nP(Zi E Ik) P (Zi E Ik' ). The last inequality holds because oi.(z i) = {m(Zi) -

E[g(X i, 0)IZi]}2 is bounded by Assumptions 2 and 8 under the alternative hypothesis. 

Thus, we obtain 

which implies 

The upper bound is bounded and decreasing in /'i,. • 
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Supplemental Material: Proof of Lemmas 

S-1 Proof of Lemma 1 

First, we introduce the following lemma. 

Lemma S.13. Under Assumptions 2 and 12, we have 

Proof. 

J K ( x ~ y ) f (x) f (y)dxdy = h1z J K (u) f (y + uh) f (y)dudy 

= h1z J K (u) [f(y ) +hu't::,. (l) f (y)+R.,,.] f (y)dudy 

= hlz I K (u) du I f (y)2dy + O(hlz+l) 

Proof. T1 can be written as a second order U-statistic form multiplied by nh1zl 2 : 

• 

where Wi = {Zi,Ui}, H (Wi Wj) = h-lzl2K (¥ ) UiUj is symmetric by Assumption 

12, centered , t hat is , E [H (Wi , Wj )] = 0, and degenerate, that is , E [H (Wi, Wj) IZi, ui] = 

E {E[H (Wi, Wj)[ Zi, ZjUi] Zi, ui} = 0. The second moment of H (Wi , Wi) is bounded 

because 

E[ H (W;, W; )2 J - h)• E [ K ( Z; ~ Z; )' a 2 ( Z;)a 2 ( Z;)] 

1 / (X y)2 
= h,lz K --i;- a-2(x) a-2(y)f(x) f(y )dxdy 
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= j K (u)2 CT 2 (y + uh)CY2 (y)f(y + uh)f(y)dudy 

= JC(0) J [CY2(y)] 2 f (y) 2dy + O(h), 

where the convolution product JC(0) is bounded by Assumption 12. The variance of t he 

error term CY 2 (-) and the density of inst rument f(· ) are bounded by Assumptions 1 and 

2, respectively. The last equality is shown in Lemma S.13. 

theorem for degenerate U-statistic, i.e. Q. Li and Racine (2007) 

if 
E [G(Wi, Wj) 2] + n-1 E [H (Wi , Wj)4] 

{E[H (Wi , Wi)2]}2 • O, (S .1) 

as n • oo. We show that equation (S.1) holds . First, note that 

Then, 

E [G(W1, W2)2] 

- E { uluJ [! K (u) K C' ~ Zi + u) a 2(Z1 - uh)J(Z1 - uh)dun 
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= J a2 (x)a2(y) [! K (u) K ( y 7i x + u) a2 (x - uh)f(x - uh)dur f(x)f(y)dxdy 

= h1z J a2 (x)a 2 (x + vh) [! K (u) K (v + u) a2 (x - uh)f(x - uh)dur f(x)f(x + vh)dxdv 

= h1z J a2 (x)[a2(x) + O(h)] [a2(x)f(x) J K (u) K (v + u) du+ O(h) r f(x)[f(x) + O(h)]dxdv 

= h,1z J [a2 (x)]4J(x) 4dx J [! K (u) K (v + u) dur dv + o(l-/z) 

= O(h1z). (S.2) 

Second, let us define a4 (Zi ) = E(wt IZi ), which is bounded by Assumption 1. Then, 

[ 4 ] 1 [ ( zj - zi) 4 4 4 ] E H (Wi , Wi) = h2tz E K h a (Zi )a (Zi) 

::; ::u: / K ( x h y) 
4 

f (x) f (y)dxdy 

= ~: [! K (u) 4du J f (y) 4 dy + O(h)] = O(h-1z). (S.3) 

Third , 

{ E [H (W,, W; )21)2 - h;,, { E [ K ( Z; ~ z, )' a2(Z, )a2(Z;) l r 
- h;,, [/ [( ( x ~ y) 

2 
f(x)f(y)a 2(x)a2(y)dxdy]' 

= [! K (u) 2 f(y + uh)f(y)a2 (y + uh)a2 (y)dudy r 
= {! K (u) 2 [f(y) + O(h)]f(y)[a 2 (y) + O(h)]a 2 (y)dudy } 

2 

= {! K (u) 2 du J f(y) 2 [a2 (y)]2dy + O(h) } 
2 

= 0(1). 
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Equation (S .2), (S.3), and (S.4) implies 

as n-+ oo. Thus, equation (S.1) holds, and we obtain 

T1 .!;. N(O, 2JC(0)E{[a2 (y)] 2 f(y)} ). 

• 

S-2 Proof of Lemma 2 

Proof. Applying Taylor expansion to g(Xj , 0) around 0o under Assumpt ion 3 yields 

2 ~" (zj -zi) A 

T2 = (n _ l )hlz/2 ~ ~ K h Ui[g(Xj , 00 ) - g(Xj 0) ) 
t=l Jf.i 

2(0 - 0o)' ~" (zj -zi) a 
= (n - l )hlz/2 ~~K h 'Ui80g(Xj,0o) +R,,, 

t=l Jf.i 

_ 2.jii,(0 - 0o)' ~" 2.jii,(0 - 0o)' ~" 
= ytn(n - l)h,lz/2 ~ ~ µi,j + .jn(n - l )hlz/2 ~ ~ µi,j + Rn, 

i=l J <i t=l J >t 

where µi,j = K ( z1~zi) uif0 g(X j, 0o) is a lz x 1 vector, Rn represents smaller terms un

der Assumptions 1, 2, 6, and 12, and jn(0 - 0) = Op(l) by Assumption 10. It is useful 

that for j =/- i , E (µi,j) = E [E (µiJI Z , X-i)] = 0 , where O denotes lz x 1 zero vector. By us-

ing this, we obtain t hat L ~=l L j<i E(µ i,j) = L ~=l L j<i E [E(µ iJI Z1, ... , Zn, X1 , ... , x i-1)] = 

0, and L;~1 L j>i E(~,j) = 0. Thus, to show T~ = op(l) , it suffices that variance for 

each elements of fo(n-2l )hlz/2 L ~=l L j<i µi,j and fo(n-2l)hlz/2 L ~=l L j>i ~ .j is o(l). To 

simplify t he notation, we show t he case for lz = 1. Let G(z) = E [f0 g(x, 0) lz] and 
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because for all i , J1 < i , J2 < i, and J1 =I= j2 , 

E (µiJ1 µi,h) 

= E [K (zit - z i ) K (zh - z i ) 8g(Xj1 , 0) 8g(Xh,0) a-2(Z )] 
h h 80 80 i 

= E [! K ( Ziih- z ) I{ ( Zj\,,- z ) o-2(z )f( z )dz 8g(;~,, 0) 8g(;~2 , 0)] 

= 1-,,l z E [8g(Xii ' 0) 8g(Xh, 0) J K(u)K (zh - Zji + u) a-2 (Zj1 - uh)f(Zj1 - uh)du] 
80 80 h 

= hlz E [K2 ( Zh - Z j1 ) 2(z. )f (Z . ) 8g(Xj1 , 0) 8g(Xj2 , 0) ] + R 
h a- 1' 1 1 80 80 -n 

= h1z E [a-2(Zj1 )f(Zf1) 89(;;1> 0) J K2 ( z2 ~i z ii ) 89~;, 0) f z,x(z2, x2)dz2dx2] + R,n 

21 [ 2 8g(Xj1 , 0) J 2 8g(x2, 0) ] = h z E a- (Zi, )f(Zj1 ) 80 K (u) 80 f z,x (Z j 1 + uh, x2)dudx2 + Rn 

= h21zE {a-2(Zi 1)f(Zii)2 89(;t 0) J K 2(u )duE [89~ •0)] } +R,,,. 

= O(h2lz )E [a-2 (Zii)f(Zi,)28g(;~1 ,0)] + R,,,. 

= O(h2lz), 

where R n represents smaller terms , f z,x (· , ·) is joint density of Z and X , E[ f0 g(X, 0)] 

is bounded by Assumption 3, K 2 (u) is two times convolution product of kernel with 

J K 2(u)du < by Assumption 12, a-2 (Z) and J(Z) are bounded by Assumptions 1 and 
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2, respectively, and for all i, j = J1 = J2 < i, 

E (µf,, ) - E { K ( z, ~ z,y a(Z,)' 8g(;~, 0o) } 

- E { Og(;~,Oo) j K (\- z )' a(z )2J(z )dz } 

= h1z E { 89(~~' 0o) J K (u)2a( Zi - uh)2 f (Zj - uh)du } 

= h1z E { 89(~~' 0o) f( Zj)a(Zj) 2 J K (u)2du } 

= O(1-/z), 

where these derivations holds under Assumptions 1, 2, 3, and 12. In the same way, we 

• 

S-3 P roof of Lemma 3 

Proof. From Assumption 3, we obtain 

T3 = nh1zl2 t I: ~ K (Zj -zi) (0o - 0)' 8g(Xi, 0) I 8g(Xj,0) I (0o - 0) 
n( n - 1) i =l #i hlz h 80 0=01 80' 0=02 

A 1 n A 

= fa(0o - 0)' n(n _ l )h,lz/2 ~ ~ T~fa,(0o - 0) 

where T' = K (Zi -Zi ) &g(Xi,0) I DgC:0!•0) I _ . We have 
3 h D0 0=01 0=02 
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where these derivations hold by Assumptions 1, 2, 5, and 12. Since ...fii,(0 - 00 ) = Op( l ) 

by Assumption 10, we obtain T3 = Op(hlz/2 ) = op( l ). 

S-4 Proof of Lemma 4 

First, we introduce the following le1mna . 

Lemma S.14. Let ki,j and Si be any function such that supi,j lki,j l < 

Op(n). Then, 
n n 

L L ki,j s is j = Op(n2). 

i j 

• 

• 

Lemma S.14 seems straight forward but is useful. The kernel function K (-) sat

isfies the condit ion for ~.j by Assumpt ion 12. The condition for Si is satisfied by 

8~ g(X i 0)1 _, [a~ g(X i, 0)1 -] 2
, and 8~ g(X i, 0)1 _ui for any l = {1, ... , lz } and 

l 0=0 l 0=0 l 0=0 

any ii between 00 and 0 by Assumptions 1, 3, 5, and 10, as well as u; by Assumpt ion 1. 

Proof. E can be decomposed as follows: 

t = 2 ~" _!_K (zj -zi)2 u-2u~. 
n(n - l ) ~~ h,lz h i J 

i = l jfi 

2 Ln L 1 (Zj - zi) 2 ~ 2 ~ 2 = ( ) - 1 K ---'--- [g(Xi, 0o) - g(X i , 0) + ui] [g(X j, 0o) - g(X j 0) + ui] 
nn - 1 h z h 

i=l jfi 

where R-n represents smaller terms t hat converges to zero in probability, which can be 
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shown by using Lemma S.14 under Assumptions 1, 3, 5, 10, and 12. First we show that 

~ ~ , 2 ~ "' (zj -zi)2 ag(Xi,0)1 2 
E2 = vn(0o - 0) fon(n - l)hlz ~ ~K h 80 0=0 'UiUj 

~ 2 n 

= ./n(0o - 0)' ./nn(n - l)Mz ~ ~ Si,j, 
i=l J=/=i 

where Sij is a lz x 1 vector. Since ..fii,(0 - 00 ) = Op(l ) by Assumption 10, it suffices to 

show that each element of n-5!2h-lz I::;~1 I::j=/=i Si,j is op( l ), which holds becuase 

E( II S,J II) ~ E [ K ( Z; ~ Z, )' II iJg(:;, et, "'II u( Z; )' l 
~ E [ II iJg(;, et, u; Ill K ( z -,, z, )' u(z )' f ( z )dz l 
= hlz E [II ag(:; ,0) 10=0 'I.Li ll J K (u)2a( Zi + uh) 2 f(Zi + uh)du] 

= h1z E [II ag(:; , 0) 1
0
=0 'I.Li ll a(Zi)2 J (Zi) J K (u)2du] 

~ O(h'' )E [:~~ II iJg(:; , 0) II'] 1/2 [u (Z,)'Jl/2 ~ O(h'' ), 

where the last equality holds under Assumptions 1, 2, 5, and 12. Thus, E2 = Op(n-112). 

ext, we show that E1 = E +op(l). Note that E1 is a second-order U statistic, where 

H 1 (Wi , Wi) = h-tz K ( ¥ r u;uJ is symmetric by Assumption 12. 

= O(h-1z) = 0 (~) = o(n), 
nhlz 

(S.6) 

31 



where t hese derivations holds under Assumptions 1, 2, 5, and 12. Applying Lemma 3.1 

• 

S-5 Proof of Lemma 5 

Proof. From Assumption 3, t here is iJ between 0* and 0 such that 

2nhlz/2 ~ ~ 1 (Z· -Z) ~ 
A2 = n(n - l ) L.,~ h,lz K 1 h i [½ - g(X i, 0*)][g(X j, 0*) - g(Xi ,0)] 

i=l Jf=i 

= 2(0 - 0*)' ~~ K(Zi - Zi ) u-: 8g(Xi, 0) 
(n - l )hlz/2 L., L., h i 80 

i=l jf=i 

= (0 - 0*)'A2 

where (0 - 0*) = Op(n- 112 ) by Assumption 11. Now we have 
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8 ~~~ E [K (zi - Zi ) K (Zt - Zj ) u!u~8g(Xj,0) 8g(X1,0) ] 
+ (n - 1)2h1z L., L., L., h h i 1 80 80 

i j=Ji l=Jj 
l=Ji 

8 ~~~ E [K (zj - z i ) K (zi - z k) ! * ag(Xj,0) 8g(Xi, 0) ] 
+ (n - 1)2h1z L., L., L., h h Ui Uk ae ae 

i j=Ji k=Ji 
k=Jj 

+ 4 ~~ E [K (zi - Zi)2 u! 2 8g(Xj,0) 
2

] 
(n - 1)2hlz L., ~ h i 80 

i J,i 

+ 4 ~~ E [K (zi - Zi ) u! 8g(Xj ,0) l 2 
(n - 1)2h1z L., ~ h i 80 

i J,i 

= 4n(n - 2)(n - 3) E [K (zi - Zi ) K (Zt - Zk) 0 .(Z ·)o * (Z .) 8g(Xj , 0) 8g(X1 , 0)] R 
(n - l)hlz h h 9 i 9 k 80 80 + '11, 

where R'll, represents small terms. Thus , 

IE (A~)I 

,s 4n(zn--2;;~.~ 3) E [IK ( Z; ~ z,) I IK ( z, ~ z.) I 10,. (Z,)I 

100• ( z.) I ;~~ 110g(::- 0) II;~~ II Og(:; 0) II l + R~ 

= 4n(n - 2)(n - 3) { E [IK (Zi - Zi ) I 10 .(Z ·)I 11 ag(Xj , 0) II] }2 R 
(n - l )h1z h 9 i :~~ 80 + "1 · 

From Assumptions 2, 5, 8, and 12, we obtain 

E [:~~ llag(:: ,e) II / IK ( Zj; z ) I 100.(z) I f (z)dz] 

= h1zE [~~~ ll ag(:: ,e) II / IK(u)lloo*(Zj - uh)lf(Zj - uh)du] 

= h1zE [~~~ ll ag(:: ,e) II loo*(Zj)lf(Zj) J IK (u)ldu] + R'li 

'° h'• 1 { E [ :~~ i1 8g(:f l ll'l r { E [ "·· ( Z; )')} 1/2 + R,, 
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(S.9) 

Thus, we obtain E(A§) = O(n2h1z)E [oi*(Zi)] . Thus, A2 = Op(nhlz/2 ){E[oi. (Zi)]}1/ 2 

which implies A2 = Op(v'n!Jz){E [8~*(Zi)]}112 . 

ext, we show that A3 = op(A2). From Assumption 3, iii and 02 exist such that 

nh1zl2 ~ " l (Zj - z i ) * ~ * A 

A3 = n(n - l) f:tf;: h,lz K h [g(Xi ,0 ) - g(Xi, 0)l[g(XJ, 0 ) - g(XJ, 0)] 

= (0 - 0*)' ~ " K (zj - z i ) 8g(Xi, 01) 8g(XJ , 02) (0- 0*) 
(n - l )h1z/2 ~ ~ h 80 80' 

i =l jfi 

= (0 - 0*)' A3(0 - 0*) . (S.10) 

We have 

EIIA.311 = nh-lz/2 E I( (Zj - z i ) 8g(Xi, 01) 8g(Xj , 02) 
h 80 80' 

:S nh-L,/2 E [IK ( Z; ~ z,) IT' E [ /Jg(;, 0) 2 /Jg'::,, 0) T' 
:', O(nh - 1,f') [! IK ('1 ~ Z, ) I' J(z1) f( z2)dz1 dz, r' 
= n [! IK (u) l2 f( z2 + uh)f(z2)dudz2] 

112 

= O(n) (S.11) 

where E [sup0E8 II J0g(X, 0)112] is bounded by Assumption 5 and t he last equality holds 

by Assumptions 2 and 12. Since (0 - 0*) = Op(n-112 ) by Assumption 11 , we obtain 

A3 = Op( l ). Thus, we have A2 + A3 = Op(v'n!Jz){E[oi.(z i)]}112 + Op(l ). 

• 
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S-6 P roof of Lemma 6 

Proof. It is obvious that I; is bounded uniformly in m E M(1,,pn) by Assumptions 1, 2, 

7, and 12. Let u: = ~ - g(Xi, 0*) . 

t = 2 ~ "' _!_K (zj - zi)2 u2u~ 
n(n - l) L..,L.., h,lz h i J 

i =l j,/i 

2 1 z j - z i , 2 , 2 n ( )2 = n(n _ 1) L ~ h,lz I( h [~ - g(Xi, 0)] [1j - g(Xj, 0)] 
i =l Jfi 

n 2 

2 "' "' 1 ( z j - z i ) [ ( *) ( ,) *]2 [ ( *) ( ,) *] 2 = n(n - l) L.., L..,_ hlz J( h gXi, 0 - gXi, 0 + ui gXj, 0 - gXj 0 + ui 
i =l Jfi 

2 1 z j - z i * , 2 * , 2 n ( )2 = n(n _ l ) L ~ 1-,,l z I( h { [g(Xi, 0 ) - g(Xi, 0)] [g(Xj , 0 ) - g(Xj 0)] 
i=l Jfi 

+4u:[g(Xi, 0*) - g(X i 0)l[g(Xi , 0*) - g(Xi , 0)] 2 + 2u:2 [g(Xi , 0*) - g(Xi 0)]2 

+4u:u;2[g(Xj , 0*) - g(Xj 0)] + 4u:u;[g(Xi 0*) - g(Xi, 0)l[g(Xj , 0*) - g(Xj 0)] + u:2u;2 } 

2 ~ "' 1 ( z j - z i ) 2 *2 *2 
= n( n - 1) ~ L..,_ h,lz I( h ui uj 

i=l Jfi 

+ n(/- I) t, ft, h;, K ( Z; ~ z, )' u;uj2[g(X,, 0') - g(X,, 11)[ + R,,, 

where Rn represents smaller terms that is op(l) , which can be shown by using Lemma 

S.14 under Assumptions 1, 3, 5, 11, and 12. 

ow, we show t hat t; = op( l ). From Assumption 3, there is 0 between 0 and 0* 

such that 

where ytn(0 - 0*) = Op(n- 112 ) by Assumption 11. Since E(ut 21Zi ) is bounded from 
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Assumptions 1 and 7 and E ll f0g(Xi, 0)112 ~ E [sup0Ee II f0g(Xi, 0)112] is bounded by 

Assumption 5, there is a constant C such that 

where 

fJg(Xi , 0) 
80 

z2 - z1 2 l 4 2 ( )
4 J K h 0"9. (z1)f(z1)f(z2)dz1dz2 = h z J K (u) O"o*(z1)f(z1)f(z1 + uh)dz1du 

= hlz J K (u) 4duE[O"i*(z1)f(z1) ] + o(l) 

= O(hlz), 

where the last equality holds from Assumptions 1, 2, 7, and 12. Thus, t; = Op(n-112 ) . 

Now, similar to the proof of Lemma 4, we can show t hat Ei is a second order U-statistic 

with E[ Hi (Wi , WJ )2] = o( n) , where Hi (Wi, WJ) = ttz K ( zj ~zi r u; 2u;2 . Thus, we 

apply Lemma 3.1 of Zheng (1996) , implying that E1 = E[Hi(Wi WJ)] + op(l), where 

* 1 z2 - z1 2 2 ( )
2 

E [H1 (Wi, WJ)] = h,l z J K h 0"0*(z1)0"0*(z2)f(z1)f(z2)dz1dz2 

= J K (u)20"i*(z1)0"i. (z1 + uh)f(z1)f(z1 + uh)dz1du 

= J K (u)2du j [a3. (z1)]2 f(z1)2dz1 + o(l). 
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S- 7 Proof of Lemma 7 

Proof. F irst, consider t he case with lz = 1. Taylor expansion of k(( Zj - Zi)/11) at h = ho 

yields 

(S.12) 

which can be described by 

(S.13) 

where his between hand ho and 

(S.14) 

for some constant q. 

A simila r results hold for lz > l , which is 
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~ ( h - ho ) m ~cm) (Zj-Zi) + I - K - ' m. h h 
(S .15) 

where 

for some constant ctk - Since k (s>(v) is an even function, k (s>(v) can be viewed as a 

second-oder kernel function. Thus, the above expansion yields 

A 1 ~ ""' 1 (zj - zi) A A 

Tn(h) = n (n _ l) L L "t; K A 'UiUj 
i =l #i h h 

ho ( ) 1 1 A A 1 h - ho - s Zj - zi lz n m-1 ( A ) s 
= - T, ho + - 'Uiu · - K 

/,I, n n(n - 1) ~ ~ /,1, ' ~ s! h;, ( h;, ) 

1 ~ ""' 1 A A 1 ( /1 - ho ) m vm ( Zj - zi) + --- L L - A UiUj- ---- .n. -
n(n - 1) . 1 · ...1-· hlz m ! h h 

i= Jr1, 

hk (h-ho ) = - A Tn (ho) + - 1 - Op(T,i(ho)) 
hlz 10 

(

A )m n l h - ho l 1 A A K- m Zj - zi + - --- -'UiU · 
m! h n( n - l) ~ I: h,lz 1 ( h ) 

i =l J=/=i 

l (A ) (( A ) 771) h0 h - ho l h - ho 
= - A Tn(ho) + - 1 - Op(Tn(ho)) + - A Op -h -

hlz 1Q hlz 0 
(S.17) 

because h = h0 +op(h0 ) , h/h0 - l = op(l ), and E[lui'uill.Km((Zj - Zi)/h)I] ::; E[E(lui llZi)]2 ::; 

E[E(lu;I IZi)] 2 < oo under Assumptions 1, 5, 7, 11 , and the assumption that supu I.Km(u) I < 

, where u: is defined in Lemma 6. Since h-lz h/ h0 - l = op( l ) by Assumption 
A ( A )771 

3 



and Tn(ho) = Op(l ) , we obtain 

, 1 n 1 (Z·-Z·) hlz 
Tn(h) = ( ) LI: -, K 1 , i Ui'Uj = ~ Tn(ho ) + op(Tn(ho)) . 

n n - 1 . . . hlz h h,lz 
t=l Jc/t 

(S.18) 

• 
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S-8 Proof of Lemma 8 

Proof. By the expansion of t he kernel given in equat ion (S .13), we obtain 

(S.19) 

Under Assumpt ions 1, 5, 7, 11 , and the assumption t hat supu IKm(u)I < , we have 

E [u;u;k m((Zj - Zi)h)2] ::; E[u;]2 ::; E[E(u;21 Zi)] 2 < . Since k s(v) is a second-oder 

kernel function, the above expansion yields 

hlz 
0 ~ ( ~ ) = -~ ~(ho ) + op ~ (ho ) 

h lz 
(S.20) 
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because 1i,7z (Ii/ho - l)m+l = op(l) and I;(h0 ) = f; + op(l) by Lemma 6. Thus, we obtain 

E(/1) = f; + Op (1). 

• 
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Supplemental Material: Lemmas 

S-1 Lemma S .15 

Lemma S.15. Under Assumptions 2, 8, and 12, we obtain f K er,?) 60*(Y)f(y)dy = 

hlzJo•(x)f(x) + O(hlz+min{qk,k+qzJ) . 

Proof. ate that J(-) and 60*(-) are qz- and k-times differentiable by Assumptions 2 

and 8, respectively. For any functions g( ·) : IR1 --+ IR, let ~ (q) g(-) indicates a vector 

(matrix, or cube) of q-times partial derivatives.10 We define lz dimensional vector u = 

{u1, u2, . . . , Utz }'. Then, 

J K ( x ~ y ) 60• (Y)f(y)dy = h1z J K (u)60• (x - uh)f(x - uh)du 

= h1z J K (u) [Jo*(x) - hu' ~ (l)Jo*(x) + ~2 
u' ~ (2)J0• (x)u + ... ] 

[f(x) - hu'~(l) f (x) + ~2 u'~ (2) f (x)u + ... ] du 

= hlzJo• (x) f (x) J K (u)du + O (hlz+min{qk ,k+qzJ), 

where J K (u)du = 1 by Assumption 12. The last equation holds by the feature of qkth 

oder kernel in Assumption 12. • 

S-2 Lemma S.16 

Lemma S.16. Under Assumptions 1, 2, 3, 4, 5, 6, 8, and 11, we have 

10For example, L~,_{l) f( z ) = { 8f(z)/az1, 8f(z)/8z2, . .. , af(z)/az1• }' , and 6. <2> f(z) is a lz by lz matrix 
whose (l, k) element is af(z)/az1azk. 

42 



Proof. Let 'ffi = E[g(Xi, 0*) 1Zi] - g(Xi, 0*) + wi, where E('ffi ) = 0 and var('ffi) = 

E[g(X i, 0*) 2] + E(wt) - E{E [g(Xi , 0*)1 Zi] 2 } - 2E[wig(Xi, 0*)] < by Assumptions 

1, 2, 4, and 8, which implies 77i = Op(l). Then , 

By Assumptions 3 and 11 , there is 0 between 0* and 0 such that lg(X j, 0*) - g(Xj 0)1 = 

I J'0 g(X j, 0) I Op(n- 112 ). Thus, for some positive constant C and C', we have 

Z; E r. l + o(l) 
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where E [lf0 g(Xj ,0)1 1Zj E Ik] is bounded by Assumption 5. ext, 

= ( 0* - 0)' A~ + ( 0* - 0)' A~ ( 0* - 0) (S.l) 

Since E (iJil Zi) = 0, we have E (A~) = 0. For some constant C , 

by the boundedness in Assumption 5 and boundedness of E(ry;IZi) as shown before. For 

some constant C > 0, 

44 



where E[[ 80t0, g(Xj, 0)J Zj E Ik] is bounded by Assumption 6 a.nd E ([r;i[ [Zi) < E (lr;i[ 2 [Zi)112 

is bounded as shown before. From equations (S. l ), (S.2), and (S.3), we obtain A2 = 

O(hlz/2) . 

• 
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Supplemental Material: Simulation 

Table S.1 shows the simulation results with the sample size of n = 1000. All simulation 

settings but sample size are the same with those in Section 5 of the paper. 

Table S.l: Size and power of Tn with n = 1000. 

Bootstrap ormal 

Ho H1 p T/ h cv h opt h cv h opt 

Ho is true 
(6) DGP 1 0.8 0.1 0.054 0.047 0.020 0.033 

DGP 2 0.8 0.5 0.053 0.046 0.030 0.028 
DGP 3 0.7 0.1 0.052 0.045 0.021 0.031 

(7) DGP 1 0.8 0.1 0.060 0.051 0.022 0.025 
DGP 2 0.8 0.5 0.063 0.051 0.017 0.026 
DGP 3 0.7 0.1 0.061 0.048 0.021 0.027 

Ho is false 
(6) (7) DGP 1 0.8 0.1 1.000 1.000 1.000 1.000 

DGP 2 0.8 0.5 1.000 1.000 1.000 1.000 
DGP 3 0.7 0.1 1.000 0.960 1.000 0.936 

(6) (8) DGP 1 0.8 0.1 1.000 1.000 1.000 1.000 
DGP 2 0.8 0.5 1.000 0.999 1.000 0.996 
DGP 3 0.7 0.1 1.000 0.779 1.000 0.717 

(7) (8) DGP 1 0.8 0.1 0.999 0.957 0.994 0.938 
DGP 2 0.8 0.5 0.999 0.899 0.987 0.86 
DGP 3 0.7 0.1 0.680 0.418 0.507 0.358 

Note: Crit ical values are obtained from bootstrapping ( columns labeled by hoot-
strap) and the normal distribution ( columns labeled by ormal). 
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