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Abstract 

This study investigates optimal minimax rates of specification testing 

for linear and non-linear instrumental variable regression models . The rate 

implies that the uniform power of tests reduces when the dimension of instru­

ments is large. The test constructed by non-parametric kernel techniques 

can be rate optimal when bandwidths satisfy two order conditions that de­

pend on the dimensions of instruments and the smoothness of alternatives. 

Since bandwidths are often chosen in a data-dependent way in empirical 

studies, the rate optimality of the test with data-driven bandwidths are in­

vestigated. Bandwidths selected by t he least squares cross-validation can 

satisfy conditions for the rate optimality. 

K eywords: optimal minimax rate; specification tes · instrumental variable re­

gression; non-parametric kernel method; bandwidth selection 

JEL Classification: C12· C14 

4804 Words 

1 Introduction 

In t he context of specifica ion tests for the functional form of regression models 

he minimax approach can be used to investigate uniform power against a set of 

al ernatives (Ingster, 1993). In this approach a set of alternatives can be defined 

o approach t he null model at a specific rate. The maximum rate at which a test 

can uniformly de ect any alternatives in this set is called t he op imal minimax rate. 

Al hough the investigation of uniform power provides a deeper unders anding of 

specifica ion es ing, research in this area is limited. 
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The op imal minimax rates for regression models have been investigated by 

Guerre and Lavergne (2002). Recently a test based on the commonly used non­

parametric K -nearest neighbors technique was shown to be rate opt imal (H. Li , Li 

& Liu, 2016). Hi omi, Iwasawa, and ishiyama (2020) showed t hat a test based 

on t he distance between non-parame ric and parametric variance estimators is 

rate optimal against a se of non-smoo h alternatives. However, optimal minimax 

rates of specification testing for other models, such as instrumen al variable (IV) 

regression models , and rate optimali y of o her types of tests such as kernel-type 

es s, have no been investiga ed. 1 

This study investigates t he optimal minimax rates of specification t esting for 

IV regression models. We find hat t he optimal minimax rate is n-2(s+k)/[lz+4(s+k)] 

where n is t he sample size s + k represents t he smoothness of alterna ives, as 

explained later in detail and lz is t he dimension of instrument z when t he set of 

al ernatives is smooth such t hat s + k ~ lz/ 4. The rate implies that t he uniform 

power of ests reduces when t he dimension of instruments is large. 

We adapt he kernel- ype test proposed by Zheng (1996) for IV regression mod­

els. This test is based on t he non-parametric kernel est imator for the conditional 

mean of the error term given ins ruments. The proposed t est weakly converges 

to he s andard normal distribu ion under the null hypothesis and is ra e opti-
. s+k 

mal when bandwidth h for the kernel satisfies hmm{qk,k+Qz }l 2n 1z+4<•+k) = 0(1) and 
- 2 

h-1n 1z+4<•+kJ = 0 (1) where t he density of instruments is qz-times continuously 

different iable and the qkth-order kernel is used. 

In practice, bandwidths are often chosen by using data-driven methods such 

1 In the adaptive framework, in which he smoothness of the classes of alternatives is unknown, 
Horowitz and Spokoiny (2001 ) showed that their test based on non-parametric kernel techniques 
is rate optimal. This point will be discussed la er in detail . 
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as the least squares cross-valida ion. In he non-parametric kernel estimator for 

he regression function when the original bandwidth is replaced with one selected 

by a da a-driven method, asymptotic normality still holds if some additional as­

sump ion are made (see Racine & Li 2004). However, it is not clear whether t he 

rate opt imality of the kernel-type t est remains t he same when data-driven band­

wid hs are used. Thus we investiga e t he rate op imality of the kernel-type est 

when da a-driven bandwidths h are used instead of h. We find hat some addi-

ional assumptions regarding he kernel lead to parallel conditions on bandwidt hs 

hat , in turn ensure ha he test is ra e optimal. Furthermore we show t hat 

the conditions are satisfied by bandwidths selected by t he cross-validation when 

4(s + k) :-=; lz + 8 and min{qk k + qz}[lz + 4(s + k)] ~ 2(lz + 4)(s + k). This implies 

hat bandwidths selec ed by the leas squares cross-validation method can ensure 

hat he es is ra e optimal, although t he procedure is designed for estimation 

rather t han esting. In t his sense this s udy complements the results from Gao 

and Gijbels (2008), in which a bandwidt h selection method that maximizes the 

power against a Pi man-type local alternative is proposed. 

Specification tests for IV regression models were first developed by Donald 

Imbens, and ewey (2003) and Tripathi and Kitamura (2003). 2 Tripathi and 

Kitamura (2003) proposed a smoothed empirical likelihood ratio-based test. Fol­

lowing Hardle and Mammen (1993) and Ait-Sahalia, Bickel and Stoker (2001) 

Holzmann (2008) proposed a est for IV regression models using the squared dis-

ance between the parame ric model and its non-parametric kernel estimates. The 

es proposed by Horowitz (2006) takes a form resembling t he IC I[ t est. G~rgens 

2For a recent review of he development of specification testing, see Gonzalez-Manteiga and 
Crujeiras (2013). 
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and \i\ iirt z (2012) proposed anot her type of t est based on a sequence of Lagrange 

mul iplier (L f) st atistics. However , opt imal minimax rates for IV regression mod­

els in a fram ework comparable wit h Guerre and Lavergne (2002) have not been 

investiga ed o date. 

Specification es s tha use a non-parametric kernel estimat or are considered 

by Hardle and Mammen (1993), Zheng (1996), and Horowitz and Spokoiny (2001) 

among o hers. Horowit z and Spokoiny (2001) proposed a t est t hat is adaptive t o 

he unknown smoo hness of he set of alterna ives and showed t he rate optimality 

of t he test in the adap ive framework. T he authors consider a family of test statis­

tics, say, {Tn(h), h E Hn}, where Hn represents finite set s of bandwidth values 

and t he cs s atistic is defined by T = maxhEHn Tn ( h). The adapt iveness and t he 

rate op imality of t heir t est result from i s use of t he set of bandwidt hs. T he choice 

of t he se is important also for empir ical studies since the larger the set is more 

intensive t he computation become. However , the bandwidth selection approaches 

commonly used in applied research , such as t he least squares cross-validation find 

a single bandwidt h. 3 T hus from t he pract ical point of view charact eris ics of 

he kernel- ype test with a single bandwidth is of great int erest . onetheless 

the ra e optimali y of t hese est s is yet to be formally validat ed in the lit erature. 

To he best of our knowledge his is t he first study t hat considers the optimal 

minimax ra e of the kernel- ype cs wit h data-driven bandwidths. It is notable 

that t he ra e optimali y of cst s wit h da a-driven bandwidths is not t rivial, even 

if t he opt imality of t ests wit h a determinis ic sequence of bandwidt hs has been 

investiga ed. The core con ribution of t his paper is o show hat t he test can be 

3To the bes of our knowledge, how to select an appropriate set of bandwidth values Hn is 
an open question. 



rate optimal when i is evalua ed with bandwidths select ed using the leas squares 

cross-valida ion method . 

The remainder of his paper is organized as follows. Section 2 introduces t he 

model and testing framework. Section 3 shows t he opt imal minimax rate for t he 

IV regression model. Section 4 proposes a kernel smoothing test and exemplifies 

its rat e opt imality under de erminis ic and data-driven bandwidths. Section G 

reports simula ion results tha demonst rat e the t est s encouraging finite sample 

performance. Following Horowitz (2006) the size and power proper ies of t he 

proposed tes are compared wi h t hose of various existing tests. Section 6 concludes 

the paper and discusses fu urc research avenues. 

2 Framework 

Le (Y, X , Z ) E ~ x ~l,, x ~lz be random variables. We consider parame ric models 

Y = g(X ,0) + u (1) 

where g(X , 0) is a known function defined up to paramet ers 0 E 8 8 is a compact 

subset of ~lo wi h l0 ::; lz, and u is an error term. The hypotheses t o be tested are 

H0 : E (u lZ ) = 0. 

The null hypothesis is equivalent t o saying t hat here exist s 00 E 8 that satisfies 

E (Y IZ) = E[g (X , 00)I Z] almost surely (a.s.) . The null hypo hesis considers regres­

sion models when Z = X , and instrumental regression models when Z includes a 

subset of X , along wi h some other exogenous variables. 
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We examine t he asymptotic power properties of testing by employing t he min­

imax approach of Ings er (1993) in which the alternative hypothesis is a set of 

funct ions belonging to a smoothness class. Let M L,s,k be a class of functions 

defined on a compact set rl , such t hat: 

{ 
k IID8m(x) - D13m(y)II } 

M L,s,k = m: L sup_ sup IID.Bm(x) II + sup sup II _ lls :::; L , 
j=O I.Bl=J xEn J.BJ=k x,yEn X Y 

This applies fo r some smoo hness index s E (0 1] a non-negative integer k and 

a positive cons ant L , where II · II denotes he Euclidean norm. D!3m(x) indicates 

1/3 1-times par ial derivatives of m(-). T hen the alternative hypothesis is defined 

as follows: 

Hn,1: M (pn) = { m(·) E M L,s,k : j~l E {[m(Z) - E[g(X 0) IZ]]2} 2': P~- } 

where m(Z ) E(YIZ). The minimax approach finds t he fastest rate at which Pn 

approaches 0, while assuring t he uniform detection of alternatives in M (pn)- The 

al ernatives considered in t his study are parallel to hose in Guerre and Lavergne 

(2002). 

The following nota ions are used t hroughout t he paper . The true parameter 

00 of the parametric model is defined such t hat m(Z) = E [g(X 00 )I Z]. We denote 

b0(Z ) m(Z ) - E [g(X, 0) IZ] and w Y - m(Z) where E(wlZ) = o by definit ion . 

The variance of u is denoted by a2 (z) - E(u2 IZ = z). For any -Jn-consistent 

estimator 0 of 0 residuals of he parametric model are denoted by u = Y - g(X, 0) . 
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3 Optimal Minimax Rate 

vVe list t he assumptions to establish t he optimal minimax rn e for N regression 

models. 

A ssumpt ion 1. {1'i , X i, Zi}l~1 are a random sample on (Y, X , Z) E IR x ffi.1x x ffi.12 , 

where lx and lz are finite. E (w2 IZ = z ) is continuously differentiable and bounded 

away from zero. A positive constant M < exists such that E (lwl 4IZ) < M 

almost surely. 

A ssumpt ion 2. The density of Z denoted by f(·) : JR.12 • JR., has compact 

support {without loss of generality [O , l jlz ), satisfies O < 1 :S f( z ) :S f < for 

any z E [O , 1]1z, and is qz-times continuously differentiable on (0 l )lz, where qz > l. 

A ssumpt ion 3. For each x, g(x 0) is twice continuously differentiable with respect 

to 0. 

A ssumpt ion 4. For each 0 E 8 , E[g(X , 0)4] is bounded from above. 

A ssumpt ion 5. E [sup0Ee II f0 g(X 0) 11 2] is bounded from above. 

A ssumpt ion 6. E [sup0Ee II 80i0,g(X 0)11 4] is bounded from above. 

A ssumpt ion 7. For each 0 E 8 , E[g(X 0)2IZ] < a.s. 

A ssumpt ion 8 . For each 0 E 8 E[g(X 0)IZ = z] E M LM ,s,k for some s , k , and 

LM :SL. 

A ssumpt ion 9. For each 0 E 8 , Go f0 E [g(X , 0)I Z = z] is Lipschitz continuous 

with respect to z with support on Z and E( G0G~) is non-singular. 
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A ssumption 10. Under the null hypothesis, we have a -Jn-consistent estimator 

0n of Bo . 

A ssumption 11. {i) For each m(·) E M L,s ,k, there exists a unique pseudo-true 

value 0;1 with respect to 0. 

{ii) y'ri, (0 - 0:n) = Op(l ) uniformly with respect tom( ·) E M L,s,k 

{iii) For each m( ·) E ML ,s,k and a bounded function h( · ·) , a positive constant c 

exists such that 110:n - Bo ll :::; c J JE[h(· z )800 (-)]lf(z)dz . 

Assumpt ions 1 o 9 are s andard in he literature (Guerre & Lavergne, 2002). 

Exceptions arc dominance conditions that is assumptions 5 and 6 which guar­

an cc uniform convergence of¾ L~=i llg0g(Xi 0) 112 and ¾ L~=i llao~0,g(Xi, 0)1!2 

together wit h Assumption 3. T he dominance condi ions do not exclude he pos-

sibility tha g(-, 0) is linear, while linear models wit h unbounded regTessors (e .g., 

normally distribu ed regTessors) are excluded in Guerre and Lavergne (2002). T he 

dominance condition for the firs derivative is a standard assumption required for 

the asympto ic normality of commonly used estimators such as t he generalized 

method of moments (GMM). Assumpt ion 9 is a key assumption for t he existence 

of a parameter t hat satisfies infoEe E [8o(Z )2]. 

A sumpt ion 10 requires a -Jn-consistent parametric estimator 0n of 00 under 

he null hypothesis. Assump ion 11 restricts the bchavior of t he estimator under 

the al crnative hypothesis. We illustrate t hese assumpt ions with two examples. 

For no ational simplicity, subscripts are omi ted. T hat is, Bn = 0 and 0:n = 0* in 

all equations where no confusion will arise from his simplification. 

Example 1. (GMM estimators) Note that the null model is defined in terms of 
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conditional moment restrictions, while the objective function of the GMM estimator 

is based on a finite number of unconditional moment restrictions. If g( ·) is linear 

in parameters and the dimensions of the parameter vector are equal to the dimen­

sions of the instrument, the GMM {two-stage least squares) estimator based on a 

finite number of unconditional moment restrictions satisfies A ssumption 10 under 

regularity conditions (Hansen, 1982) . When g(·) is non-linear, however, the GMM 

estimator based on a finit e number of unconditional moment restrictions may be 

inconsistent (Dominguez €3 Lobato, 2004). The existence of the unique pseudo­

true value in Assumption 11 (i) implicitly demands the identification condition 

that, for each m(·) E M L,s,k , Qm(0:n) < Qm(0) for all 0 E 8\0:n, where Qm(0) 

is the GMM objective function in the population. The uniformity in Assumption 

11 (ii) is essential for rate optimality and a similar condition is assumed in pre­

vious studies of rate optimal testing (Guerre €3 Lavergne, 2002 Horowitz, 2006) . 

Further, the asymptotic behaviors of the GMM estimator in misspecified models 

depend on the weighting matrix. For example, Hall and Inoue {2003) showed that 

a fe;ed weighting matrix or a sequence of weighting matrices with ,Jn-asymptotic 

normality is required for the fa asymptotic normality of the GMM estimator. 

To investigate A ssumption 11 (iii), let us consider the first-order condition of the 

minimization problem for the GMM estimator, which is H~* W E (Zu*) = 0 where 
1n 

Ho E [Z 8~,g(X ,0)], W is a lz x lz weighting matrix, and u* Y - g(X 0:n). 

Applying the mean value theorem to the first-order condition yields 

(2) 

where 0 is a segment between 0:n and 00 . Thus, given the existence of the inverse 
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of H~* W H0, we obtain IIB:n - Ba ll ~ clE[h(Z }500 (Z)] I, where h (Z ·) = Z and 
m 

C = ll(H~;;. WH0)-1 IIIIH0;;.ll lllVII < 

Example 2 . Estimators using a continuum of unconditional moment restrictions 

such as those defined in Carrasco and Florens {2000) and Dominguez and Lobato 

{2004) are known to be ,Jn-consistent under the null hypothesis. Let us con­

sider the estimator described by Dominguez and Lobato {2004) . The pseudo-true 

value B:n of the estimator is defined as the minimizer B E 8 of J E l[m(Z) -

g(X , B) ]]_ { Z ~ z } l2 f( z )dx. The first-order condition of the minimization problem 

is J E{ [m( Z ) - g(X B:n)]ll { Z ~ z }} H0;,, (z )f(z )dx = 0, where we define H0(z ) 

E [g0g(X , B)]. {Z ~ z}]. Applyingthemeanvaluetheoremyieldsm(Z )- g(X , B:n) = 

m(Z ) - g(X , B0 ) - 8~,g(X, 0) (B:n - B0 ) where B is the segment between B;n and B0 

which implies 

(07n - Bo) = [/ Ho;:, (z) Ho(z)' f (z)dx ]-! / E[0,0 (Z )li { Z S z ) ]H,~ (z) f (z)dx . 

(3) 

Thus, given the existence of the inverse of E [Ho;,. (Z )H0(Z )'], we obtain, for some 

constant c > 0, II B:n - Boll~ c f IE [o00 (Z )h(Z z )]lf(z)dx where h(Z z ) = ].{ Z ~ 

z}, since H0;J z) is bounded by A ssumption 5. 

The fo llowing Theorem shows the opt imal minimax rate of specification t est ing 

for IV regression models. 

Theorem 1. (Optimal Minimax Rate) Suppose A ssumptions from 1 to 11 hold. 

Ifs+ k ~ lz/4, the optimal minimax rate against Hn,l is n-2(s+k)/ [lz+4(s+k)] _ 

To prove the optimal minimax rate we first show t hat no t est has more 
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han t rivial uniform power against M (j5n) for any Pn that approaches zero faster 

han n-2(s+k)/[l z+4(s+k)]_ T his is called the lower bound. Then we modify t he 

es proposed by Guerre and Lavergne (2002) for IV regression models and show 

hat t he modified es has non-trivial uniform power against M (pn), where Pn = 

n-2(s+k)/ [lz+4(s+k)]_ The proof is given in Appendix A. 

Theorem 1 shows hat the optimal minimax rate n-2(s+k) /[lz +4(s+k)] depends 

on t he dimension of ins ruments and t he smoothness of t he set of alternatives. 

T he ra e implies t hat the uniform power of t ests reduces when the dimension of 

ins ruments is large. 

Theorem 1 considers the case of smooth al ernatives (s + k 2:'. lz/4). W hen s + 

k < lz/4, the lower bound is n-1/ 4 as shown in Appendix A. However t he opt imal 

minimax ra e is unknown because no specification tes is shown to have non-trivial 

uniform power against such irregular non-smooth alternatives when evaluated with 

n-1/ 4 _ Guerre and Lavergne (2002) argued t hat against such irregular alternatives 

he op imal minimax rate may differ from n-1/ 4 and may depend on the smoothness 

of alt ernative classes. Hitomi et al. (2020) showed the set of non-smooth functions 

against which t he opt imal minimax rate is n-1/ 4 _ Their non-smooth alternative 

consists of bounded func ions and no smoothness restrict ions are imposed on t hose 

derivatives. 
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4 Smoothing-type Test 

vVe adapt he es proposed by Zheng (1996) for IV regression models. The test 

is based on t he sample analogue of E[u E (ul Z )f(Z )]. We define 

where K (-) is a product kernel function (e.g. a Gaussian kernel) that satisfies he 

assumption below and h is t he smoothing parameter (bandwidth). 

A ssumpt ion 12 . We have a qkth-order symmetric kernel k(-) with qk ~ 2 that 

satisfies J k(u)du = 1, J lk(u)l du < oo supu lk(u)I < , and luk(u)I • 0 if 

u • . The product kernel is denoted by K (-) = k(-)k( -) · · · k( -). 

The asymp otic normali y of t he test statistic n hlzf2Tn under H0 is shown 

in Theorem 1 of Zheng (1996) under he regression set up. This result can be 

extended to he IV regTession set up by making minor modifications to t he proof. 

We res ate he asymptotic normali y results under t he current set up as follows: 

P roposit ion 1. {Asymptotic Normality) Suppose Assumptions 1, 2, 3, 5, 6, 10, 

and 12, hold. If h • 0 and nhlz • , under the null hypothesis, nhlzl2Tn con-

verges weakly to N(O I:), where I: 2 J K (u)2du J[o-2(z)]2 f (z)2dz . The asymp­

totic variance I: can be consistently estimated by 

n ( )2 t = 2 ~ ~ J_K zj - zi u%2 _ 

n(n - 1) D D J-,,lz h i J 
i=l jc/ci 

The es is one-sided . The null hypo hesis is rejected when t -112n h1zl2Tn ~ Zo: 

where Zo: i the 1 - a quantile of the s andard normal distribution. 
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The null hypothesis will be rejected if here is misspecification when instru­

men s are valid. To see t his , decompose t he test using ui = [½ - g(Xi, 0*)] + 

[g(Xi, 0*) - g(Xi, 0)]. The term that includes [½ - g(Xi, 0*) ][1j - g(Xj 0*) ] con­

verges to he normal distribut ion under t he null and diverges under t he alternative. 

T he remaining terms include g(Xi, 0*) - g(Xi, 0), which is asymptotically negli­

gible under Assump ion 10 or 11 with differentiability of g(Xi , ·). T he existence 

of valid instruments is implicitly assumed. As long as ins ruments are valid, t he 

source of power comes from t he L2-distance between m(Zi) and E[g(Xi 0*)1Zi] in 

he first term. When ins ruments are invalid, however, biased parameter estimates 

con aminate t he source of power. In this case t he rejection of the null hypothesis 

may be caused by invalid instruments misspecification or both . 

The following theorem shows that t he test is rate optimal when s + k > lz/4. 

Theorem 2. (Rate Optimality) Suppose Assumptions 1, 2, 3, 5, 7, 8, 11 , and 

12 hold. Let Pn = n-Z(s+k)/[lz+4(s+k)J, s + k ~ lz/4, and the bandwidth h satisfies 

prescribed bound f3 E (0, 1 - a), a constant K, exists such that 

sup P (nhlz/Z't,-lfZTn::; z0 ) ::; (3 + 0(1). 
mEM(1,,pn) 

Theorem 2 shows the orders of bandwidths t hat ensure t he rate optimality of 

he proposed test. Unfor unately however t hey do not disclose t he value of h and 

hus , in practice, t he choice of t he bandwidth may rely on data-driven me hods. 

Note hat data-driven bandwid hs are random variables. It is not trivial whether 

T heorem 2 holds analogously for the test wit h a data-driven bandwidth h. 
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Let Tn(h) be a version of Tn , in which h is replaced by h; t hat is 

" 1 ~ "' 1 (Z·-Z) T,i(h) = ( ) ~ ~ -,_ K 1 ,_ i u(uj. 
n n - 1 hlz h 

i=l #i 

(4) 

In t he same manner le E(h) be a version of E in which his replaced by h. 

The fo llowing proposit ion shows t hat the results of T heorem 3 hold analo­

gously, even when h is replaced with a data-driven bandwidth h. In t he following 

proposi ion, he s-t h de1iva ive of t he kernel k is denoted by k(s). 

Theorem 3. Suppose the Assumptions in Theorem 1; Proposition 1 and Theorem 

2 hold. Let the kernel k be m -times differentiable. We assume that f( (s) ( zj~Z; ) 
hs :;.K ( ZJ~Z; ) satisfies J IK(s)(u) ldu < supu IK (s)(u) I < and luK (s)(u)I • 

0 ifu • for all s = 1, ... , m. In addition, suppose that h = h0 + op(h0 ) for 

some deterministic sequence h0 that converges to zero and Ji-tz(h/h0 - l )m = op( l ). 

Then, the test with a data-driven bandwidth t(Ji)-112n h,lzl 2Tn(h) is rate optimal 

min{qk k+q }/2 s+k ( ) 1 - 2 ( ) when ho satisfies ho ·, z n 1z+4 (s+k) = 0 1 and ho n 1z+•l( s +k) = 0 1 . 

We show hat t he bandwidths selected by t he least squares cross-valida ion can 

satisfy t he conditions in Theorem 3. T his method is one of t he most widely used 

selec ion methods in which one selects h t hat minimizes 

n 

CV(h) = L [¾ - m-i(Zi)]2w(Zi), (5) 
i=l 

where m_i(Zi) = L N,i K ( z1 ~Z; ) ~/ L N,i K ( zj~Z; ) is t he leave-one-out kernel 

estimator of m(Zi), and O ~ w(·) ~ 1 is a weight function. Let hcv deno e t he 

value of h selected by cross-valida ion. It is well known t hat a unique, positive 

and finite sequence h0 exists such t hat hcv = h0 + op(h0 ) where ho = O(n-I/(lz+4)) 

L..> 



(see Theorem 2.3 of Q. Li & Racine, 2007) and hcv/h0 - 1 = Op(n-min{lz/2 ,2}/(4+lz) ) 

(see Theorem 2.2 of Racine & Li, 2004). T hen , t he following corollary holds. 

Corollary 1. For a sufficiently smooth kernel such that lz < mmin{lz/2, 2} and 

k ~ 2, the bandwidth chosen by cross-validation satisfies h-;;/;z ( hcv / ho - 1 )m = 

op(l) . Moreover, the test statistic evaluated with the bandwidth chosen by the cross­

validation method t(hcv) - 1!2nf1,lzl 2T,i(hcv) is rate optimal when 4(s + k) ::::; lz + 

and min{qk , k + qz} [lz + 4(s + k)] ~ 2(lz + 4)(s + k). 

Corollary 1 shows tha t he est evaluated with hcv has rate optimal uniform 

power under hese wo conditions. Let us consider a higher-order kernel such t hat 

min { qk, k + qz} = k + qz. Then he second condition holds when t he density of Zi 

is sufficiently smoo h , such t hat qz ~ 3 - k for lz = {1 , 2} qz ~ 4 - k for lz = {3, 4} 

and so on. When he first condit ion is satisfied the second condition is satisfied for 

any lz , when qz ~ 10 (see Appendix for the derivation of the sufficient condition) . 

T he firs condit ion 4( s + k) ::::; lz + 8 implies t hat rate optimality is achieved only 

against he set of alt ernatives that are not too smooth. Intuitively, t his condi ion 

arises because the optimal minimax rates depend on t he smoothness of alternatives 

(whereby he ra e is faster for smoother alternatives), while t he convergence rate 

of hcv = ho + op(n-l/(lz+4)) does not depend on t his smoothness. T his condi ion 

substan ially restricts the cases in which Tn(hcv) is rate optimal. In practice 

however bandwidths selec ed by he cross-validation method can perform well in 

terms of size and power , as shown in the simulation study below. 
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5 Simulation 

The simula ion aims to investiga e and compare the size and power of several 

es s. We adapt he simulation set up of Horowitz (2006) so that the results are 

comparable wi h existing specification tests for ins rumen al variable regression 

models, including ICM-type tests (Bierens 1982 and Bierens & Ploberger, 1997) 

and Horowitz (2006) and he exponential tilting test of Donald et al. (2003). 

We test t he null hypotheses t hat 

g(x) = f3o + f31x, 

and 

g(x) = /3o + f31x + f32x2. 

The true models are (7) if (6) is H0 and 

if (6) or (7) is H0 . 

Data are genera ed by 

X = <I> (pv1 + (1 - p2)112v2) , 

Z = <I> (v1) , 

U = 0.2<l> ( 'f"/V2 + (1 - ry2)1f 2v3) 

(6) 

(7) 

(8) 

where <I> ( -) is the standard normal dis ribution function. v1 v2 and v3 are drawn 
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randomly from N(O, 1). 

Ou comes are genera ed by y = g(x) + u. In all experiments, /30 = 0 and 

/31 = O.v. When (7) i the correct model, /32 = - 0.5. \ i\Then (8) is the correct 

model, /32 = - 1, /33 = 1 if (6) is H0 , and /33 = 2 if (7) is H0 . 

There are two parameters p and T/ for which t he values vary among experi­

ments. T he paramet er p balances the strengths of endogeneity and instrumental 

relevance. rJ modulates the exogenous component in ui . We consider three sets of 

data genera ing processes (DGPs) called DGP 1, DGP 2 and DGP 3: DGP 1: 

p = 0.8 and 'r/ = 0.1; DGP 2: p = 0.8 and T/ = 0.5· DGP 3: p = 0.7 and T/ = 0.1. 

In this experiment , X is endogenous and is instrumented by Z . The instru­

mcn s to estimate (6) and (7) arc (1 Z ) and (1 Z Z 2 ) respectively. 

The kernel is Gaussian k(v) = (21r)-112 exp (- v2/2). Bandwidths are selected 

by he least squares cross-valida ion denoted by hCl/. We also report results ob­

ained using t he optimal bandwidth denoted by hopt that minimizes the leading 

erm of t he cross-validation objective function .4 ote that using t he opt imal band­

wid h is infeasible in practice. 

Crit ical values are ob ained based on either the standard normal distribution 

or using the empirical distribution from B = 1000 simulation runs where he t est 

statistic in each simulation is computed using bootstrap observations as per Gao 

and Gijbels (2008). 5 T he sample size is n = 500 and the nominal level is 0.05. 

Size and power arc ob ained by M = 1000 simulation runs in each experiment . 

4 Although we know he DGP, the explicit form of the true IV regression function is not 
straightforward . Thus, op imal bandwidths are calculated using a random sample of size 150000. 

5A bootstrap sample is {Xi, Zi, Y/}f=l> where Y/ is generated by Y,_b = Y; + a~ e;, in which 
Y; are predicted values, au is he residual standard error from the IV estimator under the null 
hypothesis, and { e:} f=l is a sequence of random samples drawn from he standard normal 
distribution. 
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[Table 1 near here.} 

Table 1 shows t he simulation results. When H0 is true t he test t ends to under­

reject t he null hypo hesis when critical values are obtained from the standard 

normal distribution. The under-rejections are severe for all set-ups , which may 

come from the well-known results t hat asymptotic approximations of IV estimators 

for linear models can be poor. In contrast the t est with hcv t ends to over-reject 

he null hypothesis when crit ical values are obtained by boo strapping. The size 

dis ortions reduce when the sample size is increased to n = 1000 as shown in 

he supplemental ma erial. The size is around the nominal level when opt imal 

bandwidths are employed. 

The power of Tn with hcv is close to 1 when the null is (6). The power of tes ing 

(7) against ( ) is remarkably low when DGP 3 is applied. Table 1 of Horowitz 

(2006) shows t hat the power of existing ests is low when DGP 3 is employed for 

all cases. Since he powers of ~ 1 is close to 1 even under DGP 3 when the null is 

(6), he kernel- ype t est can be considered to complement other existing tests. 

6 Conclusion 

This s udy shows hat t he op imal minimax rate for linear and non-linear IV re­

gression models is n-2(s+k)/[lz+4(s+k)) when s + k 2:: lz/ 4 implying t hat rate opt imal 

results in Guerre and Lavergne (2002) hold for more general IV regTession frame­

works, including linear models. The es nh}zl 2"t- 1l 2Tn based on non-parametric 

kernel techniques is rate opt imal when a deterministic sequence of bandwidt hs 
. s+k - 2 

satisfy hrrun{qk ,k+qz }l 2n 1z +4(s+ k) = 0(1) and h-1n 1z +4(s+k) = 0(1). foreover, if 

he test i evaluated wi h a data-driven bandwidth h t hat can be described by 

19 



h = h0 + op(h0 ) for some deterministic sequence ho it is also rate optimal when h0 

satisfies t he conditions above. Commonly applied bandwidth selection procedures 

such as t he least squares cross-validation method can satisfy these conditions. A 

simulation study furt her valida es hat he proposed t est can complement existing 

es s. 

A possible fu ure research direction is to consider the optimal minimax rate for 

specifica ion t est ing agains non-smooth alternatives (s + k ::; lz/4). Against such 

al ernatives) Guerre and Lavergne (2002) showed hat the optimal minimax rate 

is n-1/ if he structure of t he error variance condi ional on regressors is known. 

Without his additional struc ure however it is unknown if any t est exists t hat has 

non-t rivial uniform power against non-smooth alternatives. Using a different set 

of non-smoo h al ernatives Hitomi e al. (2020) showed that t he optimal minimax 

rate is n-114, and a test based on the difference between he non-parametric and 

parametric variance estima ors is ra e op imal even when t he structure of t he 

error va.J.·iance is unknown. However research in t his area is limited. 

Additionally, t he task of developing bandwidth selection procedures t hat max­

imize the uniform power of specification t esting is left for future research. The 

power-maximizing selection procedure of Gao and Gijbels (200 ) is based on a 

sequence of local alt ernatives t hat approach the null model as the sample size in­

creases. A selec ion procedure based on maximizing t he uniform power of testing 

is unknown. 
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APPENDIX A: Proofs 

A-1 Proof of Theorem 1 

To prove Theorem 1, three proposi ions that complete the proof are given be­

low. Proposition Al shows he lower bound. We modify t he t est proposed by 

Guerre and Lavergne (2002) for IV regression models denoted by T,;!L. Asymp-

otic normality of ~f L under H0 is given in P roposition A2. Finally, Proposition 

A3 shows tha T,;!L ha non-trivial uniform power against Hn,I evaluated wi h 

n-2(s+k) /[lz+4(s+k )]_ P roofs of t he propositions are given in the supplemental mate­

rial. 

Proposit ion Al. (Lower Bound) Suppose Assumptions 1 2 3 D 8 and 9 hold. 

Le Pn = n-2(s+k) /[l z+4(s+k) ] if s + k ;:::: lz/4 Pn = n-1/ 4 ifs+ k < lz/4. If each wi is 

N(0, 1) condit ionally upon Zi for any t est tn with supmEHo P (tn > Za) :s; a + o( l ) 

sup P(tn :s; Za) ;:::: 1 - a + o(l), whenever Pn = o(f3n) -
mEM(Pn ) 

Let h = IT~~1 [kj hn, (kj + l )hn) be dyadic cubes that part it ion the support of 

ins ruments Zi into K;: cubes where Kn is an integer hn 1/ Kn is t he bandwid h 

that determines t he number of cubes, and t he index k = ( k1 . . . k1z )' E K C JN1z 

satisfies 0 :s; kj :s; Kn - 1 for j = 1, ... , lz. 

Following Guerre and Lavergne (2002), a test statistic is based on the average 

of the estima ed parametric residuals ui in each cube: 
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where Nk I:::=1 ]_ { Zi E h} is the number of observations of instrumen s in h . 

The estimator of t he variance of T;!L is 

where t he second summation is taken over i and j =/= i that satisfies { Zi, Zj} E h 

hat is, L ZiEh x i = L~=l ]_ {Zi E Ik} Xi. 

Proposition A2. (Asympto ic ormality) Suppose Assumptions 1 2 3 5, 6, and 

10, hold, Kn • , and n/(K;: logK;: ) • . Under the null hypo hesis t he t est 

~fL /vn converges to N(O , 1) weakly. 

Proposition A3. (Ra c Op imality of T;;L) Suppose Assumptions 1, 2, 3 4 5 

6 7 8 and 11 hold Let p = n-Z(s+k)/ [lz+4(s+k)] s + k > l /4 and K = h-1 = ,,, · n , _ z, n n 

(>.p~/(s+k) )-1 fo r some constan >. > 0. For any prescribed bound /3 E (0, 1 - a) a 

constant i<i, exists such hat 

sup P(v;;,1T;;L ::; Za )::; /3 + o(l). 
mEM (1,, pn) 

A-2 Proof of Proposition 1 

Proof of Proposition 1. Using ui = ~ - g(Xi, 0) = g(Xi 0) - g(Xi 0) + ui the t est 

statistic can be decomposed as follows: 



Under the null hypothesis T1 converges to t he normal distribution T2 = op(l ) 

and T3 = op (l ), as shown in Lemmas 1 2, and 3 respect ively. The proof for 

the asymptotic normali y of T1 is consistent with hat for Lemma 3.3a of Zheng 

(1996). T2 and T3 include bo h covariates and instruments, which make the proof 

different from hat for the regression set-up in Zheng (1996). Proofs are given in 

the supplemcn al ma crial. 

Lemma 1. Under Assumptions 1, 2, and 12, T1 ~ N (0, 2JC(O)E{[CT2 (Z)] 2 f(Z)}) 

where JC (O) denotes the convolution product. 

Lemma 2. Under Assumptions 1, 2, 3, 6, 10, and 12, we have T2 = op(l) . 

Lemma 3. Under Assumptions 1, 2, 3, 5, 10, and 12, we have T3 = op(l). 

Lemma 4 shows hat E is a consis ent estimator for ~ under the null hypothesis. 

A proof of Lemma 4 is given in he supplemental mat erial. 

Lemma 4. Under Assumptions 1, 2, 3, 5, 10 and 12, we have E = ~ + op(l). 

• 
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A-3 Proof of Theorem 2 

Proof of Theorem 2. Proofs of all lemmas used in t his proof are given in t he sup-

plemental material. nder Hn 1 we have 
' 

n h1zl2 ~ ~ 1 (Z· -Z·) = n(n - 1) Lt Lt hlz K J h ,,, [½ - g(X i, 0*)][1'; - g(X i 0*)] 
i = l J#i 

2n hlzl2 ~ ~ 1 (Z· -Z·) A + n(n _ 1) Lt Lt hlz K 1 h ,,, [½ - g(X i, 0*)] [g (X i 0*) - g(X i 0)] 
i=l Jf1, 

n h1zl2 ~~ 1 (Z· -z) A A + n(n _ l ) Lt Lt h,lz K 1 h ,,, [g(Xi, 0*) - g(X i, 0)l[g(X i 0*) - g(X i 0)] 
i=l Jf1, 

(A .1) 

The convergence of (0 - 0*) = Op(n-1/ 2 ) in Assump ion 11 and other assumpt ions 

leads o A3 = op(l ). The fo llowing lemma holds for A2 . 

Lemma 5 . Suppose A ssumptions 2; 31 51 81 111 and 12 hold. Then1 A2 + A 3 = 

The probability limi of f; under Hn,l can be shown as follows. 

Lemma 6. Suppose A ssumptions 11 2 31 51 71 111 and 12 hold. Let O"i.(z i) 

E (ul21Zi) 1 where u; = ½ - g(X i 0*). Then under Hn,Ii we obtain f; = t+op(l )1 

where E = 2 J K (u)2 du E{[O"i.(z i)] 2 f (Zi )} is unif ormly bounded in m E M ("-Pn)-

These result s imply, for arbitrary small E a const ant C > 0 and z~ exist such 
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hat 

< sup P(A1::; z~ + ~{E[ot.(Zi)]}112C) + c. 
mEM(i,,pn) 

When E (A1 ) - z~ - ~{E[ot.(Zi)]}1!2C > 0 Chebyshev s inequality yields 

P (A- < z' + ~{E[o2 (Z )] }l/2C) < var(A1) 
l - a 0* i - [E (A1) - z~ - vn!Jz{E[oi.(z i)]}1/2C]2. 

(A.2) 

Thus, it suffices to show that the following inequalities hold uniformly in m E 

E (A1) - z~ - ~ {E[o:.(z i)]}112c > 0 

var(A1) < 
[E (A1) - z~ - vn!Jz{E[ot.(Zi)]}1/2C]2 - /3. 

First, we show (A.3). To this end, we decompose A1 as follows: 

(A.3) 

(A.4) 

nh1z/2 ~ ~ 1 (Z· -Z·) 
A1 = n(n _ l ) -8_ f;: htz K 1 h i [m(Zi) - g(Xi 0*)l[m(Zj) - g(Xj 0*) ] 

nh1z/ 2 n 1 (z -Z·) 
+ n(n - 1) L ~ hlz K J h i [m(Zi) - g(Xi 0*)]wj 

i=l Jf=i 

nh1z/2 ~~ 1 (Z · - Z-) + n(n - 1) 6 ~ hlz K J h i [m(Zj) - g(Xj, 0*)]wi 
i=l Jf=i 
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Obviously, we have E (A1 ,2) = E (A1,3) = E (A1,4) = 0. Let q min{qk k + qz} . A 

change of variables under Assumptions 2, 8, and 12 yields6 

E (A1,1) = nh-lzl2E [K (zj ~ z i ) 80.(Zi)80.(Zj)l 

= nh1zl2 E [80• (Zi)2 f (Zi) ] + 0 (nh}z/2+q)E [80.(Zi)]. (A.5) 

E (A1) - z~ - ~ {E[82.(Zi)]}1!2C 
nhlz/2 E[ 80• ( Zi)2] 

> nh1zl2E [80.(Zi)2][ + 0 (nh}z/2+q)E [80.(Zi)] - z~ - v'n1Jz{E[oi.(z i)]}1l 2C 
- nh}zl2E [8o*( Zi)2] 

~ j - ~o (hqn 1z!:i~k) ) - I_o (h-lzl2nlz+~t:+k)) - o(l ) 
- l'i, l'i,2 

~~~) ~~ 

where p~ = n 1z+4l•+kJ . When we chose h that satisfies bo h hq/2n 1z+4 <•+kJ = 0 (1) 
- 2 

and h-1n 1z+4 <•+kJ = 0 (1) the lower bound is increasing in K, and posit ive when K, 

and n are large enough, which implies equa ion (A.3). 

ext , we show equation (A.4). A1 is a second-order -statistic: 

A1 = nh-tz/2 2 ~ ~ K (zi - z i ) [½ - g(Xi 0*)l[Y:• - g(X · 0*)] 
n(n - 1) {--~ h 1 1 

i=l J <i 

2 n 

nh-lz/2 n(n - l ) LI: Hn(Wi Wj), 
i=l J <i 

6For the deriva. ion , see Lemma. ?? in the supplemental ma.teria.l. 
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where Wi = {½, Xi, Zi}. Let us define g(Wi) = Q(Wi) - Q where Q(Wi) 

E [Hn(Wi, Wi) IWi] and Q E[H11(Hli Hli)] and 77(Wi Wi) = Hn(Wi, Wi) - g(Wi) ­

g(Wi) - Q, where E [g(Wi)] = 0, E[77(Wi Wi)] = 0 and E[77(Wi, Wi)77(Wi Wk)] = 0 

for j -=/= k. Then t he Hoeffding decomposition of second-order U-s atistics and 

some calculations yield 

= O(nh-1z)E[g(Wi)2 ] + O(h-1z) (E[Hn(Wi Wj)2] - Q2 - E[Q(Wi)2]) . 

(A.6) 

Equation (A.5) implies for any i -=/= j, = O(h1z) E[o0.(Zi)2] + O(htz+q)E[o0.(Zi)]. 

Since Q(Wi) = E[Hn(Wi, Wi) IWi] = [½- g(Xi 0*) ]E{K(zj~zi )[1'j - g(Xi 0*)]1Wi} = 

[½ - g(Xi, 0*)]E{K(zi ~zi )00. (Zi)IWi}, we have 

E[Q(W,)' J = E (1v. - g(X, 0')[2 {/ K ( z ~ z,) 08,(z)J (z)dz } ' ) 

= h21z E (a-i.(z i) {00.(Zi) f (Zi) + O(hq)} 2) 

= O(h21z E[o0.(Zi)2]) + O(h21z+2q) + O(h2lz+q) E [o0.(Zi)]), 

where a-2. (Zi) is bounded almost surely by Assumpt ions 1 and 7 under Hn,l Then 

E[g(Wi)2] = E [Q(Wi) 2 - 2Q(Wi)Q + Q2 ] = E[Q(Wi)2] - Q2 

~ O(h21z E[o0• (Zi)2]) + O(h21z+2q) + O(h2tz+q) E [o0• (Zi)]) . 
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A change of variables under Assump ions 1 2 7 and 12 yields 

These resul s together with equation (A.6) yield 

var(A1 ) ::; 0(nhtz)E[oo.(Zi )2] + 0(nh1z+2q) + 0(nh1z+q) E[oo. (Zi)] + 0 (1) 

+ 0(h1z)E[oo*(Zi)2]2 + 0(h1z+2q)E[oo. (Zi)]2, 

which implies 

------ < -0 n Lz+4(s+k) h2q + -0 ntz+4(s+k)h-lz . var(A1) 1 ( - tz+4(s+k) ) 1 ( - 2/z ) 

n2h}z E[o0• (Zi)2]2 - r,,4 r,,4 

The upper bound is a decreasing function of r,, , when h is chosen such t hat 
- lz/4+(s+ k) - 2 

n lz+4(s+k) hq/2 = 0 (1) and ntz+4(s+k) h-1 = 0(1). 

Therefore, equations (A.3) and (A.4) hold if the bandwidth value sa isfies the 

following condi ions: 

s+k / ntz+4(s+k) hq 2 = 0(1) 

- 2 
n tz+4(s+k) h-1 = 0(1). 

(A .7) 

(A.8) 

The source of power, represented by t he first term of the right hand side of 

equation (A.5), requires tha nh}z/2 E[oo. (Zi )2] ~ nh1zl2 p; = n1z/ [lz+4(s+k)] hlz/2 does 

not shrink, which constrains t he bandwidth to converge to zero at a rate slower 

han n-2/ [lzH(s+k)] _ This requiremen is reflected by condition (A.8) . Thus for 

example, we can choose he bandwidth t hat is h = cn-2/ [lz+4(s+k)] for some constant 
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c > 0, which satisfies condit ion (A.8) . T his choice of bandwidth also satisfies 
( s+k )-q (s+k) -min{qk ,k + qz } 

condi ion (A.7) when n 1z + 4 <• + k ) = n 1z+4 <•+k) = 0(1) , which holds when 

(s + k)::; min{qk, k + qz} which is equivalent to (s + k)::; qk since s < qz. 

• 

A-4 Proof of Theorem 3 

Proof. Proofs of all lemmas used in t his proof a.re given in the supplemental mate­

rial. T heorem 2 shows he rate optimality of nhlzl2't,- 1!2Tn in which his treated 

as a deterministic sequence. Since da a driven bandwidths a.re random variables 

it is not t rivial whe her T heorem 2 holds analogously. Thus we first show t he rate 
h 

optimali y of testing in which h is replaced by a data-driven bandwidth h. To this 

end, we decompose t he test statistic as follows. 

h 

Le mma 7. Suppose Assumptions 1 5, 7, 11, and 12 hold. Let h be data-driven 

bandwidth such that h = h0 + op(h0 ) for some deterministic sequence h0 that con­

verges to zero and i,,-lz(h/h0 - 1)111 = op(l) . We assume that the kernel k be m­

times differentiable and f< (s) (z1~zi) hs:;. K (z1~zi) satisfies J lf<(s)(u) ldu < 

, supu lf<(s)(u)I < , and luf<(s)(u)I • 0 if u • oo for alls = 1 ... m. Then, 

the test statistic can be decomposed as follows . 

h 1o (' )
lz 

~ i(h) = l1, Tn(ho) + Op (Tn(ho)). (A.9) 

Lemma 7 and equation (A.1) imply that 

(A.10) 
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where .A1 = ( h0 /h) lz A1 + op(l )A1 and A = op(A2 + A3). 

The following lemma shows asymp otic behavior of the variance of t est statistic. 

Lemma 8 . Suppose A ssumptions 1, 2, 3, 5, 1, 11, and 12 hold let h be data­

driven bandwidth such that h = h0 +op(h0 ) for some deterministic sequence h0 that 

converges to zero and 1-,,-lz(h / h0 - l )m = op(l ). We assume that the kernel k be m­

tim es differentiable and f( (s) (zi;zi) hs:;. K (zi;zi) satisfies J IK(s)(u)ldu < 

, supu IK(s)(u) I < , and luk(s)(u)I • 0 if u • oo for alls = 1 .. . m. Then, 

we have 

These results and (h0 /Ji)lz(A2 + A3) = Op(~){E[c5i*(Zi)]}112 by Lemma;:, 

imply that, for arbitrary small E, a cons ant C > 0 and z~ exist such that 

sup P (nhlzl2[E(h) J- 112Tn(h) ~ z0 ) 

mEM("'Pn) 

sup P (.A1 ~ [E(/i)] 112z0 - ( ho/h) lz (A2 + A3) - .A) 
mEM (KPn) 

< sup P (A1 ~ z~ + ~{E[c55.(Zi)]}112C) + E. 
mEM("'Pn) 

Since A1 = [(h0 /h)lz + op(l)]A1 = [1 + op(l)]A1, for arbitrary small E, a constant 

c > 1 exists such hat 

when n i large enough. The right hand side of the above equation is equivalent 
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o t he left hand side of equation (A.2) up to t he constant c. Thus t he opt imal 

minimax rate of he est with stochastic bandwidt h Ii can be derived analogously 

o hat given in T heorem 2 which implies t hat t he test is rate optimal when h0 

satisfies nhk • and he following conditions: 

A-5 Proof of Corollary 1 

(A.11) 

(A.12) 

• 

Proof. It is well known that a unique posit ive, and finite sequence ho exists such 

hat hcv = h0 + op(h0 ), where h0 = O (n-l/(lz+4)) (see T heorem 2.3 of Q. Li & 

Racine 2007) and hcv / h0 - 1 = O p(n-min{lz/2,2}/ (Hlz) ) (see Theorem 2.2 of Racine 

& Li 2004). Thus, h-;/;z (hcv/h0 - l)m = Op n Lz+4 ( 
l z-Tn min {lz/2,2} ) 

which converges zero 

in probability when lz ::; m min{lz/ 2 2} . 

Recall hat ho = 0 ( n ,;~4 ) • Then first 

(A.13) 

which is 0 (1), if 4(s + k) ::; lz + 8. Second , 

(A.14) 

which is 0 (1), if min{qk, k + qz}[lz + 4(s + k)] 2:: 2(lz + 4)(s + k) . 
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Suppose t hat we use a higher-order kernel such that min{ qk k + qz} = k + qz. 

T hen (A.14) is 0 (1) if (k + qz)[lz + 4(s + k)] ?: 2(lz + 4)(s + k) , which holds if t he 

density of Zi is smoot h enough (qz is large enough). 

For example, if qz ?: 10, (A.14) is 0 (1) for any lz such that lz ::; 4(s +k) ::; lz+8. 

To see t hi , we replace 4(s + k) in he left hand side of (k + qz)[lz + 4(s + k)] ?: 

2(lz + 4)(s + k) wi h lz. T his yields a sufficient condition which is (k + qz)lz ?: 

(lz+4)(s+k). Simple calculation and using 4(s+ k) ::; lz+ yields qz ?: / lz+ s+ 1 

which holds as long as qz ?: 8/lz + 2. Substitut ing lz = 1 yields qz ?: 10. 

• 



Table 1 

Table 1: Size and power of T,1 wi h n = 500. 

Bootstrap Normal 

Ho H1 p 'fJ hcv hapt hcv hapt 

H0 is true 
(6) DGP 1 0.8 0.1 0.059 0.046 0.020 0.029 

DGP 2 0. 0.5 0.062 0.042 0.025 0.029 
DGP 3 0.7 0.1 0.05 0.050 0.01 0.02 

(7) DGP 1 0.8 0.1 0.067 0.050 0.016 0.018 
DGP 2 0.8 0.5 0.05 0.040 0.015 0.023 
DGP 3 0.7 0.1 0.076 0.044 0.018 0.019 

H0 is false 
(6) (7) DGP 1 0.8 0.1 1.000 0.934 1.000 0.902 

DGP 2 0.8 0.5 1.000 0.905 0.999 0. 61 
DGP 3 0.7 0.1 0.990 0.498 0.949 0.370 

(6) (8) DGP 1 0.8 0.1 0.999 0.842 0.999 0.781 
DGP 2 0.8 0.5 0.999 0.797 0.998 0.726 
DGP 3 0.7 0.1 0.972 0.192 0.944 0.147 

(7) (8) DGP 1 0.8 0.1 0.903 0.609 0.741 0.527 
DGP 2 0.8 0.5 0.886 0.506 0.717 0.437 
DGP 3 0.7 0.1 0.434 0.204 0.177 0.144 

Note: Critical values are obtained from bootstrapping (columns labeled by 
Bootstrap) and the normal distribution ( columns labeled by ormal). 
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Supplemental material for the paper entitled 

)) Optimal Minimax Rates of Specification Testing with Data-driven 

Bandwidth ' 

Supplemental Material: P roof of P ropositions 

S-1 P roof of P roposition A l 

The proof of Proposition Al goes along with that of Theorem 1 of Guerre and Lavergne 

(2002). 

Proof of Proposition Al. Let cp (-) be a map from ]Rlz to lR with support [0,p]lz for 

p > 0 that is infinitely differentiable, cp(z ) < for any z E [0, pjlz, J cp(z)dz = 0, and 

cp(-) E M (L- LM )/2,s,k· Guerre and Lavergne (2002) give an example that satisfies these 

conditions. 

We define the dyadic cubes that partition [0 , 1jlz into Kn(P)lz = [1/(Phn)]lz non­

overlapping cubes, where intersections of any two cubes are empty and 1/(phn) is as­

sumed to be an integer. 7 To define the cubes, let Kn(P) denotes a collection of all 

possible distinct values for "' = ("'1 . . . "'tJ' such that Kn(P) = { 1>: E 'ZZ}z : 0 ::; l>:j ::; 

1/(phn) - 1,j = 1, 2 ... , Zz}, which indicates that Kn(P) contains Kn(Piz elements. For 

K, E Kn(P) , we define IK,P = IT~~1[P"'Jhn,P("'J + l)hn). Then, LJKEKn(p) IK,P = [0, l ]lz and 

IK,P n Ijp = 0 for all 1>,,j E Kn(P) when "' =/= j. The number of partitions are determined 

by hn , and we define that hn = (>.pn)lf(s+k) for some constant >. > 0. 

For "' E Kn (p) , let <PK ( ·) : JRlz -+ lR be a function such that <PK ( z) = h;;,lz/2 cp ( z-K:hn) . 
Then, <PK(z) takes non-zero value only when z E IK,P· Thus, t he functions <PK (-) s are 

orthogonal with disjoint supports IK,p, namely, <PK(z)cpK,(z) = 0 as long as "' =/= "''· For 

7When 1/(phn) is not an integer, define Kn(p) to be the maximum integer smaller th8J1 1/(phn)-
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any sequence {B,,J1'EKn(p) with IB/\; I = 1, we define 

mn(·) = E [g(X , Bo)I·] + On(-) , On(-) = >..pnh~12 L BI\; </>/\;{-) 
1'EKn(p) 

Let 0mn satisfies inf0Ee E[o0(Zi)2] = E[o0 (Zi)2]. We show that a positive constant 
"'n 

C and a bounded function h(·) exist such that ll0mn - Bo ll ~ CIE[h(Zi)On(Zi)]I , so that 

0mn satisfies Assumption 11 (iii) for any n . Under Assumption 3, the definition of 0mn 

yields 

O = E { G0"'Jo0mn (Zi)]} = E ( G 0"'n {mn(Zi) - E[g(Xi, Bmn )IZi]}) 

= E ( G0"'n {on(Zi) + E[g(Xi, Bo)IZi] - E[g(Xi, Bmn)IZi]}) , 

where G0 = 880 E[g(Xi, B) IZi]l0=0 . Taylor expansion yields 
mn mn 

E [ G0"'n on(Zi)] = E ( G0"'n {E[g(Xi , Bmn)IZi] - E[g(Xi, Bo)IZi]}) 

= E ( G0=n c~J (0mn - Bo) 

for some iin E 0. Since 0mn • Bo as n • , the dominated convergence theorem under 

Assumptions 2, 3, and 9 yields limn• E(G0 G'0- ) = E(G00 G~0 ). We obtain 
=n n 

Since E (G00G00) is invertible by Assumption 9, a constant C exists such that ll0mn -

Bo ll < CIE[G0 On(Zi)] I, where G0 is bounded for any n by Assumptions 2 and 9. 
mn mn 

Lemma S .9 . Under Assumptions 1, 2, 3, 5, 8, and 9, E[mn(Zi)4] is bounded and 

m 71 (Zi) is in M (pn) when>.. and n are large enough. 

Proof. it suffices to show that (i) mn(Zi) E ML ,s,k and (ii) i1tl0Ee E[80(Zi)2] 2: p~. 
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(i) Since E [g(Xi, 0o)I Zi] E MLM ,s,k by Assumption 8, it suffices to show that <5n(Zi) 

is in ML-LM,s,k · For any z E I,.,,p, we have 

- , } -k IB ,1..(k) (z -pK-'hn) I - APn 1n K-1 'f' h , 
n 

where <J>Ck)( z i) is k-times derivative of </>(Zi) - If z and y are in a same bin J,.,,p, 

because </> E M (L-LM)/2,s ,k and hn = (APn)l/(s+k). If z E I ,.z,P and y E I ,.y,P for 

IDk<5n(z) - Dk<5n(Y)I = Apnh;;k IB ,.z</>(k) ( Z - ~7zh,i) - B t-y<P(k) ( Y - ~=yhn) I 
< A h-k IB .. ,1..(k) (z -PK-zhn) _ B .. ,1..(k) (y -PK-zhn) I _ Pn n t-z'f' hn f>z'f' hn 

+ A } -k IB- ,1..(k) (z -PK-yhn) - B - ,1..(k) (y -pn,yhn) I Pn 1n K-y 'f' hn K-y 'f' hn 

::; (L - LM) llz - Yl ls, 

where we use the fact that <J>,.Y(z) = 0 when z E J,.z,P• Therefore, J11 (Zi) E 

M L-LM,s ,k for any n and A. 

(ii) We have inf0E8 E[Jo(Zi)2] = E[J0 (Zi) 2]. Then, Minkowski's inequality yields 
mn 
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~ {E[Jn(Z,)21) 112 -{ E ( E [ 89~· 0t,ujm,. - Oo)I zr) r 
2: {E[Jn(Z,)21) 112 - ( E { 11

8"~/tJ}) 112 
[IBm,. - 60 [1 

= {E[8n(Zi)2]}112 - O(l) IIBmn - Boll, (S.l) 

where Assumption 3 guarantees the mean value theorem for g(Xi, ·) for an interior 

point 0 between Bo and 0mn, and the last equality holds by Assumption 5. The first 

term in the right hand side of equation (S.1) is E[8n(Zi)2] = >-.2 p';,;p-lz f (O) J </J(u)2du+ 

o(l) = >-.2p~p-1zC2 + o(l ), for some positive constant C, where the density f is 

bounded by Assumption 2 and J </J(u)2du is bounded by its definit ion. F\·om As­

sumption 11 (iii) , a positive constant C' exists such t hat IIBmn - Bo ll = C' IE[h(Zi)8n(Zi)] [, 

where 

[ ( Zi - P"-hn) ] IE[h(Zi)8n(Zi)][ = APn L B1.E h(Zi)</J hn 
t-EX::n(P) 

~ ApnKn(Pf If h(z)<p ( z - ("-hn) f (z)dzl 

= ApnKn(P/z lh~ f(O)h(O) J </J(u)du + o(h~)I 

= APnP-lzo(l). (S.2) 

The last equality holds because J </J(z)dz = 0. Thus , (S.1) and (S.2) implies t hat 

which is bounded from below by Pn when >-. and n a.re large enough. 

D 

In what follows we construct a Bayesian a priori measure by using the result of Le1mna 
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S.9 and show even the optimal Bayesian test that has the smallest errors of testing does 

not have non-trivial power. Replacing the minimax problem by a Bayesian problem is 

standard arguments to show the lower bound of testing power (see for example lngster 

1993; Spokoiny, 1996; Lepski & Spokoiny, 1999; Lepski & Tsybakov, 2000; Guerre & 

Lavergne, 2002; Abramovich , Feis, Italia, & Theofanis, 2009· lngster & Sapatinas, 2009). 

To prove Proposition Al , it suffices to show that 

sup P (tn ::; Za) + sup P(tn > Za) 2: 1 + o(l) . (S.3) 
mEM(Pn) mEHo 

To give a lower bound of the left hand side of equation (S.3), we consider a Bayesian 

a priori measure over Ho and Hn,1 by regarding m(·) as a random variable defined on 

Ho U Hn,1· 

First , let Ilo be the priori distribution defined on Ho that has Dirac mass: 

Ilo{m(-) = E[g(X 0o)I ·]} = 1. 

Second , let B 1,, be an i.i.d. Rademacher random variable independent of the observations 

with P (B 1,, = 1) = P (B 1,, = - 1) = 1/2. For a sequence {b1,, E {- 1 1} }1,,EKn(p), let IIn,1 

be the priori distribution defined on H n,1: 

IIn,1 [m(·) = E[g(X , 0o) I·] + >.pnh~12 L b1,, cp1,,( ·)l = IT P (B 1,, = b1,,) 
K.EKn(P) K.EKn(p) 

where Lemma S.9 guarantees IIn,1 to be an a priori measure over Hn,1• Then, IIn = 

Ilo + Iln,1 is an a priori Bayesian measure over Ho U Hn,1 · 

This gives t he lower bound 

sup P (tn ::; Za) + sup P (tn > Za) 2: j P (tn ::; Za)dIIn ,1 +j P (tn > Za) dIIo. (S.4) 
mEM(pn) mEHo 
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The right hand side of the above equation is the Bayes error of the test tn that is the 

sum of type I and type II errors of testing. It is known that the optimal Bayesian t est 

based on the likelihood ratio has the smallest error , which we now introduce. 

Let Y and Z be the set of observations Y and Z , respectively, where the joint distri­

bution of Y and Z (specifically, the conditional mean of Y given Z) is described by m(-) , 

which suggests that the relation between Y and Z depends on m(-) . Then, we denote 

by Pm(Y, Z) the joint density of Y and Z. Average densities under the null and al­

ternative hypotheses are Po(Y, Z) = f Pm(Y, Z)dITo and Pn,1(Y, Z) = f Pm(Y, Z)dITn,I, 

respectively. Let Ln denotes the likelihood ratio of the optimal Bayesian test , which is 

L _ Pn,1(Y,Z) _ f Pm(YIZ)dITn,1 = Pn,1(Y IZ) 
n - Po(Y, Z) - J Pm(YIZ)dITo - Po(YIZ) · 

By using t he The Bayesian error of the optimal Bayes test (see, T heorem 13.3.1 of 

Lehmann & Romano, 2005, p.528) , Guerre and Lavergne (2002) show t hat (S.3) holds if 

j L~po(Y IZ)dY = Eo(L~IZ) ~ 1, (S .5) 

where Ea is the expectation under po. 

By assumption, each wi is standard normal conditionally upon Zi, where w i = 

}"i - m(Zi) - Under Il0 , the conditional density of Y given Z is normal with mean 

E[g(Xi,0o)I Zi]- Since we haven observations, 

where Wi,O = Yi - E[g(Xi,0o)I Zi]- Since Wi = Yi - m(Zi) = Yi - mn(Zi) almost surely 

under H1,n, we yield 

Pn,1(YIZ) 
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~ (2w)-n/2 J exp (-~ t,[Y; -m,.(Z,)]2) dll,,,1(m) 

~ (2w )-n/2 J exp ( -~ t,[Y; -E[g( X,, 80] Z;)] + E[g( X,, 80 ] Z,) [ - m.n( Z,) [2) dI!n,1 ( m) 
~ (2w)-ni2 J exp(-~ t, [w,,o -On(Z,)]2) dII,,,1(m) 

-n/ 2 l 2 1 2 ( 
n n n ) 

= (27r) / exp - 2 ~ w i,O + ~ Wi,oOn(Zi) - 2 ~ On(Zi) dIIn,1(m) 

( 
n 1 n ) 

= Po(Y IZ ) J exp ~ Wi,oOn( Zi) - 2 ~ On(Zi)2 dIIn,1(m) . 

Recall that 

n n "'w· o' (Z·) = \ p htz/2 "' "'w· oB ,1. (Z ·) L.....,; i, Un i A n n L.....,; L.....,; i, K'l'K i , 

i=l 

and 

t on(Zi) 2 = A2p;h~ t [ L Br;,</>r;,( Zi)l 2 = A2p; h~ t L </>r;, (Zi)2 . 

i=l i = l KEX::n(p) i =l KEX::n(p) 

Thus, 

Pn,1(Y Z) 
Po(Y,Z ) 

~ J exp ( t, w,,oOn( Z,) - ~ t, On ( Z,)2 ) dII,,,1 ( m ) 

~ J exp (t, w,,oOn(Z,) ) exp (- ~ t,On(Z,)') dI!n,1(m) 

= J exp (Apnh~12 L t wi,o B,,,</>,,,(Zi) ) exp ( - ~A2p;h~ t L </>,,, (Zi) 2 ) dIIn,1(m) 
KEX::n(p) i=l i=l KEKn(p) 
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Thus, 

£2 
n 

= exp (->..2/;Ji~ t L </>K,(Zi)2) 

i =l K-E.ICn(p) 

X IT l [exp ( 2>.pnh~12 t Wi,O</>K- ( Zi)) + 2 + exp (- 2>.pnh~/2 t Wi,O</>K-( Zi) ) l · 
K-E.ICn(P) i=l i=l 

Conditionally on Z , {2>.pnh!t12wi,o</>K,(Zi)}f=1 is independent centered Gaussian for 

all"' E Kn(P) with condit ional variance given by 4>.2 p~h~</>K,(Zi)2 . Since E [exp(u)] = 

exp(o-2 /2) for any random variable u that follows centered gaussian with variance a-2 

we get 

Eo(L;IZ) 

= exp (- >.2p;h~ t L </>K,( Zi)2) 

i =l K-E.ICn(p) 

x IT l [exp (2>.2p;h!t t </>K,(Zi) 2) + 2 + exp (2>.2/;h~ t </>K,(Zi) 2) ] 

K-E.ICn(P) i= l i=l 

= exp (->. 2 p;h~ t L </>K,(Zi)2) IT 1 [exp ( 2>.2p;h~ t </>,-(Zi) 2) + 1] 
i=l f.E.ICn(p) f.E.ICn(p) i=l 

= IT exp (->.2p;h!t t </>,.( Zi)2 ) 1 [exp (2>.2p;h!t t </>,.(Zi)2 ) + 1] 
K-E.ICn(P) i=l i=l 

= IT 1 [exp ( >.2p;h~ t </>K,( Zi) 2) + exp (->. 2p;h~ t </>K,(Zi) 2) ] 

K-E.ICn(P) i=l i=l 
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where cosh (·) is t he hyperbolic cosine function . By using 1 :S cosh (z) :S exp(z2), we 

obtain,8 

Then , (S.5) holds if 

We see t his by considering the expectation of this posit ive random variable. We obtain 

E { L [p; h~ t <Pr.(Z i)2] 2 } = p~h;;z L E { [t <Pr.( Z i) 2] 2 } 

r.E.K:n(P) i=l r.E.K:n(P) i=l 

= p~h;;z L E { t t </J,,_(Zit )2</J,,_(Zi2)2 } 
r.EK:n(P) i1 = 1 i2=l 

= p~h;;z L { nE[</J,,.(Z)4] + n(n - l )E[</J,,.(Z)2] 2 } . 

r.EK:n(P) 

Since f < f by Assumption 2, we have E [</J,,.(Z)4 ] = h;;,21z J </) [(z - P"'hn)/hn]4 f (z)dz :S 

h;;_1z ff </J(u)4du = O(h;;_1z), and E [</J,,.(Z)2] = h;;_1z f </) [(z - P"'hn)/hn] 2 f (z)dz :S f f </J(u)2du = 

0 (1). Since K n(P) = 1/(Phn) = 1/(p(.\pn) 1f(s+k)) = O (p;;,1/(s+k)) and hn = O(pif(s+k)), 

E { L [p; h~ t </J,,.( Zi)2l 2} :S L { nO(p~h~) + n(n - l )O(p~h; 1z) } 
r.E.K:n(p) i=l r.E.K:n(p) 

= O(p:;;,lz/(s+k)) { nO(p~p!tf(s+k)) + n(n _ l )O(p~p;;z/(s+k)) } 

8cosh(x) = T 1 [exp(x) +exp (-x)]. On the one hand Maclaurin expansion yields cosh(x) = l +x2 /2!+ 
x4 /4!+ .... On t he other hand, Maclaurin expansion of exp (x2/2) yields exp(x2 /2) = l+x2 /2!+2x4 /4!+ 
.... Therefore, we yield cosh(x) ~ exp(x2 /2) ~ exp (x2) . 
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= O(p;;lz/(s+k)) { nO(pJ~(s+k)+lz)/(s+k)) + n(n _ l)O(pWs+k)+2lz)/(s+k))} 

= { nO(p~) + n(n - l)O(p~(s+k)+lz)/(s+k))} . 

Then, we consider the following cases: 

(i) s + k 2: lz/4: since Pn = o(pn) = o(n-2(s+k)/(lz+4(s+k)l), it holds that np~ 

o(nllz-4(s+k)]/[lz+4(s+k)l) = o(l) and n20 (pJ1(s+k)+lzl /(s+k)) = n2o(n-2) = o( l ). 

(ii) s + k < lz /4: since Pn = o(pn) = o(n-114), we have np~ = no(n-1l) = o(l ) and 

n20(p~(s+k)+lz)/(s+k)) = n2o(n-[4(s+k)+lz)/4(s+k)) = o(n[4(s+k)-lz]/4(s+k)) = o(l). 

• 

S-2 Proof of P roposition A2 

Proof of Proposition A2. We first show asymptotic behavior of Vn under the null hy-

h . -.. u d fi 2 1 ~ (Nk - 1J1{Nk > 1} [E( 2
1
z I )]2 pot es1s. vv e e ne Vn = Kf u kEIC Nk w i i E k . 

Lemma S .10. Under Assumptions 1, 2, 3, 5, 6, and 10, v~ is bounded from above, 

stochastically bounded from below uniformly in m E M L,s,k, and satisfies v~ - v~ = op(l). 

Proof. From Assumption 2, w have P (Zi E Ik) = fz;Eh f( z )dz ~ fh!; . In t he same 

way, we obtain P (Zi E Ik) 2: i_h~. T hen , we obtain 

where the right hand side is bounded by a constant by Assumption 1. 

ate that (Nk - l) li {Nk > 1 }/ Nk = (1 - 1/ k)li{ k 2: 2} 2: 1/2. It can be 

shown that P ( minkE/C JI. { Nk > 1} = 1) • 1 when n/ ( K ~z log K;{) • under As­

sumptions 1 and 2 (see, Lemma 4 in Guerre & Lavergne, 2002). T hus, it holds that 
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v~ 2: 2J ~z L kE,dE(w;J z i E Jk)] 2 2: h P(Zi E Ik) L kE,dE(w;J z i E Jk)]2 2: 2] P (Zi E 

h ) L kEX:: P (Zi E Jk)2 [E (w}J Zi E Jk)] 2 = 21 P(Zi E h )[E (wt)] 2 > 0 with probability 

one. 

ow, v~ is decomposed as follows 

+4wi[g(Xi,0o) - g(Xi,0)l[g(Xj, 0o ) - g(Xj, 0)] 2 + 2wt[g(Xj, 0o ) - g(Xj, 0)] 2 

- - 2 D R = Vn + n + '11,, 

where R-n represents smaller terms due to g(Xi, Bo ) - g(Xi, 0) = Op(l / fa) by Assump-

tions 3, 5, and 10 under the null hypothesis. 

First, we show that Dn = op( l ). Decompose Dn 

0)'Dnfo(0o - 0), where 

11 

fo(0o - 0)'Dn + fo(0o -



for some 0 between 00 and 0. For some positive constant C , 

where E(w;IZi E Ik) = E(w;li{Zi E Jk}) is bounded by Assumption 1 and E[lwil ll8g(Xj, 0)/8011] 
is bounded by Assumptions 1 and 5. Furthermore, 
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{ ( 1 ) ( 1 ) } l /
2 

- 0 -- + 0 -- -ol - K ;t n2 K;._l zn - ( ) 

are bounded by Assumptions 1 and 6. Furt her, we use the fact t hat , given li{Nk > 1} = 

1, (Nk - 1)/Nk < 1 and (Nk - l)(Nk - 2)/Nk < Nk. Thus, Dn = op( l ). 

ext , we show ii~ - v~ = op( l ). Sine we hav i.i.d. observation, 

[E (w; [Zi E Ik)]2 = [E (w;li{Zi E Ik})] 2 

Thus, 

= E(w; li {Zi E Ik})E(w] li {Zi E Ik}) 

k( ~ - l ) L _ . E(w; li {Zi E Ik})E(w] li {Zj E Ik}). 
{Z,,ZJ}Eh ,i#J 
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=E{-l ~ ]_{Nk > 1} 
K l z L.., N2 

n kEK. k 
L {w;wJ- E(w;IZi E h)E(wJIZj Eh)} 

2

} 

{Z,,ZJ}Eh ,i#j 

< - 1- ~ E { l {Nk > l } 
- K 2l, L.., N4 

n kEK. k 
L {wfwJ - E(wf IZi E h)E(wJ IZJ E I k)} 

2
} 

{Z,,Zj }Elk ,i#j 

= - 1- ~ E { l {Nk > l } 
K2l, L.., N4 

n kEK. k 

+ ; 1, L E { ]_{N~: l } L L E(wf, IZi, E I k)E(wJ, IZJ, E I k) 
K n kEK. k {Z, , ,zi , }E / 1, {Z, 2 ,ZJ2}E /k 

i ,#J, i2#h 

~ O(K;;1• ) + O(K;;1• )E { E(wf, IZi, E h)E(w;, IZj, Eh)}+ O(K ,-;-1• ) 

= O(h1• ) = o(l) 

Assumption 1. This together with D11 = op(l) yields v~ - v~ = op(l). 

14 
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The test statistic can be decomposed as follows ; 

yGL 
n 

I is straightforward to show t hat TfL = op(l ) by using g(Xj , 0o) - g ( X i, 0) = Op(l / yn) 

that holds by Assumptions 3, 5, and 10 under t he null hypothesis. Tf L = op(l ) can be 

shown analogously to Lemma S.16 under Assumptions 1, 3, 5, 6 and 10.9 We show the 

asymptotic heavier of TfL_ 

Lemma S.11. Under As umption 1, 2, 3, 5, and 10, T f L /vn ~ N (O, l). 

Proof. We follow and extend the proof of Theorem 2 in Guen e and Lavergne (2002) 

into IV setup. Let 11 .. . , l n be any reanangement of the indices i = 1, . .. , n such that 

XJi E I k if and only if (iff) L l<k l < Ji ::; L l :-::;k l- Let F n,k = {Y1 ... , YJ; K, : 

L l<k N1 < Ji ::; L l:-::; k l, k E IC} be a increasing sequence, where x:, = { k : k E 

V} d r.GL _ 1 '""" li {Nk, > 1} '""" Th {T.GL T k 
I\., an 3nk = rn t /2 L...,k' <k N L..., {Z Z}E/ i...L3•WiWj . en , 3,n,k, F n,k, E , , V 2l(nz - k' t, 1 k ' , -,-

IC , n ~ l} is zero-mean square integrable martingale aJ.Tay. ote t hat Tf,!:,k - T3~/:.k-l = 

9 ote t hat we consider asymptotic behavior of Tf L under the null hypothesis, while Lemma S.16 is 
under t he alternative. Thus, A1 term, that comes form misspecification, in t he proof of Lemma S.16 
does not appear here. Only to show is A2 with 17; replaced with w; to be op(l ). 

15 



(2K;{)-112 D.{ ~ >l} ~ {Z- Z}EI i-'-J. wiwj = (2K;.z)-112wk denotes the martingale differ-
k 1, J k: r 

ences. To prove TfL /vn .!!+ N(0 , 1), it suffices to show t hat 

v;;2 L E [(2K~z)-1wi ]_{ l(2K;{)-112wkl > EVn }I F n,k-1] ~ 0 for all E > 0, (S.7) 
kEK. 

and 

v;;2 L E [(2K;:)-1wil-0i,k-1] ~ 1, (S. ) 
kEK. 

by Corollary 3.1 in P. Hall and Heyde (1980, p.58). Square of the left hand side of (S.7) 

is bounded from above by 

because v~ ~ v~ from Lemma S. 10 and for some constant C , we have 

~ ].{N~: l } L L E(wt1 IF n,k-1)112 E (wJ1 IF n,k-1) 112 

k {Zi t ,Zit }Elk,il-/i t {Zt2,Zi2}Eh,i2-/i2 

( 4 I ) 112 ( 4 I ) 112 X E Wi2 F n,k-1 E Wj2 F n,k-1 

~ ].{Nk > 1} [E (wti I F n,k-1)] 2 < C, 

where t he second equality comes from the orthogonality between wi and Z i - T hus, 

16 



equation (S.7) holds. Equation (S.8) is implied by 

and Lemma S.10. • 

• 

S-3 Proof of Proposit ion A3 

Proof of Proposition A 3. We first show asymptotic behavior of Vn under the alternative 

hypothesis. We define v;? = -;;r;<\ L kEK: (Nk-l¼ {Nk>l} [E(u; 21zi E Ik)]2, where u; = 
} n k 

Yt - g(X i, 0*). 

Lemma S .12. Under Assumptions 1, 2, 3, 4, 5, 7, 8, and 11, v~2 is bounded from above, 

stochastically bounded from below uniformly in m E ML,s,k, and satisfies v~- v~2 = op(l) . 

by Assumptions 

1 and 4, it can be show similar to Lemma S.10 that E (u;2 1Zi E Ik) is bounded from 

above uniformly in m E /vlL ,s,k under the alternative by replacing Wi in Lemma S.10 

with u;. 
Similar to Lemma S.10, by applying Lemma 4 in Guerre and Lavergne {2002) , we 

can show that v~2 is stochastically bounded from below uniformly in m E ML,s,k· 

ow, v~ can be decomposed as follows 

17 



= _1_ ~ 1{N k > 1} ~ u?u2 
K lz L.., N 2 L.., i 1 

n kEJC k {Zt,Zi }Eh,ih 

= - 1 ~ 1{ k > 1} ~ , 2 , 2 
L.., L.., [g(Xi, 0*) - g(Xi, 0) + u;J [g(XJ, 0*) - g(XJ, 0) + uj] 

K~z kEJC N f {Z Z } I ·_;. · t, i E k,irJ 

1 ~ 1{N k > 1} ~ { * , 2 * , 2 = K~z f- Nl L.., . . [g(Xi, 0 ) - g(Xi , 0)] [g(Xj, 0 ) - g(X j, 0)] 
kEJC {Z,,Zj } El k,i#J 

+4ut [g (Xi, 0*) - g(Xi, 0)l[g(XJ, 0*) - g(XJ, 0)]2 + 2u12 [g(XJ, 0*) - g(XJ, 0)]2 

+4u;uj2[g(Xj, 0*) - g(Xj, 0)] + 4u;uj [g(Xi, 0*) - g(Xi, 0)][g(Xj, 0*) - g(X j, 0)] + u;2uj2 } , 

where g(Xi, 0*) - g(Xi, 0) = Op( l / fa) by Assumpt ions 3, 5, and 11 . Similar to t he proof 

f L S lo th d · t d t · , 2 · -*2 - 1 " L{Nk> l} " *2 •2 o emma . , e omma e erm m vn 1s vn = K;f u kEJC NZ u {Zt,Zj}Eh ,i#J ui uj . 

T he convergence of v~2 is resulted by E (lv~2 - v~2 12 ) = o(l ), whose proof goes along with 

equation (S.6) in Lemma S.10 and replacing w with u*. • 

Under the alt ernative hypothesis, 

where A = O(~){E[Jt*(Zi) ]}112 by Lemma S.16 in the supplement al mat erial for 

lemmas and B denotes smaller terms t hat is Op(l ), which is shown by using lg(Xi, 0*) -

18 



g(Xi , 0)1 = Op(n- 112 ) by Assumptions 3, 5, and 11. Then we obtain 

for some positive positive constants C and C. Further, 

P (- [T,fL* - E(T~L*)] 2 E(~fL*) - C - C~{E[oJ*(Zi)]}1/ 2) + o(l ) 

< var (TfL*) 

- [E(TifL*) - c - c~{E[oJ. (Zi )]}1/ 2]2 ' 

if E (TfL*) - C - C~{E[8J. (Zi)]}112 > 0. Then, it is sufficient to show t hat"' can 

be chosen so that 

E (T~L*) - c - c~{E[oi*(Zi )]}112 > o 

var (TfL*) < 

[E (TifL*) - c - c~{E[oJ.(Zi)]}112 ]2 - /3, 

uniformly in m E M (K-Pn)- Now, 

19 
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It is obvious that E (~ f,f*) = 0 and E (T;:,f*) = 0. Then 

where the last inequality holds for large n and some constant C1 > 0 under Assumption 

2 by using Proposition 7 in Guerre and Lavergne (2002). By using this, we yield 

which is increasing in "'and posit ive for "' large enough . 

ext, let µk = l {~: l} I:: {Z;,Zj }Eh,ih[½ - g(Xi , 0*)][Yj - g(Xj, 0*)] Then, we can 

write T[!L* = ,12J i,;12 I:: kEK: µk where µk s are uncorrelated given NK: = {Nk, k E JC} . 

Note that (Nk - l )n{Nk > l} = Nk - l + n{Nk = 0} , since Nk - l = ( k - l )n{Nk > 

1} + ( k - l )D.{Nk ~ l } = (Nk - l )D.{Nk > 1} - ].{ k = 0}. We have 
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and 

which implies 

From the law of total variance, we obtain 

Notethat , given ]_ { k > l }, wehave - (Nk - 1)(2 k - 3)/ k < kand4( k - l )(Nk - 2)/ k < 

Nk. Since E(Nk]_{Nk > 1}) = E( k) - E( k]_ { k::; 1})::; E(Nk) , we obtajn 
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+~ L E ( 4(Nk - I)(Nk - 2) li{Nk > l }{E [80* (Zi)I Zi E Ik]} 2 E [u:2Izi E Ik] ) 
2Knz kEK Nk 

1 """"' (2 (Nk - 1) ( *2 ) 2) + - 1 D E N 1{Nk > l}[E ui IZi E Ik] 
2K7{ kEK k 

~--;; L E (Nk1 {Nk > l}){E [80*(Zi)I Zi E Ik]} 2{E[80*(Zi)I Zi E Ik]} 2 

K n kEK, 

+-;- L E (Nk1{Nk > l}{E [80*(Zi) IZi E Ik]} 2E [u;21zi E Ik]) + E (v~2 ) 
K nz kEK 

~ 27z L P (Zi E Ik) E [8t*( Zi)I Zi E Ik] E [8t*(Zi)I Zi E Ik] 
K n kEK 

+ 20t) L P (Zi E Ik)E [8t*(Zi)I Zi E Ik] + E (v~2 ) 

K n kEK 

2n """"' [ 2 ] 2 l [ 2 ] ( *2) ~ -----r; D E 80*(Zi) +O(l )nh~E 80*( Zi) +E vn 

K n kEK 

~ O(n){ E [8t*(Zi))}2 + O(nh!n E [8t*( Zi)] + E (v~2 ) , 

where E [u12 [Zi E Ik] is uniformly bounded by Assumptions 1 and 7 under t he alterna-

. h h . d *2 - i " CNk-1)1 {Nk> 1} [E ( *21z I )]2 . l i· . f A t1ve ypot es1s an vn = K;f u kEK Nk ui i E k 1s t 1e 1m1t o Vn 

under the alternative. 

~var [LE (µkl NK)l 
2Kn kEK 

= ~var ( L (Nk - l) lL { k > l }{E [80*(Zi)I Zi E Ik]} 2) 
2K ,{ kEK 

= ~ L {E [80*( Zi)I Zi E Ik]}4var ((Nk - 1)1{ k > 1}) 
2KJ kEK 

+ - 1-1 L {E [80* (Zi) [Zi E Ik]}2{E [80* (Zi)I Zi E Ik' ]} 2cov (( k - 1)]_ { k > l }, (Nk' - 1) ]. { k' > l}) 
2KJ kc/k' 
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where we use the results of Lemma 3 in Guerre and Lavergne (2002) that is , var((Nk -

l)]_{Nk > 1}) :S 2nP(Zi E Ik) and cov ((Nk - l)]_{Nk > 1 }, (Nk' - l )]_{Nk' > 1}) :S 

2nP(Zi E Ik) P (Zi E Ik' ). The last inequality holds because oi.(z i) = {m(Zi) -

E[g(X i, 0)IZi]}2 is bounded by Assumptions 2 and 8 under the alternative hypothesis. 

Thus, we obtain 

which implies 

The upper bound is bounded and decreasing in /'i,. • 
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Supplemental Material: Proof of Lemmas 

S-1 Proof of Lemma 1 

First, we introduce the following lemma. 

Lemma S.13. Under Assumptions 2 and 12, we have 

Proof. 

J K ( x ~ y ) f (x) f (y)dxdy = h1z J K (u) f (y + uh) f (y)dudy 

= h1z J K (u) [f(y ) +hu't::,. (l) f (y)+R.,,.] f (y)dudy 

= hlz I K (u) du I f (y)2dy + O(hlz+l) 

Proof. T1 can be written as a second order U-statistic form multiplied by nh1zl 2 : 

• 

where Wi = {Zi,Ui}, H (Wi Wj) = h-lzl2K (¥ ) UiUj is symmetric by Assumption 

12, centered , t hat is , E [H (Wi , Wj )] = 0, and degenerate, that is , E [H (Wi, Wj) IZi, ui] = 

E {E[H (Wi, Wj)[ Zi, ZjUi] Zi, ui} = 0. The second moment of H (Wi , Wi) is bounded 

because 

E[ H (W;, W; )2 J - h)• E [ K ( Z; ~ Z; )' a 2 ( Z;)a 2 ( Z;)] 

1 / (X y)2 
= h,lz K --i;- a-2(x) a-2(y)f(x) f(y )dxdy 
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= j K (u)2 CT 2 (y + uh)CY2 (y)f(y + uh)f(y)dudy 

= JC(0) J [CY2(y)] 2 f (y) 2dy + O(h), 

where the convolution product JC(0) is bounded by Assumption 12. The variance of t he 

error term CY 2 (-) and the density of inst rument f(· ) are bounded by Assumptions 1 and 

2, respectively. The last equality is shown in Lemma S.13. 

theorem for degenerate U-statistic, i.e. Q. Li and Racine (2007) 

if 
E [G(Wi, Wj) 2] + n-1 E [H (Wi , Wj)4] 

{E[H (Wi , Wi)2]}2 • O, (S .1) 

as n • oo. We show that equation (S.1) holds . First, note that 

Then, 

E [G(W1, W2)2] 

- E { uluJ [! K (u) K C' ~ Zi + u) a 2(Z1 - uh)J(Z1 - uh)dun 
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= J a2 (x)a2(y) [! K (u) K ( y 7i x + u) a2 (x - uh)f(x - uh)dur f(x)f(y)dxdy 

= h1z J a2 (x)a 2 (x + vh) [! K (u) K (v + u) a2 (x - uh)f(x - uh)dur f(x)f(x + vh)dxdv 

= h1z J a2 (x)[a2(x) + O(h)] [a2(x)f(x) J K (u) K (v + u) du+ O(h) r f(x)[f(x) + O(h)]dxdv 

= h,1z J [a2 (x)]4J(x) 4dx J [! K (u) K (v + u) dur dv + o(l-/z) 

= O(h1z). (S.2) 

Second, let us define a4 (Zi ) = E(wt IZi ), which is bounded by Assumption 1. Then, 

[ 4 ] 1 [ ( zj - zi) 4 4 4 ] E H (Wi , Wi) = h2tz E K h a (Zi )a (Zi) 

::; ::u: / K ( x h y) 
4 

f (x) f (y)dxdy 

= ~: [! K (u) 4du J f (y) 4 dy + O(h)] = O(h-1z). (S.3) 

Third , 

{ E [H (W,, W; )21)2 - h;,, { E [ K ( Z; ~ z, )' a2(Z, )a2(Z;) l r 
- h;,, [/ [( ( x ~ y) 

2 
f(x)f(y)a 2(x)a2(y)dxdy]' 

= [! K (u) 2 f(y + uh)f(y)a2 (y + uh)a2 (y)dudy r 
= {! K (u) 2 [f(y) + O(h)]f(y)[a 2 (y) + O(h)]a 2 (y)dudy } 

2 

= {! K (u) 2 du J f(y) 2 [a2 (y)]2dy + O(h) } 
2 

= 0(1). 
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Equation (S .2), (S.3), and (S.4) implies 

as n-+ oo. Thus, equation (S.1) holds, and we obtain 

T1 .!;. N(O, 2JC(0)E{[a2 (y)] 2 f(y)} ). 

• 

S-2 Proof of Lemma 2 

Proof. Applying Taylor expansion to g(Xj , 0) around 0o under Assumpt ion 3 yields 

2 ~" (zj -zi) A 

T2 = (n _ l )hlz/2 ~ ~ K h Ui[g(Xj , 00 ) - g(Xj 0) ) 
t=l Jf.i 

2(0 - 0o)' ~" (zj -zi) a 
= (n - l )hlz/2 ~~K h 'Ui80g(Xj,0o) +R,,, 

t=l Jf.i 

_ 2.jii,(0 - 0o)' ~" 2.jii,(0 - 0o)' ~" 
= ytn(n - l)h,lz/2 ~ ~ µi,j + .jn(n - l )hlz/2 ~ ~ µi,j + Rn, 

i=l J <i t=l J >t 

where µi,j = K ( z1~zi) uif0 g(X j, 0o) is a lz x 1 vector, Rn represents smaller terms un­

der Assumptions 1, 2, 6, and 12, and jn(0 - 0) = Op(l) by Assumption 10. It is useful 

that for j =/- i , E (µi,j) = E [E (µiJI Z , X-i)] = 0 , where O denotes lz x 1 zero vector. By us-

ing this, we obtain t hat L ~=l L j<i E(µ i,j) = L ~=l L j<i E [E(µ iJI Z1, ... , Zn, X1 , ... , x i-1)] = 

0, and L;~1 L j>i E(~,j) = 0. Thus, to show T~ = op(l) , it suffices that variance for 

each elements of fo(n-2l )hlz/2 L ~=l L j<i µi,j and fo(n-2l)hlz/2 L ~=l L j>i ~ .j is o(l). To 

simplify t he notation, we show t he case for lz = 1. Let G(z) = E [f0 g(x, 0) lz] and 
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because for all i , J1 < i , J2 < i, and J1 =I= j2 , 

E (µiJ1 µi,h) 

= E [K (zit - z i ) K (zh - z i ) 8g(Xj1 , 0) 8g(Xh,0) a-2(Z )] 
h h 80 80 i 

= E [! K ( Ziih- z ) I{ ( Zj\,,- z ) o-2(z )f( z )dz 8g(;~,, 0) 8g(;~2 , 0)] 

= 1-,,l z E [8g(Xii ' 0) 8g(Xh, 0) J K(u)K (zh - Zji + u) a-2 (Zj1 - uh)f(Zj1 - uh)du] 
80 80 h 

= hlz E [K2 ( Zh - Z j1 ) 2(z. )f (Z . ) 8g(Xj1 , 0) 8g(Xj2 , 0) ] + R 
h a- 1' 1 1 80 80 -n 

= h1z E [a-2(Zj1 )f(Zf1) 89(;;1> 0) J K2 ( z2 ~i z ii ) 89~;, 0) f z,x(z2, x2)dz2dx2] + R,n 

21 [ 2 8g(Xj1 , 0) J 2 8g(x2, 0) ] = h z E a- (Zi, )f(Zj1 ) 80 K (u) 80 f z,x (Z j 1 + uh, x2)dudx2 + Rn 

= h21zE {a-2(Zi 1)f(Zii)2 89(;t 0) J K 2(u )duE [89~ •0)] } +R,,,. 

= O(h2lz )E [a-2 (Zii)f(Zi,)28g(;~1 ,0)] + R,,,. 

= O(h2lz), 

where R n represents smaller terms , f z,x (· , ·) is joint density of Z and X , E[ f0 g(X, 0)] 

is bounded by Assumption 3, K 2 (u) is two times convolution product of kernel with 

J K 2(u)du < by Assumption 12, a-2 (Z) and J(Z) are bounded by Assumptions 1 and 

28 



2, respectively, and for all i, j = J1 = J2 < i, 

E (µf,, ) - E { K ( z, ~ z,y a(Z,)' 8g(;~, 0o) } 

- E { Og(;~,Oo) j K (\- z )' a(z )2J(z )dz } 

= h1z E { 89(~~' 0o) J K (u)2a( Zi - uh)2 f (Zj - uh)du } 

= h1z E { 89(~~' 0o) f( Zj)a(Zj) 2 J K (u)2du } 

= O(1-/z), 

where these derivations holds under Assumptions 1, 2, 3, and 12. In the same way, we 

• 

S-3 P roof of Lemma 3 

Proof. From Assumption 3, we obtain 

T3 = nh1zl2 t I: ~ K (Zj -zi) (0o - 0)' 8g(Xi, 0) I 8g(Xj,0) I (0o - 0) 
n( n - 1) i =l #i hlz h 80 0=01 80' 0=02 

A 1 n A 

= fa(0o - 0)' n(n _ l )h,lz/2 ~ ~ T~fa,(0o - 0) 

where T' = K (Zi -Zi ) &g(Xi,0) I DgC:0!•0) I _ . We have 
3 h D0 0=01 0=02 

29 



where these derivations hold by Assumptions 1, 2, 5, and 12. Since ...fii,(0 - 00 ) = Op( l ) 

by Assumption 10, we obtain T3 = Op(hlz/2 ) = op( l ). 

S-4 Proof of Lemma 4 

First, we introduce the following le1mna . 

Lemma S.14. Let ki,j and Si be any function such that supi,j lki,j l < 

Op(n). Then, 
n n 

L L ki,j s is j = Op(n2). 

i j 

• 

• 

Lemma S.14 seems straight forward but is useful. The kernel function K (-) sat­

isfies the condit ion for ~.j by Assumpt ion 12. The condition for Si is satisfied by 

8~ g(X i 0)1 _, [a~ g(X i, 0)1 -] 2
, and 8~ g(X i, 0)1 _ui for any l = {1, ... , lz } and 

l 0=0 l 0=0 l 0=0 

any ii between 00 and 0 by Assumptions 1, 3, 5, and 10, as well as u; by Assumpt ion 1. 

Proof. E can be decomposed as follows: 

t = 2 ~" _!_K (zj -zi)2 u-2u~. 
n(n - l ) ~~ h,lz h i J 

i = l jfi 

2 Ln L 1 (Zj - zi) 2 ~ 2 ~ 2 = ( ) - 1 K ---'--- [g(Xi, 0o) - g(X i , 0) + ui] [g(X j, 0o) - g(X j 0) + ui] 
nn - 1 h z h 

i=l jfi 

where R-n represents smaller terms t hat converges to zero in probability, which can be 
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shown by using Lemma S.14 under Assumptions 1, 3, 5, 10, and 12. First we show that 

~ ~ , 2 ~ "' (zj -zi)2 ag(Xi,0)1 2 
E2 = vn(0o - 0) fon(n - l)hlz ~ ~K h 80 0=0 'UiUj 

~ 2 n 

= ./n(0o - 0)' ./nn(n - l)Mz ~ ~ Si,j, 
i=l J=/=i 

where Sij is a lz x 1 vector. Since ..fii,(0 - 00 ) = Op(l ) by Assumption 10, it suffices to 

show that each element of n-5!2h-lz I::;~1 I::j=/=i Si,j is op( l ), which holds becuase 

E( II S,J II) ~ E [ K ( Z; ~ Z, )' II iJg(:;, et, "'II u( Z; )' l 
~ E [ II iJg(;, et, u; Ill K ( z -,, z, )' u(z )' f ( z )dz l 
= hlz E [II ag(:; ,0) 10=0 'I.Li ll J K (u)2a( Zi + uh) 2 f(Zi + uh)du] 

= h1z E [II ag(:; , 0) 1
0
=0 'I.Li ll a(Zi)2 J (Zi) J K (u)2du] 

~ O(h'' )E [:~~ II iJg(:; , 0) II'] 1/2 [u (Z,)'Jl/2 ~ O(h'' ), 

where the last equality holds under Assumptions 1, 2, 5, and 12. Thus, E2 = Op(n-112). 

ext, we show that E1 = E +op(l). Note that E1 is a second-order U statistic, where 

H 1 (Wi , Wi) = h-tz K ( ¥ r u;uJ is symmetric by Assumption 12. 

= O(h-1z) = 0 (~) = o(n), 
nhlz 

(S.6) 
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where t hese derivations holds under Assumptions 1, 2, 5, and 12. Applying Lemma 3.1 

• 

S-5 Proof of Lemma 5 

Proof. From Assumption 3, t here is iJ between 0* and 0 such that 

2nhlz/2 ~ ~ 1 (Z· -Z) ~ 
A2 = n(n - l ) L.,~ h,lz K 1 h i [½ - g(X i, 0*)][g(X j, 0*) - g(Xi ,0)] 

i=l Jf=i 

= 2(0 - 0*)' ~~ K(Zi - Zi ) u-: 8g(Xi, 0) 
(n - l )hlz/2 L., L., h i 80 

i=l jf=i 

= (0 - 0*)'A2 

where (0 - 0*) = Op(n- 112 ) by Assumption 11. Now we have 
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8 ~~~ E [K (zi - Zi ) K (Zt - Zj ) u!u~8g(Xj,0) 8g(X1,0) ] 
+ (n - 1)2h1z L., L., L., h h i 1 80 80 

i j=Ji l=Jj 
l=Ji 

8 ~~~ E [K (zj - z i ) K (zi - z k) ! * ag(Xj,0) 8g(Xi, 0) ] 
+ (n - 1)2h1z L., L., L., h h Ui Uk ae ae 

i j=Ji k=Ji 
k=Jj 

+ 4 ~~ E [K (zi - Zi)2 u! 2 8g(Xj,0) 
2

] 
(n - 1)2hlz L., ~ h i 80 

i J,i 

+ 4 ~~ E [K (zi - Zi ) u! 8g(Xj ,0) l 2 
(n - 1)2h1z L., ~ h i 80 

i J,i 

= 4n(n - 2)(n - 3) E [K (zi - Zi ) K (Zt - Zk) 0 .(Z ·)o * (Z .) 8g(Xj , 0) 8g(X1 , 0)] R 
(n - l)hlz h h 9 i 9 k 80 80 + '11, 

where R'll, represents small terms. Thus , 

IE (A~)I 

,s 4n(zn--2;;~.~ 3) E [IK ( Z; ~ z,) I IK ( z, ~ z.) I 10,. (Z,)I 

100• ( z.) I ;~~ 110g(::- 0) II;~~ II Og(:; 0) II l + R~ 

= 4n(n - 2)(n - 3) { E [IK (Zi - Zi ) I 10 .(Z ·)I 11 ag(Xj , 0) II] }2 R 
(n - l )h1z h 9 i :~~ 80 + "1 · 

From Assumptions 2, 5, 8, and 12, we obtain 

E [:~~ llag(:: ,e) II / IK ( Zj; z ) I 100.(z) I f (z)dz] 

= h1zE [~~~ ll ag(:: ,e) II / IK(u)lloo*(Zj - uh)lf(Zj - uh)du] 

= h1zE [~~~ ll ag(:: ,e) II loo*(Zj)lf(Zj) J IK (u)ldu] + R'li 

'° h'• 1 { E [ :~~ i1 8g(:f l ll'l r { E [ "·· ( Z; )')} 1/2 + R,, 
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(S.9) 

Thus, we obtain E(A§) = O(n2h1z)E [oi*(Zi)] . Thus, A2 = Op(nhlz/2 ){E[oi. (Zi)]}1/ 2 

which implies A2 = Op(v'n!Jz){E [8~*(Zi)]}112 . 

ext, we show that A3 = op(A2). From Assumption 3, iii and 02 exist such that 

nh1zl2 ~ " l (Zj - z i ) * ~ * A 

A3 = n(n - l) f:tf;: h,lz K h [g(Xi ,0 ) - g(Xi, 0)l[g(XJ, 0 ) - g(XJ, 0)] 

= (0 - 0*)' ~ " K (zj - z i ) 8g(Xi, 01) 8g(XJ , 02) (0- 0*) 
(n - l )h1z/2 ~ ~ h 80 80' 

i =l jfi 

= (0 - 0*)' A3(0 - 0*) . (S.10) 

We have 

EIIA.311 = nh-lz/2 E I( (Zj - z i ) 8g(Xi, 01) 8g(Xj , 02) 
h 80 80' 

:S nh-L,/2 E [IK ( Z; ~ z,) IT' E [ /Jg(;, 0) 2 /Jg'::,, 0) T' 
:', O(nh - 1,f') [! IK ('1 ~ Z, ) I' J(z1) f( z2)dz1 dz, r' 
= n [! IK (u) l2 f( z2 + uh)f(z2)dudz2] 

112 

= O(n) (S.11) 

where E [sup0E8 II J0g(X, 0)112] is bounded by Assumption 5 and t he last equality holds 

by Assumptions 2 and 12. Since (0 - 0*) = Op(n-112 ) by Assumption 11 , we obtain 

A3 = Op( l ). Thus, we have A2 + A3 = Op(v'n!Jz){E[oi.(z i)]}112 + Op(l ). 

• 
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S-6 P roof of Lemma 6 

Proof. It is obvious that I; is bounded uniformly in m E M(1,,pn) by Assumptions 1, 2, 

7, and 12. Let u: = ~ - g(Xi, 0*) . 

t = 2 ~ "' _!_K (zj - zi)2 u2u~ 
n(n - l) L..,L.., h,lz h i J 

i =l j,/i 

2 1 z j - z i , 2 , 2 n ( )2 = n(n _ 1) L ~ h,lz I( h [~ - g(Xi, 0)] [1j - g(Xj, 0)] 
i =l Jfi 

n 2 

2 "' "' 1 ( z j - z i ) [ ( *) ( ,) *]2 [ ( *) ( ,) *] 2 = n(n - l) L.., L..,_ hlz J( h gXi, 0 - gXi, 0 + ui gXj, 0 - gXj 0 + ui 
i =l Jfi 

2 1 z j - z i * , 2 * , 2 n ( )2 = n(n _ l ) L ~ 1-,,l z I( h { [g(Xi, 0 ) - g(Xi, 0)] [g(Xj , 0 ) - g(Xj 0)] 
i=l Jfi 

+4u:[g(Xi, 0*) - g(X i 0)l[g(Xi , 0*) - g(Xi , 0)] 2 + 2u:2 [g(Xi , 0*) - g(Xi 0)]2 

+4u:u;2[g(Xj , 0*) - g(Xj 0)] + 4u:u;[g(Xi 0*) - g(Xi, 0)l[g(Xj , 0*) - g(Xj 0)] + u:2u;2 } 

2 ~ "' 1 ( z j - z i ) 2 *2 *2 
= n( n - 1) ~ L..,_ h,lz I( h ui uj 

i=l Jfi 

+ n(/- I) t, ft, h;, K ( Z; ~ z, )' u;uj2[g(X,, 0') - g(X,, 11)[ + R,,, 

where Rn represents smaller terms that is op(l) , which can be shown by using Lemma 

S.14 under Assumptions 1, 3, 5, 11, and 12. 

ow, we show t hat t; = op( l ). From Assumption 3, there is 0 between 0 and 0* 

such that 

where ytn(0 - 0*) = Op(n- 112 ) by Assumption 11. Since E(ut 21Zi ) is bounded from 
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Assumptions 1 and 7 and E ll f0g(Xi, 0)112 ~ E [sup0Ee II f0g(Xi, 0)112] is bounded by 

Assumption 5, there is a constant C such that 

where 

fJg(Xi , 0) 
80 

z2 - z1 2 l 4 2 ( )
4 J K h 0"9. (z1)f(z1)f(z2)dz1dz2 = h z J K (u) O"o*(z1)f(z1)f(z1 + uh)dz1du 

= hlz J K (u) 4duE[O"i*(z1)f(z1) ] + o(l) 

= O(hlz), 

where the last equality holds from Assumptions 1, 2, 7, and 12. Thus, t; = Op(n-112 ) . 

Now, similar to the proof of Lemma 4, we can show t hat Ei is a second order U-statistic 

with E[ Hi (Wi , WJ )2] = o( n) , where Hi (Wi, WJ) = ttz K ( zj ~zi r u; 2u;2 . Thus, we 

apply Lemma 3.1 of Zheng (1996) , implying that E1 = E[Hi(Wi WJ)] + op(l), where 

* 1 z2 - z1 2 2 ( )
2 

E [H1 (Wi, WJ)] = h,l z J K h 0"0*(z1)0"0*(z2)f(z1)f(z2)dz1dz2 

= J K (u)20"i*(z1)0"i. (z1 + uh)f(z1)f(z1 + uh)dz1du 

= J K (u)2du j [a3. (z1)]2 f(z1)2dz1 + o(l). 
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S- 7 Proof of Lemma 7 

Proof. F irst, consider t he case with lz = 1. Taylor expansion of k(( Zj - Zi)/11) at h = ho 

yields 

(S.12) 

which can be described by 

(S.13) 

where his between hand ho and 

(S.14) 

for some constant q. 

A simila r results hold for lz > l , which is 
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~ ( h - ho ) m ~cm) (Zj-Zi) + I - K - ' m. h h 
(S .15) 

where 

for some constant ctk - Since k (s>(v) is an even function, k (s>(v) can be viewed as a 

second-oder kernel function. Thus, the above expansion yields 

A 1 ~ ""' 1 (zj - zi) A A 

Tn(h) = n (n _ l) L L "t; K A 'UiUj 
i =l #i h h 

ho ( ) 1 1 A A 1 h - ho - s Zj - zi lz n m-1 ( A ) s 
= - T, ho + - 'Uiu · - K 

/,I, n n(n - 1) ~ ~ /,1, ' ~ s! h;, ( h;, ) 

1 ~ ""' 1 A A 1 ( /1 - ho ) m vm ( Zj - zi) + --- L L - A UiUj- ---- .n. -
n(n - 1) . 1 · ...1-· hlz m ! h h 

i= Jr1, 

hk (h-ho ) = - A Tn (ho) + - 1 - Op(T,i(ho)) 
hlz 10 

(

A )m n l h - ho l 1 A A K- m Zj - zi + - --- -'UiU · 
m! h n( n - l) ~ I: h,lz 1 ( h ) 

i =l J=/=i 

l (A ) (( A ) 771) h0 h - ho l h - ho 
= - A Tn(ho) + - 1 - Op(Tn(ho)) + - A Op -h -

hlz 1Q hlz 0 
(S.17) 

because h = h0 +op(h0 ) , h/h0 - l = op(l ), and E[lui'uill.Km((Zj - Zi)/h)I] ::; E[E(lui llZi)]2 ::; 

E[E(lu;I IZi)] 2 < oo under Assumptions 1, 5, 7, 11 , and the assumption that supu I.Km(u) I < 

, where u: is defined in Lemma 6. Since h-lz h/ h0 - l = op( l ) by Assumption 
A ( A )771 

3 



and Tn(ho) = Op(l ) , we obtain 

, 1 n 1 (Z·-Z·) hlz 
Tn(h) = ( ) LI: -, K 1 , i Ui'Uj = ~ Tn(ho ) + op(Tn(ho)) . 

n n - 1 . . . hlz h h,lz 
t=l Jc/t 

(S.18) 

• 
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S-8 Proof of Lemma 8 

Proof. By the expansion of t he kernel given in equat ion (S .13), we obtain 

(S.19) 

Under Assumpt ions 1, 5, 7, 11 , and the assumption t hat supu IKm(u)I < , we have 

E [u;u;k m((Zj - Zi)h)2] ::; E[u;]2 ::; E[E(u;21 Zi)] 2 < . Since k s(v) is a second-oder 

kernel function, the above expansion yields 

hlz 
0 ~ ( ~ ) = -~ ~(ho ) + op ~ (ho ) 

h lz 
(S.20) 
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because 1i,7z (Ii/ho - l)m+l = op(l) and I;(h0 ) = f; + op(l) by Lemma 6. Thus, we obtain 

E(/1) = f; + Op (1). 

• 
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Supplemental Material: Lemmas 

S-1 Lemma S .15 

Lemma S.15. Under Assumptions 2, 8, and 12, we obtain f K er,?) 60*(Y)f(y)dy = 

hlzJo•(x)f(x) + O(hlz+min{qk,k+qzJ) . 

Proof. ate that J(-) and 60*(-) are qz- and k-times differentiable by Assumptions 2 

and 8, respectively. For any functions g( ·) : IR1 --+ IR, let ~ (q) g(-) indicates a vector 

(matrix, or cube) of q-times partial derivatives.10 We define lz dimensional vector u = 

{u1, u2, . . . , Utz }'. Then, 

J K ( x ~ y ) 60• (Y)f(y)dy = h1z J K (u)60• (x - uh)f(x - uh)du 

= h1z J K (u) [Jo*(x) - hu' ~ (l)Jo*(x) + ~2 
u' ~ (2)J0• (x)u + ... ] 

[f(x) - hu'~(l) f (x) + ~2 u'~ (2) f (x)u + ... ] du 

= hlzJo• (x) f (x) J K (u)du + O (hlz+min{qk ,k+qzJ), 

where J K (u)du = 1 by Assumption 12. The last equation holds by the feature of qkth 

oder kernel in Assumption 12. • 

S-2 Lemma S.16 

Lemma S.16. Under Assumptions 1, 2, 3, 4, 5, 6, 8, and 11, we have 

10For example, L~,_{l) f( z ) = { 8f(z)/az1, 8f(z)/8z2, . .. , af(z)/az1• }' , and 6. <2> f(z) is a lz by lz matrix 
whose (l, k) element is af(z)/az1azk. 
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Proof. Let 'ffi = E[g(Xi, 0*) 1Zi] - g(Xi, 0*) + wi, where E('ffi ) = 0 and var('ffi) = 

E[g(X i, 0*) 2] + E(wt) - E{E [g(Xi , 0*)1 Zi] 2 } - 2E[wig(Xi, 0*)] < by Assumptions 

1, 2, 4, and 8, which implies 77i = Op(l). Then , 

By Assumptions 3 and 11 , there is 0 between 0* and 0 such that lg(X j, 0*) - g(Xj 0)1 = 

I J'0 g(X j, 0) I Op(n- 112 ). Thus, for some positive constant C and C', we have 

Z; E r. l + o(l) 
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where E [lf0 g(Xj ,0)1 1Zj E Ik] is bounded by Assumption 5. ext, 

= ( 0* - 0)' A~ + ( 0* - 0)' A~ ( 0* - 0) (S.l) 

Since E (iJil Zi) = 0, we have E (A~) = 0. For some constant C , 

by the boundedness in Assumption 5 and boundedness of E(ry;IZi) as shown before. For 

some constant C > 0, 
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where E[[ 80t0, g(Xj, 0)J Zj E Ik] is bounded by Assumption 6 a.nd E ([r;i[ [Zi) < E (lr;i[ 2 [Zi)112 

is bounded as shown before. From equations (S. l ), (S.2), and (S.3), we obtain A2 = 

O(hlz/2) . 

• 
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Supplemental Material: Simulation 

Table S.1 shows the simulation results with the sample size of n = 1000. All simulation 

settings but sample size are the same with those in Section 5 of the paper. 

Table S.l: Size and power of Tn with n = 1000. 

Bootstrap ormal 

Ho H1 p T/ h cv h opt h cv h opt 

Ho is true 
(6) DGP 1 0.8 0.1 0.054 0.047 0.020 0.033 

DGP 2 0.8 0.5 0.053 0.046 0.030 0.028 
DGP 3 0.7 0.1 0.052 0.045 0.021 0.031 

(7) DGP 1 0.8 0.1 0.060 0.051 0.022 0.025 
DGP 2 0.8 0.5 0.063 0.051 0.017 0.026 
DGP 3 0.7 0.1 0.061 0.048 0.021 0.027 

Ho is false 
(6) (7) DGP 1 0.8 0.1 1.000 1.000 1.000 1.000 

DGP 2 0.8 0.5 1.000 1.000 1.000 1.000 
DGP 3 0.7 0.1 1.000 0.960 1.000 0.936 

(6) (8) DGP 1 0.8 0.1 1.000 1.000 1.000 1.000 
DGP 2 0.8 0.5 1.000 0.999 1.000 0.996 
DGP 3 0.7 0.1 1.000 0.779 1.000 0.717 

(7) (8) DGP 1 0.8 0.1 0.999 0.957 0.994 0.938 
DGP 2 0.8 0.5 0.999 0.899 0.987 0.86 
DGP 3 0.7 0.1 0.680 0.418 0.507 0.358 

Note: Crit ical values are obtained from bootstrapping ( columns labeled by hoot-
strap) and the normal distribution ( columns labeled by ormal). 

46 



R efrerenecs 

Abramovich, F. , Feis, D ., Italia, S. , and Theofanis. (2009) . Optimal testing for addi­

tivity in multiple nonparametric regression. Annals of the Institute of Statistical 

Mathematics, 61(3) 691- 714. 

Guerre, E. , and Lavergne, P . (2002). Optimal minimax rates for nonparametric speci­

fication testing in regression models. Econometric Theory, 18(5), 1139- 1171. 

Hall, P. , and Heyde, C. C . (19 0) . Martingale limit theory and its application. Academic 

press. 

lngster, Y . I. (1993). Asymptotically minimax hypothesis testing for nonparametric 

alternatives. I , II , III. Mathematical Methods of Statistics, 2(2) , 85--114. 

Ingster , Y. I. , and Sapatinas , T . (2009). Minimax goodness-of-fit testing in multi­

variate nonparametric regression . Mathematical Methods of Statistics, 18(3) , 241-

269. 

Lehmann, E. L., and Romano, J. P. (2005). Testing statistical hypotheses. ew York 

USA: Springer. 

Lepski, 0 . V. , and Spokoiny, V. G. (1999). Minimax nonparametric hypothesis testing: 

the case of an inhomogeneous alternative. B ernoulli, 5(2) , 333- 358. 

Lepski, 0. V., and Tsybakov, A. (2000). Asymptotically exact nonparametric hypothe­

sis testing in sup-norm and at a fixed point. Probability Theory and Related Fields, 

117(1), 17- 4 . 

Li, Q. , and Racine, J. S. (2007). Nonparametric econometrics: Theory and practice. 

Princeton University P ress. 

Spokoiny, V. G. (1996). Adaptive hypothesis testing using wavelets. The Annals of 

Statistics, 24(6), 2477- 2498. 

47 



Zheng, J. X. (1996) . A consist ent test of functional form via nonparametric estimation 

techniques. Journal of Econometrics, 75(2), 263- 289. 

48 


