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ABSTRACT

The one-to-one correspondence between finite distributive lattices and finite partially or-
dered sets (posets) is a well-known theorem of G. Birkhoff. This implies a nice representation
of any distributive lattice by its corresponding poset, where the size of the former (distributive
lattice) is often exponential in the size of the underlying set of the latter (poset). A lot of engi-
neering and economic applications bring us distributive lattices as a ring family of sets which
is closed with respect to the set union and intersection. When it comes to a ring family of sets,
the underlying set is partitioned into subsets (or components) and we have a poset structure on
the partition. This is a set-theoretical variant of the Birkhoff theorem revealing the correspon-
dence between finite ring families and finite posets on partitions of the underlying sets, which
was pursued by Masao Iri around 1978, especially concerned with what is called the principal
partition of discrete systems such as graphs, matroids, and polymatroids.

In the present paper we investigate a signed-set version of the Birkhoff-Iri decomposition
in terms of signed ring family, which corresponds to Reiner’s result on signed posets, a signed
counterpart of the Birkhoff theorem. We show that given a signed ring family, we have a
signed partition of the underlying set together with a signed poset on the signed partition
which represents the given signed ring family. This representation is unique up to certain
reflections.

KEYWORDS
Signed ring families; signed posets; bidirected graphs; decomposition; bisubmodular
functions

1. Introduction

The one-to-one correspondence between finite distributive lattices and finite partially ordered
sets (posets) is a well-known theorem of G. Birkhoff (see [6, 7]). This implies a nice repre-
sentation of any distributive lattice by its corresponding poset, where the size of the former
(distributive lattice) is often exponential in the size of the underlying set of the latter (poset).
A lot of engineering and economic applications bring us distributive lattices as a ring family
of sets which is closed with respect to the two binary operations of set union and intersection.
Typically we have such a ring family of sets as a family of minimizers of a submodular set
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function (see [13]). When it comes to a ring family of sets, the underlying set is partitioned
into subsets (or components) and we have a poset structure on the partition. This decom-
position with a poset structure on the set of components plays important and crucial roles
in many practical problems related, for example, to the decomposition of a directed graph
into strongly connected components, the Dulmage-Mendelsohn decomposition of a bipartite
graph ([29]), etc. This is a set-theoretical variant of the original Birkhoff theorem, to be called
the Birkhoff-Iri decomposition, revealing the correspondence between finite ring families and
finite posets on partitions of the underlying sets, which was intensively pursued by Masao Iri
around 1978, especially concerned with the problem of what is called the principal partition
of discrete systems ([14, 22–25, 28]).

Theorem 1.1 (Birkhoff-Iri). Let D be a set of subsets of a finite set V with ∅, V ∈ D. Then D
is a distributive lattice with set union and intersection as the lattice operations if and only if
there exists a poset (Π(V ),⪯) on a partition Π(V ) of V such that D is expressed as follows:

X ∈ D ⇐⇒ there exists an ideal J of (Π(V ),⪯) such that X =
∪
F∈J

F ,

where J is an ideal of (Π(V ),⪯) if for every F ∈ J we have F ′ ∈ J for all F ′ ∈ Π(V )
satisfying F ′ ⪯ F . 2

Example 1: See Figure 1 as an illustration of the Birkhoff-Iri decomposition of the underlying
set with the associated poset structure on the partition. 2

∅

{1, 2}

{3, 4}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2} {3, 4}

{5}

(a) (b)

Figure 1. (a) A distributive set lattice D and (b) its corresponding poset on the partition of the underlying set {1, 2, 3, 4, 5}.

On the other hand, V. Reiner [32] introduced the concept of signed poset and showed the
so-called signed Birkhoff theorem, which is a signed analogue of the Birkhoff theorem on
distributive lattices and posets. The signed Birkhoff theorem [32, Theorem 4.8] asserts that
for a finite lattice L with the maximum element 1̂, L − {1̂} is isomorphic to the set of ideals
of some signed poset P if and only if L is Bn-distributive, where P is determined by L up to
isomorphism as a signed poset (see [32] for the precise definitions and terminology).

In the present paper we investigate a signed-set version of the Birkhoff-Iri decomposition
(Theorem 1.1), which gives a signed-set decomposition of discrete systems represented by
signed ring families into signed partitions with signed poset structures (the precise description
will be given in Sections 4 and 5). This is an elaboration of Reiner’s result on Bn-distributive
lattices and signed posets to obtain a signed-set counterpart of the Birkhoff-Iri theorem (The-
orem 1.1), in terms of signed ring family.

The present paper is organized as follows. Basic definitions and preliminaries are given
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in Sections 2 and 3. Section 4 describes how every simple and spanning signed ring family
can be represented by a signed poset introduced by Reiner, or equivalently by a bidirected
graph considered in Section 3, in terms of signed ring family (see Theorem 4.10). We further
consider general signed ring families and their representation by signed partitions with signed
poset structures in Section 5 (see Theorem 5.1). Finally, in Section 6 we give some remarks
on recent related developments in signed ring families and bisubmodularity.

2. Preliminaries

The authors ([2–4]) in collaboration with T. Naitoh and T. Nemoto were interested in a family
F ⊆ 3V ≡ {(X,Y ) | X,Y ⊆ V,X ∩ Y = ∅} for a finite nonempty set V that is closed
with respect to the two binary operations called reduced union ⊔ and intersection ⊓. For
each (Xi, Yi) ∈ F (i = 1, 2) the reduced union (X1, Y1) ⊔ (X2, Y2) and the intersection
(X1, Y1) ⊓ (X2, Y2) are, respectively, defined by

(X1, Y1) ⊔ (X2, Y2) = ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)), (1)
(X1, Y1) ⊓ (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2). (2)

(See Figure 2.)

X1 X1

X2 X2

Y1 Y1

Y2 Y2

(a) (b)

Figure 2. (a) The reduced union (X1, Y1) ⊔ (X2, Y2) and (b) the intersection (X1, Y1) ⊓ (X2, Y2).

Such a family F is called ⊔,⊓-closed. We call F a ⊔,⊓-closed family or a signed ring family
(the former term was used in our original report [1] but we use the latter in the following).

Each (X,Y ) ∈ F can be identified with its characteristic vector χ(X,Y ) ∈ {0,±1}V
defined by

χ(X,Y )(v) =

 1 if v ∈ X
−1 if v ∈ Y
0 otherwise

(3)

for each v ∈ V . Therefore, we call each (X,Y ) ∈ F a signed set. Also, we call (∅, ∅) the
null signed set. It should be noted that we have the following equality for all (Xi, Yi) ∈ F
(i = 1, 2).

χ(X1,Y1) + χ(X2,Y2) = χ(X1,Y1)⊔(X2,Y2) + χ(X1,Y1)⊓(X2,Y2). (4)

3



For (Xi, Yi) ∈ F (i = 1, 2) we write (X1, Y1) ⊑ (X2, Y2) if X1 ⊆ X2 and Y1 ⊆ Y2. If
we have (X1, Y1) ⊑ (X2, Y2) and (X1, Y1) ̸= (X2, Y2), we write (X1, Y1) < (X2, Y2). See
Figure 3 for an example of a signed ring family on V = {p, q, r}.

(∅, ∅)

(∅, {p})

({q}, {p}) (∅, {p, r})

({q, r}, {p}) ({q}, {p, r}) (∅, {p, q, r})

Figure 3. A signed ring family where the signed sets are ordered by ⊑.

A special signed ring family F = 3V ≡ {(X,Y ) | X,Y ⊆ V, X ∩ Y = ∅} appears
in [8–10, 13, 31], while signed ring families were introduced as domains of bisubmodular
functions (see [3, 13]). A bisubmodular function f : F → R is a function satisfying

f(X1, Y1) + f(X2, Y2) ≥ f((X1, Y1) ⊔ (X2, Y2)) + f((X1, Y1) ⊓ (X2, Y2)) (5)

for all (Xi, Yi) ∈ F (i = 1, 2). Bisubmodular functions are generalization of rank functions
of polymatroids and other related polyhedra (see, e.g., [8–10, 13, 31]). Given a bisubmodular
function f : F → R on a signed ring family F with (∅, ∅) ∈ F and f(∅, ∅) = 0, we define
the bisubmodular polyhedron associated with f by

P∗(f) = {x | x ∈ RV ,∀(X,Y ) ∈ F : x(X,Y ) ≤ f(X,Y )}, (6)

where x(X,Y ) =
∑

v∈X x(v)−
∑

v∈Y x(v). The class of bisubmodular polyhedra is exactly
the one for which the greedy algorithm works (see [9, 10] for F = 3V ). Real-valued functions
defined on 3V are also studied in the field of game theory under the name of bicooperative
games or bicapacities where the partial order on 3V is different from that considered in this
paper (see, e.g., [5, 11, 20, 21]).

We say F is spanning if there exists some (X,Y ) ∈ F such that X ∪ Y = V . We can
show that a signed ring family F is spanning if and only if for each v ∈ V there exists some
(X,Y ) ∈ F such that v ∈ X ∪ Y . This follows from the following lemma.

Lemma 2.1. Every maximal element (X,Y ) ∈ F has the same set X ∪ Y , where the order
among F is with respect to ⊑.

(Proof) Since

(X1 ∪ (X2 \ Y1), Y1 ∪ (Y2 \X1)) = ((X1, Y1) ⊔ (X2, Y2)) ⊔ (X1, Y1), (7)

we have

(X1 ∪ (X2 \ Y1), Y1 ∪ (Y2 \X1)) ∈ F (8)
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for any (Xi, Yi) ∈ F (i = 1, 2). Also, note that we have

(X1, Y1) ⊑ (X1 ∪ (X2 \ Y1), Y1 ∪ (Y2 \X1)), (9)
X1 ∪ (X2 \ Y1) ∪ Y1 ∪ (Y2 \X1) = X1 ∪X2 ∪ Y1 ∪ Y2. (10)

Therefore, the present lemma follows from (7)∼(10). 2

Due to Lemma 2.1, for any maximal (X,Y ) ∈ F let us call the unique set X ∪ Y the
support of F . We thus see that for a non-spanning signed ring family F ⊆ 3V on V we can
restrict the underlying set V to its support. Therefore, without loss of generality we assume
that F is spanning in the sequel unless otherwise stated.

For a spanning F we say F is simple if for each distinct v, w ∈ V

• there exists some (X,Y ) ∈ F such that either v ∈ X∪Y and w ̸∈ X∪Y or v ̸∈ X∪Y
and w ∈ X ∪ Y .

We shall consider representations of general non-simple signed ring families by means of
signed posets. Before doing so, we first treat simple signed ring families. We show a theorem
(Theorem 4.10) that there exists a one-to-one correspondence between the set of all the simple
signed ring families F ⊆ 3V on V with (∅, ∅) ∈ F and the set of all the signed posets P on
V such that each such F is the set of all the ideals of the corresponding signed poset P .
The theorem, Theorem 4.10, is a set-theoretical version of the signed Birkhoff theorem of
V. Reiner [32], which sheds a new light on the signed Birkhoff theorem. We further examine
the representations of general non-simple and/or non-spanning signed ring families later in
Section 5.

The result obtained in this paper gives an important basis for developing a theory of bisub-
modular functions and associated (possibly unbounded) bisubmodular polyhedra. It should
be noted that the collection of all the minimizers of an arbitrary bisubmodular function is a
signed ring family. Hence, for any point x in the bisubmodular polyhedron defined by (6) the
collection F(x) of tight signed sets given by

F(x) = {(X,Y ) | (X,Y ) ∈ F , x(X,Y ) = f(X,Y )} (11)

forms a signed ring subfamily of F . We can see that a point x ∈ P∗(f) is an extreme point of
P∗(f) if and only if F(x) is simple (see [2]). Therefore, for each extreme point x of the bisub-
modular polyhedron P∗(f) we have a signed poset associated with F(x). We can characterize
the adjacency of extreme points of the bisubmodular polyhedron in terms of the Hasse dia-
grams of the associated signed posets. By means of the signed poset representation we can
further examine facets, faces, dimensions, connected components, the membership problem
etc. for bisubmodular polyhedra (see [2]). Further related topics and recent developments will
be seen in Section 6.

3. Signed Posets and Ideals

Following Reiner [32], we define a signed poset and its ideal in an equivalent but slightly
different way in terms of bidirected graph.

For a finite vertex set V and a finite arc set A we are given a boundary operator ∂ on A as
follows. For each arc a ∈ A there exist some vertices v, w ∈ V such that one of the following
three holds:

(1) ∂a = v + w (arc a has two tails, one at v and one at w),
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(2) ∂a = −v − w (arc a has two heads, one at v and one at w),
(3) ∂a = v − w (arc a has a tail at v and a head at w),

where the right-hand sides should be regarded as elements of the free module over the set Z
of integers with a base V , and if v = w, we do not allow (3). Also, we assume that there do
not exist any two distinct arcs a, a′ ∈ A such that ∂a = ∂a′. When ∂a = ±v±w, we say arc
a is incident to v (and w) and it is sometimes convenient to write arc a as v±±w. If arc a is
incident to only one vertex v (i.e., a = v++v or a = v−−v), arc a is called a selfloop at v.
We call G = (V,A; ∂) a bidirected graph. See Figure 4 for an example of a bidirected graph.

+

+

+

+
+

+

+

++

−

−

−

p

q r

Figure 4. A bidirected graph.

For a bidirected graph G = (V,A; ∂) we further assume the following:

(i) There are no two arcs a1, a2 ∈ A such that ∂a1 = −∂a2 (i.e., no two arcs, of either
u++v and u−−v or u+−v and u−+v, coexist).

(ii) For any two arcs a1, a2 ∈ A, if the sum of the absolute values of the coefficients of the
vertices in ∂a1+∂a2 is two, then there exists an arc a3 ∈ A such that ∂a3 = ∂a1+∂a2
(i.e., the existence of arcs u+±v and v∓+w implies the existence of arc u++w and
similarly for other sign patterns).

(iii) For any two selfloops a1, a2 ∈ A incident to distinct vertices (e.g., a1 = u++u and
a2 = v++v for u ̸= v) there exists an arc a3 ∈ A such that 2∂a3 = ∂a1 + ∂a2 (e.g.,
a3 = u++v).

Then, we call the bidirected graph G = (V,A; ∂) a signed poset on V and denote it by
P = (V,A; ∂) as well. This definition is equivalent to the one given by Reiner [32]. A signed
poset P = (V,A; ∂) on V is uniquely determined by ∂A ≡ {∂a | a ∈ A}, i.e., a signed poset
is uniquely determined up to the relabeling of the arcs. We can see that the bidirected graph
shown in Figure 4 is in fact a signed poset.

For each a ∈ A we denote by ∂+a (∂−a) the set of the vertices that have positive (negative)
coefficients in ∂a.

Now, we define an ideal of the signed poset P = (V,A; ∂) as follows. A signed set
(X,Y ) ∈ 3V is an ideal of P if it satisfies

⟨∂a, (X,Y )⟩ ≤ 0 (a ∈ A), (12)

where ∂a and (X,Y ) should be regarded as integral vectors in ZV in a natural way, and ⟨·, ·⟩
as the canonical inner product. Inequality (12) means that (∂+a∩X)∪(∂−a∩Y ) ̸= ∅ implies
(∂−a ∩ X) ∪ (∂+a ∩ Y ) ̸= ∅. In Reiner’s definition of ideals the inequality sign in (12) is
reversed but we adopt the above definition due only to the consistency with our system of
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notations for ordinary posets and ideals (cf. [13]). For the signed poset shown in Figure 4, the
set of the ideals is exactly the signed ring family given in Figure 3.

4. Signed Ring Families and Their Representations

Let F ⊆ 3V be a simple signed ring family with (∅, ∅) ∈ F . For each v ∈ V define

F(+v) = ⊓{(X,Y ) | v ∈ X, (X,Y ) ∈ F} (13)

if there exists some (X,Y ) ∈ F such that v ∈ X , and define

F(−v) = ⊓{(X,Y ) | v ∈ Y, (X,Y ) ∈ F} (14)

if there exists some (X,Y ) ∈ F such that v ∈ Y . If there is no (X,Y ) ∈ F such that v ∈ X
(or v ∈ Y ), then we define F(+v) = (∅, ∅) (or F(−v) = (∅, ∅)). Note that since F is a
spanning family on V , by Lemma 2.1 F(+v) or F(−v) is non-null for every v ∈ V . Also, for
any W = (X,Y ) ∈ F we define

W+ = X, W− = Y. (15)

Given a simple (and hence spanning) signed ring family F ⊆ 3V on V , we construct a
bidirected graph G(F) as follows. G(F) has the vertex set V (since F is spanning). The arc
set A is constructed by the following procedures (1)∼(3):

(1) For each v ∈ V ,
(1a) if F(−v) = (∅, ∅), add a selfloop a at v such that ∂a = −2v (i.e., a = v−−v),
(1b) if F(+v) = (∅, ∅), add a selfloop a at v such that ∂a = 2v (i.e., a = v++v).

(2) For each distinct v, w ∈ V ,
(2a) if w ∈ F(+v)+, add an arc a such that ∂a = v − w (i.e., a = v+−w),
(2b) if w ∈ F(+v)−, add an arc a such that ∂a = v + w (i.e., a = v++w),
(2c) if w ∈ F(−v)+, add an arc a such that ∂a = −v − w (i.e., a = v−−w),
(2d) if w ∈ F(−v)−, add an arc a such that ∂a = −v + w (i.e., a = v−+w).

(3) For any two selfloops a1 and a2 that are incident to distinct vertices, add an arc a3 such
that 2∂a3 = ∂a1 + ∂a2.

During the construction of the arc set A, if an arc to be added has already been constructed,
then we skip the operation. It should be noted that if we do not require condition (iii) for the
signed poset, or more precisely if we remove such an arc a3 appearing in condition (iii), then
we do not need Procedure (3) given above.

Let us consider the signed ring family F shown in Figure 3. We see the following.

F(+p) = (∅, ∅), F(−p) = (∅, {p}),
F(+q) = ({q}, {p}), F(−q) = (∅, {p, q, r}),
F(+r) = ({q, r}, {p}), F(−r) = (∅, {p, r}).

Then, procedures (1)∼(3) yield the bidirected graph G(F) in Figure 4.
To show that the bidirected graph G(F) constructed above is a signed poset, we need some

lemmas.

Lemma 4.1. For any distinct v, w ∈ V ,
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(a) if w ∈ F(+v)+, then v ̸∈ F(+w)+,
(b) if w ∈ F(+v)−, then v ̸∈ F(−w)+,
(c) if w ∈ F(−v)+, then v ̸∈ F(+w)−,
(d) if w ∈ F(−v)−, then v ̸∈ F(−w)−.

(Proof) We show (a) (the proofs of the other cases are similar).
Suppose, to the contrary, that w ∈ F(+v)+ and v ∈ F(+w)+. Since F is simple, there is

some (X,Y ) ∈ F such that (1) v ∈ X∪Y and w ̸∈ X∪Y , or (2) v ̸∈ X∪Y and w ∈ X∪Y .
In Case (1), if v ∈ X , then (F(+v) ⊓ (X,Y ))+ contains v but not w, which contradicts the
minimality of F(+v); and if v ∈ Y , then (F(+w) ⊔ (X,Y ))+ contains w but not v, which
contradicts the minimality of F(+w). Case (2) can be treated similarly as Case (1). 2

Lemma 4.2. For any distinct v, w ∈ V ,

(a) if w ∈ F(+v)+, then F(+w) < F(+v),
(b) if w ∈ F(+v)−, then F(−w) < F(+v),
(c) if w ∈ F(−v)+, then F(+w) < F(−v),
(d) if w ∈ F(−v)−, then F(−w) < F(−v).

(Proof) If the inclusion < is replaced by the inclusion ⊑ with equality, then each assertion
easily follows from the definition (the minimality) of F(·). The strict inclusion < is due to
Lemma 4.1. 2

Lemma 4.3. For any distinct v, w ∈ V ,

(a) if w ∈ F(+v)+ and F(−w) ̸= (∅, ∅), then v ∈ F(−w)−,
(b) if w ∈ F(+v)− and F(+w) ̸= (∅, ∅), then v ∈ F(+w)−,
(c) if w ∈ F(−v)+ and F(−w) ̸= (∅, ∅), then v ∈ F(−w)+,
(d) if w ∈ F(−v)− and F(+w) ̸= (∅, ∅), then v ∈ F(+w)+.

(Proof) We show (a) (the proof of the other cases are similar).
Suppose, to the contrary, that w ∈ F(+v)+,F(−w) ̸= (∅, ∅) and v ̸∈ F(−w)−. Then we

have v ∈ (F(+v)⊔F(−w))+ and w ̸∈ (F(+v)⊔F(−w))+, which contradicts the minimality
of F(+v). 2

Lemma 4.3 partly corresponds to Proposition 4.6 in [32].

Lemma 4.4. For any distinct v, w ∈ V ,

(a) if w ∈ F(+v)+ and F(−v) = (∅, ∅), then F(−w) = (∅, ∅),
(b) if w ∈ F(+v)− and F(−v) = (∅, ∅), then F(+w) = (∅, ∅),
(c) if w ∈ F(−v)+ and F(+v) = (∅, ∅), then F(−w) = (∅, ∅),
(d) if w ∈ F(−v)− and F(+v) = (∅, ∅), then F(+w) = (∅, ∅).

(Proof) We show (a) (the proof of the other cases are similar).
Suppose, to the contrary, that w ∈ F(+v)+,F(−v) = (∅, ∅) and F(−w) ̸= (∅, ∅). Then

from Lemma 4.3 we have v ∈ F(−w)−, which contradicts the assumption that F(−v) =
(∅, ∅). 2

From Lemmas 4.1∼4.4 we have the following.

Theorem 4.5. The bidirected graph G(F) = (V,A; ∂) defined above is a signed poset.

(Proof) Let us check conditions (i)∼(iii) in the definition of a signed poset.
(i) Suppose, to the contrary, that there exist two arcs a1, a2 ∈ A such that ∂a1 + ∂a2 = 0.
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These a1 and a2 are both non-selfloop arcs or both selfloop arcs. Since selfloop arcs are added
only by Procedure (1), the case of two selfloops is excluded due to the remark given after the
definition of F(·). Hence, suppose a1 and a2 are non-selfloop arcs. By the same reason as
above, they are not both added by Procedure (3). Suppose that a1 and a2 are both added by
Procedure (2). We can assume without loss of generality that ∂a1 = v+w and ∂a2 = −v−w
since the other cases are treated similarly. Then we have one of the following (a)∼(d):

(a) w ∈ F(+v)− and v ∈ F(−w)+;
(b) w ∈ F(+v)− and w ∈ F(−v)+;
(c) v ∈ F(+w)− and v ∈ F(−w)+;
(d) v ∈ F(+w)− and w ∈ F(−v)+.

Cases (a) and (d) are excluded due to Lemma 4.1. Case (b) is reduced to Case (a) since
w ∈ F(+v)− and w ∈ F(−v)+ imply v ∈ F(−w)+ by Lemma 4.3. Similarly, Case (c) is
reduced to Case (d). The only possibility is now the case when one is added by Procedure (2)
and the other by Procedure (3). This case is also excluded by Lemma 4.4.

(ii) Suppose ∂a1 + ∂a2 = ±v ± w for some v, w ∈ V . We treat only the case when
∂a1+∂a2 = v+w since the other cases are treated similarly. Then we have either v−u ∈ ∂A
and u+ w ∈ ∂A or u+ v ∈ ∂A and w − u ∈ ∂A. We assume the former case (v − u ∈ ∂A
and u+ w ∈ ∂A) without loss of generality.

When u = w, we have F(+w) = (∅, ∅) and hence F(−w) ̸= (∅, ∅). Also, since v − w ∈
∂A, we have either w ∈ F(+v)+ or v ∈ F(−w)−. The former case reduces to the latter by
Lemma 4.3. Then, by Lemma 4.4, we have F(+v) = (∅, ∅), which implies 2v ∈ ∂A. Hence,
Procedure (3) constructs an arc a3 ∈ A with ∂a3 = v + w.

When u ̸= w and v ̸= w, we have one of the following (a)∼(f):
(a) v ∈ F(−u)−, u ∈ F(+w)−;
(b) u ∈ F(+v)+, w ∈ F(+u)−;
(c) v ∈ F(−u)−, w ∈ F(+u)−;
(d) u ∈ F(+v)+, u ∈ F(+w)−;
(e) F(+v) = (∅, ∅), F(−u) = (∅, ∅), w ∈ F(+u)−;
(f) F(+w) = (∅, ∅), F(+u) = (∅, ∅), v ∈ F(−u)−.

Both (a) and (b) imply v+w ∈ ∂A from Lemma 4.2. In Case (c), if both F(+v) = (∅, ∅) and
F(+w) = (∅, ∅), then we have v+w ∈ ∂A due to Procedure (3). Moreover, if F(+w) ̸= (∅, ∅)
(or F(+v) ̸= (∅, ∅)), then Case (c) is reduced to Case (a) (or Case (b)) from Lemma 4.3.
Case (d) is reduced to Case (a) (and Case (b)) from Lemma 4.3 since F(−u) ̸= (∅, ∅) (and
F(+u) ̸= (∅, ∅)). In Case (e) (or Case (f)) we have F(+w) = (∅, ∅) (or F(+v) = (∅, ∅)) due
to Lemma 4.4, so that we have v + w ∈ ∂A by Procedure (3).

Let us consider the case when u ̸= w and v = w. If F(+v) ̸= (∅, ∅), then arcs a1 and
a2 with ∂a1 = v − u and ∂a2 = v + u are constructed by Procedure (2). Then we have (I)
v ∈ F(+u)− or u ∈ F(+v)− and (II) v ∈ F(−u)− or u ∈ F(+v)+. However, by Lemma 4.3,
(I) implies u ∈ F(+v)− and (II) implies u ∈ F(+v)+, a contradiction. Therefore, we have
F(+v) = (∅, ∅), and hence, by Procedure (3) there is a selfloop a with ∂a = 2v.

(iii) This is due to the definition of G(F). 2

We now denote the signed poset G(F) by P(F) = (V,A; ∂).

Lemma 4.6. Let (X,Y ) ∈ 3V be an ideal of the signed poset P(F). Then we have

(∅, ∅) ̸= F(+v) ⊑ (X,Y ) (v ∈ X), (16)
(∅, ∅) ̸= F(−v) ⊑ (X,Y ) (v ∈ Y ). (17)

(Proof) Since (X,Y ) is an ideal of P(F), relations (16) and (17) follow from the definition
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of P(F). 2

Now, we show the following theorem.

Theorem 4.7. The set of all the ideals of the signed poset P(F) coincides with the given F .

(Proof) Suppose that (X,Y ) ∈ 3V is an ideal of P(F). From Lemma 4.6 we have

(X,Y ) = (⊔v∈XF(+v)) ⊔ (⊔v∈Y F(−v)). (18)

Hence, (X,Y ) ∈ F .
Conversely, suppose (X,Y ) ∈ F . Then we have

(∅, ∅) ̸= F(+v) ⊑ (X,Y ) (v ∈ X), (19)
(∅, ∅) ̸= F(−v) ⊑ (X,Y ) (v ∈ Y ). (20)

If (X,Y ) is not an ideal of P(F), then we have the following (I) or (II):

(I) For some v ∈ X we have one of the following three:
(a) There is a selfloop a such that ∂a = 2v.
(b) There are a non-selfloop arc a and a vertex w ̸∈ Y such that ∂a = v + w.
(c) There are a non-selfloop arc a and a vertex w ̸∈ X such that ∂a = v − w.

(II) For some v ∈ Y we have one of the following three:
(a) There is a selfloop a such that ∂a = −2v.
(b) There are a non-selfloop arc a and a vertex w ̸∈ X such that ∂a = −v − w.
(c) There are a non-selfloop arc a and a vertex w ̸∈ Y such that ∂a = −v + w.

Case (I-a) is impossible since F(+v) ̸= (∅, ∅) for v ∈ X . In Case (I-b), we have w ∈ F(+v)−

or v ∈ F(+w)−. But w ∈ F(+v)− is impossible from (19) since w ̸∈ Y . So, we must have
v ∈ F(+w)−, which implies w ∈ F(+v)− ⊆ Y (due to Lemma 4.3 and (19)), a contradiction.
Similarly as Case (I-b), Case (I-c) also leads us to a contradiction. Case (II) can be treated
similarly as Case (I).

Consequently, (X,Y ) must be an ideal of P(F). 2

Theorem 4.7 asserts that P(·) defines an injection from the set of simple signed ring fam-
ilies, on V , containing (∅, ∅) to the set of signed posets on V . We show that the mapping is
also onto.

For a signed poset P = (V,A; ∂) and a vertex v ∈ V , when 2v ̸∈ ∂A, define

I(+v) = ({w | v − w ∈ ∂A} ∪ {v}, {w | v + w ∈ ∂A}) (21)

and when −2v ̸∈ ∂A, define

I(−v) = ({w | −v − w ∈ ∂A}, {w | −v + w ∈ ∂A} ∪ {v}). (22)

Also, if 2v ∈ ∂A (or −2v ∈ ∂A), we define I(+v) = (∅, ∅) (or I(−v) = (∅, ∅)). We can
easily see that I(+v) and I(−v) are ideals of P and we call I(+v) the positive principal
ideal at v and I(−v) the negative principal ideal at v of P . (In fact, for a simple signed ring
family F on V and its corresponding signed poset P on V we have I(+v) = F(+v) and
I(−v) = F(−v) for v ∈ V .)

Lemma 4.8. Let I(P) be the set of all the ideals of a signed poset P on V . Then I(P) is a
simple signed ring family on V with (∅, ∅) ∈ I(P).
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(Proof) First, we show that I(P) is ⊔,⊓-closed. Let (Xi, Yi) (i = 1, 2) be ideals of P . Let us
consider their intersection (X1, Y1) ⊓ (X2, Y2). For any a ∈ A, if

(∂+a ∩ (X1 ∩X2)) ∪ (∂−a ∩ (Y1 ∩ Y2)) ̸= ∅, (23)

then we have

(∂+a ∩ Y1) ∪ (∂−a ∩X1) ̸= ∅, (∂+a ∩ Y2) ∪ (∂−a ∩X2) ̸= ∅ (24)

since (Xi, Yi) (i = 1, 2) are ideals. Since we do not have ∂−a ∩X1 ̸= ∅ and ∂+a ∩ Y2 ̸= ∅
(or ∂+a ∩ Y1 ̸= ∅ and ∂−a ∩ X2 ̸= ∅) due to (23), it follows from (24) that we have
∂+a ∩ (Y1 ∩ Y2) ̸= ∅ or ∂−a ∩ (X1 ∩X2) ̸= ∅, i.e.,

(∂+a ∩ (Y1 ∩ Y2)) ∪ (∂−a ∩ (X1 ∩X2)) ̸= ∅. (25)

Hence, (X1, Y1)⊓(X2, Y2) is an ideal of P . Let us now consider the reduced union (X1, Y1)⊔
(X2, Y2). Suppose that for an arc a ∈ A

(∂+a ∩ ((X1 ∪X2) \ (Y1 ∪ Y2))) ∪ (∂−a ∩ ((Y1 ∪ Y2) \ (X1 ∪X2)) ̸= ∅. (26)

Then we have (∂+a ∩ Y1) ∪ (∂−a ∩X1) ̸= ∅ or (∂+a ∩ Y2) ∪ (∂−a ∩X2) ̸= ∅, i.e.,

(∂−a ∩ (X1 ∪X2)) ∪ (∂+a ∩ (Y1 ∪ Y2)) ̸= ∅, (27)

since (Xi, Yi) (i = 1, 2) are ideals. If ∂+a ∩ ((X1 ∪ X2) ∩ (Y1 ∪ Y2)) ̸= ∅ (or ∂−a ∩
((X1 ∪ X2) ∩ (Y1 ∪ Y2)) ̸= ∅), we must have ∂−a ∩ ((X1 ∪ X2) \ (Y1 ∪ Y2)) ̸= ∅ (or
∂+a ∩ ((Y1 ∪ Y2) \ (X1 ∪X2)) ̸= ∅) due to (26). Hence, from (27) we have

(∂−a ∩ ((X1 ∪X2) \ (Y1 ∪ Y2))) ∪ (∂+a ∩ ((Y1 ∪ Y2) \ (X1 ∪X2)) ̸= ∅. (28)

Therefore, (X1, Y1) ⊔ (X2, Y2) is an ideal.
Next, we show that I(P) is spanning. By the definition of the signed poset P = (V,A; ∂),

for any v ∈ V we have 2v ̸∈ ∂A or −2v ̸∈ ∂A. Therefore, there exists an ideal I(+v) ̸= (∅, ∅)
or I(−v) ̸= (∅, ∅) for any v ∈ V . Hence from from Lemma 2.1 that every v ∈ V belongs to
the support of I(P), i.e., I(P) is spanning.

Finally, we show that I(P) is simple. For any distinct v, w ∈ V , suppose 2v ̸∈ ∂A without
loss of generality. If w ̸∈ I(+v)+ ∪ I(+v)−, then we are done and if w ∈ I(+v)+ ∪ I(+v)−,
then (I(+v)+ \ {v}, I(+v)−) is a desired ideal that separates v and w.

We conclude the proof by noting that (∅, ∅) is also an ideal of P . 2

Lemma 4.9. For two signed posets P = (V,A; ∂) and P ′ = (V,A′; ∂′) on V , if ∂A ̸= ∂′A′,
then I(P) ̸= I(P ′).

(Proof) If there exists some v ∈ V such that 2v ∈ ∂A \ ∂′A′ (or −2v ∈ ∂A \ ∂′A′), then
the positive (or negative) principal ideal at v of P ′ is not contained in I(P). So, suppose
that P and P ′ have the same set of selfloops. If there exist distinct v, w ∈ V such that
v − w ∈ ∂A \ ∂′A′, then 2v ̸∈ ∂′A′ or −2w ̸∈ ∂′A′. If 2v ̸∈ ∂′A′ (or −2w ̸∈ ∂′A′), then for
the positive (or negative) principal ideal W at v (or w) of P ′ we have w ̸∈ W+ (or v ̸∈ W−).
Hence, W is not an ideal of P . Other cases are treated similarly. 2
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From Theorem 4.7, Lemma 4.8, and Lemma 4.9 we have the following theorem. This is a
signed-set version of the Birkhoff theorem of Reiner [32], described in terms of signed ring
family.

Theorem 4.10 (Reiner). There exists a one-to-one correspondence between the set of all the
simple signed ring families F ⊆ 3V on V with (∅, ∅) ∈ F and the set of all the signed posets
on V such that each such F is the set of all the ideals of the corresponding signed poset P . In
fact, such a one-to-one correspondence is obtained by making each F correspond to P(F).

5. General Signed Ring Families

In this section we investigate the representation of non-simple and/or non-spanning signed
ring families, which is important when we are given such a signed ring family and want
to decompose the associated discrete system into subsystems with a signed poset structure
on it. The decomposition of signed ring families described in this section is the signed-set
counterpart of the Birkhoff-Iri decomposition (Theorem 1.1) of ring families (distributive set
lattices).

Consider any signed ring family F ⊆ 3V . Recall that because of Lemma 2.1 we can restrict
the underlying set V to its support. Hence we assume that F is spanning.

Moreover, if a signed ring family on V does not contain (∅, ∅), then for the minimum
element (X0, Y0) of F define

F ′ = {(X \X0, Y \ Y0) | (X,Y ) ∈ F}. (29)

Then F ′ is a signed ring family on V ′ = V \ (X0 ∪ Y0) with (∅, ∅) ∈ F ′. Hence we can
assume that (∅, ∅) ∈ F .

Now, consider any spanning signed ring family F ⊆ 3V with (∅, ∅) ∈ F . Define an
equivalence relation ∼ on V as follows. For any v, w ∈ V we have v ∼ w if and only
if for each (X,Y ) ∈ F either v, w ∈ X ∪ Y or v, w ̸∈ X ∪ Y . The equivalence classes
associated with the equivalence relation ∼ give a partition Π(F) of V . By the definition of
the equivalence relation we see that each component K ∈ Π(F) is divided into two sets K1

and K2 (either but not both possibly empty) such that for each (X,Y ) ∈ F with K ⊆ X ∪ Y
we have either

(i) K1 ⊆ X and K2 ⊆ Y , or
(ii) K1 ⊆ Y and K2 ⊆ X .

Therefore, we should consider Π(F) as a signed partition, where each component K ∈ Π(F)
is further partitioned into two sets K1 and K2 and is identified with a signed set (K1,K2) ∈
3V . More precisely, we consider as follows.

• For each K ∈ Π(F) the bi-partiton {K1,K2} is unique, and we choose an ordered
pair (K1,K2) and fix it for each K ∈ Π(F) throughout the argument given below.
Consider Π(F) as a signed partition {(K1,K2) | K ∈ Π(F)} of V .

We call (K2,K1) a reflection of (K1,K2). We show a way of representing a given spanning
signed ring family F with (∅, ∅) ∈ F in this section (Theorem 5.1), which is unique up to
reflections of components of the signed partition {(K1,K2) | K ∈ Π(F)} of V . For each
(X,Y ) ∈ F define a signed set (X̂, Ŷ ) ∈ 3Π(F) by

(X̂, Ŷ ) = ({K ∈ Π(F) | (K1,K2) ⊑ (X,Y )}, {K ∈ Π(F) | (K2,K1) ⊑ (X,Y )}) (30)
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and put

F̂ = {(X̂, Ŷ ) | (X,Y ) ∈ F}. (31)

We can easily show that F̂ is a simple signed ring family on the signed partition Π(F). We
call F̂ a simplification of F . Hence F̂ is the collection of ideals of a unique signed poset
P(F̂), due to Theorem 4.10.

Conversely, each (X̂, Ŷ ) ∈ F̂ is made to correspond to (X,Y ) ∈ F as follows.

(X,Y ) = ⊔({(K1,K2) | K ∈ X̂} ∪ {(K2,K1) | K ∈ Ŷ }). (32)

We can see that once every signed component (K1,K2) ∈ Π(F) is fixed, the correspondence
between (X,Y ) ∈ F and (X̂, Ŷ ) ∈ F̂ is one-to-one.

We now have our main theorem as follows.

Theorem 5.1 (Reiner-AF). For any spanning family F of signed sets in 3V with (∅, ∅) ∈ F ,
the family F is a signed ring family if and only if there exist a signed partition Π(F) of V and
a signed poset P on the signed partition Π(F) such that for every (X,Y ) ∈ F there exists
an ideal (X̂, Ŷ ) of P such that (30) and (31) hold. 2

This is a signed set-theoretical extension of Reiner’s theorem [32]. The relation between
the present theorem and Reiner’s is the signed-set counterpart of the relation between the
Birkhoff-Iri theorem and the Birkhoff theorem. Theorem 5.1 furnishes the decomposition
of bidirected graphs into strongly connected components with signed poset structures ([4]),
which further yields the Edmonds-Gallai decomposition of undirected graphs ([26, 27, 29]).

As is remarked above, for a spanning signed ring family F ⊆ 3V with (∅, ∅) ∈ F the cor-
responding representation by a signed poset on a signed partition Π(F) stated in Theorem 5.1
is not unique in general. It is uniquely determined up to the choice of signed components or
ordered bi-partitions (K1,K2) of components K ∈ Π(F), i.e., up to their reflections.

Example 2: See Figure 5 for two signed posets with signed partitions that represent the same
signed ring family F ⊂ 3{1,2,3,4,5,6}. Note that the signed component r = ({6}, {5}) in
Figure 5 (b) is reflected from r = ({5}, {6}) in Figure 5 (a) and at the same time the signs of
arcs incident to r are reflected. For example, the representation in Figure 5(a) has the set of
maximal signed sets (in the simplification of F) given by

({q, r}, {p}), ({q}, {p, r}), (∅, {p, q, r}), (33)

while the one in Figure 5(b) has the set of maximal signed sets given by

({q}, {p, r}), ({q, r}, {p}), ({r}, {p, q}). (34)

Then, both (33) and (33) give the same set of maximal signed sets in F as

({3, 4, 5}, {1, 2, 6}), ({3, 4, 6}, {1, 2, 5}), ({3, 6}, {1, 2, 4, 5}). (35)

2
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Figure 5. (a) A signed poset representation and (b) its equivalent representation, where the vertices p, q, r are associated
with signed set components: in Figure 3(a): p = ({1, 2}, {3}), q = ({4}, ∅), and r = ({5}, {6}), while in Figure 3(b):
p = ({1, 2}, {3}), q = ({4}, ∅), and r = ({6}, {5}).

6. Concluding Remarks

Although the original version [1] of this paper has been left unpublished, the signed-set de-
composition of signed ring families shown in Sections 4 and 5 has played crucial roles for
minimizing bisubmodular functions in (strongly) polynomial time in [12, 17, 30], decompo-
sition of skew-symmetric matrices in [26, 27], and the principal partition of bisubmodular
systems in [16]. Since the bisubmodularity and its extensions have recently drawn much at-
tention of researchers (see, e.g., [12, 15, 18, 19]), the detailed discussions and proofs given in
the present paper will be useful for further investigation on the related research subjects.
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