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ABSTRACT. In this paper, we determine a constant occurring in a local analogue of the Siegel-
Weil formula, and describe the behavior of the formal degree under the local theta correspon-
dence for quaternion dual pairs of almost equal rank over a non-Archimedean local field of
characteristic 0. As an application, we prove the formal degree conjecture of Hiraga-Ichino-
Ikeda for the non-split inner forms of Sp, and GSp,.
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1.1. Motivations. The theory of automorphic representations is a common generalization of
that of Dirichlet characters and that of classical modular forms. This is formulated on the
groups of the adelic points of reductive groups over global fields. The setting we will consider
in this paper is the local aspect of it, which we explain in more detail. Let F' be a local
field, let G be a reductive group over F, and let G(F) be the group of its F-valued points.
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Suppose that F' is non-Archimedean. Then, as the local aspect, we discuss smooth admissible
representations of G(F'), which are defined to be representations on C vector spaces that have
direct sum decompositions into irreducible representations with finite multiplicities when they are
restricted to an open compact subgroup C of G(F). Note that G(F') possesses an open compact
subgroup (for example, Iwahori subgroups (§5.3)) since F' is non-Archimedean. On the other
hand, when F is Archimedean, we need to discuss moderate growth representations or (g, K)-
modules (for example, see [Cas89]), but we do not explain details of them because our interest
in this paper is totally non-Archimedean cases. It is conjectured that the representations above
are parametrized by “Langlands parameters” (§1.3). Note that in §1.3 we omit the Archimedean
case. This conjecture gives a lot of motivations in representation theory. Actually, the main
result in this paper has a background of the formal degree conjecture (§1.5), which describes the
formal degree in terms of the Langlands parameter (§1.3). Here, the formal degree is an invariant
associated with a square integrable irreducible smooth admissible representation which is defined
to have a non-zero square integrable matrix coefficient (see §1.5). More precisely, we approach
the formal degree conjecture by using a correspondence between irreducible representations of
two different classical groups (see §1.2), which is called the theta correspondence (see §1.6). The
main result describes the behavior of the formal degree under the theta correspondence between
“quaternionic dual pair”. This extends a result of Gan-Ichino (see §1.7), which will be explained
more precisely in §1.8.

Finally, we note that “a smooth admissible representation over C” of G(F’) will be abbreviated
as “a representation” of G(F) in this paper.

1.2. Classical groups. Now, we introduce the classical groups. Advantages to consider this
class of groups are that they have explicit constructions, a simple classification, and particular
methods in the representation theory (for example, the doubling method (§1.4) and the theta
correspondence (§1.6)). Let F' be a local field of characteristic 0, and let E be either F itself,
a 2-dimensional semisimple F-algebra, or a quaternion algebra over F. Although our interest is
primarily when F is division, we allow E to be split (i.e. E = F x F or E = My(F)) since they
appear as a localization of global division algebras. We denote by * : ' — E the main involution
over I’ and by Cent.E the center of E. Let W be a free right F module of rank n equipped
with a map (, ) : W x W — E such that

e (, ) is either 0 or non-degenerate,
o (ax + by, cz) = alz,z)c* + bly, z)c* for z,y,z € W and a,b,c € E,
e there is an € = 1 such that (y,x) = —e(z,y)* for x,y € W.

Such W is called (—e)-Hermitian spaces. We denote by G(W) the algebraic group
{g € GL(W) | {9z, gy) = {x,y) for all z,y € W}.

The groups G(W) are called classical groups. Let ¢ = (ey,...,e,) be a basis for W over E.
We define R = ((e;, ¢;)):,; € GL,,(E), and we define

(_1)%n(n—1)2—n (E — F),
o(W) = N(R) x { (-)n0=) (B F] =2).
1y (B:F]=4)

Here, N denotes the reduced norm of M,,(E) over the center Cent.E of E. The modulo (F*)?
class of 9(W) does not depend on the choice of the basis, and it is called the discriminant of
W. Note that the isometry class of W are determined by the dimension, the discriminant, the
Hasse invariant, and the signature (for details, see Scharlau’s book [Sch85]). We denote by xw
the character of (Cent.F)* given by
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e xw(a) = (a,0(W))F for a € F where (, )r is the Hilbert symbol of F when either
E=For|[E:F]=4,
e a fixed character so that xw|rx = X% where xg is the quadratic character of F*
associated with E via the local class field theory when [E : F] = 2.
Then, we will denote by

e Sp(W) instead of G(W) when E = F and —e = —1,

e O(W) instead of G(W) when E = F and —e = 1,

e U(W) instead of G(W) when F is a quadratic extension field of F' and —e = 1.
Moreover, we will consider a double cover Mp(W) of Sp(W), which is called the metaplectic
group of W (for definition, see e.g. [GS12], [RR93, Theorem 4.1]). Although the metaplectic
group Mp(W) does not have a structure of an algebraic group, we may include it in the classical
groups. Since we consider the theory of inner forms (see §1.3.2), it is useful to introduce particular
notations for quasi-split groups;

e for a positive integer ¢, we denote Sp(2t) = Sp(W) for W with E = F, —e = —1 and

dim W = 2t;

e for a positive integer ¢ and a quadratic character x, we denote O(2t,x) = O(W) for W

with £ =F, —e =1, xw = X, and W has a t dimensional isotropic subspace;

e for a non-negative integer ¢, we denote O(2t + 1) = O(W) for W with E = F, —e = 1,

and W has a t-dimensional isotropic subspace;

e we denote U(n) = UMW) for W with [E : F] = 2, and W has a |n/2| dimensional

isotropic subspace.

Let W be a non-degenerate n-dimensional (—e¢)-Hermitian space. Then, it is known that G(W)
is an inner form of one of Sp(2t), O(2t,x), O(2t + 1), U(n). Here, we put ¢ = [n/2] (more
precisely, see §1.3). As the local Langlands correspondence which we will see in §1.3 indicates,
the representation theory of G(W) is expected to have some similarities to that of the quasi-
split inner form. However, in general, the representation theory for quaternionic unitary groups
might be more complicated and is less developed than that for non-quaternionic classical groups.
Because our result is an extension work to quaternionic unitary groups, we will pay more attention
to the difference between them in the later subsections.

1.3. Local Langlands correspondence. Now, we explain the local Langlands correspondence.
Roughly speaking, the local Langlands correspondence (in general a conjecture) is a classification
theory of the irreducible representations of reductive groups over a local field, which is a far
extension of the highest weight theory for compact Lie groups. Many invariants of irreducible
representations are expected to be interpreted in terms of Langlands parameters (for example,
see §1.4, §1.5). The main result of this paper has a background of the “Langlands functoriality”:
it compares the formal degrees of two representations whose Langlands parameters would be
related to each other.

1.3.1. L-parameters. Let F' be a non-Archimedean local field, and let G be a connected reductive
group over F. We omit the Archimedean theory for simplicity. We denote by F'* the separate
closure of F'. For a Galois extension E/F', and by I'g/p its Galois group.
We define the Weil group by
WF = <I, FI‘>

where [ is the inertia subgroup of I'ps /p and Fr is a Frobenius element of F. The structure of
the topological group of Wg is defined so that a fundamental neighborhood system of 1 € Wg
consists of the open subgroups of I. Moreover, we define the Langlands group by

LF = WF X SLQ(C)
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Let G be the Langlands dual group of G, and let “G be the L-group of G. We do not recall here
the definition, but we give G and LG explicitly for quasi-split classical groups listed in §1.2;
if G = GL,, then G = GL,(C), and LG is the direct product GL,,(C) x Wg;
if G = Sp(2n), then G = SO(2n+1,C) and LG is the direct product SO(2n+1,C) x Wg;
it G = Mp(2n), then G = Sp(2n,C) and LG is the direct product Sp(2n,C) x Wg;
if G = 0(2n, x), then G= 0O(2n,C) and LG is the subgroup
{(g,w) € O(2n,C) x W | det(g) = x(w)},
and G — W is the natural projection;
o if @ =0(2n+ 1), then, G = (Sp(2n,C) x {£1}), and LG is the subset

{(g, xw(w),w) | g € Sp(2n,C),w € Wg}

of the direct product (Sp(2n,C) x {£1}) x Wg;
e if G = U(n), then LG is the semi-direct product GL, (C) x Wg. Here the action of W
on GL,,(C) is given by

’U}g:{g (’LUGWF),

(I)ntgflq);l (’LU e Wg \ WE)
where ®,, is a matrix whose (i, j)-component is written by the Kronecker’s delta (—1)" =8, 41
for each ¢, j.

Note here that, although they are not an algebraic group (resp. not connected), we listed the
metaplectic groups (resp. the orthogonal groups) because they are necessary when we consider
the theta correspondence (§1.6 below). An L-parameter for G is a homomorphism

é:Lrp — G
so that ¢|w,. is continuous, ¢(Fr) is semisimple where Fr is the Frobenius element in Wr, ¢|sr,(c)

is an algebraic homomorphism, the image Im(¢) of ¢ is not contained in any non-relevant Levi
subgroup of IG (see [Bor79]), and the following diagram is commutative:

LFLLG

|

Wp =——=Wp

where the vertical maps are natural projections.

1.3.2. Inner forms. Let G; and G3 be two reductive algebraic groups over F. We denote by
Inn(G) the algebraic group consisting of the inner automorphisms of G, which is isomorphic
to G/Z where Z is the center of G. Then Gs is said to be an inner form of G if there is an
isomorphism ¥ : G, — G4 over F* and a 1-cocycle ¢ € H' (-, p, Inn(G1)) such that the action
of I'psyp on Go(F?) is given by

Lpayp % Go(F*) = G2(F*) : (7,9) = (e, (v 7 (g)))
where v - g is the action of I'r. /p on G1. For classical groups, it is known that;

e the inner forms of GL, are all GL,, /4 (D’) so that D’ is a central division quaternion
algebra over F of [D': F] = d'* for d'|n;

e in the case where £ = F, —e = 1, and dim W = 2¢t, then O(W) is an inner form of
O(Qta XW);

e in the case where £ = F, —e = 1, and dim W = 2¢ + 1, then O(W) is an inner form of
O(2t +1);
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e in the case where E is a quadratic extension field of F' and dim W = n, then U(W) is an
inner form of U(n);
e in the case where F is a division quaternion algebra over F', —e = 1, and dim W = n,
then G(W) is an inner form of Sp(2n);
e in the case where F is a division quaternion algebra over F', —e = —1, and dim W = n,
then G(W) is an inner form of O(2n, xw).
Now we explain some basic properties of the inner forms. Let G be a connected quasi-split
reductive group over F, and let G’ be an inner form of G. First, we have ®(G’) C ®(G). Second,
there is an isomorphism

HY(Tpe/p, Inn(G)) =2 Hom(Z(Gse) 77, C)

(see [Kot84, Proposition 6.4]). Here, we denote by Z(Gs.) the center of the simply connected
cover of the adjoint group @ad of G. We denote by (g the character of Z (@SC)FF‘*/F which is
associated with the inner form G’ of G by the above correspondence. We also consider the case
G = O(2t, x). Then, for an inner form G’ of G, we denote by (g the character (g0 of the group
Z(@gC)FFs/F. Here, G’° denotes the Zariski connected component of G’.

1.3.3. Local Langlands correspondence. The local Langlands correspondence is usually formu-
lated on a connected reductive group. But as explained in §1.3.1, we also need to consider a
bit different types of groups. Hence, for a while, we assume that G is a classical group. We
denote by ®z(G) the set of @—conjugacy classes of L-parameters for G. By the local Langlands
conjecture, we expect a finite to one map

I(G(F)) = ®p(G) : m— ¢n

where we denote by II(G(F')) the set of equivalent classes of the irreducible representations of
G(F) (see [Bor79, Chapter III]). For the connection between the maps for even orthogonal groups
and those for even special orthogonal groups, see [AG17, §3.6]. Note that, for an odd orthogonal
group, the definition of the L-parameter in Atobe-Gan [AG17] differs from that of [GI14]. In
this paper, we use the latter one. For a metaplectic group, we consider the set of the genuine
irreducible representations instead of II(G(F')), and the above map is defined by using the local
theta correspondence (see [GS12]). In any case, for ¢ € ®r(G), we denote by

4 (G(F)) = {m € I(G(F)) | o= ~ ¢},

and we call it the L-packet for ¢. Here, “~” denotes the conjugacy equivalence by G. We are
then interested in the internal structure of II4(G(F')). We explain here an expectation based on
a conjecture of Arthur [Art06]. Note that Arthur discussed only tempered L-packets, but we
can extend the discussion to non- tempered ones for at least classical | groups (see [SZ18]) Denote
by C¢(G) the centralizer of Im ¢ in G, by S¢(G) the image of C¢( G) in G/Z( A7), by S¢(G) the
preimage of S¢(G) in the simply connected cover Gsc of G/Z(G), and by S¢(G) the e component
group w0(8¢(G)) If we take a character ¢/, of Z(GOSC) so that its restriction to Z(G° FFe/r s
(g, then we have a bijection

(L1) I, (G(F)) = 1(Sy(G). C&;)
(see [Kall& 84.6]). Here, we denote by I(§¢(@),C’C;) the set of the irreducible constituents of

In dS¢EG)) p for all irreducible representations p of @5(@) with Hor)[lz(é\osc)(g’c7 p) # 0. Note that

the map may not be canonical, and that is an obstacle to formulate the “endoscopic character
relation”. Note that Kaletha discussed how to remove this ambiguity (see [Kall6, §5]). However,
it has no effect on the formulation of the formal degree conjecture (see §1.5). Therefore, in this
paper, for an irreducible representation 7 of G, we define the Langlands parameter (¢,7) of w
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to be a pair consisting of the L-parameter ¢ = ¢, and an irreducible representation 7 associated
with 7 by the map (1.1).
The local Langlands correspondence has been established for

e the general linear group GL, by Harris-Taylor [HT01], by Henniart [Hen00], and by
Scholze [Sch13],

the quasi-split special orthogonal groups SO(2n + 1), SO(2n, x) by Arthur [Art13],

the symplectic group Sp(2n) by Arthur [Art13],

quasi-split unitary groups U(n) by Mok [Mok15],

(non-quasi-split) unitary groups U(W) by Kaletha-Minguez-Shin-White [KMSW14].
For quaternionic unitary groups, the Langlands correspodence has not been established yet in
general. However, thanks to accidental isomorphisms, it is available for inner forms of O(2),

O(4), Sp(4) (see [CholT]).

1.4. Local factors. L-functions have contributed to the development of number theory. The
local L-factor of an irreducible representation of G(F) is a far generalization of the p-factor of the
Eular product of Dirichlet L-function, which is an invariant associated with a Dirichlet character.
By using the Galois side (Langlands parameter side), we can define various local L-factors in a
unified manner: let p be a finite-dimensional representation of the local Langlands group Lp.

Then, p decomposes as
@ Sk ® Symk
k>0

where Sj is a representation of Wy and Sym’C is the unique irreducible representation of SLa(C)
of dimension k£ + 1. Then we define the L-factor of p by

L(s,p) = | ] det(1 — g~ 2 o(Fv)[S})

k>0

where Fr is a Frobenius element in Wr and I C Wy is the inertia subgroup. Now, let G be a
reductive group over a local field F, let 7 be an irreducible representation of G(F), and let r be
a finite-dimensional representation of “G. Then, we define a local L-factor

L(s,m,r):= L(s,7 0 ¢)

where ¢ is the L-parameter associated with .

Then, we define the local e-factor, which appears in the global functional equation of L-
functions as a factor of an Euler product. Fix a non-trivial additive character ¢ of F. Let
7 be an irreducible representation of G(F'), and let ¢ be its L-parameter. Then, for a finite-
dimensional representation r of “G, we define the e-factor by

e(s,m,r 1)) == e(s,7 0 ¢, 1)

where the right-hand side is the e-factor defined in [GR10, §2.2].
Finally, we define the local v-factor v(s,r, 7, ) by

L(1-s,r,m)

’Y(S’ T? 7T7 w) = €(S7T77r) ¢) : L(S r ﬂ—)

where 7V is the contragredient representation of .

An advantage to consider the ~-factor is the “multiplicativity” for some r. More precisely,
if 7 is an irreducible subquotient representation of Indgo’ for some parabolic subgroup P of G
and some irreducible representation o of the Levi subgroup M of P, then the y-factor of 7 is
expected to be described by v-factors of o. (At least when r is the standard representation
std (see §1.4.2) or r is an irreducible representation r; of [Sha90, p. 278] for i = 1,2,...,
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the multiplicativity is expect to be satisfied). Moreover, the global functional equation can be
interpreted as “[[, vu(s, 7, m, 1) = 1" (although the left-hand side does not converge).

1.4.1. Adjoint y-factor. We denote by Z the center of G, by g the Lie algebra of “G, and by g
the Lie algebra of 1(G//Z). Then we define a finite-dimensional representation

Ad: "G — GL(go)

by Ad(9)X = gXg~* for g € G and X € gy. This representation is called the adjoint represen-
tation, and the v-factor v(s, 7, Ad, ) is called the adjoint vy-factor. This v-factor appears in the
formulation of the formal degree conjecture (§1.5).

1.4.2. Standard y-factor. We define a finite dimensional representation std case by case:
e std: GL,(C) x Wg — GL,,(C) : (g,w) — g,

) (w)
o std : GL,(C) x Wp — GL2,(C) : (g, w) — (g (I)ntg_oltb_l) <£l Ig) where @,

is a matrix whose (i, j)-component is written by the Kronecker’s delta (—1)""18;4; 41
for each 1, j,

aXE(w)
e std: GLl((C) X GLl((C) x Wgrp — GLQ((C) : (21,227’11)) — (%1 3) ((1) (1)> s
2

o std: {(g,xw(w),w) | g € Spy,(C),w € Wr} — GL2(C) : (9, xw (w), w) g,
o std : SOgt 11 XxWp — GLo11(C) : (g, w) — g,

o std: SOQt X WF — GLQt((C) . (g,w) — gwfx(“’)
where x g is the character of F* (or Wr) associated with £/ F if it is a quadratic field extension,

and
{o (x(w) = 1),
1 (x(w) = =1)
and w; is an element of O(2¢t) so that det(wy) = —1.
Let G be either

Mp(W) x GLy if E=F and (—e) = —1,
G(W)XRGSE/FGLl if [EF]:2, or
G(W) x GL; otherwise.

Then we denote by std the representation stdXstd of “G. Now we consider the y-factor
(s, m Rw,std, ¢) for G. We call it the standard ~-factor, and we will denote it by (s, 7 Kw, 1))
abbreviating “std”.

1.4.3. Doubling v-factor. The standard y-factor has an analytic definition by using the doubling
method of Piatetski-Shapiro and Rallis [GPSR87, PSR86]. An advantage of the analytic defi-
nition is that one can relate directly the representation theory with the local factors. Actually,
the standard local factors have an application to the non-vanishing problem for the theta cor-
respondence. (See [HKS96], [GS12], [GI14, Proposition 11.2]. See also [Yam14] for a global
application.)

Let W™ be an (—e¢)-Hermitian space W x W equipped with a (—e)-Hermitian form

<($1>y1)7 (372’92»‘] = <$C1,.”L'2> - <y17y2>

for x1,22,y1,92 € W. We denote by W the diagonal subset of W, and by P(W%) the
parabolic subgroup preserving W#. For a character w of X, we denote by I(s,w) the repre-
sentation of G(W") induced by the character ws o A of P(W#), which is given by w,(A(p)) =
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W(N(plwa) YN (plwa)|~* for p € P(W#). (Here, we denote by N(z) the reduced norm of
x € End(W#).) Consider an intertwining operator

M(s,x): I(s,w) — I(—s,0(w) ).

Besides, for an irreducible representation 7 of G(W), we define the doubling zeta integral

2(fu6) = /G o0 E0) do

for fs € I(s,w) and a matrix coefficient of 7. Then, they satisfy the following functional equation:

Z(M(S’w)fsag) = F(S,ﬂ', X)Z(fsag)'

Then, by using appropriate normalization factors c(s,w, A,v) and R(s,w, A,), we have an
analytic definition of the standard ~y-factor:

v(s, T X w, ) = W(—l)c(s,w,A,w)_lF(s, T, w)R(s,w, A, ).

More precisely, there are expected properties of the local y-factor, which characterizes itself,
and we can prove that the function ¥V (s, —, 1) satisfies them. (This is proved by Lapid-Rallis
[LRO5] for non-quaternionic classical groups over local fields of characteristic 0, by Gan [Ganl12]
for metaplectic groups over local fields of characteristic 0, by Yamana [Yam11] and the author
[Kak20b] for quaternionic unitary groups over local fields of characteristic 0, and the author
[Kak20a] for classical groups over function fields.) Note that we can retrieve the local standard
L- and e-factors from the standard ~-factors. Thus, we also have analytic definitions of L- and
e-factors. We also note that the local standard L-factor satisfies the “g.c.d property” which
characterizes itself in terms of the doubling zeta integrals directly [Yam14].

1.5. Formal degree conjecture. Now we state a motivating problem of our study. Let G be
a connected reductive group over a local field F, and let A be the maximal F-split torus of the
center of G. An irreducible representation 7w of G(F) is said to be square integrable if 7 is a
unitary representation and the integral

/ ((x(g) )P dg
G/A

converges for all z,y € m. Here, (, ) is a G(F)-invariant non-zero Hermitian pairing of 7. For
a square integrable irreducible representation m of G(F'), we define the formal degree degm of 7
as the positive real number satisfying
—_— 1

(1.2) / (m(g)z1, 22) - (7(g)y1,y2) dg = ——— (21, 41) (22, y2)

G/A deg
for x1,x9,y1,y2 € w. Here, dg is a canonical Haar measure defined by using the motive of G (see
§6). Note that degm does not depend on the G(F)-invariant non-zero Hermitian pairing but the
group G(F') and the non-trivial additive character ¢. For example, if G is anisotropic, then it is
known that

deg = |G(F)|™ - dim 7.

Hiraga-Ichino-Tkeda [HIIO8] conjectured that the formal degree is described explicitly in terms
of the Langlands parameter, and it was refined by Gross-Reeder [GR10]:
Conjecture 1.1. ([HII08, Conjecture 1.4] and [GR10, Conjecture 6.1]). Let m be a square
integrable irreducible representation of G(F'). Then,
dimn
degﬂ = WiA’Y(O,Ad,TFﬂ/))
#Cy(G)
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where (¢,m) is the Langlands parameter of 7, and
e, Ad, 7, 0)
- e(3,Ad,5,9)

s

€ {£1}.

~ ~

Here we denote by C(’b(G) the finite group Cy(G) N G//;l, and by St the Steinberg representation
of G(F).

Note that the ambiguity in §1.3.3 of the irreducible representation 7 is due to the twisting
by a character of Z (@SC) and does not affect the dimension dim# of 7. Since the Weil group is
close to the Galois group, the adjoint -factor can be regarded as a number theoretic invariant.
Then, Conjecture 1.1 asserts that a number theoretic invariant appears in the analytic equation
(1.2). Note that this type of phenomenon is interesting in the representation theory of reductive
groups over local fields (for examples, an analytic definition of the standard ~-factor for classical
groups (see §1.4.3), and an expression of Plancherel measures in terms of y-factors (see [Sha90])).
The formal degree conjecture has been already proved for inner forms of GL,,, inner forms of
SL,, [HII08], SO2p,41, Mp,,, [ILM17], and unitary groups [BP18]. Moreover, Gan-Ichino [GI14]
observed the behavior of the formal degrees under the Langlands functorial lifting coming from
the local theta correspondences for non-quaternionic dual pairs and proved the formal degree
conjecture for Sp,, GSp, and Us. (We will explain the Gan-Ichino’s work more precisely in
§1.7.) And in this paper, we will prove it for the non-split inner forms of Sp, and GSp, (§20).

1.6. Local theta correspondence. Then, we discuss an approach to the formal degree conjec-
ture since it seems to be difficult to prove it directly. A key tool is the local theta correspondence,
which is a correspondence between irreducible representations of a certain classical group and
those of another classical group. In this subsection, we explain the definition, a property related
to the see-saw diagram, and an expression in terms of Langlands parameters.

1.6.1. Definition. Let V be an m-dimensional right e-Hermitian space over E equipped with an
e-Hermitian form (, ), and let W be an n-dimensional left (—e)-Hermitian space over E equipped
with a (—e)-Hermitian form ( , ). We put

n—m+e (E=F),

lle,W: n—m ([EF]:Q),

2n—2m—e ([F:F]=4).
Then, (G(V), G(W)) forms a reductive dual pair, that is, G(V') and G(W) are reductive groups
over F' such that there is an embedding j : G(V) x G(W) — Sp(W) for some symplectic space W
and they satisfy G(V) = Zg,w)(G(W)) and G(W) = Zgpw)(G(V)). Fix a non-trivial additive
character ¢ of F, and fix a pair k = (xv, xw) of characters as in §1.2. Then, there is a diagram

GV) x GW) —— ~ Sp(W)

e

~ Jrop

G(V) x G(W) —""— Mp(W)
where
GV = Mp(V) E= F,. e=—1, and dim W is odd,
G(V) otherwise
and
GW) = Mp(W) E= F, —e=—1, and dim V is odd,
G(W) otherwise,
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the vertical maps are natural projections, and the upper horizontal map is the natural embedding.
Note that j, , depends on the choice of k, 1. Let wy, be the Weil representation of Mp(W). Then,
for an irreducible representation of G(W), we define

9;@,#)(”’ V)= (}:,www ® 7T\/)é(w)
the co-invariant space of G(W), and we define

0 (Op,p(m, V) =0),
the maximal semisimple quotient of © (7, V) (O (7, V) #0).

957w(7T, V) = {

Then, the Howe duality, a fundamental theorem in the theory of theta correspondence guarantees
that 0, (7, V) is irreducible if it is non-zero. Moreover, it also asserts that if m and my are
different irreducible representations of G(W), and both O, (m1, V) and 0, (72, V') are non-zero,
then 6, y(m1,V) 2 0, (72, V). The Howe duality was proved in [Wal90] in the case where the
residual characteristic is not equal to 2, and was proved in [GT16, GS17] in the remaining cases.
We call 6, (w, V) the theta correspondence of 7 to G(V).

1.6.2. See-saw diagram. Then, we explain an important property which is called the doubling
see-saw. Let W" be the doubled space of W. Then, the natural action of G(W) x G(W) on

W® = W x W induces the inclusion G(W) x G(W) < G(W?) and the natural map G(W) x
G(W) = G(W?). On the other hand, we consider the diagonal map A : G(V) — G(V) x G(V).
Then, for irreducible representations 7y, wy of é(W) and for an irreducible representation o of
G(V), we have

Homé(V) (A* (@mw (7T1, V) ® @Nﬂll (71'2, V))v U)

= Homg (Oxa (o, W), 711 K ma).

(W)xG(W)

Here, we denote by x” a pair (xwo,xv) of characters as in §1.2. Note here that we denote
by wys ,, the Weil representation associated with the reductive dual pair (G(W®),G(V)). This
equation is called the see-saw identity. The setting and the equation are exhibited by the following
diagram: the diagonal lines indicate that we consider the theta correspondence.

G(W®) G(V) x G(V) .
A
G(W) x G(W) G(V)

The doubling see-saw allows us using the doubling method to analyze the theta correspondence
as follows: the image of the G(W")-invariant map

!
WED7,¢} — I(—i,XV) : ¢ — F¢
given by Fj(g) = [wew(9)¢](0) is isomorphic to O, 4(1y, W?). Moreover, there is a G(W) x
G(W)-invariant bijection
0 Wi @ Wi,y — wsn’w

so that (we,y(9)01, #2) = Fs(,0¢,)((g,1)). If 7 is square integrable, the doubling zeta integral
Z(Fs(,04,),§x) converges absolutely, and the map

ﬁ@ﬂ'@tdmw ®m_> C: ($7y3¢17¢2) = Z(F5(¢1®¢2)’§7T)
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factors through the canonical projection
TRT® Wy OWng = 0QT

where 0 = 6, (7, V). Here &, is the coefficient of 7 given by £ (g) = (7(g)z,y). Thus, we obtain
a G(V)-invariant non-zero Hermitian pairing on ¢ from the G(W)-invariant non-zero Hermitian
pairing on 7.

1.6.3. Langlands functoriality. For the non-quaternionic dual pair, there is an expression of the
theta correspondence in terms of Langlands parameters. Suppose [ = 1 for simplicity. Moreover,
we exclude the (O, Mp) pair because the local Langlands correspondence for Mp is defined via
the local theta correspondence (see [GS12]).

Let 7 be an irreducible representation of G(W), let o = 6, ,(m, V) be its theta correspondence,
and let ¢, and ¢, be the L-parameters associated with m and o respectively. Assume that o is
non-zero. Then, by Adams’ conjecture, we can guess that

(1.3) b = (de @ Xy XW) B XW

(see [GI14, §15]). This is proved for unitary cases [GI16]. Now we explain the Prasad conjecture
[Pra93, Pra00], which describes the behavior of the characters of the component group under the
local theta correspondence. Since G(W) is a non-quaternionic classical group, the character 7,
of the component group factors through the projection

84(G(W)) = C4(GW)).
On the other hand, the map 'G(V) — LG(W) of Adams’ conjecture induces an embedding

Then, the Prasad conjecture asserts that 7, is the composition of 7, and above embedding. Note
that the conjecture is proved by Gan-Ichino [GI16] for unitary dual pairs, and by Atobe-Gan
[AG17] for symplectic-even orthogonal dual pairs.

Note that the Prasad conjecture is not formulated yet for the quategiglic dual pairs since the

character 1) does not factor through the projection Sy (G(W)) = Cy(G(W)). Thus, the behavior
of dim 7 under the theta correspondence is more complicated than that for non-quaternionic dual
pairs.

1.7. Gan-Ichino’s result. In this subsection, we explain an approach of Gan-Ichino [GI14] to
the formal degree conjecture. Note that our result of this paper extends their results, and it will
be explained in §1.8.

1.7.1. Observations. Suppose that the residue characteristic is not 2 and [E : F] < 2 (i.e. non-
quaternionic case). Moreover, we exclude the (O, Mp) pair, and suppose that [ = 1 so that we can
refer to the result of §1.6.3. Let 7 be a square integrable irreducible representation of G(W), and
let o be an irreducible representation of G(V') associated with 7 via the theta correspondence.
By the equation (1.3), we have

2N
#Co. (GV)) |4 (E=F e=-1)

(see [GI14, p.581]), and

’}/(S,Ad,ﬂ' X XVaw) V(

(s Ad o X, g) ) B xws ).
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Moreover, since both 7, and 7, are one dimensional, we have
dim 7,
dimn,
Thus, they guessed the ratio deg(7)/ deg(o), and prove that
Theorem 1.2. ([GI14, Theorem 15.1)) We have

degm

(1.4) BT CW) 200 % v )
where
2_1 ' XW()\)_me(%7XEa¢)_1’Y(O7XE'aw)_l ([E : F] = 2)7
C(Va W) = 6(%7XV7¢)71 (E = F7€ = 1)7
272 ' XW(_l)m/2 : 6(%7XW;¢)71 (E = F,E = _1)3

and A € E* is a fived element so that \* = —\.
1.7.2. Outline of the proof. We sketch the proof of Theorem 1.2 to explain what are the obstacles

in the case of quaternionic dual pairs. First, they consider a local analogue of the Siegel-Weil
formula as follows: we define the map

I:wy @uwy®@Xw @ xw — C
by

Z(01,02) = | o (EE 01 62) Xy AT
G(V

for ¢1, ¢ € wi. Besides, we define the map

£ wy ®@Wy ©Xw @ xw — C
by

E@noa) = [ Falo1)-Fla 1) dg

G(W)
for ¢1, o € wi. Here F(ZQ is a certain section of I(%, Xv) so that M(%, XV)F;2 = Fy,. Then, we
can prove that there is a constant Csw such that
Z=Csw-&
(see [GI14, §17]). Second, by a local analogue of the proof of the Rallis inner product formula,
we can prove that there is a constant C’ such that
degm

— . /., _
dego’ = CSW C wo’( 1)’7(070 X XW7¢)

for all square integrable irreducible representations m with o = 6, (7, V') # 0. Thus, we conclude

that
deg

oo wr (1) 10,0 . 4) 7!

is a constant independent of the square integrable irreducible representation 7 so that 0, (7, V') #
0. Third, they discuss an induction argument. Suppose that V' has an r-dimensional isotropic
subspace X, and suppose also that W has an r-dimensional isotropic subspace Y. Then, we have
the decompositions
V=X+V'+X,andW=Y+W +Y’

where X', Y’ are r-dimensional isotropic subspaces, and V/ and W' are non-degenerate subspaces
such that X + X’ is orthogonal to V' and Y + Y” is orthogonal to W’. Consider a parabolic
subgroup @ of G(V) which preserves X, and consider irreducible supercuspidal representations
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o’ of G(V’) and 7 of GL(X) so that Indg(v) o' W 7| det |* has a square integrable constituent
o' for some sy > 0. Then, by using the result of Heiermann [Hei04], we can relate dego with
dego’. Then, we can conclude that C(V,W) = C(V/,W’). Finally, they proved Theorem 1.2
for minimal cases of the induction argument: this step was done case by case ([GI14, §20.8]).
We should remark that their proof makes full use of the properties of L-packets and local theta
correspondence.

1.8. Summary of this paper. Now we summarize our results. In this paper, we describe the
behavior of the formal degree under the local theta correspondence of almost equal rank for
quaternionic dual pairs over a local field of characteristic 0. As an application, we prove the
formal degree conjecture of [HII08, GR10] for the non-split inner forms of Sp, and GSp,. These
results extend Gan-Ichino’s work [GI14] to quaternionic dual pairs. However, there are some
differences as follows.

e The dimension dimn of an irreducible representation n of the component group may
not be 1. Moreover, the behavior of dim 7 under the theta correspondence has not been
formulated.

e Case-by-case discussions of [GI14] cannot be applicable to our cases (see §1.7). More
precisely, it seems to be difficult to find enough examples of quaternionic dual pairs
(H,G) and square integrable irreducible representations m of G such that we can know
the formal degree deg 7 of 7, the formal degree deg o of the theta correspondence o of ,
and the standard local v-factor v(s, o K x,v) with a quadratic character x at the same
time even in low-rank cases.

To avoid the second difficulty, we analyze the local analogue of the Siegel-Weil formula, and we
obtain a relation between the constant in the local Siegel-Weil formula and the local zeta value
for enough cases. Here, the constant in the local Siegel-Weil formula appears in an expression
of the ratio of the formal degrees of irreducible representations corresponding to each other by
the local theta correspondence. Hence, to establish the description of the behavior of the formal
degrees under local theta correspondence, we compute some local zeta values. On the other
hand, a general formula of the local zeta value is obtained by reversing the above discussion.
For a quaternionic dual pair (G(V'), G(W)) of almost equal rank, we denote by a; (W) the local
zeta value, by as(V, W) the constant in the local Siegel-Weil formula (it was denoted by Cgw in
§1.7), and by as(V, W) the constant appearing in the behavior of the formal degree under the
theta correspondence. Then the results in this paper are summarized as follows:

1.8.1. The constant a1 (W). Let € = 1, let W be an n-dimensional right (—e)-Hermitian space
equipped with the (—e)-Hermitian form ( , ) (see §3), and let G(W) be the unitary group of
W. We denote by WY the doubled space which is the vector space W & W equipped with
an (—e)-Hermitian form ( , ) = (,) @ (=(, )), by W the diagonal subset of W, and
by P(W?#) the parabolic subgroup preserving W#. For a character w of F*, we denote by
I(s,w) the representation of G(W") induced by the character ws o A of P(W#), which is given
by ws(A(p)) = w(N(plwa) Y N(plwa)|~%. (Here, we denote by N(z) the reduced norm of
r € End(W#).) Then we define
ar(W) =2"(f;.€°).

Here

e ZW(, ) is the doubling zeta integral (see §7.1),

e f2is the K(¢/”)-invariant section of I(s,1) so that f°(1) = 1 where K (¢'") is a special

maximal compact subgroup of the unitary group G(W") of W=, which depends on the

choice of a basis e for W (see §7.1),
o £° is the coefficient of the trivial representation of G(W) so that £°(1) =1, and



14 HIROTAKA KAKUHAMA
e p=n-—s.

This invariant is technically important because it appears in a certain local functional equation,
which relates the zeta integral with the intertwining operator (see Lemma 7.8). In this paper, we
first compute a1 (W) directly for some W (Proposition 7.6), and finally we complete the formula
for the remaining cases as a corollary of Theorem 1.4 (Proposition 19.4). We also note here
that by determining «; (W), we can compute the constant by which the scalar multiplication
appearing in a formula of the zeta integral for a certain section (see §21) is given, which has not
been computed yet.

1.8.2. The constant as(V,W). Let V be an m-dimensional e-Hermitian space, let (, ) be an
e-Hermitian form on V, let w, be the Weil representation of G(V) x G(W?). Tt is realized on

the Schwartz space S(V @ WV) where WV is the anti-diagonal subset of W=. We suppose that
2n — 2m = 1 + €. Then we define the local theta integral

16.6) = [ 0.0

for ¢, ¢’ € S(V@WV). Here, we denote by ( , ) the normalized L*-inner product on S(V@WV)
(as in Proposition 8.3). Moreover, we define another map &€ : S(V ® WV)2 — C as follows: for

¢ € S(VeWV), we define Fy € I(—%,xv) by Fy(g) = [wy (9)8](0), and we choose F; €It xv)
so that M (3, xv)F' = F,; where M (s, xyv) is an intertwining operator (see §7.1). Then the map
£ is defined by
£6.6) = [ Filulo,0)Folils. D) dy
G(W)

for ¢,¢' € S(V @ WV). Here, . : G(W)? — G(W") is given by the natural action of G(W)? on
W, Then the constant as(V, W) is defined as a non-zero constant Csw so that Z = Csw - €
(see Lemma 10.2). Then we have

Theorem 1.3. Choose the basis e for V as in §7.1. Then,

ax(V,W) = |[N(R)|” - 1:[ CF(FI(;Z)QZ)
’ {2(_1)%(1 —nows ) el v ¥) (—e=1),
: (—e=-1).

Here, R = ((e;,€;))i,; € GLy(D).

To prove this theorem, we will first prove it in the case where either V' or W is non-zero
anisotropic (§§12-13). Note that in this case we can express as(V, W) using aq (W), and thus
Theorem 1.3 follows from the formula of a3 (W). For the remaining cases, it will be proved as a
corollary of Theorem 1.4 (§19).

1.8.3. The constant az(V,W). Let 7 be a square integrable irreducible representation of G(W).
We choose canonical Haar measures dh and dg on G(V') and G(W) respectively (see §6.1). Then,
as we explained in §1.7 (more precisely, as in [GI14, p.597]), we can prove that there is a constant
as(V, W) such that

degm

dogo ~ (v W)wx(=1)7" (0,0 x xw, )

for all square integrable irreducible representation 7 of G(W) and the irreducible square inte-
grable representation o of G(V') associated with 7 by the local theta correspondence whenever
o # 0. Then, our main theorem is stated as follows:
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Theorem 1.4. We have

as(V, W) = {(‘1)"Xv(—1)6(§,><v,w) (—e=1),

sxw (=1)e(5, xw, ) (—e=—1).

When either V' or W is anisotropic, we prove this theorem by expressing az(V, W) using
ao(V,W) as in §1.7 (more precisely, see Proposition 15.1). In general, we use an induction on
dim W to compute a3(V,W) (§18). Note that since the relation of Proposition 15.1 between
a(V,W) and a3(V, W) still holds in general, we have the general formula of ay(V, W).

As an application of Theorem 1.4, we prove the formal degree conjecture for the non-split
inner forms of GSp, and Sp,. Note that, for these groups, the Langlands correspondence is
established by Gan-Tantono [GT14] and Choiy [Chol7] respectively.

Theorem 1.5. Let F' be a local field of characteristic 0. Then the formal degree conjecture holds
for the non-split inner forms of Sp,(F) and GSp,(F).

1.8.4. Structure of this paper. Now, we explain the structure of this paper. In §§2-3, we set up
the notations for fields, quaternion algebras, and +e-Hermitian spaces. In §4, we define some
symbols which are referred to when we take bases for +e-Hermitian spaces. In §5, we discuss
the Bruhat-Tits theory for quaternionic unitary groups, and we give a formula of the index of
an Iwahori subgroup in a certain special compact subgroup (Proposition 5.6). In §6, we explain
the normalization of Haar measures on reductive groups and certain nilpotent groups, and we
give some volume formulas. In §7, we explain the doubling method, and we recall the definition
of the doubling 7-factor. Moreover, we compute the constant aq (W) for some cases. In §8, we
set up and explain the doubling method and the Weil representations. In §9, we set up the
theta correspondence. In §§10-11, 19-20, we state our main results. In §§12-18, we prove these
results. More precisely, §§12-13 are devoted to the computation of as(V, W) when either V or W
is anisotropic, §14 is a preliminary for §15 which associates as(V, W) with as(V, W), and §§16-17
are preliminaries for §18 in which we verify the commutativity of ag(V, W) with the parabolic
inductions. Finally, in the Appendix §21, we give a formula of doubling zeta integrals of certain
sections as an application of the formula of oy (W). Note that this corrects the errors in [Kak20b,
Proposition 8.3].

Acknowledgements. The author would like to thank A.Ichino for suggesting this problem, and
for useful discussions. He also would like to thank W.T.Gan for many useful comments. This
research was supported by JSPS KAKENHI Grant Number JP20J11509.

2. QUATERNION ALGEBRAS OVER LOCAL FIELDS

Let F' be a non-Archimedean local field of characteristic 0, let D be a quaternion algebra over
F'. For a while, we assume that D is division. We denote by

ordp : F* — Z the normalized additive valuation,
| |F the normalized absolute value,

Op the valuation ring of F,

wr a uniformizer of F,

q the cardinality of O /wF,

x : D — D the canonical involution of D,

Np : D — F the reduced norm,

Tp : D — F the reduced trace,

ordp = ordp oNp the normalized additive valuation of D,
| |Ip = |F o Np the absolute value,

Op the valuation ring of D,
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e « and wp two elements of D satisfying Tp(a) = Tp(wp) =0, ordp a = 0, ordp wp = 1,
and awp + wpa = 0,

e L the subfield F(«) C D, and

e Op the valuation ring of L.

Moreover, we denote the set

{reD|z+2"=0}
by Dy, and (aOp)o = aOpNDy for a € D. Then, one can show that [(Op)o : (wpOp)o] = ¢. Fix
an additive non-trivial character ¢ : I’ — C* whose order is 0. We note some basic properties:
Lemma 2.1. (1) We denote by OF, the dual lattice of Op with respect to the pairing
(2.1) Dx D —C*:(z,y) = Y(Tp(zy)).

Then, we have O% = wp'Op.
(2) We denote by (Op)§ the dual lattice of (Op)o with respect to the pairing

(2.2) Do x Do — C* : (x,y) = (Tp(zy)).
Then, we have (Op)§ = %a(’)p —|—w51(’)L.
In particular,

Corollary 2.2. (1) The volume |Op| of Op with the self-dual Haar measure with respect to

the pairing (2.1) is ¢~ L.

(2) The volume |(Op)o| of (Op)o with the self-dual Haar measure with respect to the pairing
(2.2) is |2|2¢ L.

3. e-HERMITIAN SPACES AND THEIR UNITARY GROUPS

Let € € {£1}. Now, we consider the following:
e apair (W, (, )) where W is a left free D-module of rank n, and (, ) isamap WxW — D
satisfying
<a1'7 by> = a(ac,y)b*, <y71'> = *€<$,y>
for z,y € W and a,b € D,
e apair (V,(, )) where V is a right free D-module of rank m, and (, )isamap VxV — D
satisfying
(via,v2b) = a*(2,y)b, (y,z) = €(z,y)"
for z,y € V and a,b € D.

We call them an n-dimensional right e-Hermitian space and an m-dimensional left (—e)-Hermitian
space respectively if they are non-degenerate. We denote by G(W) by the group of the left D-
linear automorphisms g of W such that

(-9,y-9) = (z,y)

for all z,y € W. We also denote by G(V') by the group of the right D-linear automorphisms ¢
of V as a right D-module such that

(9 2,9 y) = (2,y)
forall z,y € V.
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Remark 3.1. When —e = 1, the unitary group G(W) is an inner form of a symplectic group
as an algebraic group. On the other hand, when —e = —1, one can regard the group of F-valued
points of G(W) in two ways: it is a group of the F-valued points of an inner form of a special
orthogonal group, and it is also a group of the F-valued points of an inner form of an orthogonal
group. This is caused by the fact that the Zariski connected component of G(W') which does not
contain 1 has no F-valued point.

Put W=V ®p W and define ((, )) by

((r1 @y, 22 @y2)) = T((x1,y1) (22, 92)")

for z1,y1 € V and xo,yo € W. Then, {{, )) is a symplectic form on W, and the (G(W), G(V))
is a reductive dual pair in Sp(W). We define

11 J2n-2m—-1 (e=1),
T T 2n—2m 41 (e=—1).
We define the characters xy and xw of F* by

_ )1 (e=1), @, d(V))r (e=-1),
xv(a) = {(a,D(V))F (e = —1) and xw(a) = { .

4. BASES FOR W AND V

In this section, we discuss bases for W, which we will consider in this paper. The discussion
for V goes the same line with that of W. For a basis e = {ey,...,e,} for W, we define

R(e) == ((€i,€5))ij € GLn(D).

Denote by Wy the anisotropic kernel of W, and put ng = dimp Wy, r = %(n —ng). We assume
that

r+no
WO = Z eiD,
i=r+1
both
T n
X = ZeiD and Z e; X*
=1 i=r+no+1
are isotropic subspaces of W, and
0 0 J,
(4.1) R(e) = 0 Ry O
-/, 0 O
where
1
Jr = ;
1

and Rg € GL,, (D). By this basis, we regard G(W) as a subgroup of GL,, (D).

5. BRUHAT-TITS THEORY

The main purposes of this section are to explain the explicit description of a certain Iwahori
subgroup B of G(W) (§5.3), and to give a formula of the index [Kw : B] where Ky is a certain
special maximal compact subgroup of G(W) (§5.4). Note that in §6, the normalization of Haar
measures will be given by the volume of the Iwahori subgroup.
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5.1. Apartments. Take a basis e as in §4. Put I = {e1,...,e.}, Ip = {€r41,...,€n_r}, and
I* ={en—ri1,-..,€n}. We denote by S the maximal F-split torus

{diag(z1, ...,z 1,..., Lzt ey |21, .., 2, € FX}
of G(W). We denote by Zgw)(S) the centralizer of S in G(W), by Ngw)(S) the normalizer of
Sin G(W), by W = New)(S)/Zaw)(S) the relative Weyl group with respect to S, by @ the
relative root system of G(W) with respect to S, by X*(S) the group of algebraic characters of
S, by EV the vector space X*(S) ®z R, and by F the R dual space of EY. Moreover, we define
the bilinear map ( , ) : Ex BV — R by {y,n) = n(y) for y € EY and n € E. Then, we can define
the map p: Zgw)(S) — E by

[1(2))(a") = —ordp(d’(2))

for a’ € X*(S). Then, there is a unique morphism v : Nguw)(S) — Aff(E) so that the following
diagram is commutative:

1 —— Zgw)(S) — New) () w L.
ul ’
v
0 E Aff(F) —— Aut(F) ——1

For a € ®, we denote by X, the root subgroup in G(W). Let u € X, \ {1}. Then one can prove
that X_o-u-X_o NNy (S) consists of an unique element. We denote it by m,(u). We define
amap o, : Xq \ {1} = R by

\

ma(u)(n) =n— ({a,n) + a(u))a
for all n € E. We put ®,¢ the affine root system
{(a,t) |a € @, t = pg(u) for some u € X, \ {1}} C & xR,

and by Eq,, the subset {n € E | [m.(uw)](n) = n} where u € X, so that ¢,(u) = t. We call a
connected component of

E\ U Ea,t

(a,t)EDasr
a chamber of E. For i € [ U I*, we define a; € X*(S) C EV by a;(x) = Np(z;) for
x = diag(zy,. ..,z 1,...,L,a b . a7t) €S

Note that a,_; = —a; for i € I (the multiplication of E is denoted by “+7).
Now we describe ¢, explicitly following [BT72, §10]. The root system of G(W) with respect
to S is divided into

P=0f U U UD, UPT UD; U UD,
where
OF ={a;—a;|1<j<i<r}
oF ={a;|i=1,...,7},
of ={aita;|1<j<i<r),
Of ={2a; |i=1,...,r},
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and &, = —®; for k=1,2,3,4. Let a = a; —a; € 7 UP;. For z € D, we define u,(z) € X,
by
e (k #i,n—1),
ek Uq(r) =S e; + - ¢ (k =1),
6n_i+f£* ~en_j (]C:’flfl)
Let a = a; € ®5. For ¢ = (c1,...,¢p,) € Wy = D™ and d € D with (d* — ed) + (c,c) = 0, we
define uq(c,d) € X, by

ek (k#£i,r+1,....r+ng),
ek - ualc,d) = S e+ Y10 crerqy +den—;  (k=1),
ek + Qp—rCf_ En_; (k=r+1,...,7r+ng).

Let a = —a; € 5. For ¢ = (¢1,...,¢pny) € Wy = D™ and d € D with (d — ed*) + (¢,c) = 0, we
define u,(c,d) € X, by
e k#r+1,...,7r+ng,n—1),

(
e - Uq(c,d) = < e, — ap_rCh_ € (k=r+1,...,7r+ng),
(

dei + 32020 cerie +en—i (k=n—1i).
Let a = (a; + a;) € 3. For # € D, we define u,(r) € X, by
Ck (k #1,7),
epug(z) =R e;+x-e,y (k=1i),

ej +exten—; (k=j).

Let a € ®5. For x € D, we define uy(z) == u_q(2)* € X,. Finally, let a = +2a; € ®F. For
d € D with d* — ed = 0, we define u,(d) := ui,,(0,d) € Xo,.

Lemma 5.1. For a € ®, we have
e ©u(uq(r)) =ordp(z) forz € D ifa € &7 UPT UDT U D5,
e va(uq(c,d)) = Sordp(d) for c € D™ and d € D with (d* — ed) £ (c,c) =0 ifa € of,
e ©4(uq(d)) = ordp(d) for d € D with d* —ed =0 if a € ®f U D} .

5.2. Lattice functions. To know the action of G(W) on its building, it is useful to consider
lattice functions. Let Y be a left vector space over D. A lattice of Y is a free Op-submodule )
of Y so that D-Y =Y. For a lattice £ of W, we denote by £V the dual lattice of £ defined by

LY ={zeW|(z,y) € wpOp for all y € L}.

Definition 5.2. A mapping A from a real number s to a lattice A(s) of W is called a lattice
function if

(1) A(s) D A(t) when s <t,

(2) A(s+1) = mpA(s),

(3) A(s) = NecsA(t).

Let A be a lattice function. For s € R, we denote by A(s)" the lattice U;<sA(t). We define
dual lattice function AV by
AY(s) = (A(=5)")",

and we say that A is self-dual if A = AY. For p € E, we define the self-dual lattice function A,

by
Ap(s) _ <@ wg-‘rai(Pﬂ Op - ei) ® Xo(s) ® (@ wg+ai(P)] Op - €i>

i€l iel*
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where Xy(s) be the lattice of Wy defined by

Xo(s) ={x e Wy | %(m,x) € wgﬂ(’)p}.
Then, Stabgw)(p) = Stabgwy Ap-

5.3. Iwahori subgroups. Before stating the definition of the Iwahori subgroup, we explain a
map of Kottwitz. Let F" be the maximal unramified extension of F', let F'* be the separable
closure of F, let I = Gal(F*/F"") be the inertia group of F, and let Fr be a Frobenius element.
Then, Kottwitz defined a surjective map

kw : G(W) — Hom(Z(G(W))!,C*)Fr

(see [Kot97, §7.4]). Here, we denote by CT(-VV) the Langlands dual group of G(W), by Z(CT(-VV))I
the I-invariant subgroup of the center of G(W), and by Hom(Z(G(W))f, C*)¥ the Fr-invariant

subgroup of Hom(Z(Cv'/(I/I7))I,(CX). Then, an Iwahori subgroup of G(W) is defined to be a
subgroup consisting of the elements g of G(W') which preserves each point of a chamber of the
building and sy (g) = 1. Now we describe an Iwahori subgroup of G(W). Let C be a chamber
in E so that

e for any root a € ®(S,G(W)) with X, C B, (a,C) C R0,
e the closure C of C contains the origin 0 € E.

Then, the Iwahori subgroup associated with the chamber C is given by
B:={g€GW)|kw(g)=1and g-p=p forall peC}.
By the construction of the map Ky, the following diagram is commutative:

HZG(W)(S) —

Zaw)(8) ————Hom(Z(Zgw)(5))",C*)™

l

—

G(W) w Hom(Z(G(W))!,C*)Fr

where the vertical maps are (induced from) the natural embeddings. Hence, we have:

Lemma 5.3.

B=Zoow) (1 [ Xao- [ Xa

a€edt aEdP—
where Zgwy(S)1 is the set of matrices
a O 0
0 go O (a = diag(ay,...,a,),g0 € G(Wy))
0 0 a

such that a; € OF, fori=1,...,r, and kw,(go) = 1. Here, we denote by X, the subset
{u e Xa|palu) >t}

of X4 fort e R.
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5.4. Special maximal compact subgroups. We denote by Ky, the special maximal compact
subgroup of G(W) fixing the origin 0 € E. Then, B C Ky . In this subsection, we compute
the index [Kyw : B]. To do this, we first note that the “BNB decomposition” of Buruhat-Tits
[BT72], which was completely proved by Haines-Rapoport [PR08, Appendix].

Proposition 5.4. We have the decomposition G(W) = B - Ngw(S) - B.
Hence we have:

Corollary 5.5.
Kw N (ker k) = |_| BwB
wew’
where W' = (Ng(W)(S) N Kw Nker Hw)/Z(;(W)(S)l.

Now we obtain the formula of the index. Note that this formula is not necessary for the proof
of the main theorem. However, it is useful to note it here since that enables us to deduce the
formula of ay (W) by more direct computation in some cases (see Proposition 7.6).

Proposition 5.6. We have

[Kw : B] = H(l 4 2o+ =1) W

i=1
» {1 ng = 0,1, and xw is unramified,

2  otherwise .

In the rest of this section, we will prove the proposition. At first, denoting by &, the r-th
permutation group, we have a natural isomorphism

W =&, x (2/22)"
by the actions s - a; = ay;) for i € I,s € &, and u-a; = (—1)"a; fori € [,u = (uy,...,u,) €
(Z/27)". Then, we have:

Lemma 5.7. Let w € W and suppose that w corresponds to (wg,u) € &, x (Z/2Z)". Then
there is an element s, of &, independent of wy, such that

[B’LUB . B] — q2'l(w05u) . H q2(n0+r7i)+1
i:u,;:l
where l(wosy) is the length of wos, in the relative Weyl group of GL,.(D) with respect to the
positive system {a; —aji1 | j=1,...,r =1}, and u = (us,...,u,) € (Z/2Z)".

Proof. Let X be an isotropic subspace of W spanned by e, ..., e,, let P be a maximal parabolic
subgroup of G(W) preserving X. We identify GL(X) with GL,.(D) by the basis ey, ..., e,. Then
we denote by M the Levi subgroup GL,(D) x G(Wj) of P, and by U the unipotent radical of
P. If we put s; € &, by

j (47 <),
si(j)=q7+1 (i<j<n),
i G=r)
and if we put
Sy = SpT 852 - 81T € 6y,

then we have (BN M)(Sil’“) = BN M. Hence, we have
[BwB : B] = [B: BNwBw™?]
=[BNM:(BNM)n(BnM)“ | [BNU: (BNU)N(BNU)".
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Here,
[BAM : (BNM)n (BN M)woss] = A wosw)
and
[BNU: (BNU)N(BNU)* H Frotr=i+1
=1
Thus we have the lemma. O

Now we prove Proposition 5.6. By the above lemmas, we have

[Kw N (ker k) : B] = Z [BwB : B]
wew’

( 3 q2~z<wo>>. S P

woES,. w€(Z/2Z)" i:u;=1

The summation

Z q2-l(wo)

woES,.
is equal to [GL,(F,2) : B(F,2)] where B is the Borel subgroup of GL,. It is known that

r—1

2 .
|GLT(Fq2)‘ = H((I?T - q2rz)’ and |B(Fq2)| = (q2 — 1)T . qr(r_l).
i=0

Moreover, we have

T

Z H q 2(no+r—i)+1 __ H(1+q2(n0+j)*1)_

u€(Z/22)" t:ui=1 j=1

Finally, consider the lattice model (§5.2). In the case ky is not trivial, Ky, is also non-trivial.
Thus, kw|k, is non-trivial if xky is non-trivial since G(Wy) preserves the lattice function Ag
where 0 € E is the origin. Hence, we have

1 ng=0,1, and xw is unramified,

Kw : Kw N (ke =
[Kw w 0 (ker k)] {2 otherwise.

Hence we have Proposition 5.6.

6. HAAR MEASURES

In this section, we explain how we choose a Haar measure in this paper for reductive groups
and unipotent groups. Let ¢ : F' — C* be a non-trivial additive character of F'. For a reductive
group, Gan-Gross constructed a Haar measure dg depending only on the group G and the non-
trivial additive character ¢ [GG99, §8]. (In [GGY99], it is denoted by pg.) On the other hand, for
a unipotent group, it is useful to consider the “self-dual measures” du with respect to . Note
that, in both cases, we denote by |X| the volume of X for a measurable set X.
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6.1. Measures on reductive groups. Let G be a connected reductive group, and let G’ be
the quasi-split inner form of G. Moreover, let S’ be a maximal F-split torus of G’, let T” be
the centralizer of S” in G’ (it becomes a torus over F*), and let W(T", G’) be the Weyl group of
G’ with respect to T'. Put E' := X*(T") ® Q. Then the space E’ can be regarded as a graded
Q[I'}-module

E = @d21Eé

as follows: consider a W(T”, G’)-invariant subalgebra R = Sym®(E/)V(T"G") of symmetric alge-
bra Sym®(E’). We denote by R, the ideal consisting of the elements of positive degrees. Then,
there is a Q[I']-isomorphism E’ = R, /R?%. Then, the grading of E’ is the one deduced from the
natural grading of R, /R2.

Let ¥ : G’ — G be an inner isomorphism defined over F"*, and let wg be the element of the
Weyl group of G’ given by wg = ¥~! o Fr(¥). We denote by 9 the motive

Daz1E5(d - 1)
of G (see [Gro97]), and by a(9) the Artin invariant
> (2d—1)-a(Ey)
d>1

of M (see [GGI9]). Then, the normalized Haar measure dg is given by the volume of the Iwahori
subgroup B of G over F:

IB] = ¢~ 39 . det(1 — Frowg; E'(1)7).

Here, we put

N=> (d—1)dimg E}'.
d>1

Now, consider the case G = G(W) where W is an n-dimensional (—¢)-Hermitian space over
D. Then, E’, a(M), and N are given by the following;:

Lemma 6.1. (1) In the case —e = 1, we have
E' =2QX*+QX*+. .- +QX?" Cc Q[X]
as graded Q[I']-modules. Here, the grading and the action of I' on Q[X] are given by
deg X* =k (k=0,1,...), and T acts on Q[X] trivially .
Moreover, we have
N =n? and a(IM) = 0.
(2) In the case —e = —1, we have
E'2QX*+QX*+. .- +QX?" 2 4+ QY C Q[X,Y]
as graded Q[T'|-modules. Here, the grading and the action of T' on Q[X,Y] are given by
deg X¥ =k, degY' =nl (k,1=0,1,...), and
o F(X,Y) = F(X,mw(0)Y) for f(X,Y) € QIX,Y],0 € T.
Moreover, we have
B {n2 -n Xw 18 unramified,
n?—2n+1 xw is ramified,

and

a(9M) = {O Xw is unramified,

2n—1 xw is ramified.
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Then, the normalization of the Haar measure dg is given by the following;:
Proposition 6.2. (1) Suppose that —e = 1. Then, we have
Bl=(1-q¢gHtsl. 1 +¢HEl.¢°

where B is an Twahori subgroup of G(W).
(2) Suppose that —e = —1. Then, we have

(1—g )% g no =0,
(1 o q72)"T*1 q7n2+n7% ng = 17XW : Tamiﬁed,
B| = 1-¢ 2% (Q+qgh) gt no = L, xw : unramified,
(1—q 2 -(1+q 1) gt no = 2,Xw : ramified,
n—2 2
1-¢ )" (1+q2) ¢ ng = 2, xw : unramified,
(L=a )% (g +q2+q7%) ¢ np=3.

If G(W) is anisotropic, then B = ker ky (see §5.3). Hence, its total volume is given by the
following corollary:

Corollary 6.3. (1) Suppose that —e =1 and n = 1. Then we have |G(W)| = ¢ (1 +¢71).
(2) Suppose that —e = —1. Then we have

1+44¢7t n=1, xw: unramified,
Zq’% n=1, xw : ramified,

IGW)| =< 2¢72-(1+q72) n=2 1%#xw: unramified,
2% - (14+¢°Y) n =2, xyw: ramified,

2¢7%- (14+¢1)1+q¢?) n=3 xw=1
Proof. We have
[GW) : B] = #(X"(2(E)")™)
B {1 n =1, yw : unramified,
2 otherwise

where I is the inertia group of F, and Fr is a Frobenius element of F. Hence we have the
claim. 0

6.2. Measures on unipotent groups. Take a basis e and regard G(W) as a subgroup of
GL,(D) as in §4. Let
f:0=XoCX;C--- CXp1 C X=X
be a flag consisting of isotropic subspaces. We put r; = dimp X;/X;_4 fori =1,..., k. Moreover,
we put
uy = {z € Mo (D) | 2" — ez = 0}
for a positive integer /. We denote by P the parabolic subgroup of all p € G(W) satisfying
X;-pC X, fori=0,...,k, and by U(P) the unipotent radical of P. Moreover, we denote by
U;(P) the subgroup
{ueUP)| X -(u—1) C X;}

fori=1,...,k. Then, for i =1,... k, we have the exact sequence

(6.1) 1= U a(P) = U(P) = J[ Myry, ,(D)—=0
J=(i+2)/2
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if 7 is even, and the exact sequence

(6.2) 1= Uiy (P) > Ui(P) =ty o X || Mrprsyr, (D) =0
j=(i+3)/2

if 7 is odd. Here, the first maps are the inclusions and the second maps are given by

1
0 1
zZ1 0 1
u = " 7 '_>(Zﬁ/ﬂJr[i/gw'"’ZiJTi)'
0 1
* .- * z; 01

for u € U;(P). We define a measure dz on u,s to be the self-dual Haar measure with respect to
a pairing
U, XU, = C: (2,2) = (T(z- %)),

and we define a measure dz on M, (D) to be the self-dual Haar measure with respect to a
pairing

MT’,T‘”(D) X MT’,T‘”(D) — CX : (CE,Z'/) — T/J(T(,CE . tx/*)).
Then, the Haar measure du on U;(P) is defined inductively by the exact sequences (6.1) and
(6.2) fori=1,...,k.

7. DOUBLING METHOD AND LOCAL y-FACTORS

In this section, we explain the doubling method, and we recall the analytic definition of the
local standard ~-factor (§7.2). Note that the doubling method also appears in the formulation of
the local Siegel-Weil formula (§10 below) and the local Rallis inner product formula (§15 below).
Let W be a (—e)-Hermitian space. In this section, we also define the local zeta value «y (W),
which depends on W and its basis e. In §7.3, we compute a1 (W) for a (—¢)-Hermitian space and
for a basis e for W under some assumptions. As explained in the introduction, this computation
of the constant a; (W) will play an important role in the computation of the constant in the
local Siegel-Weil formula (§10).

7.1. Doubling method. Let (W (, )7) be the pair where W™ = W & W and ( , )7 is the
map W= x W2 — D defined by

((z1,22), (y1,92))" = (z1,91) — (w2, 92)
for x1,22,91,y2 € W. Let G(W") be the isometric group of W". Then, the natural action
GW)xGW) W e W : (x1,22) - (91,92) = (1 - g1, %2 - g2)
induces an embedding ¢ : G(W)xG(W) — G(W"). Consider maximal totally isotropic subspaces
W ={(z,z) e W" | z € W}, and
WY = {(z,—z) e W |z € W}

Note that there is a polar decomposition W= = W4 @ WV. We denote by P(W#) the max-
imal parabolic subgroup of G(W") which preserves W#. Then, a Levi subgroup of P(W#) is
isomorphic to GL(W?). We denote by A the character of P(W%) given by

A(z) = Nya(z)~h
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Here Ny a(z) is the reduced norm of the image of z in Endp(W#). Let w : FX — C* be a

character. For s € C, put ws = w-| — |®. Let e be a basis for W. Then we define a basis
,ad

e =(e},...,eh,) for WP by
n
e; = (ei)ei)7 e»/n,+i = Zajk:<ei; _ei)
k=1

for i =1,...,n, where (a;i);r = R(e)~'. Note that

0 2.1,
(<e/iv€;'>)i7j = (—26'In 0 > :

We choose a maximal compact subgroup K (e’ D) of G(W") which preserves the lattice

2n
Owe =Y _ Ope}
i=1
of WP, Then, we have P(W2)K (/") = G(WP). Denote by I(s,w) the degenerate principal

series representation

Indipiy . (ws 0 A)

consisting of the smooth right K (¢/”)-finite functions f : G(W?) — C satisfying

F(p9) = 83y ey () - we(AD)) - £(9)

for p € P(W#) and g € G(WP), where dp(ya) is the modular function of P(W#). We may
extend |A| to a right K(¢'")-invariant function on G(WF®) uniquely. For f € I(0,w), put
fs = f-|AJ]® € I(s,w). Then, we define an intertwining operator M(s,w) : I(s,w) — I(—s,w™?)
by
M) Llo) = [ Lrugdu
UWwa)

where 7 is the Weyl element of G(W") given by

T(ej) = e i=1,...,n,
) = —ee} i=n+1,...,2n.

i—n

This integral converges absolutely for Rs > 0 and admits a meromorphic continuation to C. Let
7 be a representation of G(W) of finite length. For a matrix coefficient £ of 7, and for f € I(0,w),
we define the doubling zeta integral by

2Y (fu,6) = / f(t(g, 1))€(g) dg.
aw)

Then the zeta integral satisfies the following properties, which is stated in [Yam14, Theorem 4.1].
This gives a generalization of [LR05, Theorem 3].

Proposition 7.1. (1) The integral ZV (fs,€) converges absolutely for Rs > n — € and has

an analytic continuation to a rational function of ¢~*°.

(2) There is a meromorphic function TV (s, 7,w) such that
ZW(M(Saw)fSaE) = FW(SJT,M)ZW(fS,f)

for all matriz coefficient & of ™ and fs € I(s,w).
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7.2. Local y-factor. We regard u,, as a subspace of Endp(W") and we denote by ue, the set
of A € u of rank n. Fix a non-trivial additive character ¢ : F — C* and A € u,cs. We define a
Haar measure du on U(W#) by the identification U(W#) 22 u,, by the basis ¢’ (see §6.2). We
define

Ya: UWV) = C* :urs (Twa (ud))
where Tyo denotes the reduced trace of Endp(V®). For f € I(0,w) we define

Lpa(fs) = /U o) fo(w)ha(u) du.

Then, this integral defining I, converges for s > 0 and admits a holomorphic continuation to
C ([Kar79, §3.2]). Let Ay € GL, (D) the matrix representation of the linear map 4 : WV — W4
with respect to the bases e/, q,..., e, for WV and e},..., €, for W2. We denote by e(G(W))
the Kottwitz sign of G(W), which is given by

(-1 (e =),
G(W)) = 1
e( ( )) {(_1)2n(n1) (—6 _ _1).
Proposition 7.2. We have
ldx’A © M('S)w) = C(Sa w, A7 dj) : Z¢A7

where ¢(s,w, A, ) is the meromorphic function of s given by

(s, A, ) = (G) - s (N ()™ I 28 w7 (0) (s =t 5, 0,0)

n—1
. _ 1 1 _
X H7(2572Zaw27w) 1"Y(S+§anAoaw)'e(§7XAng) !
1=0

in the case —e =1, and
n—1
C(Sawv A7¢) = G(G(W)) : ws(N(AO))il : |2‘72ns+n(n7%) : w71(4) : H 7(28 - 22.,(4]2,1/))71
i=0

in the case —e = —1.

Remark 7.3. These formulas differ from those in [Kak20b, Proposition 4.2]. This is caused by
a typo where w, 1 (N(R)) should be replaced by w, .1 (N(R))~! in [Kak20b, Proposition 4.2].

Now we define the doubling 7-factor as in [Kak20b]. Note that the above error has no effects
on the definition in [Kak20b].

Definition 7.4. Let w be an irreducible representation of G(W'), let w be a character of F*, let
1 be a non-trivial character of F'. Then we define the v-factor by

1
WW(S + 577( X wﬂ/J) = C(S7W,A7¢)_1 : FW(S77T7W) ’ Cﬂ(—l) ’ R(S7W7A7¢)~
where ¢, be the central character of w, and

ws(N(R(e)Ao) " 1y(s + 5, wxoca), V)e(5, Xo(a), ¥) ™1 in the case —e =1,

R ) 7'A7 = .
(5,0, 4,9) {ws(N(R(e)Ao)_le(é,XD(W),w) in the case —e = —1.

The doubling y-factor v (s + %7 7R w, ) is expected to coincide with the standard y-factor
Y(s+ %, mRw,std, ¢) where std is the standard embedding of “(G(W) x GL;). Another notable
property is the commutativity with parabolic inductions, which is useful in the computation.
For example, the doubling y-factor of the trivial representation is given by the following lemma,
which we use in the computation of the doubling zeta integral (§7.3 and §21 below).



28 HIROTAKA KAKUHAMA

Lemma 7.5. Denote by ly the trivial representation of G(W). Then we have

{H?z—nPYF(S—’_%—’_Za]-,d}) —621,

1
w
v (5+*’1W><17¢): n— .
s+ 2 oxw ) [ (s + 3 +i,1,0) —e=—1.

2

7.3. Local zeta value. We use the same setting and notation of §7.1. Let fo € I(s,1) be the
unique K (¢'°)-fixed section with fo(1) = 1, and let £€° be the matrix coefficient of the trivial
representation of G(W) with £°(1) = 1. Then, we define

ar(W) = 2" (f5,€°),
which is the first constant we are interested in. The purpose of this subsection is to obtain a

formula of a; (W) in the case where either R(e) € GL,,(Op) or W is anisotropic. Note that the
general formula of ay (W) will be obtained in §19.

Proposition 7.6. (1) In the case —e =1 and R(e) € GL,(Op), we have
Oél(W) _ |2|n(2n+1) X qfngf(2n0+1)rf2r2 H(l + q7(2i71)).
i=1
(2) In the case —e = —1 and R(e) € GL,(Op), we have

n

2 )
(W) = |2‘n(2n71) . q727‘n072r +r H(l + q7(2171)).

i=1
(3) In the case —e = —1 and W is anisotropic, we have
2lr - (14+q7) n=1,
1
ar(W) = [N(R@E) ™2 x {25 ¢ A+q )AL +q7?) n=2,

1202 ¢3 1+¢H(1+¢ 31 +¢°) n=3.

Note that in the case 2 fq, the assertions (1) and (2) are conclusions of [Kak20b, Proposition
8.3] and the volume formula of Ky (Proposition 5.6). However, to contain the case 2|q, we prove
them in another way. Before proving this lemma, we observe following two important lemmas:
Lemma 7.7.

dime Homgwyxaw)(I(p,1),C) = 1.
Proof. First, the map
Z:1(p,1) > C: [ f((g.1)) dg
G(W)
is contained in Homegwyxaw)(I(p, 1), C). To prove the lemma, it suffices to show that ker Z is
spanned by the set
{h—R(g)h | h € I(p, 1), g € GOW) x G(W)}.

Here, we denote by R(g) the right translation by g. Let f € ker Z. Take a compact open subgroup
K’ of K(&'7), complex numbers a; € C and elements g; € G(W) x G(W) for i = 1,...,t so that

¢
f= Z a; R(g:)c
i=1
where ¢ € I(p, 1) is the section defined by

¢(g) = Spway(p) g=pk (pe PWA), K € K'),
7o g & P(WAK'.
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Then, we have

a1+ +a = =0

and we have
sz gz ¢ — (gi+1)c) =f
where b; ;= a1 +---+a; fori=1,...,t — 1. Hence we have the lemma. O

Lemma 7.8. For f € I(p,1), we have

/ F((g.1)) dg = m®(p)~* - aa (W) - / f(ru) du
G(W)

UW2)
where
n(n— In(n+1 (r(s—n+3) Cr(25—21) .
mo(s): ‘2| 2 ( +)C£(5+n+ )Hz 0 m (—6_1)7
n(n- ) g3 252
2 IS el in (ce——1).

Proof. Define a map 2 : S(G(W")) — I(p,1) by
2@ = [ Goawe) ) (e dp
PW2)

Then 2 is surjective. Moreover, we have

Here, v(G(W")/P(W#)) is the constant defined by
WGWEYPWA) = [ fo(ru) du
UWa)

where f° € I(p,1) is an unique K (¢'")-invariant section with f°(1) = 1. Hence we conclude that
the map

I(p,1) > C: f— f(ru) du
UW2)
is G(W")-invariant, in particular, it is G(W) x G(W)-invariant. Hence, by Lemma 7.7, we
conclude that there is a constant o’ € C such that

/ (9. 1)) dg = o / f(ru) du
G(W) Uwe)

for all f € I(p,1). To determine the constant o/, we use f° as a test function. By Gindikin-
Karperevich formula ([Cas80, Theorem 3.1]) or Shimura’s computation ([Shi99, Proposition 3.5]),
we have

/ fo(ru) du = m°(p).
UWa)

Moreover, comparing this to Lemma 21.2, we have the claim. (|
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Now we prove Proposition 7.6. As a consequence of Lemma 7.8, we use another section
f(s,1mp0,,—) € I(s,1) to compute the ratio a; (W)m®°(p)~!. Here, we denote the set unNM,,(O)
by O,, and we define a section f(s,®,—) € I(s,w) by

0 g & P(WS)rU(W2),
D=0 L amner) g=pm ((1) f) e ey

for a character w of F* and ® € S(u). Let g € G(W) with «(g) € P(W#)7U(W#). Then,

% %R(g)*l _[a 0 1 0
(st mFistatos) = (o) (x )
for some a € GL,(D),b € M,,(D) and X € u. If X € wpO,, then a, g are given by
a=(X-R(e)™", g=a(X + R(e)) =2aX —1,
and thus a € GL,,(Op) and g € —K;‘wF. Here we denote the set
{ge GAIW)NGL,(Op) | g—1 € 2wpM,(0Op)}
by K3, . Conversely, if g € —KJ_ _, then a, X are given by

—1
al, = 92 5 R(e)™!, aX =2—,

and thus a € GL,(Op) and X € wrpO,. Summarizing above discussions, we have

on G(W). Put

Then, we have

al(W) _ Z(f(pa 1217)5‘(9;.7 7))

me(p) m!(p)
KL,
|wr Oy
2np—n(n—3) ln(n—¢) n(2n—ec
= 2l g @I ),
Since
+ .t 1 — ,6(nor+r(r—1))+5r+no—(2r+ng)e
(BT : K, ]=4q
and

—n?—-n (—e=1),
|B+|={ 2
-n



FORMAL DEGREES AND LOCAL THETA CORRESPONDENCE: QUATERNIONIC CASE 31

we have

log, (q2" " )q" =9I K7 )

= %n(n —€)+n(2n—e¢) —6(ner+r(r—1)) —5r—ng+ (2r + no)e

B —n?—n (—e=1),
—n? (—e=-1)
:ln(n—e)— 27“z+(2n0+1)r+n3 (—e=1),
2 2r° + 2nor — 1 (—e=-1).

Hence we have
Oél (W)

m
|2|n(2n+1) —ng—(2n0+1)r—2r2 X Hn (1 + q—(21'—1)) (—6 — 1)
|2|n (2n—1) . q72rn0 2r2 41 H’L 1(1_|_q (2i— 1)) (_ :_1)
(2)

This proves (1) and (2) of Proposition 7.6.
Finally, we prove (3). By the definition of the v-factor, we have the following (local) functional
equation of the zeta integral:

ZV(fo,.€) o

ZV(fs,€°) _ ,
T oo(s) W(8+l71WX171/)) 27(287227171#)

me°(s)

ns— nn—— _ 1
< 27 T INRE)IE - e(Govws v)-

Note that f° , is a constant function on G(W®), and ZW(fip,go) = |G(W)|. Hence, by Lemma
7.5, we have

218 €G)  n=1,

W fo o
Z ) (e < -2l e@) a2,
—12|2 -e(G) n=3.
Therefore, we have
|2|F~(1+q’1) n=1,
a1 (W) = [N(R(@)| ™" x {206 g7 (1 + ") (A +¢7%) n=2,
217 a7 (L+q )1+ ) (1+q7°) n=3.

Thus, we complete the proof of Proposition 7.6.

8. LocAL WEIL REPRESENTATIONS

In this paper, we consider the two reductive dual pairs: (G(V),G(W")) and (G(V), G(W)).
For the first case, we can describe the restriction of the Weil representation to G(V) x G(W").
We discussed this in §8.1. The second case is discussed in §8.2.

8.1. An explicit description. In this subsection, we discuss an explicit description of Weil
representation for the reductive dual pair (G(V), G(W"™)), which is computed in [Kud94].
We fix a basis e for W. We take a basis ¢/~ of W7 as in §7.1. In this subsection, we

identify G(W) (resp. G(W")) with a subgroup of GL, (D) (resp. GLa, (D)) by the basis e (resp.
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¢'"). Moreover, we identify G(V) with a subgroup of GLy,(D) by some fixed basis of V. Let
WE =V ®p WP, and let {{, ))7 be the pairing on W® defined by
((z® (y1,92), 2" ® (1, 92)))” = Tp((x,2") - (Y1, 91)" = (v2,55)"))

for x1,22 € V and y1, 92,9, 45 € W. Then, (G(V), G(W?)) is a reductive dual pair in Sp(W").
We fix a non-trivial additive character ¢ : F' — C!. Then, we consider the metaplectic C!-cover

1 — C' — Mp, (W) — Sp(W7) — 1
of Sp(W"). We denote by w,, the Weil representation of Mp,,(W"). The canonical embedding
j:G(V) x GWT) = Sp(W7) : (h,g) = h® g
lifts to an embedding j into Mp,, (W®):

Mp(W"®)

ey
G(V) x G(WB) L Sp(WP).

We consider a polar decomposition W= = (V@W V)& (VW) (note that the order of A and 57
is reversed compared to the decomposition of W7). Then, the restriction of wi to G(V)xG(W")

can be described explicitly on the space S(V @ WV) of Schwartz-Bruhat functions on V@ WV.
For g e S(V@WV)and g = (Z Z) € Sp(W"), we define 7(g)¢p € S(V @ WV) by

r(0)6l(e) = [ (g (wa,ab) + 5 e, b)) + 5 (e, ) glwa +ye) ditg(v)
Ye

where Y. = ker(c) NV @ WA\V @ W2. Moreover, we may re-define the Haar measure y,(y) so
that r(g) keep the L?-norm of S(V ® WV). For a € GL(W#), we denote by m(a) the unique
element of G(W") such that m(a)|y~ = a.

Theorem 8.1. Let ¢ € S(V @ WV). Then, wj(h,g)¢ = By (g)r(g)(¢ o h™"). More precisely,
[wy (h, 1)¢](x) = (h™'x) for h € G(V),
(w3 (1,m(a)@](x) = By (m(a)|N(a)| "¢z - 'a* ") for a € GLIWY),

wg (1,0)8](x) = (5 ((z, 2 - 0))p(x) for be UWS),
the action of the Weyl element T (for the definition, see §7.1) is given by

B0l = () [l ymet) dy

where dy is the self-dual measure of V. ® WYV with respect to the pairing
VWV xVWY —-C:z,y— w(%«x,yT)})
Here, we denote by N the reduced norm of Endp(WV) over F.
Proof. [Kud94, p.40]. O

Remark 8.2. According to [Kud94, p18], we can compute By (g) as follows:
e By(m(a)) =1,B8y (1) = (=1)™" in the case e =1, and
e By (m(a)) = xv(N(a)),Byv(r) = (—1,det V)&(—=1)"" (=1, —=1)2" in the case ¢ = —1.
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8.2. Compatibility of Doubling and Weil representations. Now we consider the dual pair
(G(V),G(W)). Let W=V ®p W, and let {(, )) be the pairing on W defined by

((rey,2"@y") =Tp((z,2") - (y,9")")

for z,2’ € V and y,y’ € W. We denote by Mp,, (W) the metaplectic C'-cover of Sp(W), and by
wy the Weil representation of Mp,,(W). Note that there is a polar decomposition W = X @& Y
where X and Y are certain totally isotropic subspaces, and wy, can be realized on the space S(X)
of Schwartz-Bruhat functions on X. We fix Haar measures dz and dy of X and Y so that they
are the dual each other with respect to the pairing

XxY = C: (z,9) = ¥({(z,9))).

Moreover, we define

X2 =XeX)NW2, XV=XeX)nWwVv
and

Y& =(YeY)NWe, YV =(YeY)nWV.

We define the Haar measure dz® on X* by the push out measure p,(dz) where p : X* — X is
the first projection. We define the Haar measures dzV, dy®, dyV in the same way. The map

§:SX)8X)=SXaX) 5 S(VawY)

given by the partial Fourier transform

o100 = [ (01030 vllle) d®
is known to be compatible with the embedding « : G(W) x G(W) — G(W"). Hence, we have

Fygr03m) (19, 1) = (wy(9)61, $2)x

for ¢1, 2 € S(X) where (, )x is the L2-inner product on X defined by the measure dz. Moreover,
we have:

Proposition 8.3. Let dz be the self-dual Haar measure on V.@ W2 with respect to the pairing
1
VOWT xVaWy T (@,y) = v(5 ()
and let ( , ) be the L?-inner product on V @ WV defined by dz. Then, we have

(8(d1 ® G2),8(¢3 @ Pa)) = 27" - IN(R(e))|™ - (61, 93)x - (D2, Pa)x
for @1, ¢2, ¢3, ¢4 € S(X).

Proof. Note first that the vector space V@ WV decomposes into the direct sum

XV oYV,
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For z € V.® WV, we denote by z, (resp. z,) the XV-component (resp. YV-component) of z.
Then, one can prove that dz = [N(R(e))|™ - dzy/ @ dzy. Hence, we have

(561 ® $2).5(03 © Ba)
- / 561 ® F2)(2) - 3 ® Da) (2) d
VWV

—INGE" [ [ 8010+ 2) 5on 900+ 2) daYdzy

S Y B CE T CR RS T
- 6(d3 ® Ga) (20 + 2) dzVdzy dz

= 2|72 . |N |m/ (1 @ 2) (20 + 22) - (d3 @ ba) (22 + 22) da®d2Y
xv Jxa

— 22" [N(R(e)" / / (61 © 32) (. 2') - (63 © go) (@ a') dada’

= 272" IN(R(e))|™ - (61, 63)x - (92, )
Thus, we have the proposition. O

9. LOCAL THETA CORRESPONDENCE

In this section, we explain the notations and properties of local theta correspondence for
quaternionic dual pairs.

9.1. Definition. Fix a non-trivial additive character ¢ of F'. We denote by Mp,,(W) the meta-
plectic group, and by j : G(V) x G(W) — Mp,, (W) a splitting of the embedding
J:GW)x G(V) — Sp(W) : (g,h) = g h.
For an irreducible representation 7 of G(W), we define ©y(w, V) as the largest quotient module
(G wy @ ™) aw)

of }*w,p ® 7" on which G(W) acts trivially. This is a representation of G(V). We define the
theta correspondence 6y (m, V') of 7 by

9¢(7T,V) = {0 (@w(ﬂvv) =0),

the maximal semisimple quotient of Oy (7w, V) (Oy(w, V) # 0).

Theorem 9.1 (Howe duality). For irreducible representations m1,me of G(W), we have
(1) 8y(m1,V) is irreducible if it is non-zero,
(2) m = o if Oy(m, V) = 0y(m2, V) #0,
(3) by (w1, V)Y = b5(n), V).

Proof. [GS17, Theorem 1.3]. O

9.2. Square integrability. In this subsection, we explain the preservation of the square inte-
grability under the theta correspondence, which is necessary for the setup of the main result.
Let 7 be an irreducible square integrable representation of G(W), and let o := 6y (w, V). In
this subsection, we assume that [ = 1 and ¢ # 0. We denote by 6 the G(V)-equivalent and
G(W)-invariant natural quotient map

Wy @ T — 0.
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Let (, )r : # x m = C be a non-zero G(W)-invariant Hermitian pairing on 7. We define a
non-zero G(V)-invariant Hermitian pairing (, ), : 0 x 0 — C by

(0(¢1,v1),0(p2,v2)) 0 := /G(W)(w1b(g)¢1a¢2) - (m(g)v1,v2)x dg.

Lemma 9.2. The definition of ( , ), does not depend on the choice of ¢1,¢a,v1,v2. Moreover,
o 1s a square integrable representation.

Proof. Similar to [GI14, Appendix D]. O

9.3. Tower properties. In this subsection, we discuss some properties related to Witt towers.
Let V4 be a right anisotropic e-Hermitian space. Put mg := dimp Vj. For a non-negative integer
t, we define

Vi=XidaVo® X;k

where X; and X/ are t-dimensional right D-vector spaces. Fix a basis Aq,..., s for X; and fix
a basis A_1,...,A_; for X;*. Then we define an e-Hermitian pairing ( , ); on V; by

(A Aj)e = 0, (Niywo)e = (zo, A—j)e = 0, (20, 70): = (0, 2()o
fori,j=1,...,t and zg,a( € Vy. Here (, )o is the pairing associated with Vj.

First, we state the conservation relation of Sun-Zhu [SZ15]. Let V| be a right anisotropic
e-Hermitian space such that Xyl = XVo and I/bT 2 V. Such VOT is determined uniquely. Take
{VtT}tZO as the Witt tower containing VOT. Let 7 be an irreducible representation of G(W'). There
is a non-negative integer 7(m) such that ©y(m, V,(r)) # 0 and O(m,V;) = 0 for t < r(m). It is
known that 0y (7, V,.()) is supercuspidal if 7 is supercuspidal. We call () the first occurrence
index for the theta correspondence from 7 to the Witt tower {V;};>0. Denote by r'(7) the first
occurrence index for the theta correspondence from 7 to {VtT}tZO.

Proposition 9.3. Let w be an irreducible representation of G(W'). Then we have
m(m) +mi(r) =2n+24¢
where m(r) = 2r(x) + dimp Vo, and m' () = 2rf(x) + dimp V.
Proof. [SZ15]. O
Then, we explain the behavior of theta correspondence when we change indexes of Witt towers.

However, before stating them, we note here the analogue of the Gelfand-Kazhdan Theorem
([BZ76, Theorem 7.3]) for GL, (D), which we use in the proof of Proposition 9.5:

Lemma 9.4. Let 7 be an irreducible representation of GL.(D), and let 7% be the irreducible
representation of GL,.(D) defined by 7°(g) = T(tg*_l) for g € GL,(D). Then, 7% is equivalent
to the contragredient representation " of .

Proof. See [Rag02, Theorem 3.1]. O

Proposition 9.5. Let {W,;}i>0 be a Witt tower of right (—e)-Hermitian spaces.
(1) Let w be an irreducible representation of G(W;), and let o = 0y(m,V;). Suppose that
j > r(m), and we denote by o, the representation Oy (w, Vj) for r(n) < j < j. Then, o
is a subquotient of an induced representation

Indg(v” oy Bxw|Nx,,

3"

Lij+j—r(m)

Here, l; ; = 2dim W; —2dim V; — €, X/ ; is a subspace of X+ spanned by N\jii11,..., A,
Nx,, ; is the reduced norm of End(Xj ;), and Qj ; is the parabolic subgroup preserving
Xjrg-
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(2) Let m be an irreducible representation of G(Wy ), let 0 = 0y(m,Vj/), let T be a non-
trivial supercuspidal irreducible representation of GL,(D), let s be a complexr number,

and let ' be an irreducible subquotient of Indg(,m)(w X 7sxv) where i = i’ +r and

Py ; is the parabolic subgroup preserving an r-dimensional isotropic subspace of Wy .

Suppose that o # 0. Then, we have that 0, (7', V;) is a subquotient of Indg(}/ji) oXTxw.
7757

Here, j = j' 4+ r, and Tsxw is the representation of GL.(D) defined b'yMTSXW(g) =
7(9)xw (N (9))|N(9)|® for g € GL,(D), where N denotes the reduced norm.

Proof. These properties are proved by analyzing the Jacquet module of Weil representations:
it goes similar line with [Mui06], however we explain for the readers (see also [Hanll]). For
a while, we denote by wy[j,7] the Weil representation associated with the reductive dual pair
(G(V;),G(W;)). Moreover, for a representation p of G(V;) x G(W;), for 0 < ¢’ < 4, and for
0 <4 < j, we denote by Jj ;p the Jacquet module of p with respect to the parabolic subgroup
Qj.; X Py ;. Then, by [MVW8T], we have a G(V;/) x GL;_;/ (D) x G(W;) equivalent filtration:

Jii(wylfyi]) = Ro D Ry D -+ D Ry D Ryyy = 0.
Here,
t = min{j — 5,1},
Ro/Ri = xw|Nx,, ,

Ri/Risr = Ind§"")

LT Ryl
pi for some representation pp (k=1,...,t—1),
and moreover if j — j' < i, we have
Ry = nd3 " S(GL; (D)) Bwylf', ]
where i/ =i — (j — j'), and the action of GL;_;/(D) x GL;_;(D) on S(GL,_; (D)) is given by

[(91,92) - )(9) = xw (N (91))xv (N (g2)) (97 ' 992)

for g1 € GL;_;/(D),g9 € GL;_j(D), and g2 € GL;_y#(D), where N denotes the reduced norm.
Now we prove (1). Composing Jj/ ;(wyl4,i]) — Ro/R1 with the G(Vj) x G(W;)-equivalent
surjection

wyly’y i) = o B,

we have a non-zero morphism
Jjri(wylh,i]) = xw|Nx, [V KoK

(W5)

il

Hence we have (1). Then we prove (2). Let 7’ be an irreducible component of Indg T xy.
First, we have

Hom(Rk/RkH, 7T/) = Hom(pk, Ji_kﬁl).
Here, we denote by J;_m’ the Jacquet module with respect to the parabolic subgroup Py ;.
‘(,Wi) mX¥r,xy =0fork=1,2,...,t—1
by considering the filtration of Bernstein-Zelevinsky ([BZI?%7 Theorem 5.2]), and thus the right
hand side is 0. Hence, we have

. . . G
However, since 7 is supercuspidal, one can prove J;_; Ind 5

Rior ' 2R or".

. P y 4
Moreover, since Tsxw % xw|Nj ;| +7=7" we have

RO ® (TSXW)V = Rl by (TSXW)V'
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On th other hand, the nonzero GL, (D) x GL,(D)-equivalent map
S(GL;—j (D))@((rsxv) " Brsxw) = C: (p,z,2") = o) 0(9)(s(9)a, ") xw v (V- (9))dg
Ly
gives a nonzero GL,.(D) x GL,(D)-equivalent map
S(GL;—; (D)) ® (TSXV)V - (TSXW)V'
By combining the above arguments, and by Lemma 9.4, we have a nonzero G(Vj/) x GL;_ /(D) x
G(W;)-equivalent map
Jjri(wyld,i]) @ (0 Broxw)” @ ()"
=Ry @ (0 Rryxw)” B (x')"

= (ndZ" S(GL; (D)) Ruwyli', j') @ (0 B roxw)¥ B (x')

= (nd5" (roxv)Y Bm) @ (')

= (Indgi(}’/:/")(Texv)—s Xm)® (x')"
= (Ind 5 (rixy) @) © (')
— C.

Hence we have (2). O
By the proof of Proposition 9.5, we also have a slightly different property:

Corollary 9.6. Let {W;}i>0 be a Witt tower of right (—e)-Hermitian spaces, let i,7,j" be
non-negative integers so that j — j' > 0, let ® be an irreducible representation of G(W;), let

o = 0y(m, Vj). Suppose that o # 0, and o is a subrepresention of an induced representation
Ind%}m o' R rsxw where o’ is an irreducible representation of G(Vj/), T is an irreducible su-
VARN)

percus’pidal representation of GL;_;/(D), and s € C. Moreover, we suppose that 0, (7, V) = 0.
Then, we have i > j — j', and there exists an irreducible representation ©' of G(W;/) such that
Oy (', Vi) = o'. Here we put i’ = i — (j — j'). Moreover, m is an irreducible subquotient of
Indgi(/vi/i) 7 K T xw .

Proof. We use the notation of the proof of Proposition 9.5. Since there is a non-zero G(V;) x
G(W;)-equivalent map

wylf,t] = o X,
by the Frobenius reciprocity, we have a non-zero G(Vj/) x GL;_;/(D) x G(W;)-equivalent map
(9.1) (Tsxw)¥ R 7Y @ Jjriwyld,i] — o'
Then, the assumption 6y (m, V;/) = 0 implies that

7’ ® Ry/Ry = 0.
Moreover, as in the proof of Proposition 9.5 (2), we have

(oxw)" BT @ Jjrswyli,i] = (toxw)” K1Y @ Ry

(Here, we put Ry = 0 for k > ¢.) Thus, R;_; is forced not to be zero, and we have i > j — j'.
By using the Frobenius reciprocity again, we have a nonzero G(Vj/) x GL;_;/(D) x G(Wy) x
GL;_; (D)-equivalent map

((rsxw)" B (Jir j7)") @ (S(GLi—ir(D)) Rwylj',i']) = o’
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Thus, ¢’/ @ wy[j’,i'] # 0. Put 7’ := Oy(c’, Wy). Then, (0, W;) is nonzero, and it is an

irreducible subquotient 7/ of Indg(,wi')

i/ i

7' W 71sxy. However, by the Howe duality (Theorem 9.1),

7" coincides with 7. Thus we have the corollary. O

10. THE LOCAL SIEGEL-WEIL FORMULA

In this section, we state the local Siegel-Weil formula, which is a local analogue of the (bounded
and first term) Siegel-Weil formula. We assume | =1 and [ > 0 in this section.

10.1. The map Z. We define the AG(W®) x G(V) x G(V)-invariant map
T:wpy®wy—C
by
7(66) = [ (7 (Wo.o)db

G(V)
for ¢,¢’ € wyl where (, ) is the L*-norm of S(V @ WV) as in Proposition 8.3. Note that the
integral defining Z( , ) converges absolutely by [Li89, Theorem 3.2].

10.2. The map £. We denote by V? the opposite space of V, that is, an e-Hermitian space such
that dimp V? = 2n —m — e and xy» = xv. (It exists because of the assumption in this section.)
Consider the G(W")-invariant map

1
S(V@Wv) — I(—§,Xv) o= Fy

defined by Fy(g) = [wy(1,9)9](0) for ¢ € and g € G(W?). Similarly, there is a G(W®)-invariant
map S(V?@WV) — I(3,xv). We denote by R (V) and RWY(V?) the images of the above maps
respectively. Then we have the following exact sequence:

M(:w
0 R (V") — = I(%, xy) — O W) 0

([Yam11, Proposition 7.6]). For ¢ € S(V ® WV), we denote by F(I € I(—%,xv) a section such
that M(%7 XV)F(;L = F4. Then, we define the map £ by

E(6,¢) = /G 1y FaCl 1) TG0, 1) o

The integral defining £ converges absolutely, and the definition of £(¢, ¢’) does not depend on
the choice of F; by the following lemma:

Lemma 10.1. If f € RV (V") and h € RV (V), then we have
| o) Felg, D) dg =
Gw)

Proof. By the proof of Lemma 7.8, we have
HomG(V)XG(V) ([(p7 1)v C) = HomG(VD)(I(pv 1)7 (C) =z-C

where
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for F € I(p,1). Thus, if there are f € R (V*),h € RV (V) so that Z(f - h) # 0, we would
have RW (V?) = RW (V) . Since I(—1, xv) = I(—1,xv), we have RW (V) = RW (V). Put
o := RY(V?). Then, we have

O(0,V°) =1y, O(0,V) = 1y.
However, according to the conservation relation (Proposition 9.3), either of them must vanish

since dim V + dim V® = 2n — . This is a contradiction, and we have the lemma. O

10.2.1. Local Siegel-Weil formula. The following lemma gives the definition of ay(V, W), which
is the second constant we are interested in.

Lemma 10.2. There is a non-zero constant as(V,W) such that T = aa(V,W) - £.

Proof. The two maps Z, £ are AG(W) x G(V) x G(V)-invariant map. On the other hand, we
have

dim Homacw)xa(v)xa(v)(wy ® W}, C) = dim Homagw) (R™Y (V) ® RV (V?),C) = 1.

Moreover, we have Z(¢, ¢) > 0 for positive functions ¢ € S(V @ WV), and £ # 0. Hence, we
have the proposition. O

We will determine the constant as(V, W) completely in §19. However we calculate aq(V, W)
directly when either V' or W is anisotropic, which will be proved in §§12-13:

Proposition 10.3. (1) Suppose that —e = 1 and V' is anisotropic, then we have
ax(V,W) = [N(R(e))|"**

_s
2> - (14+4¢7") (m=1, xv: unramified),
Zs
252 g% (m=1, xv: ramified),
X921 g 2(1+q7?) (m=2, xv: unramified),
25" - ¢ 3-(14+q¢Y (m =2, xv: ramified),
Car
2[p2 ¢ (1+¢H)A+q¢2%) (m=3, xv =1).

(2) Suppose that —e = —1 and either V or W is anisotropic, then we have
ax(V,W) = IN(R(e))|""*

207 ¢t (1+q7Y)
207 ¢t (1+¢7Y)
2177 gt (L+q7h)

-1 1+ “1y(1—g—4
_|2‘F2q 4 qli)q(igq )

2, xw =1),

2, xw : ramified),
2

3

, Xw # 1: unramified),

ITEEE
[

11. FORMAL DEGREES AND LOCAL THETA CORRESPONDENCE

In this section, we state the behavior of the formal degree under the local theta correspondence,
which extends the result of Gan-Ichino [GI14]. Let G be a connected reductive group over F,
and let 7 be a square integrable irreducible representation of G. Then, the formal degree is a
number deg 7 satisfying

1

/G/AG (m(g)v1,v2) - (m(g)vs, va) dg = @(Ul,va) - (v, v4)

for vy,...,v4 € w, where Ag is the maximal F-split torus of the center of G.
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Again, we consider a right m-dimensional e-Hermitian space and a left n-dimensional (—¢)-
Hermitian space. In this section, we assume that [ = 1. The purpose of this section is to
describe the behavior of the formal degree under the theta correspondence for the quaternionic
dual pair (G(V), G(W)). Now we state our main theorem:

Theorem 11.1. Let 7 be an irreducible square integrable representation of G(W), and let o =
Oy (m, V). Assume that o # 0. Then, we recall that o is also square integrable. Now, we define
az(V,W) as the constant satisfying

degm

dega = a3(‘/a W)Wﬂ(il)’yv(oa o X XWaw)
Then, as(V,W) depends only on V,W and 1. Moreover, we have

D (Db xv) (—e=1),
% XW(_l)e(%7XW7w) (—62 —1)

We prove Theorem 11.1 in later sections. In this section, we see an example:

aB(Va W) = {

Example 11.2. Consider the case wheree =1, m =1, n =2, and xw = 1. We denote by St the
Steinberg representation of G(W'). Then, it is known that 04(St, V') is the trivial representation
1y of G(V). The local Langlands correspondence for G(W') has been established (see [Chol7,
§5]) and the L-parameter of St is the principal parameter ofé (see e.g. [GR10, §3.3]). Then, as
representations of Wg x SLa(C), we have

Adogy=(1®@r3)® (1®73)

where 1 is the trivial representation of Wg, and rs is the unique three dimensional irreducible
representation of SLa(C). Thus, we have
—4s | CF(_S + %)2

Cr(s+3)?
Moreover, the centralizer C¢O(é) of Im ¢ in G is {1} C G, and the component group §¢0(é)
is abelian. Since the formal degree conjecture for G(W) is available (see §20 below), we have

1
v(s + ok St, Ad,v) =¢q

1 q>
degSt ==+ —————.
BT )
On the other hand, we have
- q
degly = .
cgly =[GV = 5

(Recall that the volume |G(V)| of G(V) is given by Corollary 6.3.) Therefore, by Lemma 7.5, we

have
degSt 1

degly 2

7(0,1y X 1,9)
which agrees with Theorem 11.1.

We note here the strategy of the proof of the theorem. At first, we consider the case where
either W or V is anisotropic (i.e. the minimal cases in the sense of the parabolic induction). In
theses cases, we can express as(V, W) with a; (W) which is already determined in §7.3. And hence
we obtain Proposition 10.3 (§§12-13). Second, we relate a3(V, W) with as(W) (§§14-15). Then
we have Theorem 11.1 in the minimal cases. And finally, we prove that the constant as(V, W) is
compatible with parabolic inductions (§§16-18), which completes the proof of Theorem 11.1. We
also note here that once as(V, W) is determined, the above processes can be reversed to obtain
the general formula for a1 (W) and az(W) (§19).
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Remark 11.3. We remark on the local y-factors. As written in [Kak20b, §5.3], the definition
of the doubling y-factor of Lapid-Rallis [LRO5] should be modified by a constant multiple. Thus,
it is natural to ask whether the statement of the main theorem of [GI14] might change. However,
[GI14, Theorem 15.1] is still true. This is because that their proof uses the doubling v-factor not
to determine the “constant C” (see [GI14, §20.2]) but to show the existence of the constant C.
Hence, the difference of constant multiples is offset at the time of calculation of C.

12. MINIMAL cASEs (I)

In this section, we determine the constant as(V, W) and prove Proposition 10.3 (1).
Suppose that e = 1, V5 = 0 and dimp V = 2. Then, we can take a basis " = (e} ,e¥) of V
so that
(ef ,eY) = (e¥,e)) =0, and (e},ey) = 1.

We take bases ¢ of W and Q/D of W™ as in §7.1.

Let £ be a lattice
(@ erBlop ® eé) &) (@ ey Op ® 6;)

i=1 i=1
of V. ® W#, and we denote by 1. the characteristic function of £. Note that we have |£| = 1
since L is self-dual.

Lemma 12.1. We have

2(1=¢ )1 +¢ )1 +¢7")

I(1g,12) =g~ =

Proof. Let B be the Iwahori subgroup given by

(¢ 9o

Note that |B| = ¢~4(1 — ¢~ 2) and that B fixes the lattice £. By [BT72, Théorém 5.1.3], we
have G(V) = B- N - B where A is the normalizer of the maximal F-split torus consisting of the
diagonal matrices in G(V'). Moreover, we can take a system of representatives

{a(t) |t e Z} U{w(t) |t € Z}

a,b,de OD,CEWDOD}.

for B\G(V)/B, where

Hence we have

I(1,12) = B - S (1L N a(t)L] - [Ba(t)B : B] + |£ N w(t)L] - [Bu(t)5 : B))

teEZ
= |B|- Z(q—:ﬂt\ + q—ﬁlt—1|+|1+3t|)
teZ
_ 3 14q¢3 ¢?+q5
=q¢ ' (1—-q7?)( )

1—¢3 1-—¢g3

(=g +g (47
=q 1_q_3 .

Hence we have the lemma. O
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Lemma 12.2. We have
E(1e, 1) =m*(5)™" - an(W)
where m°(s) is a function as in Lemma 7.8.
Proof. Note that 1. is a K (¢/”) fixed function with 1,(0) = 1. Thus, we have F;, = f°, putting
f2 the unique K (&'") fixed section in I(—%,1) with fg(1) = 1. By the Gindikin—Ka;perevich

formula (see e.g. [Cas89]), we can take flTC =m°(3)~1f7. Hence, we have
2

£01z10) =m*()" [ £3000.1)dg

Hence, by the above two lemmas, we have:
Proposition 12.3. Ife =1, Vy =0 and dimp V = 2, then we have

g (1+g¢H-g
1—q3 ’

[SI[s]

as(V,W) = =2 % - IN(R(e))

13. MINIMAL CASEs (II)

In this section, we determine the constant as(V, W) and prove Proposition 10.3 (2).
Suppose that V is anisotropic. Recall that 7 € G(W") is the Weyl element as in §7.1. For
® € S(u,), we define a section f(s,®,—) € I(s,xv) by

0 (g & P(WH)TU(W2)),
f(s,®,9) = 10
BP0 a0 2x) g=pr (L V) e PavEyUIE)
Here G(WP) is embedded in GLa, (D) by the basis ¢/”. For t € Z,¢ € S(V ® WV), and
o € S(uy,), we define ¢, € S(V@ WV), and &, € S(u,,) by
bi(x) := ¢ MM p(zwt), and By(X) := ¢~ "D (X ).
Then we have the following lemma:

Lemma 13.1. (1) For ¢ € S(V @ WV), we have ¢ = q~4™" (¢)_,.
(2) Let ¢ € S(V@WV), and let ® € S(uy,) such that M(%,xv)f(3,®,—) = Fy. Then we
have

1

1 _
M(§7XV)f<§7 (I)ta _> =4q 4mntF¢7,§'

Proof. We have
Gy = [l ) dy
Vewv

_ / S5 (e, y7))) dy
VeWwwv
— q—4mnt($)7t(x).
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Hence we have (1).

M(;Xv)f(;vq)tﬂ'( ) /f Ly, T (Y ?)7’()1( ?))dY
(e ) Catx o

0 [ V)G (i gy ()Y

_ _ 1 1 0

Amnt 1

=q X1 N(Y f ,@,T( ) dy
/1,; 2—|—p( ( )) (2 €Y 1 X’(ﬂ2t 1 ))

1 1 1 0
_ —4mnt - -
=q M(27XV>f(2aq)7T(Xw2t 1))dY
. 1 0
=4q ! tF¢(T (Xw% 1))

— ) [ el (o )0

vl [ s il (3]s

o 1 0
=q 4 tF¢_t(T <X 1))

Hence we have (2). O
Proposition 13.2. Let ¢,¢' € S(V @ W#). Then, for sufficiently large t € Z, we have

L(de,¢') = q~ "™ |G(V)| Fy(1) Fyr (7).

Proof. The Fourier transform on the space S(V ®@W#) is given by the action of the Weyl element
7 of G(W"). Hence we have

I(¢t7 ¢/) = I(a)\ta a)\/)
= ¢ L)y, &)
_ _—4dmnt N O A/
—gm [ GRS

When ¢ is sufficiently large, the support of ((E)_t is sufficiently small. Hence this integral is

-

g~ G(V)](6)-4(0)6' (0)

=g "GV gt ( )i <0>$f<0>
= g "GV ¢ (0)¢
= q MGV Fs(1)Fy <T)-

Hence we have the proposition. O
Proposition 13.3. Let ¢,¢' € S(V @ W2). Then, for sufficiently large t € Z, we have

Epe, @) =m®(p) " ar(W)q~ "™ Fy(1) Fy (7).
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Proof. When t is sufficiently large, the support of ®_; is sufficiently small. Then, by using
Lemma 7.8, we have

E0nd) =a ™ [ (50 () Fr (D) dg

G(W)

l I
= (o) e W) [ (G e ) F G du
U(Wwa)

=) Wy ([ 00 ax) o)

=m°(p) " ar (W)~ """ Fy(1) Fyr (7).
Hence we have the proposition. O
By Propositions 13.2 and 13.3, we have the following:
Proposition 13.4. If V is anisotropic, then we have
a(V,W) = |G(V)|-m®(p) - ar (W) ™.
By Proposition 12.3 and this proposition, we obtain Proposition 10.3.

14. THE BEHAVIOR OF THE Y¥-FACTOR UNDER THE LOCAL THETA CORRESPONDENCE

The purpose of this section is to explain the behavior of the «-factor under the local theta
correspondence, which extends [GI14, Theorem 11.5]. Let V be a right e-Hermitian space of
dimension m, let W be a left (—e)-Hermitian space of dimension n. Note that, in this section,
we allow the case where [ # 1.

Theorem 14.1. Let w be an irreducible representation of G(W') and let w be a character of F*.
We denote 0 = 0(mw, V) and we assume o # 0.

(1) If 1 > 0, then we have

YV(s,0 X wxv, ) _
(s, s 0) ]

(2) If 1 <0, then we have

l
l+1 _
’YF(S"_ T - vaXVXW7w) 1'
=1

Vis, o x wyv, ! —I+1
7 ( XV, ) H’YF(3+

AT (s, X woxw ¥) | 2

- 7:7 WXV XW 1/])
=1

The proof of Theorem 14.1 consists of four subsections (§§14.1-14.4). In the former three
subsections, we reduce the theorem to the unramified cases by using properties of the doubling
~-factor. In the last subsection, we discuss the unramified cases to finish the proof of the theorem.

14.1. Multiplicative argument. We put

[T, (s + 5L — i oxvxw,v)™" (1> 0),

fD(s,Vr,W,w,IZJ) = {Hi_ll '7F(5+ # _Z'7wXVXW,'(/J) (l < 0),

and we put
w
Y (870 X WXW,'l/))
. V. W .
’)/V(S,’/T « UJXVy'lZ)) fD(Sa ) 7w7¢)

Then, Theorem 14.1 is equivalent to ep(s, V, W, 7, w, ) = 1. We allow D to be split. Of course,
we have ep(s, V,W, 7, w, 1) = 1 by [GI14, Theorem 11.5] when D is split.

€D(S,‘/,W,7T,w,'(/)) =
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Let {V, }p>0 and {W, },>0 be Witt towers containing V' and W respectively. Put V =V, W =
Wi, mo = dimp Vo, mg = dimp Wy, and I, = Iy, w. We denote by J,(m) the set of the G(Wp)-
part of the non-zero irreducible quotients of the Jacquet modules Jp(7) for all parabolic subgroup
P whose Levi subgroups contain G(W,) as a direct factor. We first state the multiplicativity:

Lemma 14.2. We denote by r(w) the first occurrence index of m (see §9.3). Suppose that
Jy(m) # @ and p > r(w). Then, for an irreducible representation m, € J,(m), we have

D(V}anﬂTanﬂﬁ) = BD(‘/Y,WW,(A),'(/))-

Proof. First, we consider the case ¢ = ¢t and m, = 7. We may assume that r = r(7). Put
0 =0y(m, V) and 0’ = 0y(m,V,). Then, by Proposition 9.5 (1), we have

Yo (s,0" x w, ) 7V (s,0 x w, )"

l l
=81, oy(s+ (§p +p—71)w ) 'Wgtjp,r(p)(s - (gp +p—r1),w )

—H’ym8+ + (20— 1),w,7) - Hv —(Z+@2i—-1),w,9)

2(P r) 2(19 )

H '7F5+IT1+ZUJ'1/J H V(s + — +1—i7w,1/})
= fD(Vp,Wymw’WfD(V’WW,WW)
Here, 'ygﬂu(D)(&w? 1) is the ~y-factor defined by
oy =2 )
GL, (D)\%:
where egL y(s,—,¢) and Lgiuw)(s, —) are e-and L-factors defined in [GJ72], and w denotes

the composmon wo N of w with the reduced norm N of GL, (D). Thus we have
ep(Vp, W, w, ) = ep(V, W, m,w, ).
Second, we consider the general case. Put
t(mq) = min{g' = 0,...,q | Ty () # D}

Then, any 7y(xy € Jy(r,)(7q) is supercuspidal. Take a positive integer p’ so that p’ > max{r +
q—t,r(m) + q—t(m)}. Then, by the first part of this proof, we have

p(8,Vp, Wy, g, w,¢) = ep(s, Vi, Wy, g, w, ).
Moreover, by using Proposition 9.5 (2) repeatedly, we can show that
(8, Virs Wos g, w,90) = ep (8, Vi —(g—1(m))s Wim)s Ty 05 ).
By tracing the above discussions conversely, the right-hand side is equal to
(8, Vit (t—q), W, m,w,9) = ep(s, V,W,m,w, ).

Thus we have the lemma. OJ



46 HIROTAKA KAKUHAMA

14.2. Global argument. In this subsection, we explain the global argument which we use in
the proof of Theorem 14.1.

Lemma 14.3. Let F be a number field, let A be the ring of its adeles, let D be a division
quaternion algebra over F, let V. be a right e-Hermitian space over D, let W be a left (—¢)-
Hermitian space over D, let I1 be an irreducible cuspidal automorphic representation of G(W)(A),
let w be a Hecke character of A* /F*, and let v be a non-trivial additive character of A/F. Then,
we have

HeD SVWW 11, Wm%//)

Proof. Consider the Witt tower {V/,}7° so that V. = V. Denote by r(II) the first occurrence
index of Il in {V,}7°,, by ¥ the theta correspondenc O(IL, W, 1)) of II, and by S the set of the
places where D, is a division algebra. Then, we have 6y (IL, V. )) is cuspidal, and we have

[Teo. (s v, W, Ty, w,, 4 ) Heml,(é’,zr(n) W My, w,,, )
v veES

- H 8 E‘ZWXWuQZ}) .va(S,K,E7ﬂ7%)

|| SLen e
LS(s,Eﬁng)L?(s) L3(1 — s, 1K wyy)
LS (s, IK wyv) L3(1 = s, S Rwxw)LF(1 - s)
=1
where L?(s) = [l,gs Ly0(s) with
Lyo(s) = HilL]F (s + 5 =, w,xv, xw, ) (1>0),
P UL e (s 5 i )T (<0
Hence we have the lemma. O

14.3. Globalization.

Lemma 14.4. Assume that D is a division algebra. Let F' be a non-Archimedean local field
of characteristic zero, let ¢’ be an additive non-trivial character of F', let D' be a division
quaternion algebra over F', let V' be another right e-Hermitian space of dimension m, and let
W' be another left (—e)-Hermitian space of dimension n. Then, there exist

a global field F and its places vy,ve such that F,, = F,F,, = F’,

a division quaternion algebra D over F such that D, = D, D,, = D', and D,, is split for
v # vy, Vg,

a left (—e)-hermitian spaces W over D such that W, = W, W,, = W’,

a right e-hermitian space V. over D such that V., =V,V, =V,

a Hecke character w of A* such that w, =w,w,, =1,

a non-trivial additive character ¢ of A/F such that yvl = %%’ﬂg = Yoz for some

aq EFX,CLQ EF’X.

For representations, we use a Henniart type globalization:

Lemma 14.5. Let F be a global field, let G be a reductive group over I, let A be a mazimal
F-split torus of the center of G, let x be a unitary character A(A)/A(F) — C*, let vy be a fized
place of F, let S be a finite set of non-Archimedean places of F such that vo & S. Suppose that an
irreducible supercuspidal representation m, of G(F,) is given for each v € S, and a compact open
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subgroup K, is given for each non-Archimedean v ¢ S. Then there is an irreducible cuspidal
automorphic representation 11 of G(A) such that

o II|4a) coincides with x,

o I, Zm, forvels,

e II, possess a non-zero K, -fized vector for v ¢ S U{vg}.

Proof. Similar to [Hen84, Appendice I]. O

14.4. Completion of the proof of Theorem 14.1. Let 7w be an irreducible representation of
G(W), and let w be a character of F*. By Lemma 14.2, and Corollary 9.6, we may assume that
m and o are irreducible supercuspidal representations. Take
o ["=F D =D,
e a (—e¢)-Hermitian space W' so that dim W’ = n, the dimension of the anisotropic kernel
of W' is 0 or 1, and 9(W') € OF,
e an e-Hermitian spacce V'’ so that dim V’ = m, the dimension of the anisotropic kernel of
V'is0or 1, and 2(V’) € OF,
e the special maximal compact subgroup Ky of G(W’) as in §5 below.
Moreover, take a global field IF, places v1, v3 of F, a non-trivial additive character ¢ : A/F — C*,
a division quaternion algebra D over F, an e-Hermitian space V over D, a (—¢)-Hermitian space W
over D as in Lemma 14.4. Let w be a character of A* /F* such that w,, =w and w,, = 1. Denote
by {V,;}32, the Witt tower containing V. Then, by Lemma 14.5, we can take an irreducible
cuspidal automorphic representation IT of G(W')(A) so that II,, = m, and IL,, possess a non-
zero Ky fixed vector. Then we have

ED(S,V,VV,T(',W,'w) = H eDv(Syzaw7H7£a%)71
vF#V]
= ED(S,V/, W/7Hv27 1a )_1

=ep(s, V), Wi, Ty, 1,4)

) p’
where p is a sufficiently large integer, and lyy; is the trivial representation of G(W{). By the
above observation, it only suffices to consider the cases where n =dimW = 0,1 and 7 = 1y .

Lemma 14.6. We denote by 1y (resp. 1w ) the trivial representation of G(V') (resp. G(W)).
Suppose that n = 0. Then we have r(ly) =0 and 0, (1w, V) = 1y.

For the rest of this subsection, we consider the case n = 1. By using the accidental isomorphism
and by a result of [GI16], we can describe the local theta correspondence in terms of L-parameters
in the case n =m = 1.

Proposition 14.7. Suppose that n = m = 1 and € = 1. Let w be a non-trivial irreducible
representation of G(W), and let ¢ be its L-parameter. Then, the representation ©y(mw, V) is
non-zero irreducible, and has L-parameter

(@@ xvxw) ® xw.
Proof. We use the accidental isomorphism:
(14.1) G(V) 2 SUg(2), and G(W) = Uz(1).
Here,

e F is the quadratic unramified extension field of F' associated with the quadratic character
Xw of FX7
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e SUg(2) is the special unitary group preserving the hermitian form
x _ _
(,)g: E? ><E2—>E:(( 1),(%))%&611/1—731?'&621/2
T2 Y2

where T; denotes the conjugate of x; with respect to E/F,
e U/z(1) is the unitary group preserving the skew-hermitian form

(,)e: EXE—>E:z,y—zay

where o € E is a non-zero trace zero element with ordg(a) = 0.

By [Ikel9, §7], the accidental isomorphisms (14.1) are compatible with the local theta correspon-
dence. We know the description of the local theta correspondence

Irr(Uk(1)) — Irr(Ug(2))
via L-parameters ([GI16, Theorem 4.4]). Therefore, we have the claim. O
By tracing the converse of the global argument in the beginning of this subsection, we obtain:

Corollary 14.8. Suppose that n = 1 and ¢ = 1. Denote by {V;}32, the Witt tower containing
V. Then we have ep(s, V,, W, 1w, 1,%¢) = 1 for sufficiently large p.

Similary, by using the accidental isomorphism, we have:

Lemma 14.9. Suppose that n =1 and ¢ = —1. Denote by {V;}52, the Witt tower containing
V. Then we have ep(s, Vp,, W, 1y, 1,4) =1 for sufficiently large p.

Hence, we complete the proof of Theorem 14.1.

15. LocAL RALLIS INNER PRODUCT FORMULA

In this section, we discuss the local analogue of the Rallis inner product formula following
[GI14], and describe the relation between o (V, W) and az(V, W).

We use the setting of §3, and we take a basis e of W as in §4. Suppose that [ =1 and 7 is an
irreducible square-integrable representation of G(W). Consider the map

PiwyQ@Wy QWy Quy T RmRmT T — C
defined by
P(¢1, P2, 3, da;v1,v2, V3, V4)

- / (o (W)8(6, 01, 0(6,v2)) - (@ (0B, 03), O(a, v3)) .
G(V)

The integral defining P converges absolutely since o is also square-integrable (Lemma 9.2). As
in [GI14, §18], we compute P in two ways. First, we have

P(p1---sPa,v1,...,04)
= delgcr (0(¢1,v1),0(¢3,v3)) - (0(d2,v2), 0(da,v4))

1 1 = 1 _
Z(_g’ F¢1®@’ gUlﬂvs) ’ Z(_g’ F¢>2®E’ gvz,m)'

- dego '

Second, as in [GI14, p.593-p.595], we have
P(¢1...,¢4,1}1,...,1}4)
042(‘/, W) 1 t

ra 1 s 2mn —-m
= W : Z(§,F¢1®$Sa§m,v3) : Z(*?F@@@,fvz,m) S2FM" - [N (R(e))| ™™
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The local functional equation of the doubling zeta integral says that

1

Z(_§7F¢l®$3a§m,v3)

1
= <C(57XVaA0a w)R(57XVaA7¢)_1’Y(S + 5,7'(' X XV, ¢)>
=1
1 _
1) .z(= Ft
Xﬂ-( 1) Z(27F¢1®$37§v1,113)'

By Theorem 14.1 and Proposition 7.2, we have
_ 1
C(Sa XV, AO, 1/1)R(57 XV, Av 1/’) 17(8 + 57 ™ XXV, 1/1)
=€(G) - INGREI™ 2D

s+3,1,9) ) _ 1
( —_— 2 w H’Y 227137;&) 1'7V(5+77

25,1, 0) 3 o X xXw, )

X{fy(anLQ,w,w) —e=1
et xw,v)! —e=—L
Moreover, we have
(10 % xw, ) = (L0 x xw, )
=7(0,0 x xw, )~
1y Jxw(=1) (e=1),
IR {m—n (e=-1).

Combining above equations and Theorem 14.1, we obtain:

Proposition 15.1. Suppose that l =1 and 7 is square integrable. Then, we have
degm
dego

= a3(V,W)wx (1) -7V (0,0 x xw, %)

where

03V 1) =5 - n(V. W) -e(G) - 2l (@) |- T

1
2 L Cr(1 - 2i)
" xv(=1)y(1 —n,xv,¥) (—e=1),

xw(=1De(5, xw,v) (—e=-1).

We write down the constant as(V, W) in the minimal cases.

Proposition 15.2. (1) In the case e = —1 and V is anisotropic, we have

as(V, W) = (~1)" - xv (=1) - e, xv-¥).

(2) In the case € =1 and either V. or W is anisotropic, we have

1

3 xw(—1)- 6(%7XW7"/’)-

Proof. For the case m = 0, one can verify this proposition directly. Otherwise, we obtain the
claim by Proposition 10.3. ]

Oég(v, W) =
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16. PLANCHEREL MEASURES

In this section, we recall some fundamental properties of the Plancherel measure, and we
discuss how the Plancherel measure behaves under the theta correspondence.

16.1. Definition. Let G be a reductive group over F', let P be a parabolic subgroup of G, let
M be a Levi subgroup of P, and let U be the unipotent radical of P. We denote by X*(M) the
group of the algebraic characters of M, and by E the vector space X*(M) @ C. For a finite
length representation 7 of G(V') and for

n=Y xi®si € B

=1

we denote by m ® 7 the representation given by

[71—®77 H‘Xt )|

for g € G(V). Take a maxmal compact subgroup K of G so that G = PK. Then for f € Ind$(n),
we define f,, € Ind%(r @ 1) by

n(muk) H Ixi(m)|* f (muk)

for m € M,u € U,k € K. Denote by P the opposite parabolic subgroup of P, and by U the
unipotent radical of P. Waldspurger proved that for f € Indg 7 the integral

Uy plr @ @) £l / £, (1g)

converges absolutely when a is contained in a certain open subset of £, and it admits a meromor-
phic continuation to the whole complex plain C [Wal03]. Here, the measure du is the normalized
Haar measure as in §6.2. Therefore we have an intertwining operator

Tpyp(r © 1) : Ind§(x ® 1) = dS(x @ 1)

for almost all n € EY. Then, there exists a rational function p(n, ) of n satisfying

Jpp(m @) o Jpp(r @n) = u(n,m) .

It is called the Plancherel measure.

Lemma 16.1. Let S be a maximal F-split torus contained in the center of M. We denote by
Ag(P) C X*(S) the set of roots of P with respect to S. For a € Ag(P), we denote by S, the
kernel of a in S, and by G, the centralizer of S, in G. Then, for an irreducible representation
7 of M and n € EY, we have

H Ma(nﬂf

a€A(P)
where o (n, ™) is the Plancherel measure defined by using (M, PN G,,G,) instead of (M, P,G).

Proof. [Wal03, IV (5)]. O

Let W’ C W be (—e¢)-Hermitian spaces, and let X, X* be totally isotropic subspaces of W so
that W = X + W’ + X* and X + X* is the orthogonal complement of W’. Now we consider
the case where G = G(W), and P = P(X). The restriction to X + W’ gives the identification
M = GL(X) x G(W’). Then, for a finite length representation «’ of G(W') and a finite length
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representation 7 of GL(X), we abbreviate u(N ® s, 7' K 7) to pu(s, 7' X 7). Here, N denotes the
reduced norm of End(X).

16.2. Global Property. In this subsection, we recall the global property of the Plancherel
measure for inner forms of general linear group and quaternionic unitary groups. Let F be a
global field, and let D’ be a division central algebra over F. Denote by A the ring of adeles of F.
We first discuss it for GL, (D') x GL4, (D).

Lemma 16.2. Let D' = D' @ D' be a vector space over D'. Then, M(A) = GLy, (D)) x
GLy, (D)) is a Levi subgroup of a mazimal parabolic subgroup of GLy(D'). Then, for an irreducible
cuspidal representation 11K Z of M(A) and for n = (s1,s2) € C*> = E¢, we have
LS(]._Sl“FSQ,HgEV) LS(1+81—82,HV&E)

LS(Sl _SQ,HV&E) LS(_Sl—‘_SQ’H&EV) '

H po(n, Iy M Z,) =
veS
Here, S is a finite set of places of F such that
e S contain all Archimedean places,
o I is split forv & S, and
o II,, X, are unramified for v & S,
and we denote
L(s, MR E) = [[ L™(s,11, x E,)
vgS
where the right-hand side is the infinite product of the Rankin-Selberg L-factors (see [JPSS83]).

Second, we discuss it for quaternionic unitary groups.

Lemma 16.3. Assume that D' is a division quaternion algebra over F. Let W be a left (—e¢)-
Hermitian space over D, let X, X™ be two left IV -vector spaces so that dim X = dim X* = r/,
and let W = X + W + X* a (—e€)-Hermitian space equipped with the (—e)-Hermitian form
() X+ W+ X)) x (X +W+X") =D

defined by

(w1, w1,91), (T2, w2, y2)) = 1 - Jp 'ty§ + (w1, wa) — ey1 - Sy 'th;-
Here, we recall that J. is the anti-diagonal matriz defined in §4. Then, M = GL,.(D') x G(W)
is a Levi subgroup of a mazimal parabolic subgroup of G(W'). Then, for an irreducible cuspidal
automorphic representation IIKE of M(A), we have
LS(1-5IIKEY) L1+ s,1IVRE)

v aH'UIEE'U - — : —
}};M (s ) L3(s,IIV K =) L3 (—s,IIKEY)

L3(1—2s,2V,A%) L9(1+2s,2,A%)
L5(25,5,A2) L5(—25,2V,A2) "
Here, S is a finite set of places of F such that

e S contain all Archimedean places,
o D! is split forv & S, and
o I, X, are unramified for v & S,

and we denote

X

L8(s,2Y,A%) = [ L(s,E0, A?)
vgS
where the right-hand side is an infinite product of local exterior-square L-factor.
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16.3. Plancherel measures for inner forms of general linear groups. In this subsection,
we denote by D’ a central division algebra over F. Let ¢; and ¢y be positive integers, and let
t = t1 +t2. We consider the case where M = GLy, (D') X GL4, (D’) and G = GL(D’). Then, we
have an identification C? = EY by

(m,m2) = N1 @m1 + N @12
where N; denotes the reduced norm of GLy, (D’) for ¢ = 1,2 respectively.

Lemma 16.4. Let 7; be irreducible representations of GLy,(D') for i = 1,2. For n € C? and
z € C, we have

p(n, 11 W 1) = p(n —(2,2), 71 M)

Proof. Let P be a F-rational parabolic subgroup of GL;(D’) having the Levi subgroup M. Then,
we have

Jpp(M ) @n) @ N7 = Jpp((n W) @ (n—(2,2))).
Hence we have the lemma. O

Lemma 16.5. Let uy,...,u; be positive integers for i = 1,...,k so that u; + -+ + up = tq,
and p1, ..., pr be irreducible representations of GLy, (D'),...,GLy, (D') respectively. Moreover,

let Py be an F-rational parabolic subgroup of GLy, (D') having the Levi subgroup GL,, (D’) x

o+ x GLy, (D). Then, for an irreducible constituent T of IndglL“(D,) p1 XK pi, and for an

irreducible representation 7o of GL4,(D'), we have
k

p(n, 7 ®75) = [ i 0 @ 72)
i=1

forn € EY. Heren; denotes the image of n by the map
X*(M)®C — X*(GL,,(D') x GLy,(D"))® C
induced by the restriction fori=1,..., k.

Proof. Let S’ be the center of (GLy, (D') X -+ GLy, (D")) x GL¢,(D’), and let S be the center
of GLy, (D') x GLy,(D’). Then, we have

Ag(P) = Ag(P)\ Ag(Pr x GLy, (D)),

and by Lemma 16.1, we have

[T tatnn®7)

CLEAs(P)

T s (o1 R Roy) Br)
CLEAs(P)
k

H/J,(’I]Z‘,UZ‘ X TQ).

i=1

w(n, 71 X 73)

Hence we have the lemma. O
In particular, we obtain a formula of the Plancherel measure.

Proposition 16.6. Let 7; be an irreducible representation of GLy, (D) for i = 1,2. Then we
have

p(n, 1 W 1) = y(s1 — 52,71 W7, ) y(s2 — 51,70 W7, 9))
forn = (s1,s2) € C.
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Proof. We can embed 77 into

In dGLtl (D)

0'11|]\711|a1 XX 01 |N1>\1 |a,\1

where Bj is a parabolic subgroup of GLy, (D), N11, Nia, ... denote the reduced norms, o11|Nq1|**X
Moy, [ N1y, |*1 is a representation of the Levi subgroup GLy,, (D) X+ - - x GLy,, | (D) with com-

plex numbers aq,...,ay, and irreducible square integrable representations oi1,...,01,. Simi-
larly, we can embed 75 into
GLt (D b b
In d 2 0'21|N21‘ 1&--~&02,\2|NQ,\2| A2,

Then we have
p(n, 71 R 73) Hu (n+ (ai, by), 015 K oa;)

By [Zel80, Theorem 9.3], an irreducible square integrable representation is generic. Thus, by
[Sha90], we have
(0 + (ai, bj), 01 W aa;) = y(s1 + ai — 52 — bj, 01, K oy, 1)
X Y(s2 +b; — 51— a;,07; R o2j,1)
= (51 — 82,014 N1s|* B (025 Nay[*) ", )
)Y B g Noj |7, D).

x y(s2 — s1, (01| N1;
Hence, by the multiplicativity of the y-factor, we have
w(n, 7 R 1) = y(s1 — 50,71 W7y, 00)y(s52 — 51,7 K 79,9).
|
16.4. The behavior of the Plancherel measure under the theta correspondence. Now
we consider the Plancherel measures for quaternionic unitary groups. Let V' be an m-dimensional

right e-Hermitian space, and let W be an n-dimensional left (—¢)-Hermitian space. Note that,
in this section, we allow the case where [ # 1.

Proposition 16.7. Let m be an irreducible representation of G(W), let o := 0y (m; V) and let T
be an irreducible representation of GL(X). Then we have

p(s, mM¥1xy) l—1 — v —
M(Sao—IXTXW) - (5 » Ty w) ( 2 y T ﬂﬁ)
The remaining part of this subsection is devoted to the proof of Proposition 16.7. Put
u(s,m R rxy) Zfl -1 , —_
. X — /
D(S,VV,‘/, 771-77—) M(S7U|XTXW>7(S y Ty ¢) ( ) y T ad})

We will use global argument to prove Proposition 16.7, so that we allow D to be split in the
rest of this section. We want to show up(W,V, X, 7,7) =1 for all D,W,V, X, 7, 7.

Lemma 16.8. Let {W;};>0 be a Witt tower consisting of (—e)-Hermitian spaces and let {V;};>0
be a Witt tower consisting of e-Hermitian spaces. We suppose that V =V, and W = W,.

(1) If D is split, then we have
up(s;W,V, X, m,7) = 1.

G(W)

(2) Suppose that m is a subrepresentation of Indp'" ' ' K ps,xv where t' is an integer so

that max{t(m),r} <t <t, sp € C, 7’ is an zrreduczble representation of G(Wy ), and p
is an irreducible supercuspidal representation of GLy—p (D). Then, we have

UD(S;V[/;V:X,TF,’T) = ’LLD(S; Wt'7‘/7“'7X77T/7T)
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where v’ =1 — (t —1').
et X', e two subspaces o so tha = X'+ X". Suppose that T is an irre-
3) Let X', X" be t b X that X = X'+ X". S that T i ;

ducible subquotient of induced representation Indg%)(()f)) 7' R 7" where 7/ (resp. ') is an

irreducible representation of GL(X') (resp. GL(X")). Then, we have
UD(S; W Vv XJ T, T) = UD(S, VV7 ‘/7 Xl7 T, TI)uD(S; M/a ‘/7 XH? T, T”)'
(4) If r(w) denotes the first occurrence index, then we have

UD(S; w, V’I"(Tr)vX?Tr)T) = UD(S; W, ‘/7X77Ta7—)'

Proof. The claim (1) is proved in [GI14, Theorrem 12.1]. Then, we prove (2). By [GI14, Propo-
sition B.3|, we have

p(s, Txv @ m) = p((s,s0), Txv B pxv)u((s, —so0), 7xv B p¥xv )u(s, 7 &7’
= ((s,50), 7 W p)pu((s, —s0), 7 K p¥)pu(s, 7 K& 7").

Hence, by Corollary 9.6 (with replacing V' and W, ¢ and 7), we have

M(S,TXV & ,/T) _ :U’(SaTXV & ,/Tl)

u(s, Txw @0a) (s, Txw ®0’)’

Thus, we have (2). We prove (3) in the similar way by using [GI14, Lemma B.2]. Finally, we

prove (4). Put t™ = r — r(w). Then, by using the local functional equation of the doubling
~-factor ([Kak20b, Theorem 5.7(4)]), we have

u(s,o Brxw) = p(s, NP Brxw) - uls, IN|72 7 RBryw) - u(s, o’ Brxw)
= (s, INIFHT By, 9) - (s, IN| 72 Rrxw, ¥)

<A (s, [N~ B xw, ) -y (s, [N |5 Riryw, 9)
x p(s, 0’ XWrxyw)
_ [+ L +i—3,m7xw,¥)
[0 (s + 5 +i+ L, mVxw, 0)
X [L(S, JI X TXW)
_ ’7(8 + H_TlvTvXWa ZZJ) ’)/(S - loglvTvXWﬂp)

’7(8+ lOTJrlvT\/XWanZJ) 7(5_ l;17TvXWa¢)

_ (s =g mxw 9) (s — B T )

7(75 - %7TXW7E) 7(8 - FTlaTVXW7w)
_ ’Y(_S - log_lvTXW7w) ’Y(S - l02_177-VXW7E)

2 . 2 — (s, 0’ Brxw).
’7(_8 - lTl7TXW71/}) ’Y(S - lTlaTVXW7¢)

’ - Z.,TVXW7¢))

- ia TvXWv ¢)

o

) Hi:l v(s—
2t

[Tz (s =

N[~ (D]~

_|_
+

ISIIVC I

(s, o’ B rxw)

~u(s, o’ Wrxw)
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Hence we have

p(s, R TxY) -1 -1 -1 =
WV, X =0 - ~¥7 - - e
UD(S, y Vy 77T77—) /JJ(57O'®TXW) (S 2 7T7¢) ’Y( S 9 , T a/ll))
 pls,0' Bryw) (s, Bryw)
B H S,U‘ZTXW) ,LL(S,J/&TXW)
-1 _ -1 — _
X’Y(S_T/T?w) 17(_8_ 2 vTv,w) !

(s, mXTxy) -1 S -1y
_M(S7U/|Z|TXW) (S aTaqu) 7( S 2 T )
:UD(S;M/,V,«(ﬂ-),X77T,T).

Thus we have (4). O

Now we prove Proposition 16.7. By Corollary 9.6 and Lemma 16.8 (2)(3), we may assume
that 7, o, and 7 are supercuspidal. Take

a global field F and two distinct places vq,vs of F so that F,, =F,, = F|,

a non-trivial additive character 1 of the ring of adeles A of F,

a division quaternion algebra ID over F so that D,, = D,, = D and D, is split for all
v # vy, Vg,

an e-Hermitian space V over D so that V,, =V,, =V,

a Witt tower {V,}22, containing V,

a —e-Hermitian space W over D so that W,, = W,, =W,

an irreducible cuspidal automorphic representation IT of G(W)(A) so that II,, = ,

a vector space X over D so that dimp X = dimp X,

an irreducible cuspidal automorphic representation = of GL(X)(A) so that =,, = T,

a finite subset S of places so that vy, vs € S, all Archimedean places are contained in S
and II,, =, are unramified for all places v € S.

Let r(II) be the first occurrence index of the theta correspondence of II to the Witt tower {V;}$2,.
Then, @ﬂ (IT, V,.ry) is a non-zero irreducible cuspidal automorphic representation. We denote
by 7’ (resp. 7’) the representation II,, (resp. Z,,). Hence we have
(16.1) up(s;V,W, X, 7, 7) -up(s; V,W, X, 7', 7')
- U]D)v1 (sa Vvl ) Wm B X’Ul 3 H’U1 5 Evl ) ‘ u]D),U2 (8; sz 5 W'UQ 5 sz B Hv2 5 Evg)
= up,, (5; (VT(H))7)1 ) W1)1 ) XU1 ) HU1 ’ EUl ) - Up,, (5; (VT(H))UQ ) sz ) X7)2a HU2 ) 5712)
X H UDU(S;(VT(H))’U?WU7XU7H’U75’U)

vFVL,V2

=1

Applying (16.1) when IT and Z are chosen so that 7/ = 7 and 7/ = 7, we have up (s; V, W, X, 7, 7)% =
1. Hence up(s; V,W, X, 7, 7) = £1. It remains to determine the signature. By Lemma 16.8 (4),
we may assume that o is also supercuspidal. Moreover, we may assume that JL(7) is also an
irreducible supercuspidal representation of GLa gim x (F'). Then, the Godement-Jacquet L-factor
of 7 is 1. First, we have

w0, 7 ®7xy) >0, and p(0,0 K7xw) > 0.
On the other hand, putting
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with ay(7) € C*, X € Z, we have

1 _
6(_8 + 7a7—\/7’[/)) = aw(T)_l : qua

2
and we have
-1 (-1
7(7?3 T, 710)7(7 ) ) 7_\/7 1/))
= ay(T)M? - L5 ™) G I L)
L(-5L,7) L)
=g >0.

Thus, the signature of up(s; V, W, X, 7, 7) turns out to be 1. This completes the proof of Propo-
sition 16.7.

17. ACCIDENTAL ISOMORPHIMS

In this section, we explain accidental isomorphisms for quaternionic (similitude) unitary
groups, and we prove an explicit formula of the Plancherel measure for some irreducible su-
percuspidal representations. Let F be a global field, let D be a division quaternion algebra over
F, and V be an anisotropic e-Hermitian spaces over . Put

y _JGV) m=1,
G(V)_{é(V) m=2,3.

Here G(V) denotes the similitude group of V. Then it is known that G/(V) is isomorphic to a
certain more familiar group.

e Suppose first that ¢ = —1 and m = 1. Let V' be a two-dimensional quadratic space such
that x1v» = xv. Then we have G'(V) = SO(V).

e Suppose that ¢ = —1 and m = 2. Let E be a quadratic extension field of IF such that
XE = Xv. Then, G'(V) is an inner form of the quasi-split similitude special orthogonal
group GSO(4, xg) which is isomorphic to GLy(E)/E!. Thus, we have G'(V) = B*/E!
for some division quaternion algebra B over E.

e Finally, suppose that ¢ = —1 and m = 3. Then G'(V) is an inner form of the split
similitude special orthogonal group GSOg which is isomorphic to GLy x GL{* /{(z,272) |
z € GL1}. Thus, we have G'(V) 2 D) xF* /{(z,272) | z € F*} for some central division
algebra D4 with [Dy : F] = 16.

Therefore, we can apply the Jacquet-Langlands correspondence to the study of irreducible rep-
resentations of G'(V): let ¥ be an irreducible cuspidal automorphic representation of G'(V)(A).

e Suppose that € = 1 and m = 1. Then we can regard ¥ as a representation of D!(A),
and we define the Jacquet-Langlands correspondence representation JL(X) of SLo(A) =
Spy(A).

e Suppose that € = —1 and m = 1. Then, by identification G'(V) = SO(V’) as above, we
can regard X as a representation of SO(V’), and we denote it by JL(X).

e Suppose that ¢ = —1 and m = 2,3. Then, we can define a representation JL(X) of
GSO(4, xg)(A) or GSOg(A) respectively by the isomorphisms explained above.

On the other hand, let F' be a local field of characteristic 0, let D be the division quaternion
algebra over F', and let V be an e-Hermitian space over D. We define G'(V) as in the global case.
Then, for irreducible representation o of G'(V'), we define JL(o) in the similar way by using the
local Jacquet-Langlands correspondence. In this section, we use these accidental isomorphisms
to analyze the Plancherel measure.
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Proposition 17.1. Let F be a local field, let D be a division quaternion algebra over F, let V
be an m-dimensional e-Hermitian space. Denote by Vi be the anisotropic kernel of V', and write
V =X+ Vo + X* where X, X* are totally isotropic subspace so that X + X* is the orthogonal
complement of Vy. For an irreducible representation o of G(Vy) and an irreducible supercuspidal
representation T of GL(X), there is a rational function Y(s) such that all zeros of Y(s) lie in
{Rs <0} and

T(s) (28, JL(7), A%, 9)
T(1+s) y(1+2s,JL(7), A%, 9)
In particular, if JL(7T) is supercuspidal and the image of the L-parameter ¢, : SLo(C) x W —

GLo,(C) is contained in Sps,.(C), then u(s,c™®7) has at least one pole in Rq. Here, (s, JL(T), A2, 1)
is the Langlands-Shahidi v-factor ([Sha90]).

(17.1) (s, o ®71) =

Proof. Take

e a supercuspidal representation o’ of G'(Vp) such that o’|g ;) D o,

a global field F and places vy, v2 of F such that F,, =F,, = F,

a division quaternion algebra D over F such that D,, = D,, = D, and for all place

v # vy, v, D, is split,

e an anisotropic e-Hermitian space Vo such that Vg, = Vg,, = Vo, and for all place

v # vy, v, G(Vy) is quasi-split,

a non-Archimedean place vs # v, va,

an irreducible cuspidal automorphic representation ¥ of G'(Vy)(A) such that ¥, =

Yy, =0’ and ¥, is supercuspidal,

e a vector spaces X, X* over D such that dimp X = dimp X* = dimp X,

e a cuspidal representation Z of GL(X)(A) such that =,, = E,, = 7 and Z,, is supercus-
pidal.

Then JL(X) and JL(Z) are cuspidal, hence globally generic. Hence,
(5,0 B )2 = (s, 0" B 7)?
= [[ mGzme)™!

v#V1,02

I (s ILE)RILE)
VF£V1,Vs

= u(s, JL(o") B JL(7))2.

Moreover, by the positivity,
wu(s, o X 1) = p(s,JL(c") ®IL(T))
(s, JL(0") RIL(7),v)
(1 + s, JL(0") K IL(T),)
(25, JL(0") R IL(T - xw ), A%, )
X .
~v(1 + 2s,JL(c") K JL(7), A%, )

Since V; is anisotropic, JL(o) is a discrete series representation. Moreover, JL(7) is also a discrete
series representation. Hence, by [Sha90, Proposition 7.2], v(s, JL(¢") K JL(7), std, ¢) has no zero
in {§s < 0}. Hence, putting

Y (s) := (s, JL(c") R JL(T), std, 1),
we have the equation (17.1).



58 HIROTAKA KAKUHAMA

Now, we suppose that JL(7) is supercupidal and the image of the L-parameter ¢, : SLa(C) x
Wr — GL4,-(C) is contained in Sp,,.(C). Then, by a result of Jiang-Nien-Qin [JNQ10], we can
conclude that (s, 7,A% 1) has a pole at s = 1. Let Fr € Wy be a Frobenius element. Then,
by [GR10, Lemma3], ¢, (Fr) has finite order, hence, [A% o ¢,](Fr) is a unitary operator. Thus all
poles of L(s,7,A?) lie in {Rs = 0}, and we can conclude that (s, 7, A2 1) has a pole at s = 1,
and all poles of v(s, 7, A%,9) lie in {Rs = 1}. Hence, the ratio

¥(2s, JL(7), A, 9)
y(1 4 2s,JL(7), A%, %)

has a pole at s = % Put
P ={so > % | Y(s) has a pole at s = so}.

If P = @, then u(s,o X 7) has a pole at s = 3 since all zeros of Y(s) lie in {Rs < 0}. If P # &,
then the ratio Y(s)/Y(1 4+ s) has a pole at s = sup P. Hence we have the proposition. O

Finally, we note here that there exists at least one irreducible supercuspidal representation
7 of GL,(D) such that the Jacquet-Langlands correspondence JL(7) has an L-parameter whose
image is contained in Sp,,.(C) x W (for a construction, see [Mie20, §4]).

18. INDUCTION ARGUMENT

In this section, we prove the compatibility of ag(V, W) with the induction on the dimensions
of VW with [ = 1. Now, we explain more precisely. Let V' be an m-dimensional right e-
Hermitian space, and let W be an n-dimensional left (—e)-Hermitian space. We assume that
l =2n —2m — e = 1. Note that we allow V and W to be 0. Consider

e an e-Hermitian space V' containing V' and its totally isotropic subspaces X, X* so that
dimp X =dimp X* =t, X +V + X* = V' and X + X* is the orthogonal complement
of V,

e a (—e¢)-Hermitian space W’ containing W and its totally isotropic subspaces Y, Y™* so that
dimpY =dimpY* =6 Y +W +Y* =W’ and Y + Y* is the orthogonal complement
of W.

We put n’ = n + 2t and m’ = m + 2t. Then, we will prove
(18.1) as(V/,W') = as(V, W)

in this section. First, we prove (18.1) with some hypotheses, which will be proved in the latter
part of this section. Let @ (resp. P) be the maximal parabolic subgroup of G(V’) (resp. G(W'))
preserving X (resp. Y'). Then, we can identify the Levi subgroup Lg (resp. Mp) of Q (resp. P)
with GL(X) x G(V) (resp. GL(Y) x G(W)).

Proposition 18.1. Suppose that there are sqg > 0, an irreducible supercuspidal representation
7w of G(W), an irreducible supercuspidal representation o of G(V'), and a non-trivial irreducible
supercuspidal representation 7 of GL(X) = GL(Y) so that

o 0 =0y(m,V),

° Indg(W/) m X 75, xv @5 reducible, and

° Indg(vl) o X 75, xw 15 reducible.

W) v

Then, IndIGD 7 X 15, xv and Indf2 o X 75, xw have unique irreducible square integrable

representations ' and o' respectively, and o' coincides with O,(x',V'). Moreover, we have
Oég(V/, W/) = 043(V, W)
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We proof this proposition in the former part of this section. Suppose that a quadraple
(so,m,0,7) as in the proposition is given. By Lemma 9.2 and Proposition 9.5, the represen-

tation Oy (7', V') is the unique square-integrable irreducible subquotient of Indg(vl) o X 15, XW s
which is nothing other than o’/. To prove the last assertion, we use the following proposition,
which is due to a result of Heiermann [Hei04].

Proposition 18.2. Let so > 0, let w be an irreducible supercuspidal representation of G(W')
and let T be a supercuspidal representation of GLi(D). Suppose that u(s,m R 1xy) has a pole at
s = sg. Then we have the following:

(1) The induced representation Indg(w/) T, xv s reducible and it has a unique irreducible
square integrable constituent ©'. Moreover we have,

deg " =2tlog q - deg mdeg T - Resg—s, pu(s,m X 7xv)
|KMP|

K|

Here, v(G(W')/P) is the constant defined by

V(GW')/P) = /U 5p(7) du

x y(G(W')/P)- |Up 0 Ew| - [Up 0 K.

where U is the unipotent radical of the opposite parabolic subgroup P of P, and f° is the

oL
unique Ky -invariant section of the representation Indg(W ) 07 induced by the square
root of the modular character 6p so that f°(1) = 1.

(2) The induced representation Indg(v o ® Tso XV 1S also reducible, and it has a unique
irreducible square integrable constituent o’. Moreover we have

deg o’ =2tlogq - degodegT - Ress—s, p(s,0 X mxw)

K
< ACV)/Q) - u'{cw

Here, v(G(V')/Q) is the constant defined similarly as in (1).

NUg N Ky | - |Ug N Kyl

Proof. Similar to [GI14, Proposition 20.4]. a

Now, take 7 as in Proposition 18.4, and put o = 6(w, V). Then, by Proposition 18.2, we have

degn’ _ degm  Resi=, p(s,m®xyv) A(GW)/P) | Kawn)| K|
dego’ dego Rese—s, p(s,0 M xw) (G(V)/Q) |Kewnl|lKL,|
_ degm -1 I—1 s =
_dega ’7(80 2 7|| ﬂ/’)’Y( S0 2 7|| a'l;[})
|Up N K| - [Up N Ky | . |B+/||BJJ\F4P|
Uq N Kvi| - [Ug N Kvi| By |IBy,
Hocs.. [ Xa N Kw s Xo N B~

[ses,..@Xs N Ky - Xg N By~

Here, we denote by BT by the pro-unipotent radical of B, by X cq(P) (rgsp. Yred @)) the set of
positive reduced root with respect to the opposite parabolic subgroup P (resp. Q) of P (resp.

@), and by X, (resp. Xg3) the root subrgroup associated with a € Eeq(P) (resp. 8 € Zrea(Q))-
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Lemma 18.3. We have

BEAIBTL]
By 1B,
Proof. Since |BJJ(/IP| = |B;§,HB€LT(D)| and |BZFQ = |B‘J;\|BgLT(D)|, we have
BB | BBy

1B IBL, | 1By 1By
{q(n/z—n2)—(7n/2—'m'—m2+m)—é(a;/—a/v) (—6 — 1)’

q(n'27n'7n2+n)7(m'27m2)+%(a;v,7(12,‘/) (76 _ 71)
where
, 0  (xw : unramified)
aW = .
—1 (xw : ramified).
One can show that both coincide with ¢?!. Hence we have the lemma. O

Moreover, we have

Haezred(ﬁ) [(Xo N Kw:: Xo N B?/_V/}_l
Hﬂez,ed@) [Xs N Ky : XN B!

—2(ng—mo)t

_ q7(1+5)t7

and

|UPQKW/| . ‘UipﬂKWw -

il —2(nt+3t(t—ec)) .q2(mt+%t(t+e))
[Uo N Ky/| - |Ug N Kyl

— q—2(n—m)+2et
_ qf(lfe)t.
Hence we have
degn’ degm -1 -1 , —
dego’ - dng : 7(50 - 2 7T7¢)7(_80 - 2 , T 7¢)
_degm

- dego ' ’Y(SOaTa w)')/(_s(%’r\/)E)

since [ = 1. Thus we have Proposition 18.1.
Now, we prove the existence of the quadruple (sg, 7,0, 7) as in Proposition 18.1 when either
V or W is anisotropic.

Proposition 18.4. Suppose thatV is anisotropic. Then, there exists an irreducible supercuspidal
representation m of G(W) such that ©y (7, V) # 0.

Proof. We use the following see-saw diagram to prove:

G(VO) G(W) x G(W) .

>

G(V) x G(V) AG(W)
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More precisely, for an irreducible representation o of G(V'), we have
@¢(0’, W) #0< HomAg(W)(@¢(a, W) ® @w((]’, W)v, lw) #0
& o X oV appears as a quotient of Oy (1yy, VD)|G(V)XGW).

In the cases where W is anisotropic, the proposition is clear by the above observation. Then we
suppose that W is isotropic. This only occurs in the case where e = —1. Thus we have yy = 1.
Hence, we have the isomorphism

Ry :1Y(s,1) = S(G(V))
by [Rsfsl(9) = fs(u(g,1)) for fs € IV (s,1) and g € G(V).
Lemma 18.5. For u € U(V%) there is a unique element g, € G(V) such that 1(g,,1) €
P(V®)7u for some p € P(V®). Moreover, u s g, gives a homeomorphism

UVA) = G(V)\ {1}

By this lemma, if we take a non-zero function ¢ € S(G(V')) so that supp(y) Z 1 and ¢(g) > 0
for all g € G(V), then the integral defining M (s, 1)(R;'¢) converges and M (s, 1)(R;'p) # 0 for
all s € C. On the other hand, if we denote by W; the i-dimensional (—e¢)-Hermitian space with
xw; = 1 and by [; the integer 2¢ — 2m — €, then we have

li
®¢(1W1’VD) = kerM(7§a 1)

for i =0,...,n—1 by [Yamll, Theorems 1.3, 1.4]. Thus, we have proved that

n—1

> R, 2041w, V7)) S S(G(V)).

i=0
Hence, there is an irreducible representation o of G(V) such that nt(c) > n and n~ (o) >
n + 1. Since we have assumed ! = 1, the conservation relation (Proposition 9.3) says that
nt(o) + n (o) = 2n + 1. Thus, we have n*(c) = n, and we have the lemma by putting
T = 0Oy(co,W). O

Proposition 18.6. Suppose that W is anisotropic and V is isotropic. Then, there is an irre-
ducible representation w of G(W) such that 0y (mw, V) is non-zero supercuspidal.

Proof. The situation in this proposition occurs only in the case where ¢ = 1, dimW = 3,
dimV =2 and xyw = xyv = 1. Then, as in §17, we have the accidental isomorphism

GW) = D x F* [{(a,a®) | a € F*}

where Dy is a central division algebra of F' so that [D4 : F] = 16. Now, we denote by m an
irreducible representation of D} obtained by as follows: let 7 be an irreducible supercuspidal
representation of GL4(F') so that the image of its L-parameter is contained in Sp,(C) x Wp
(see [Mie20, §4]). Then we denote by my the irreducible representation of D} associated with
m by the Jacquet-Langlands correspondence. Since the central character of g is trivial, we
have the irreducible representation mo X 1 of D} x F*/{(a,a™2) | a € F*}. We may regard
it as a representation of G (W) by the accidental isomorphism. We denote by 7 an irreducible
component of the restriction of m9X1 to G(W). Then, the square exterior y-factor (s, ¢, A%, 1)
has a pole at s = 1 (see [JNQ10]). Hence we have ©y(m, V) # 0 (see [GT14, Theorem 6.1}, and
[GT14, Proposition 3.3]). Moreover, since 7 # 1, we have m(w) > 0. This forces that m(w) = 2,
and 0y (m, V) is supercuspidal. Hence we have the proposition. O

Corollary 18.7. There exist (sg, ™, 0,T) as in Proposition 18.1 when either V or W is anisotropic.
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Proof. Suppose first that V' is anisotropic. Take m as Proposition 18.4, and put o = 8y (7, V).
Moreover, take (7, s0) as the latter part of Proposition 17.1. Since JL(7) is an irreducible super-
cuspidal represetation of GLo,.(F'), the Godement-Jaquet L-function L(s, ) is 1. Hence the poles
of u(s, 71X 7xy) is equal to that of u(s,oc K 7yw) by Proposition 16.7. Therefore, u(s,o X 7xw )
has a pole at s = sg. Hence, the quadruple (so, 7,0, 7) satisfies the assumption of Proposition
18.1.

Then, suppose that W is anisotropic and V is isotropic. Take 7 as in Proposition 18.6, and
put o = 6y (7, V). Moreover, take 7 as an irreducible supercuspidal representation of GL,.(D) so
that JL(7) is a symplectic non-zero supercuspidal representation of GLa,(F') (see [Mie20, §4]).
Then, by Proposition 17.1, u(s, 7 X 7xy) has a pole at a positive real number sg. Hence, the
quadraple (sg, 7, 0, 7T) satisfies the assumption 18.1. Hence we have the corollary. g

Corollary 18.7 completes the proof of (18.1).

19. DETERMINATION OF a1 AND s

In this section, we complete the formulas of a; (W) and as(V, W) even when both V and W
are isotropic. Let V' be an m-dimensional right e-Hermitian space, and let W be an n-dimensional
left (—e)-Hermitian space. We assume that 2n — 2m — e = 1. Take a basis ¢ = (ey,...,e,) for
W. Note that in this section, we do not suppose that R(e) is of the form (4.1). First, we have:

Theorem 19.1.

2np+n(n—13) CF

2 )P -
ar(V.W) = |2 o)l I{ FQZ
~ 2(71)717(1 7n7XV7¢)716(§7XVa7/}) (76: ]-)a
1 (—e=-1).
Proof. We note first that there is at least one irreducible square irreducible integrable represen-
tation 7 of G(W) such that ©y (7, V) # 0 (this has been proved in §18 by replacing V' with V).
Then, comparing the formula of as(V, W) of Proposition 15.1 with its definition in Theorem
11.1, we obtain

n—1

1 2np—n(n—13) F 21
Z. . 92 2 o
L aa(V.W) - e(G) -2l e I o525

xv(=D)y(1=n,xv,¥) (—e=1),
w(=De(3,xw,9)  (~e=-1)
— {( Dxv(=De(3,xv,9) (—e=1),
1

X

( ) (27XW31/}) (_ :_1)

Hence, we have the claim. O

Suppose that —e = —1. We denote by W* a (—¢)-Hermitian space so that dim W* = n and
W) possesses a basis e with R(e*)) € GL,(Op). Then, by Theorem 19.1, we have:

Corollary 19.2.
az(V,W) = [N(R(e))[” - ca(V, W").

Proof. Since |[N(R(e™)| = 1, the claim follows from Theorem 19.1. O

/
On the other hand, we may identify W"" with W by identifying ¢} with egu) fori=1,...,2n.
Then we can compare ZW" with ZW:
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Lemma 19.3. For ¢,¢' € S(V @ W) = S(V @ W), we have
V(¢.¢") =T (8, 9).
Proof. By writing down the definitions, we have the equation. O

Therefore, we have

(W) _ €V (4,4
a1 (Wu) SW(¢7 ¢I)

(VW)
az(V, W)
=[N (R(e)[™"-
Thus, we have a general formula of oy (W):
Proposition 19.4. In the case —e = —1, we have

ar (W) = |22 . N(R(e))| 7 - ¢~ CLEIIE1-13D).. H(l + ¢~ @),
i=1

Proof. We already have a formula of a; (W) either when ng = 0 or ng = 1 and xy is unramified
(Proposition 7.6). Hence, we have the proposition by Lemma 19.3. ]

20. FORMAL DEGREE CONJECTURE FOR THE NON-SPLIT INNER FORMS OF Sp,, GSp,

The Langlands conjecture for the non-split inner forms of GSp, and Sp, has been established
by Gan-Tantono [GT14] and Choiy [Chol7]. Thus, the refined formal degree conjecture for
these groups can be stated unconditionally. In this section, we prove the refined formal degree
conjecture for the non-split inner forms of Sp, and GSp, as an application of Theorem 11.1. We
denote by G1,1, Hi,1, and H3( the isometry groups of

e the two dimensional Hermitian space W with xyw = 1,
e the two dimensional skew-Hermitian space W with xw = 1,
e the three dimensional skew-Hermitian space W with ypw =1

respectively. We also denote by él,l, I:Tl,l, and H;g,o their similitude groups respectively. Note
that in this section we regard H; 1, H3 ¢ as inner forms of quasi-split special orthogonal groups
SO3,2 and SOg3 3 (see Remark 3.1). In this section, we assume that G is one of Gy 1, Hy 1, Hs,0, and

we assume that G is the corresponding similitude group. We denote by p : G — G the projection
of [Lab85, Theorem 8.1]. Let ® be an L-parameter for G. We denote by ¢ : W x SL,(C) — L@
the L-parameter given by the composition p o 5 According to [Chol7, §7.3], the L-parameter ¢
of él,l is classified into one of the following “Case I-(a), Case I-(b), Case II, Case II1”;

e Case I-(a): the parameter 5 comes from that of H 1,1, and the cardinality of the L-packet

H(; is equal to 2, and the action of Hom(Wz,C) is not transitive;

e Case I-(b): the parameter $ comes from that of H 1,1, and the cardinality of the L-packet

1T is equal to 2, and the action of Hom(Wg, C!) is transitive;

e Case II: the parameter ¢~5 comes from that of fIl,l, and the cardinality of the L-packet
H(g is equal to 1;
e Case III: the parameter 5 comes from that of ITI370, and the cardinality of the L-packet

H; is equal to 1.
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Denote by X (¢) the stabilizer
{a € HY (W, C/}E) | ad = ¢ as L-parameters }.

Then we have an exact sequence

S3(G) = 8p(G) = X(¢) — 1

where S4(G) is the component group m(S4(G)) of Sy(G) = C’¢(G)/Z(@)FFS/F (similarly for

S5(G)). In the case S4(G) is a finite group (An L-parameter associated with an irreducible square
integrable representation satisfies this.), the first map is injective. Put C(%(Ct') = C$(é) NG/A,

—

and put Z/(G) = Z(G) N G/A where A is the maximal F-split torus of the center of G(W).
Then, we have Sy(G) = C(G)/Z'(G)Fr*/7.

20.1. Restriction of representations from G to G. It is known that such restriction problems
have much information of Langlands parameters for G. We only use the following lemma:

Lemma 20.1. Let 7 be an irreducible representation of G. Then, we have a decomposition

t
Tlg = (@ m;)
i=1

where w1, ..., m are irreducible representations of G and

b — %dimn G = G117 and T has the L-parameter of Case I-(b),
dimn otherwise.

Proof. Tt is obtained by [Chol7, Theorems 5.1, 6.1, 7.5]. O

In this paper, we need this lemma to prove the following two lemmas.

Lemma 20.2. Let w be a square integrable irreducible representation of G, let (¢,n) be its
Langlands parameter, let T be an irreducible representation of G so that its restriction 7| to G
contains 7, and let (¢,7) be the Langlands parameter of 7. Then, we have

~ dlmﬁ #Cd,(G)

degm = — — -degm, and Ado ¢ = Ad o ¢.
g dimyy #%(@ g ¢ ¢

Proof. Put
X(7) ={x € Hom(F*,C*) | (x o A)T & 7}.

Then the reciprocity map of the local class field theory induces an embedding X (7) — X (o).
Moreover, we have

~ - 2 G = G711 and 7 has the L-parameter of Case I-(b),
[X(¢):X(W)]={ 1,1 P (b)

1  otherwise.
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Hence, by [GI14, Lemma 13.2] and by Lemma 20.1, we have

_#2'(G) g
degm = #Z(@) X0 degm
#Z’(é) dim7 - #55(G) _

Moreover, since the projection p : G — G factors through the adjoint map Ad, we have

Adog=Adopoo
=Ado¢.

Hence, we have the lemma. O
Lemma 20.3. Let m be a square integrable irreducible representation of G1.1, and let o be an
irreducible representation of either Hy 1 or Hs o associated with m by the local theta correspon-

dence. We assume that o # 0. We denote by (¢r,ne) (resp. (¢o,ns)) the Langlands parameter
associated with 7 (resp. o). Then, we have

(20.1)

dimn, |3 = has the L-parameter of Case I-(b),
)1 otherwise

and we have

#C4, | % has the L-parameter of Case I-(b), 111,
|1 otherwise

#Cs,
Proof. Note that discrete series parameters are of Case I and Case III. By [GT14, Proposition

3.3] and Lemma 20.1, we have (20.1). The remaining equality is obtained by the case-by-case
discussion in [Chol7, p. 1867 - p.1874]. |

20.2. Refined formal degree conjecture. In this section, we discuss the refined formal de-
gree conjecture [GR10, Conjecture 7.1]. We first prove it for inner forms of GLy. Note that
#C,(GLy) = N if ¢ is a discrete parameter for GLy.

Lemma 20.4. Let G be an inner form of GLy, and let m be a square-integrable irreducible
representation of G. Then, we have

deg(m) = e (=N ! (0,7, Ad, ).

. N . ")/
Here, Ad is the adjoint representation of “G on sly(C).

Proof. By [HII08, §3.1], we have

deg(w) = % : |7(077T1Ad7w)‘
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Denote by JL(7) the Jacquet-Langlands correspondence of 7 to GLy (F'). Note that ¢ «(—1) =
¢z(=1). Then, by [GI14, Proposition 14.1], we have
(0,7, Ad, ) ~(0,JL(n), Ad, )
(0,7, Ad, )] (0, JL(), Ad, )|
= CJL(ﬂ')(f]-)Nil
=co(~1)NL

Thus, by positivity of deg m, we have the lemma. g

Let G’ be one of G1,1, Hi1, Hsp, 51’1, ﬁ1,17 and j‘.v[g}o. Then the refined formal degree
conjecture for G’ is true:
Theorem 20.5. Let w be a square integrable irreducible representation of G', and let (¢,n) be
its Langlands parameter. Then we have
dimn

degm = Cﬂ—(—l) : W "Y(OaAd © ¢M/J)

Proof. When G’ is either H 1,1 Or H. 3,0, we have the claim because of the accidental isomorphisms
Hiy = D" x GLy(F)/{(t,t™" - ) | t € F*},
Hso = D} x F*/{(t,t?) |t € F*}

as in §17. Here, Dy is a central division algebra of F' with [Dy : F] = 16. Hence, we have the
claim for Hq 1 and Hs o by Lemma 20.2. When G’ = G1 1, we have the claim by Theorem 11.1
and Lemma 20.3 since

7(83 7T7 Ad7 d)) .
"/(S,O}Ad,l/)) _’Y(SaO-XXWﬂb)'
Hence, we also have the claim for C~7'1,1. Thus we have the theorem. O

21. APPENDIX: AN EXPLICIT FORMULA OF ZETA INTEGRALS

In [Kak20b, Proposition 8.3], the author computed the doubling zeta integral of right K(Q/D)—
invariant sections. However, the formula does not tell us about the constant term and a certain
multiplier polynomial factor S(7T"). In this section, we complete the formula by applying the
formula of a1 (). Note that there are two errors in [Kak20b, Proposition 8.3]. We also point
out and correct them. In this section, we assume the residue characteristic of F' is not 2.
Finally, we note that the results in this Appendix are not used in this paper but had been used
in the previous version. In the case ¢ /2, we can prove by Proposition 7.6 them.

Fix a basis e of W as in §4. We denote by e, the basis e,11,...,€er1n, for Wy. Moreover, we
may suppose that

1 (—e=1,n0 = 1),
a (—e=—1,n9=1),

Ro = R(gg) = w.f,l -1 -1 (ze=—Lmo=1), . .
diag(w,", awp) (—e = —1,n0 = 2, xw is unramified),
diag(a,wgl) (—e = —1,n9 = 2, xw is ramified),
diag(a, wp', awp') (—e= —1,n0 = 3).

n—

Here, « is defined in §2. We recall that we have put ng = dim Wy and r = #5*¢. By this basis,
we regard G(W) as a subgroup of GL, (D). Then, put

Cy:={g e GIW)NGL,(Op) | (g — )R(€") € M,,(Op)}.
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Note that Cy is an open compact subgroup of G(W). Let X; be a subspace of X spanned by
€1,...,¢;. We denote by f the flag
fio:XogXlg"'gXT:X7
and by B the minimal parabolic subgroup preserving f.

Proposition 21.1. We have G(W) = B - C}.

Proof. We use the setting and the notation of §5 in the proof of this proposition. By [BT72,
Théoreme (5.1.3)], we have the decomposition

G(W) =B - Ngw) - B.
Since B D Zgw)(S), we can take a representative system w, ..., w; for B\(B - Ngw)(S)) so
C

that w; € C; for i = 1,...,t. Moreover, X,o C C; for a € &+ and X, Cq for a € .
Hence, by Lemma 5.3, we have

1
’2

t
B-Ng(W)(S)-BZ UB'wi'ZG(W)(S)l' H Xa,O' H Xa’%

i=1 acdt acd—
t
= UBZG'(W)(S)Iwz H Xa,O' H Xa,%
i=1 acd+ acd-
Cc B-C;.
Thus we have the proposition. O
Let o¢ be the trivial representation of G(Wp), let s; be a complex number for i = 1,...,r,

let o; be the character |

% of GL1(D) for i = 1,...,r. Then, 0 = ®]_,0; is a character of the
Levi subgroup of B. Let m be an irreducible subquotient representation of Indg(W)(o) having a
non-zero Ci-fixed vector. Then, we have the following formula of a zeta integral with a certain
section and a matrix coefficient:

Proposition 21.2. Let f2 € I(s, 1)K(9'D) be a non-zero K (¢'°)-invariant section with f2(1) =1,
let £° be the C1-fized matriz coefficient of w. Then, we have

S(g—*) 1-
20526 =161 S TLE" 5+ 5.)
=0

for some self-reciprocal monic polynomial S(T) of degree

for = 1 (—e=—1,n0 =2,xw is unramified),
"o ( otherwise).

Here we set

a7 (s) Cr(s+n+ DI ¢r(2s+2n+1—4i)  if —e=1,
S) =
12721 ¢io(25 + 2n + 3 — 4i) if —e = —1.

Note that if ng = 0, then Lo (s, 1y, x 1) denotes

Cr(s) if —e=1,
1 if —e=—1.

Note that we will determine S(T") and |Cy| later (Propositions 21.4 and 21.5).
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Remark 21.3. Proposition 21.2 differs from [Kak20b, Proposition 8.3] at the definition of fw
in the case ng = 3 and the definition of Lo (s, 1y, x 1) in the case ng = 0, —e = 1. The former
is caused by an error of the computation of the v-factor, which is modified by (21.3). And the
latter is caused by a typo.

Proof. We can deform the doubling zeta integral to the summation
2V = [ C@des [ Ee 0 ds
Cy G(W)-C1

If s is a sufficiently large real number so that ZW (£, £°) converges absolutely, then, by [Kak20b,
Lemma 8.4], we have

[ renew| <[ 1Al (eD)E() dg
G(W)—C G(W)—C4

< g~ (Rs=s0) / 172 (9. 1))€°(9)] dg
QW)

for ®s > sg. Thus we have

(21.1) lim ZW(f?,€°) = |Cl.

Rs—o0
Put
’:‘(q—s) — ZW( ;750)
[T_g LWi(s+ 3,0 x 1)
Then, by the “g.c.d property” ([Yam14, Theorem 5.2] and [Yam14, Lemma 6.1]) concludes that
E(¢™*) is a polynomial in ¢—* and ¢°. Moreover, by (21.1), it is a polynomial of ¢—° with the
constant term |C;]. Put D(g~*) := d"(s). Once we prove the equation

(21.2) 2(q*)D(¢*) = (¢~*)" - E(¢*)D(q™*),

one can deduce that

E(¢") =IC[-S(¢™*)D(q™")
for some monic self-reciprocal monic polynomial of degree fy, since ¢~**D(q*) is a polynomial
of ¢—* which is coprime to D(¢~*) for sufficiently large ¢, which proves the proposition.
In the following, we prove the equation (21.2). By the definition of the y-factor, we have

R(Sa 1aA7w) : ZW<M*<S7 1aA71/])f.:7€o) = ﬂ-(_l) . ’YW(S + %771— X 17¢)Zw(fsoago)'

Note that 7(—1) = 1 and by comparing this with the equation

D(q™)
D(q*)

R(s, 1, A )M* (5,1, 4,0) 12 = ¢ IN(R)| el xw0) - 5D g,

where

we obtain
E(¢™*)D(¢*) = D(¢*)E(¢”)

e e €Goxw ) T LYi(=s+ 3,0) x 1)
x [N(R(e))| "¢ ™" 2 Adi=o 2

Ys+3,m¥LY) [ LVi(s+3,00x1)
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Moreover, by Lemma 7.5, we have

1 1 L LWVi(—s+ 3,07 x 1)

21.3 w —ax 1) =g V(= xw, 2094
(21.3) st g mx L) =q7 e (5 xw w)g Vst Lo x1)
where

2[ %] —e=1,

A=q2[%] —e=—1, n %3 mod 4, xw : unramified,

2[5]+1 otherwise.

Therefore,
E(¢~*)D(¢") = D(g*)E(¢") - ¢~ " 7V - IN(R(e)| ™
= D(q"*)=(q") - (a*)"".

Hence we have the equation (21.2), and we have the proposition. O

For the polynomial S(T'), we have the following:
Proposition 21.4. We have

T2+ (g2 +q 2)T+1 (—e=—1, ng=2, xw is unramified),
S(T) = .
1 ( otherwise).
Proof. We have fiyr = 0 in the cases other than —e = —1, ng = 2, and xw is unramified. Thus

the proposition is clear for the second case. Consider the case n = nyg = 2 and xw is unramified.
Since G(W) is compact, Z(f2,£°) is a polynomial in ¢—*. In other words,
Cr(s+ 3)L(s+ 5, xw)
CF(QS + 3)
is a polynomial. Thus, we can conclude that (1 4+ q_%T) divides S(T). Such a self-reciprocal
polynomial is only (1+ ¢~ 2T)(1 4 ¢2T). Hence we have
S(T)=T%+ (¢% +q )T+ 1.

Now, suppose that —e = —1, n > ng = 2, and xw is unramified. We recall a certain intertwining
operator associated with the parabolic induction. Let Q(X®) be the parabolic subgroup of
G(W?) preserving X7, let U(X") be the unipotent radical of Q(X), let M be the Levi-subgroup
of Q(X"), and let I (s, 1) be the space of smooth functions f on GL(X") satisfying

F(pg) = IN(plx2)|~+IN(plx<)I** f(9)

for p € P/(X?) and g € GL(X"). Here, we denote by P'(X*) the parabolic subgroup of
GL(X") preserving X%, by p|xa (resp. p|xv) the restriction of p to X* (resp. XV), and
by N the reduced norm of End(X*) (resp. End(XV)). For a coefficient ¢ of an irreducible
representation of GL(X) and a section f € I(s,1), we define the doubling zeta integral by

ZXaﬂa::/’ Fex (9. 1)€(g) dg
GL(X)

where tx : GL(X) x GL(X) — GL(X") is the embedding induced by the natural action of
GL(X) x GL(X) on X". Then, there is an intertwining map

W(s) : IV (5,1) = Indg o) (1% (5,1) @ "0 (5,1) @ | A xwyw ) : fo > (g [@(3)£])g)
(see [Yam14, Proposition 4.1]). Although we omit the definition, we note the relation
[@(s)fSle = T(s)f" @ f°

S(q*)
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where f'° (resp. f”°) is the unique GL,(Op)-invariant section of I*(s,1) (resp. the unique
K (e")-invariant section of I"0(s,1)) so that f/°(1) =1 (resp. f°(1) = 1), and

J(s :/ f3(u) du.
UXP)NQWA)N\U(XT)

Moreover, by Proposition 21.1, we have

Z”Xﬁ:é>=|cn/fﬁ«%1»d

= 1cal [ ) ). 1) dm

=|C1]J( )ZWO(f ,é'O)ZX( 7°,¢")
LW0(3+§,1W><1) LX(S+%,O')

= [C1|J(s)S(¢™)

dWo (s) o dX(s)
- |015W°(qS)C%$%LW(s+ %,1W x 1).
Thus, we obtain
Wy —s\ _ oWy, ,—s dW(S)

However, since J(s) does not have a pole in Rs > —1 ([Yam14, Lemma 5.1]) and d" (s), d"o(s),d* (s)
has nelther a pole nor a zero at s = my/—1 + 1 5, we can conclude that SW(X) is diveded by

(14 ¢*2T). Thus, we have SV (T) = SWo(T). Hence, we finish the proof of the proposition. [

Finally, by the formula of oy (W) (Proposition 19.4), we can determine the volume |C4] of Cj:

Proposition 21.5. (1) In the case —e =1, we have
ln/2] ‘ ‘
|IC1| = |[Kw| = quLn/zj [n/2]—[n/2] H (1+ q7(2z71))(1 . quz).
i=1

(2) In the case —e = —1, we have
|C1| = |N(R(e))|~Pq~3Ln/21[n/21=1n/2])

152 (14 g @) [T (1 - %) (no = 0),

12211 4 g~ @Dy 12 (1 = ¢=2) (no = 1, xw : unramified),
" HLn/zJ(l + ¢~ (7D) HL”/QJ(I ) (no = 1, xw : ramified),

[T =11 4 @D )HL"/QJ_l(l q %) (no = 2,xw : unramified),

M2+ g @I A= g7%)  (no = 2, xw : ramified),

L2+ g @I 1 - g7%) (ng =3).

Proposition 21.4 and Proposition 21.5 give a completion of the formula in Proposition 21.2.
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