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Abstract

In the dissertation, we study a moduli space of left invariant metrics
on compact Heisenberg manifolds. It is an analogy of the classical moduli
space of flat metrics on tori. A key idea is a new volume form on compact
Heisenberg manifolds, called a minimal Popp’s volume form, which is
continuous under the canonical topology of the moduli space.

In this setting, we show a version of Mahler’s compactness theorem for
compact Heisenberg manifolds (Theorem 6.3). To be precise, a subspace of
the moduli space is precompact in the canonical topology if total measure
with respect to the minimal Popp’s volume is uniformly bounded above
and the systole is uniformly bounded below. Moreover we show that
the canonical topology of the moduli space coincides with the Gromov–
Hausdorff topology (Theorem 7.1). This concludes that non-collapsed
Gromov–Hausdorff limits of compact Heisenberg manifolds are isometric
to again compact Heisenberg manifolds.

1 Introduction

A sub-Riemannian manifold is a triple (M,D, g), where M is a connected
smooth manifold, D ⊂ TM is a distribution, and g is a metric on D. Recently
sub-Riemannian geometry is actively studied from a viewpoint of geometric
analysis and optimal control theory. In the dissertation, we study Gromov–
Hausdorff limits of a sequence of sub-Riemannian manifolds.

The model of our work is the following Mahler’s compactness theorem.

Theorem 1.1 (Theorem 2 and 3 of [5]). Let M(Tn) be the moduli space of flat
metrics on Tn. A subset A ⊂ M(Tn) is precompact in the canonical topology if
and only if there are v, s > 0 such that for any metric in A,

(1) the total measure is bounded above by v,

(2) the systole is bounded below by s.

This theorem implies that every non-collapsed limit of a sequence of n-
dimensional flat tori is isometric to a flat torus of the same dimension.

In sub-Riemannian geometry, the Heisenberg Lie group Hn is a model of
flat space. Indeed, the tangent cone of contact sub-Riemannian manifolds are
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isometric to the Heisenberg Lie group [6], and has zero curvature in the Bott
connection [1]. Hence their quotient by uniform discrete subgroups Γ, compact
Heisenberg manifolds, are analogies of flat tori.

When the metric is Riemannian, a version of the Mahler’s compactness the-
orem is showed by Boldt. Let MR(Γ\Hn) be the moduli space of left invariant
Riemannian metrics on compact Heisenberg manifold Γ\Hn. The definition is
given by Gordon–Wilson in [3].

Theorem 1.2 (Precisely in Theorem 6.1). A subset A ⊂ MR(Γ\Hn) is pre-
compact in the quotient topology if and only if the assumptions (A-1)-(A-4) on
metric tensor hold.

We will explain the assumptions (A-1)-(A-4) later since they are described
by using the parametrization of the moduli space MR(Γ\Hn).

To generalize the sub-Riemannian setting, we study the moduli space of
left invariant sub-Riemannian metrics on Γ\Hn, denoted by M(Γ\Hn). The
Riemannia moduli space MR(Γ\Hn) is densely embedded into M(Γ\Hn). It
is easy to see that a subset in M(Γ\Hn) is precompact if and only if slightly
different conditions (A-1)-(A-3) and (A-4)’ hold.

Our question is how to describe these conditions with geometric assumptions
on an upper bound of the volume and a lower bound of the systole. When the
metric is Riemannian, then the canonical Riemannian volume form is defined
by the wedge of dual coframe of an orthonormal frame. When the metric is
sub-Riemannian (not Riemannian), then the Popp’s volume is a well known
volume form invariant by isometry. It is appropriate to describe conditions
with the canonical Riemannian volume and the Popp’s volume. However, an
upper bound of the above two volume do not give a necessary condition for a
subset in the moduli space M(Γ\Hn) being precompact. Indeed if a sequence
of Riemannian metrics conveges to a sub-Riemannian one, then the associated
Riemannian volume forms diverge to the infinity. This implies that a subset
with a uniform upper bound of the Riemannian volume form does not contain
such sequences.

To address this issue, we introduce a new volume form which is well posed
on Lie groups. Let (G, v, 〈·, ·〉) be a connected Lie group endowed with a left
invariant sub-Riemannian metric. For a subspace v′ ⊂ v, Let vol(v′) be the
Popp’s volume form of the restricted sub-Riemannian structure (v′, 〈·, ·〉v′⊗v′).

Definition 1.1. For (G, v, 〈·, ·〉), define the minimal Popp’s volume
minvol(v, 〈·, ·〉) by the minimum of vol(v′), where v′ is a subspace of v.

The minimum exists since the Grassmannian manifold is compact.
By using the minimal Popp’s volume, we can describe the condition for a

subset in M(Γ\Hn) being precompact in the canonical quotient topology.

Theorem 1.3. Let X be a subset in M(Γ\Hn). If there are constants C1, C2 >
0 such that for any (v, 〈·, ·〉) ∈ M(Γ\Hn),

∫
Γ\Hn

minvol(v, 〈·, ·〉) ≤ C1 and

systole(Γ\Hn, v, 〈·, ·〉) ≥ C2. Then X is precompact in the quotient topology.
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For its proof, we show the assumptions in Theorem 1.3 implies the condition
(A-1)-(A-4)’ by Boldt.

2 Moduli space and Mahler’s compactness the-
orem for flat tori

In this section, the author explains the classical theory of flat tori. it is well
known that the moduli space of flat metrics on the torus Tn is parametrized by

M(Tn) ' GLn(Z)\GLn(R)/O(n).

Here we identify a matrix A ∈ GLn(R) to the inner product 〈·, ·〉A such that its
orthonormal basis is {Ae1, . . . , Aen}.

Remark 2.1. The original parametrization is written by O(n)\GLn(R)/GLn(Z).
It is homeomorphic to our parametrization via the mapping A 7→ A−1.

The classical Mahler’s compactness theorem asserts the following.

Theorem 2.1 (Theorem 2 and 3 of [5]). A subset X ⊂ T\ is precompact in the
quotient topology if and only if there are constants C1, C2 > 0 such that for any
[A] ∈ X

(1) det(A) ≥ C1,

(2) ‖z‖A ≥ C2 for all z ∈ Zn \ {0}.

It is easy to see that the first condition is equivalent to the total measure of
the torus is less than or equal to C−1

1 , and the systole is greater than or equal
to C2.

3 Moduli space of compact nilmanifolds with
left-invariant sub-Riemannian metrics

Let N be a simply connected nilpotent Lie group, n the associated Lie al-
gebra, and Γ a lattice in N . Fix a basis of n by {X1, . . . , Xn}. Define a subset
Xk ⊂ M(dim n) by

Xk =

{
A ∈ M(n)

∣∣∣∣∣KerA = Span{Xi1 , . . . , Xik},
{i1, . . . , ik} ⊂ {1, . . . , n},
ImA is bracket generating

}
.

Here a subspace v ⊂ n is bracket generating if there is r ∈ N such that

v+ [v, v] + · · · [v, [v, · · · , v] · · · ]︸ ︷︷ ︸
r

= n.

From a matrixA ∈ Xk, we obtain the sub-Riemannian structure {ImA, 〈·, ·〉A}
such that the orthonormal basis is {AX1, . . . , AXn}. The moduli space of left-
invaraint sub-Riemannian metrics on Γ\N is given as follows.
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Theorem 3.1.

M(Γ\N) ' (Stab(Γ) · Inn(N))∗ \
⋃
k

Xk/O(n),

where Stab(Γ) < Aut(N) is the stabilizer of Γ and Inn(N) is the group of inner
automorphisms.

For its proof we use the affiness of isometries on nilpotent Lie group shown
by Kivioja–Le Donne [4].

When N is the (2n + 1)-dimensional Heisenberg Lie group Hn, we obtain
more explicit parametrization of the moduli space as follows. Let hn be the
associated Lie algebra, and fix a basis {X1, . . . , Xn, Y1, . . . , Yn, Z} of hn so that
[Xi, Yi] = Z and the other brackets are zero. Let Dn = {r = (r1, . . . , rn)} be the
set of n-tuple of natural numbers such that ri divides ri+1 for all i = 1, . . . , n−1.
For r ∈ Dn, let Γr be a lattice in Hn given by

Γr = 〈exp(r1X1), . . . , exp(rnXn), exp(Y1), . . . , exp(Yn), exp(Z)〉 ,

where exp : hn → Hn is the exponential map. Similar to the construction of
MR(Γr\Hn) in Remark 2.6 of [3], the moduli space M(Γr\Hn) is given as
follows.

Theorem 3.2. The moduli space of left-invariant sub-Riemannian metrics on
Γr\Hn is

M(Γr\Hn) ' Πr\GL2n(R)× R/O(2n)×O(1),

where GL2n(R)× R =

{(
Ã 0
0 ρA

) ∣∣∣ Ã ∈ GL2n(R), ρA ∈ R
}
,

Πr = ι
(
Gr ∩ S̃p2n(R)

)
,

Gr = diag(r1, . . . , rn, 1, . . . , 1)GL2n(Z)diag(r1, . . . , rn, 1, . . . , 1)−1,

S̃p2n(R) =

{
P ∈ GL2n(R)

∣∣∣∣∣ tP

(
O In
−In O

)
P = ϵ(P )

(
O In
−In O

)
, ϵ(P ) = ±1

}
,

ι : S̃p2n(R) 3 P 7→
(
P 0
0 ϵ(P )

)
∈ GL2n+1(R) ' AutR(hn).

A metric is Riemannian if and only if ρA 6= 0. In particular, MR(Γr\Hn) '
Πr\GL2n(R)× R \ {0}/O(2n)×O(1).

Notice that there is the quotient topology on M(Γr\Hn) induced from
GL2n(R)× R.

4 Length minimizing paths on the Heisenberg
group

In this section, the author describes length minimizing geodesics on the
Heisenberg Lie group. In sub-Riemannian geometry, there are two kind of length
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minimizing paths, normal geodesics and abnormal geodesics. On the Heisenberg
Lie group, it is well known that every length minimizing path is normal geodesic.
As in Riemannian geometry, normal geodesic on a sub-Riemannian manifold
(M,E, g) is given by the projection of the sub-Riemannian Hamiltonian flow on
the cotangent bundle, where the Hamiltonian is

H(p) =
1

2

m∑
k=1

〈p | fk(x)〉 for p ∈ T ∗
xM,

where {f1, . . . , fm} is an orthonormal frame around x.
In the left-invariant sub-Riemannian metrics on Hn, the (global) orthonor-

mal frame is {AX1, . . . , AYn, AZ} (AZ might be zero). This allows us to give
an explicit form of geodesics in Hn with a matrix A.

For an explicit formula, we need the following j-operator. Let v0 = Span{X1, . . . , Yn}
be the subspace in hn.

Definition 4.1. For A ∈ GL2n(R) × R, let jA : v0 → v0 be the linear map
defined by

〈jA(U), V 〉A = Z∗([U, V ]) for all U, V ∈ v0,

where Z∗ is the dual covector of Z.

The matrix representation of jA is given by tÃ

(
O In
−In O

)
in the basis

{AX1, . . . , AYn}. Since the j-operator is skew symmetrizable, its eigenvalues

are purely imaginary. We denote them by ±
√

1λ1(A), . . . ,±
√
−1λn(A) with

the order 0 < λ1(A) ≤ · · · ≤ λn(A).
We will denote by dA the associated distance function on Γr\Hn and d̃A the

one on Hn.

Lemma 4.1. For A =

(
Ã 0
0 ρA

)
and p ∈ R, the distance from e to exp(pZ) is

given by

d̃A(e, exp(pZ)) =
2

λn(A)

√
|p|πλn(A)− 4π2ρ2A.

5 The minimal Popp’s volume form on the Heisen-
berg Lie group

In this section, the author gives the explicit formula of the minimal Popp’s
volume. It is well known that the canonical Riemannian volume form is the
wedge of the dual coframe of the orthonormal frame. In our setting, the canon-
ical Riemannian volume associated to A is written by

vR(A) = (AX1)
∗ ∧ · · · ∧ (AZ)∗ = det(Ã)−1ρ−1

A X∗
1 ∧ · · · ∧ Z∗.
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In sub-Riemannian geometry, the Popp’s volume form is a generalization of
the canonical Riemannian volume form. It is explicitly written by

vsR(A) = det(Ã)−1δ(A)−1X∗
1 ∧ · · · ∧ Z∗,

where δ(A) is the Hilbert–Schmidt norm of the operator jA. We omit the
detailed definition here.

Remark 5.1. • vR(A) and vsR(A) are well posed up to sign.

• Since the eigenvalue of jA are ±
√
−1λi(A)’s, δ(A) =

√
2
∑n

k=1 λk(A)2.

Recall that the minimal Popp’s volume is the infimum of the Popp’s volume
(including the canonical Riemannian volume) associated to the restricted sub-
Riemannian structure (v′, 〈·, ·〉v′⊗v′), v′ ⊂ ImA.

The explicit formula of the minimal Popp’s volume is given as follows.

Proposition 5.1. For A =

(
Ã 0
0 ρA

)
, the minimal Popp’s volume minvol(A)

is written as follows;

• If |ρA| ≥ δ(A), then minvol(A) = det(Ã)−1ρ−1
A X∗

1 ∧ · · · ∧ Z∗.

• If |ρA| ≤ δ(A), then minvol(A) = det(Ã)−1δ(A)−1X∗
1 ∧ · · · ∧ Z∗.

The total measure of a compact Heisenberg manifold Γr\Hn with respect the
minimal Popp’s volume is controled by its diameter. This proposition does not
hold for the canonical Riemannian volume without the Ricci curvature upper
bound.

Proposition 5.2. For any d > 0, there is V (d) > 0 such that if the diameter
of a compact Heisenberg manifold is bounded by d, then the minimal Popp’s
volume form is smaller than V (d)X∗

1 ∧ · · · ∧ Z∗.

6 Mahler’s compactness theorem for compact
Heisenberg manifold

In this section, the author shows the main theorem. We use the idea of
Boldt’s result for left-invariant Riemannian metrics on compact Heisenberg man-
ifold.

Theorem 6.1 (Corollary 3.14 in [2]). A subset A ⊂ MR(Γr\Hn) is precompact
in the quotient topology if and only if there are positive constants C1, . . . , C5 > 0
such that for any [A] ∈ A the following four conditions hold;

(A-1) inf{‖z‖A | z ∈ v0 ∩ log(Γr)} ≥ C1,

(A-2) |det(Ã)| ≥ C2,

(A-3) λn(A) ≤ C3,
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(A-4) C4 ≤ |ρA| ≤ C5.

It is easily generalized to the sub-Riemannian setting as follows.

Theorem 6.2. A subset A ⊂ M(Γr\Hn) is precompact in the quotient topology
if and only if there are positive constants C1, . . . , C4 > 0 such that for any
[A] ∈ A the following four conditions hold;

(A-1) inf{‖z‖A | z ∈ v0 ∩ log(Γr)} ≥ C1,

(A-2) |det(Ã)| ≥ C2,

(A-3) λn(A) ≤ C3,

(A-4) |ρA| ≤ C5.

The idea is to obtain the conditions (A-1)-(A-4)’ from a lower bound of the
systole and an upper bound of the minimal Popp’s volume form.

Proposition 6.1. Denote by s the systole of (Γr\Hn, ImA, 〈·, ·〉A). Then we
have;

(1) inf {‖z‖A | z ∈ v0 ∩ log(Γr)} ≥ s,

(2) δ(A) ≤
√
2n
s ,

(3) |ρA| ≤ Cs = max

{√
n√
2πs

, 1
s

}
.

Proposition 6.2. Denote by v the total measure with respect to the minimal
Popp’s volume form of (Γr\Hn, ImA, 〈·, ·〉A). Then we have

det(Ã) ≥ C̃s

v

n∏
i=1

ri,

where C̃s = min
{
C−1

s , s√
2n

}
.

These propositions show the following theorem.

Theorem 6.3. A subset A ⊂ M(Γr\Hn) is relatively compact in the quotient
topology if there are positive constants s, v > 0 such that for any [A] ∈ A,

(1) systole(Γr\Hn, dA) ≥ s,

(2)
∫
Γr\Hn

minvol(A) ≤ v.

The converse assertion follows in an easy way.

7



7 The quotient topology and the Gromov–Hausdorff
topology of the moduli space

In this last section, the author shows that thequotient topology coincides
with the GRomov–Hausdorff topology. This is a consequence of the geodesic
equation and Proposition 5.2.

Theorem 7.1. Let Id : (M(Γr\Hn),Oq) → (M(Γr\Hn),OGH) be the identity
map, where Oq is the quotient topology and OGH is the Gromov–Hausdorff
topology. Then the identity map is a homeomorphism.
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