Summary of "Reconstruction of open subschemes of elliptic curves in positive characteristic by their geometric fundamental groups under some assumptions"

Akira Sarashina

This is a summary of [2]. We discuss some general properties of elliptic curves over finite fields, and an application of these properties to anabelian geometry in [2].

First we will show a certain general property of elliptic curves over finite fields. Let *p* be a prime number, let $q = p^n$ $(n \ge 1)$, and *E* an elliptic curve over \mathbb{F}_q which is defined by a nonsingular Weierstrass form

$$
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6
$$

where $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_q$. Let $\mathcal O$ be the identity element of *E*. Let

 $x: E \to \mathbb{P}^1$

be the finite morphism of degree 2 such that $x((a, b)) = a$ and $x(O) = \infty$.

Definition. For any positive integer *r*, let H_r be the endmorphism of \mathbb{P}^1 which makes the following diagram commutative.

Here, [*r*] stands for the multiplication by *r*.

For any endmorphism *f* of *E*, set

$$
E[f] = \{ P \in E(\overline{\mathbb{F}}_p) \mid f(P) = \mathcal{O} \}.
$$

If $f = [r]$, we write $E[r]$ as $E[[r]]$. The main result of the first part of [2] is the following.

Theorem 1. Let *m* be a positive integer. Then there exists a positive even integer *r* which satisfies the following.

$$
x(E[m]) \subset H_r(\langle x(E[r]) \setminus \{\infty\}\rangle_{\mathbb{F}_p})
$$

Here, $\langle x(E[r]) \setminus \{\infty\}\rangle_{\mathbb{F}_p}$ stands for the \mathbb{F}_p -vector subspace generated by $x(E[r]) \setminus$ $\{\infty\}$ in $\overline{\mathbb{F}}_p = \mathbb{A}^1(\overline{\mathbb{F}}_p).$ \Box

Let
$$
P \in E(\overline{\mathbb{F}}_p)
$$
.

$$
x(P) \in H_r(\langle x(E[r]) \setminus \{\infty\}\rangle_{\mathbb{F}_p})
$$

holds if and only if we have

$$
x([r]^{-1}(P)) \cap \langle x(E[r]) \setminus \{\infty\}\rangle_{\mathbb{F}_p} \neq \phi.
$$

This means that at least one of the points of $x([r]^{-1}(P))$ can be written as a linear combination of the points of $x(E[r]) \setminus \{\infty\}.$

In the second part of [2], we consider an application of Theorem 1 to anabelian geometry. Let U_1 and U_2 be nonempty affine open subschemes of elliptic curves (E_1, \mathcal{O}_1) and (E_2, \mathcal{O}_2) over $\overline{\mathbb{F}}_p$ respectively such that

$$
\alpha_1 : \pi_1(U_1) \xrightarrow{\sim} \pi_1(U_2).
$$

Theorem 2 ([1] Corollary 4.10). We have the following isomorphism of \mathbb{F}_p schemes.

$$
E_1 \simeq E_2 \qquad \qquad \Box
$$

We identify E_1 with E_2 and write (E, O) instead of (E_1, O_1) and (E_2, O_2) . By a similar argument to [1] Lemma 4.2, α_1 induces an isomorphism

$$
\alpha_s : \pi_1([s]^{-1}(U_1)) \xrightarrow{\sim} \pi_1([s]^{-1}(U_2))
$$

for each $s > 0$, which makes the following diagram commutative.

$$
\pi_1([s]^{-1}(U_1)) \xrightarrow{\sim} \pi_1([s]^{-1}(U_2))
$$

$$
\uparrow \qquad \qquad \downarrow
$$

$$
\pi_1(U_1) \xrightarrow{\sim} \pi_1(U_2)
$$

Set $S_1 = E \setminus U_1$ and $S_2 = E \setminus U_2$. By [3] Theorem 2.5, α_s induces a bijection

$$
\phi_s : [s]^{-1}(S_1) \xrightarrow{\sim} [s]^{-1}(S_2)
$$

for each $s > 0$. The group $\mathbb{Z}/2\mathbb{Z} = {\overline{0}, \overline{1}}$ acts on *E* as follows.

$$
gP = \begin{cases} P & (g = \overline{0}) \\ -P & (g = \overline{1}) \end{cases}
$$

where $g \in \mathbb{Z}/2\mathbb{Z}$ and $P \in E$. We put the following assumption.

(A2) S_1 and S_2 are closed under the action of $\mathbb{Z}/2\mathbb{Z}$ and ϕ_1 preserves this action.

(Assumption (A1) appears below.) Under assumption $(A2)$, $[s]^{-1}(S_1)$ and $[s]$ ⁻¹(S₂) are closed under the action of $\mathbb{Z}/2\mathbb{Z}$ for any $s > 0$. Let m be a positive integer such that

$$
S_1 \subset E[m].
$$

By Theorem 1, we can take a positive even integer *r* such that

$$
x(E[m]) \subset H_r(\langle x(E[r]) \setminus \{\infty\}\rangle_{\mathbb{F}_p}).
$$

Definition. Let

$$
L_{i,r} = \ker(\pi_1([r]^{-1}(U_i)) \to \pi_1(\mathbb{P}^1 \setminus T_{i,r}) \to \pi_1(\mathbb{P}^1 \setminus T_{i,r})^{ab,p'}).
$$

Here, $T_{i,r} = x([r]^{-1}(S_i))$ $(i = 1, 2)$. Note that we can define the natural surjection $[r]^{-1}(U_i) \to \mathbb{P}^1 \setminus T_{i,r}$ because $[r]^{-1}(S_1)$ and $[r]^{-1}(S_2)$ are closed under the action of $\mathbb{Z}/2\mathbb{Z}$.

Then we put the following assumption, which depends on *r*.

$$
(A3(r)) \ \alpha_r(L_{1,r}) = L_{2,r}
$$

We can assume the following conditions by replacing the open immersions $U_1 \rightarrow$ *E* and $[r]^{-1}(U_1) \to E$ with suitable ones.

- $\mathcal{O} \in S_1, \mathcal{O} \in S_2$ and $\phi_r(\mathcal{O}) = \mathcal{O}.$
- ϕ_r preserves the action of $\mathbb{Z}/2\mathbb{Z}$.

(Assumption $(A3(r))$) is used in the proof of the second condition.) So there is a bijection $\psi_r : T_{1,r} \to T_{2,r}$ which makes the following diagram commutative.

$$
[r]^{-1}(S_1) \xrightarrow[\phi_r]{\sim} [r]^{-1}(S_2)
$$

$$
\downarrow x \qquad \qquad \downarrow x
$$

$$
T_{1,r} \xrightarrow[\psi_r]{\sim} T_{2,r}
$$

The condition

$$
P \in H_r(\langle x(E[r]) \setminus \{\infty\}\rangle_{\mathbb{F}_p})
$$

implies that there is a linear relation

$$
x(Q) = \sum_{\mu \in x(E[r]) \setminus \{\infty\}} a_{\mu} \mu
$$

for some $Q \in [r]^{-1}(P)$ and some a_{μ} ($\mu \in x(E[r]) \setminus \{\infty\}$). Then we have an equality

$$
x(\phi_r(Q)) = \sum_{\mu \in x(E[r]) \setminus \{\infty\}} a_{\mu} \psi_r(\mu)
$$

because of assumption $(A3(r))$ and [1] Theorem 3.3. By [3] Corollary 1.10, α_1 naturally induces an isomorphism

$$
\theta : \pi_1(E) \simeq \pi_1(E)
$$

which makes the following diagram commutative.

$$
\pi_1(U_1) \xrightarrow{\sim} \pi_1(U_2)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\pi_1(E) \xrightarrow{\sim} \pi_1(E)
$$

We put the following assumption.

(A1)
$$
\theta
$$
 is contained in the image of the map $\pi_1 : Aut_{\mathbb{F}_p}(E) \to Aut(\pi_1(E)).$

We can replace the open immersions $U_i \rightarrow E$ ($i = 1, 2$) with suitable ones and prove the following condition by using assumption (A1).

• ϕs|E[*s*] = *id|E*[*s*] for any *s >* 0

Hence $\psi_r|_{x(E[r])} = id|_{x(E[r])}$ holds. So we have the following equality.

$$
x(Q) = \sum_{\mu \in x(E[r]) \setminus \{\infty\}} a_{\mu}\mu = \sum_{\mu \in x(E[r]) \setminus \{\infty\}} a_{\mu}\psi_r(\mu) = x(\phi_r(Q))
$$

This implies that

$$
x(P) = x(\phi_1(P)).
$$

By applying the above argument to all the points of *S*¹ (note that *r* does not depend on the choice of *P*), we have the following theorem, which is the main result of [2].

Theorem 3. Let $p \geq 3$ be a prime number, U_1 and U_2 nonempty affine open subschemes of an elliptic curve (E, \mathcal{O}) respectively over $\overline{\mathbb{F}}_p$ such that

$$
\pi_1(U_1) \simeq \pi_1(U_2).
$$

We assume that

$$
\mathcal{O} \in S_1,
$$

$$
\mathcal{O} \in S_2
$$

and

$$
\phi_1(\mathcal{O})=\mathcal{O}.
$$

Let *m* be a positive integer such that $S_1 \subset E[m]$, *r* a positive even integer such that

$$
x(E[m]) \subset H_r(\langle x(E[r]) \setminus \{\infty\}\rangle_{\mathbb{F}_p}).
$$

We assume $(A1)$, $(A2)$ and $(A3(r))$. Then

$$
U_1 \simeq U_2
$$

holds.

 \Box

References

- [1] A. Sarashina. Reconstruction of one-punctured elliptic curves in positive characteristic by their geometric fundamental groups. *manuscripta mathematica*, Vol. 163, No. 1, pp. 201–225, 2020.
- [2] A. Sarashina. Reconstruction of open subschemes of elliptic curves in positive characteristic by their geometric fundamental groups under some assumptions. *Thesis*, 2020.
- [3] A. Tamagawa. On the fundamental groups of curves over algebraically closed fields of characteristic *>* 0. *Internat. Math. Res. Notices*, Vol. 1999, No. 16, pp. 853–857, 1999.