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This is a summary of the paper [8], entitled “Lp-Kato class measures and their relations with
Sobolev embedding theorems”.

In the paper, we discuss relationships between continuous embeddings of Dirichlet spaces into
Lebesgue spaces and the integrability of the associated resolvent kernels. The Sobolev inequality has
been studied for various settings; Euclidean space, Riemannian manifolds, Lie groups, and so on (see
[10, 3] for example). It is known that the Sobolev inequality is equivalent to the ultra-contractivity of
the associated transition semigroup [14], the Nash type inequality [4], and the capacity isoperimetric
inequality [7, 6]. The notion of Lp-Kato class is a generalization of the Kato class of measures. Kato
class is introduced to analyse the Schrödinger semigroups and analyse integral kernels of semigroups
given by Feynman-Kac functionals (see [1, 2] for example). Dynkin class, the 1-order version of the set
of Green-bounded measures, is larger than the Kato class and has also been studied. An embedding
result of the Dirichlet spaces into L2 spaces with respect to Dynkin class measures is obtained by
Stollmann and Voigt [12] via the operator theory, and later Shiozawa and Takeda [11] proved it in
terms of Dirichlet forms. In this paper, we introduce the Lp-version of Dynkin and Kato classes and
present relationships between those and Sobolev embeddings of the Dirichlet spaces into L2p spaces.

Let E be a locally compact, separable metric space and let m be a Radon measure on E with
supp[m] = E. Let ∂ be a point added to E so that E∂ := E ∪ {∂} is the one-point compactification
of E. The point ∂ serves as the cemetery point for E. Suppose (E ,F) is a regular Dirichlet form
on L2(E;m) and X = (Ω, Xt, ζ,Px) is an associated m-symmetric Hunt process. For α > 0 and
u ∈ F , we simply write Eα(u, u) = ∥u∥2Eα := E(u, u)+α

∫
E u2dm. We always take the quasi-continuous

version of the element u of F . We assume that the transition kernel (Pt)t>0 of X satisfies the absolute
continuity condition: Pt(x, dy) is absolutely continuous with respect to m(dy) for each t > 0 and
x ∈ E. Then (Pt)t>0 admits a heat kernel pt(x, y) which is jointly measurable on (0,∞)×E×E such
that pt(x, y) = pt(y, x) and pt+s(x, y) =

∫
E ps(x, z)pt(z, y)m(dz) for all s, t > 0, x, y ∈ E. For each

α > 0, we write the α-order resolvent kernel of X by rα(x, y) =
∫∞
0 e−αtpt(x, y)dt.

Definition 1.1. Let p ∈ [1,∞) and δ ∈ (0, 1]. For a positive Radon measure µ on E, µ is said to be
of p-Dynkin class with respect to X (write µ ∈ Dp(X)) if

sup
x∈E

∫
E
rα(x, y)

pµ(dy) < ∞ for some α > 0,

µ is said to be of p-Kato class with respect to X (write µ ∈ Kp(X)) if

lim
α↑∞

sup
x∈E

∫
E
rα(x, y)

pµ(dy) = 0,

and µ is said to be of p-Kato class with order δ (write µ ∈ Kp,δ(X)) if

sup
x∈E

(∫
E
rα(x, y)

pµ(dy)

) 1
p

= O(α−δ) as α → ∞.

Clearly Kp,δ(X) ⊂ Kp(X) ⊂ Dp(X). For example, suppose E = Rd, m is the Lebesgue measure
on Rd and X is a Brownian motion on Rd. Let p ∈ [1,∞) with d− p(d− 2) > 0 and µ be a positive
Radon measure on Rd. By the same way as the proof of [1, Theorem 4.5], µ ∈ Kp(X) if and only if
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lim
α↓0

sup
x∈Rd

∫
|x−y|<α

µ(dy)

|x− y|p(d−2)
= 0, d ≥ 3,

lim
α↓0

sup
x∈Rd

∫
|x−y|<α

(
− log |x− y|

)p
µ(dy) = 0, d = 2,

sup
x∈Rd

∫
|x−y|≤1

µ(dy) < ∞, d = 1.

In particular, when d = 1, K1(X) = Kp(X) for any p > 1. We can also see that m ∈ Kp,
d−p(d−2)

2p (X)
for such p.

We now state the main results. The first theorem gives Sobolev embeddings of the Dirichlet spaces
into the L2p spaces with respect to p-Dynkin or p-Kato class measures.

Theorem 1.2. Let p ∈ [1,∞) and µ ∈ Dp(X).

(i) It holds that

∥u∥2L2p(E;µ) ≤
(
sup
x∈E

∫
E
rα(x, y)

pµ(dy)

) 1
p

Eα(u, u) (1.1)

for any u ∈ F and α > 0. In particular, the Hilbert space (F , E1) is continuously embedded into
L2p(E;µ).

(ii) If µ ∈ Kp(X), then it holds that

∥u∥2L2p(E;µ) ≤ εE1(u, u) +K(ε)∥u∥2L2(E;m) (1.2)

for any u ∈ F and ε > 0, where K is a positive function on (0,∞) satisfying ε−1K(ε) ↑ ∞ as
ε ↓ 0.

(iii) If µ ∈ Kp,θ(X) for some θ ∈ (0, 1], then (1.2) holds for a function K(ε) = Aε−
1−θ
θ , where A is

a positive constant. In particular, it holds that

∥u∥L2p(E;µ) ≤ B
√
E1(u, u)

(1−θ)
∥u∥θL2(E;m) (1.3)

for any u ∈ F , where B is an another positive constant.

(1.1) can be viewed as a p-version of Stollmann-Voigt’s inequality. Note that (1.2) is similar to the
notion of compactly boundedness in [13], and that (1.3) is so-called the interpolation type inequality.

On the other hand, the second theorem gives kinds of converse assertions, that is, belonging to
p-Dynkin or p-Kato classes of a measure follows from Sobolev type embeddings of the Dirichlet spaces
into the L2p′ spaces with respect to the measure for p′ > p.

Theorem 1.3. Let p′ ∈ (1,∞) and let µ be a measure in D1(X).

(i) Suppose the following Sobolev type inequality holds: there exists a constant S > 0 such that

∥u∥2
L2p′ (E;µ)

≤ SE1(u, u)

for all u ∈ F . Then µ ∈ Dp(X) for any p ∈ [1, p′).

(ii) Suppose the following Sobolev type inequality holds: there exists a function K : (0,∞) → (0,∞)
with ε−1K(ε) ↑ ∞ as ε ↓ 0, such that

∥u∥2
L2p′ (E;µ)

≤ εE1(u, u) +K(ε)∥u∥2L2(E;m)

for any u ∈ F and ε > 0. Then µ ∈ Kp(X) for any p ∈ (1, p′).

(iii) Suppose the following Sobolev type inequality holds: there exist constants A > 0 and θ ∈ (0, 1]
such that

∥u∥L2p′ (E;µ) ≤ A
√

E1(u, u)
(1−θ)

∥u∥θL2(E;m)

for any u ∈ F . Then µ ∈ Kp,θ(1−δ)(X) for any p ∈ (1, p′) with δ = 1− p′

p′−1
p−1
p .
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We give an example of Theorems 1.2 and 1.3. Suppose E = Rd, m is the Lebesgue measure on Rd and
X is a Brownian motion on Rd. the classical Sobolev embedding theorem on Rd gives that, H1(Rd)
is continuously embedded into L2p(Rd) for p ∈ [1,∞) with d− p(d− 2) ≥ 0. By combining this with
Theorem 1.3 (i), the Lebesgue measure on Rd is in Dp(X) for p ∈ [1,∞) with d − p(d − 2) > 0. In
particular, when d ≥ 3, by setting p∗ = d/(d − 2) the critical Sobolev embedding theorem gives that
H1(Rd) is continuously embedded into L2p(Rd) for p ∈ [1, p∗), but the Lebesgue measure on Rd does
not belong to Dp∗(X). We now assume d ≥ 1, d − p′(d − 2) ≥ 0 and 1 < p < p′. The classical

Gagliardo-Nirenberg interpolation inequality says that, by setting θ = 1 − d(p′−1)
2p′ = d−p′(d−2)

2p′ , there
exists a positive constant C such that

∥u∥L2p′ (Rd) ≤ C∥∇u∥1−θ
L2(Rd)

∥u∥θL2(Rd)

holds for all u ∈ H1(Rd). By applying Theorem 1.3 (iii) and then by letting p′ ↓ p, we can see that

the Lebesgue measure on Rd belongs to Kp,
d−p(d−2)

2p
−ε

(X) for all ε ∈ (0, d−p(d−2)
2p ), which is a slightly

weaker condition than the example above Theorem 1.2. By combining with the Gagliardo-Nirenberg

inequality, we can also see that the fact that the Lebesgue measure on Rd belongs to Kp,
d−p(d−2)

2p (X).

Finally, we give an application of the p-Kato class to the continuity of the intersection measure
in time. We assume that p ≥ 2 is an integer and the reference measure m is in p-Dynkin class. Let
X(1), . . . , X(p) be independent Hunt processes with distribution X. We write ζ(1), . . . , ζ(p) as their life

times and write x
(1)
0 , . . . , x

(p)
0 as their starting points, respectively. Before stating the result, we review

the construction of the intersection measure. For detail, see [5, 9] for example. Fix bounded Borel sets
J (1), . . . , J (p) ⊂ [0,∞) and write J =

∏p
i=1 J

(i). For each ε > 0, we define the approximated (mutual)
intersection measure ℓISJ,ε of X(1), . . . , X(p) with respect to the (multi-parameter) time interval J by

⟨ℓISJ,ε, f⟩ =
∫
E
f(x)

[ p∏
i=1

∫
J(i)

pε(x,X
(i)
s )ds

]
m(dy)

for f ∈ Bb(E), where, for convenience we regard pε(x,X
(i)
s ) = 0 when s ≥ ζ(i). Then, there exists a

random measure ℓISJ on E such that, ℓISJ,ε converges vaguely to ℓISJ in M(E) and that

lim
ε→0

E
[
|⟨f, ℓISJ,ε⟩ − ⟨f, ℓISJ ⟩|k

]
= 0

for any integer k ≥ 1 and f ∈ C0(E), where M(E) is the set of Radon measures on E equipped
with the vague topology. We call the limit ℓISJ as the (mutual) intersection measure of X(1), . . . , X(p)

with respect to J . For t = (t1, . . . , tp) ∈ [0,∞)p we simply denote the approximated intersection
measure and the intersection measure with respect to [0, t] :=

∏p
i=1[0, ti] as ℓ

IS
t,ε and ℓISt , respectively.

The intersection measure ℓISJ enjoys the so-called Le Gall’s moment formula: for any f ∈ Bb(E) with
compact support and for any integer k ≥ 1, it holds that

E
[
⟨f, ℓISJ ⟩k

]
=

∫
Ek

f(x1) · · · f(xk)
p∏

i=1

{ ∑
σ∈Sk

∫
(J(i))k<

k∏
j=1

psj−sj−1(xσ(j−1), xσ(j))ds1 · · · dsk
}
m(dx1) · · ·m(dxk),

where (J (i))k< := {(s1, . . . , sk) ∈ (J (i))k; s1 < · · · < sk} and Sk is the set of permutations of {1, . . . , k}.
For convenience we set σ(0) = 0 for σ ∈ Sk and set x0 = x

(i)
0 .

The following result enables us to treat {ℓISt : t ∈ [0,∞)p} as a measure-valued continuous stochastic
process:

Theorem 1.4. Assume m ∈ Kp,δ(X) for some δ ∈ (0, 1]. Then it holds that

(i) the M(E)-valued process {ℓISt : t ∈ [0,∞)p} has a continuous modification,

(ii) for any f ∈ Bb(E), the real-valued process {⟨f, ℓISt ⟩ : t ∈ [0,∞)p} has a modification whose paths
are locally γ-Hölder continuous of every order γ ∈ (0, δ).
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