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Abstract

Transport phenomena are ubiquitous in nature. Turbulence efficiently transports and
promptly disperses substances such as pollutants, chemical and biological agents be-
cause of its nonlinearity of the dynamics. Turbulent relative dispersion, which is statis-
tics of Lagrangian particle pairs, is probably the simplest statistics to characterize
the nature of turbulent diffusion such as superdiffusivity and multiscaling. Here, La-
grangian particles are passively advected by turbulent flow and give no back-reaction
on the flow. According to the classical phenomenology initiated by L. F. Richardson,
particle pairs in turbulence completely forget information on their initial conditions
such as initial separations, and the mean square of the relative separation exhibits su-
perdiffusive scaling law, that is, so-called Richardson–Obukhov law, 〈r2(t)〉 ∝ t3. Here,
r(t) is the relative separation between two particles at time t elapsed since the parti-
cle pair started to be advected in the turbulent flow. The bracket 〈·〉 is an ensemble
average.

The Richardson–Obukhov law, however, has never been clearly observed in both
laboratory experiments and numerical simulations. Furthermore, the mean square of
the relative separation strongly depends on the initial separation for a long time. As
a result, the mean square of the relative separation exhibits the t3 power law at a
special initial separation because of the initial separation dependence. Here, we cannot
immediately conclude that this apparent t3 law is consistent with the Richardson–
Obukhov law because the mean squares of the relative separations at the other initial
separations do not exhibit the t3 power law.

In this thesis, we study the turbulent relative dispersion in two-dimensional energy
inverse-cascade turbulence in terms of the initial separation dependence in two ways:
conditional sampling method and two-time Lagrangian velocity correlation function.
First we develop a conditional sampling method by which the conditional mean square
becomes independent of the initial separation and exhibits the t3 scaling law for all
initial separations. On the other hand, the unconditional mean square of relative ve-
locity of the particle pairs exhibits anomalous scaling law deviated from the prediction
of Kolmogorov phenomenology which is the standard phenomenology of Eulerian tur-
bulence. According to these results, we conjecture that the t3 power law exhibiting at
the special initial separation is not consistent with the Richardson–Obukhov law, or
Kolmogorov phenomenology cannot be always applied to the statistics on the turbu-
lent relative dispersion. It is noted that the Richardson–Obukhov law is also derived
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in terms of Kolmogorov phenomenology.
Second, we investigate the two-time Lagrangian velocity correlation function which

is defined as 〈δv(t1) · δv(t2)〉, where δv(t) is relative velocity of a particle pair. We
propose a scaling law for the two-time Lagrangian velocity correlation function adapting
incomplete similarity. Then, we confirm that the proposed scaling law is consistent with
the experimental data in two-dimensional energy inverse-cascade turbulence. From the
scaling law for the two-time Lagrangian velocity correlation function, we demonstrate
that the t3 power law exhibiting at the special initial separation is an artifact induced by
finite-size effects of turbulence. Finally, we improve the Richardson–Obukhov law to be
consistent with experimental data and discuss the validity of the Richardson–Obukhov
law at infinite Reynolds number.
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Chapter 1

General Introduction

1.1 Lagrangian turbulence

Motions of substances in turbulence, such as smoke spreading and fallen leaves fluttering
about, are very complicated and unpredictable. Most of us have experienced an airplane
shaking. We recognize from such motions that there is turbulence.

We know a priori that milk in a cup of coffee becomes uniform faster by stirring
with a spoon. We usually utilize the ability of turbulence to enhance the diffusion and
the mixing. However, we poorly understand why turbulence can rapidly diffuse and
mix substances. The mechanics of turbulent diffusion and mixing is still unknown. In
this thesis, we focus on the mechanics of turbulent diffusion. Here we define turbulent
diffusion as spreading of substances which are only advected by turbulent flow and give
no back-reaction on the flow. Hence, we suppose that the molecular diffusivity and the
inertia of the substances are small enough to be negligible 1.

In turbulent flows, there are a lot of eddies of various sizes. These eddies interact
with each other and randomly move because of the nonlinear dynamics of turbulence.
Such randomness induced by the nonlinearity of turbulence probably gives rise to the
efficient diffusivity (superdiffusivity).

In more mathematical view points, turbulent diffusion is described by statistics of
Lagrangian fluid elements, which are passively advected by turbulent flow and give
no back-reaction on the flow. In this thesis, we call the Lagrangian fluid element
Lagrangian particle for simplicity though such a particle does not exist in real world.
The velocity of the Lagrangian particle is same as the fluid velocity at the particle
position. Thus, the motions of Lagrangian particles initially seeded at various positions
can fully describe turbulence itself. Therefore, there are two kinds of descriptions for
velocity field of a fluid: Eulerian description and Lagrangian description.

1This definition may be more limited than usual. In this thesis, we consider such an ideal case and
pursue the universal properties of turbulent diffusion.
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Chapter 1 General Introduction

1.1.1 Eulerian description and Lagrangian description

There are two ways of descriptions of field, i.e., Eulerian and Lagrangian descriptions,
see [12] for detail. First, we consider two observers; one is always located at a position
x, the other is moving with a tracer particle, which is passively advected by the fluid.
The former is called Eulerian observer and the latter is called Lagrangian observer.
The position of the Lagrangian observer at time t who passes a position x at time s is
denoted as X(x, s|t). Here, there are two times, s and t, which are called the labeling
time and the measuring time, respectively.

An Eulerian observer at a position x can measure fluid velocity at time t only at its
position x, which is denoted as u(x, t). This is called Eulerian velocity. On the other
hand, a Lagrangian observer can measure fluid velocity at time t only at the position of
the particle riding on, which is denoted as v(x, s|t). This is called Lagrangian velocity
[73]. It is defined through its position X(x, s|t) as,

v(x, s|t) ≡ d

dt
X(x, s|t), (1.1)

and is equivalent to

v(x, s|t) = u(X(x, s|t), t). (1.2)

In this thesis, we call the set of variables, (x, s, t), the Lagrangian data.

In general, Eulerian description simplifies mathematical treatments of the phe-
nomenon on which one focuses. The Navier-Stokes equations are described by the
Eulerian description. On the other hand, it seems to be incompatible with human
imagination because we have to imagine infinite number of observer. Lagrangian de-
scription is rather more useful to analyze a phenomenon at first. Of course, once the
equations by the Eulerian description are obtained, these numerical calculations and
analytical considerations are more feasible than those by the Lagrangian description.
Therefore, due to the simplicity, the study of Eulerian turbulence, which means analysis
on Eulerian velocity in turbulence, has developed prior to that of Lagrangian turbu-
lence, which means analysis on Lagrangian velocity in turbulence.

Lagrangian description is, however, frequently required for analysis of phenomena
in nature [12]. All of the phenomena below require Lagrangian description: particle
motions in turbulence, diffusion of substances such as smoke in atmosphere and ink in
water, mixing of two kinds of immiscible materials such as oil and water, and thermal
transport in ocean. These phenomena are often called Lagrangian turbulence. In this
thesis, we consider statistical properties of Lagrangian turbulence, especially, in terms
of turbulent diffusion. Hence, let us consider a diffusion similar to Brownian motion,
namely, statistical properties of Lagrangian particles in turbulence where particles ini-
tially occupy a very small region and are loosed at same time. It is noted that we do
not deal with particles loosed in succession. First of all, we consider which quantity
characterizes well Lagrangian turbulence.
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1.1 Lagrangian turbulence

1.1.2 Characteristics of Lagrangian turbulence

In this thesis, we only deal with homogeneous turbulence. Thus, we suppose that
particles move in a fluid which occupies an unbounded domain without boundaries.
For the approximation, we also suppose that particles move in a fluid within a finite
domain, and all of the particles are far from the boundaries at any time

We study time evolutions of n particles described as,

d

dt
X(xi, s|t) = v(xi, s|t), (i = 1, · · · , n) (1.3)

for large n. The domain which particles initially occupy is supposed to be much smaller
than turbulent domain. All particles are loosed at same time s. In general, we con-
sider statistics on a quantity, A, in terms of n particles with Lagrangian data set,
{(x1, s, t1), · · · , (xn, s, tn)}. For example, one-particle displacement is the quantity
for n = 1 in terms of one particle , and relative separation of particle pairs is the
quantity for n = 2, in terms of two particles, etc. Here, this quantity is denoted as
A(x1, s, t1; · · · ;xm, s, tm).

There are several versions of ensemble averages for particle statistics. The first one
takes the average over realizations obtained by repeating N -times experiments under
exactly the same conditions for large N . We can define the ensemble average of a
quantity A in terms of n particles as,

〈〈A(x1, s, t1; · · · ;xn, s, tn)〉〉 =
1

N

N∑
i=1

Ai(x1, s, t1; · · · ;xn, s, tn), (1.4)

Here Ai(x1, s, t1; · · · ;xn; s, tn) is a realization of A at the i-th experiment [86]. Under
this average, we can estimate n-point joint probability distribution function (PDF) for
the positions of particles:

p(X1, t1; · · · ;Xn, tn|x1, s; · · · ;xn; s) = 〈〈δ[X1−X(x1, s|t1)] · · · δ[Xn−X(xn, s|tn)]〉〉,
(1.5)

where δ[y] is the Dirac delta function. This definition of the ensemble average is the
most general, but is not practical.

The second is provided for more practical reasons. It is often difficult to take
the ensemble average (1.4) with the large number N enough to obtain the accurate
statistics at laboratory experiments and numerical simulations. Then, we alternatively
use the following ensemble average in this thesis. For this ensemble average, the only
one experiment is required. In this experiment, N particles are loosed at an initial
time s. Next, we find M set of particles which have the same values of x1 − x2,x1 −
x3, . . . ,xn−1−xn in each set. It should be noted that M can be large if N is sufficiently
large. Then, the ensemble average is defined as,

〈A(x1, s, t1; · · · ;xn, s, tn)〉 =
1

M

M∑
j=1

A(x
(j)
1 , s, t1; · · · ;x(j)

n , s, tn), (1.6)
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Chapter 1 General Introduction

where {x(j)
1 , . . . ,x

(j)
n } is j-th set of such particles. Thus, A(x

(j)
1 , s, t1; · · · ;x

(j)
n , s, tn) is

a realization of A for the j-th set of particles. This definition is efficient for small n.
We expect that this ensemble average (1.6) provides the same results as the ensemble
average (1.4), and therefore we use it in this thesis.

Now we consider which statistical quantity characterizes Lagrangian turbulence, es-
pecially, turbulent diffusion. Strictly speaking, the n-point joint probability distribution
function (1.5) contains the full information about turbulent diffusion, and therefore we
should consider properties of it. However, we believe that there are simpler quantities
to characterize turbulent diffusion.

In this regard, at a first sight, statistics on one-particle displacement, such as the
root mean squared displacement (RMSD) [12],

l(t) ≡
√
〈|X(x0, s|t)− x0|2〉, (1.7)

seems good as in the case of the Brownian motion. Here, x0 is an initial position of
the particle. However, this is insufficient to turbulent diffusion because the RMSD,
l(t), exhibits asymptotically power-law behavior similar to Brownian motion as follows
[110]:

l(t) '
{
vrmst at t� TL,

vrms
√
TLt at t� TL,

(1.8)

where vrms is the root mean square of Eulerian turbulence energy for unit mass and
TL is an integral time scale of turbulence, which is the largest characteristic time scale
of turbulence. The scaling laws (1.8) mean that diffusion with respect to one-particle
displacement is only influenced by the largest eddy of turbulence with velocity vrms.
Therefore, we cannot understand the scale-by-scale effects of turbulent diffusion induced
by the nonlinearity of turbulence.

As initiated by Richardson [98], it is good to deal with relative separation of particle
pairs, that is,

r(t) ≡X(x1, s|t)−X(x2, s|t). (1.9)

This quantity may be influenced only by the eddies of the same size as |r(t)| of tur-
bulence, or by eddies of various sizes of turbulence at least. In any case, statistics on
the relative separation of particle pairs have information on multiscailng of turbulent
diffusion. This diffusion is called the turbulent relative dispersion. The scaling laws for
the relative dispersion is the main themes in this thesis.

Before considering the scaling properties of turbulent relative dispersion, we will
take a look at them from a more general point of view: anomalous diffusion and scaling
laws.
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1.2 Anomalous diffusion

1.2 Anomalous diffusion

Anomalous diffusion [67, 107] is a diffusion process with the mean-square displacement
which does not grow linearly in time, i.e.,

〈|x(t)|2〉 ∝ t2ν (ν 6= 1/2). (1.10)

In particular, the case of ν < 1/2 is called subdiffusion, and the case of ν > 1/2 is
called superdiffusion.

Anomalous diffusion is ubiquitous in various systems [84, 127]. One of the charac-
teristics is non-universarity of the scaling exponent. Various values of ν are observed
in various phenomena. Its value of ν is determined by specific mechanisms of the in-
dividual phenomenon. Such non-universality results from deviations from the central
limit theorem. To our best knowledge, however, it is unclear whether there is universal
mechanism of the anomalous diffusion.

Here, we review superdiffusion and its models in the following subsection. It is
well known that the turbulence enhances diffusion and mixing of substances. Thus,
turbulent diffusion probably exhibits superdiffusive nature, which was indeed found so
by Richardson [98].

1.2.1 Models for superdiffusion

Superdiffusion has been widely studied with various models such as fractional Brow-
nian motion [83], generalized Langevin equations [95], continuous time random walk
(CTRW) models [68], and Lévy walk models [127]. Several of these models can lead to
an equation with a fractional operator [84], for the PDF, p(x, t), which has a self-similar
asymptotic form such as,

p(x, t) ∼ t−νf
( x
tν

)
, (1.11)

where f is a function with a single argument. Here, we suppose one dimensional space.
This self-similar distribution implies the mono scaling of the moments:

〈|x(t)|q〉 ∝ tqν . (1.12)

On the other hand, several studies report deviations from the mono-scaling law in
experiments for various systems. In such systems, the moments exhibit so-called strong
anomalous diffusion [35], i.e.,

〈|x(t)|q〉 ∝ tqν(q), (1.13)

where ν(q) is a nonlinear function of q. It indicates breaking of self-similar distribu-
tion, (1.11). In the framework of Lévy walk models, one can explain that this strong
anomalous distribution is originated from rare events, which are due to fat-tails of the
PDFs. Furthermore, this dynamical basis is investigated by non-normalizable densities
and big-jump principle [96, 97, 117, 118].
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Chapter 1 General Introduction

1.2.2 Turbulent diffusion as superdiffusion

Turbulent diffusion also exhibits superdiffusion. Especially, Richardson [98] proposed,
as we will describe later in detail, the superdiffusive behavior of relative separations of
particle pairs,

〈r2(t)〉 ∝ t3,

where r(t) is the relative separation of a particle pair. Moreover, he stated that the
PDF is self-similar and thus leads to a mono scaling such as Eq.(1.12). Recently, CTRW
models are proposed for the dynamical origin of the Richardson model [29, 113].

On the other hand, recent numerical investigations show the deviation from the
above Richardson picture [16, 105]. Furthermore, they state that the deviations are
resulted from the rare events2 which include pairs separating very fast or very slowly.
Thus, the PDF is not self-similar [16, 105]. However, the origins of such rare events are
not clear.

It seems that the Lévy walk models are compatible with the turbulent relative dis-
persion. The motion of Lévy walker is similar to that of particle pairs in the Batchelor–
Obkuhov regime, which will be described in section 1.5. Moreover, the Lévy walk mod-
els can explain the rare events as mentioned above. However, the convincing evidence
has never been shown that the particle pairs in turbulence behave as Lévy walker. We
will discuss again the relation between the turbulent relative dispersion and the Lévy
walk models in chapter 4.

1.3 Scaling law

Scaling laws are observed in turbulence. We describe scaling properties of turbulence
in the following sections. In this section, we review general properties of phenomena
exhibiting scaling laws and also theoretical techniques such as dimensional analysis
which enable to find scaling laws and determine the values of the scaling exponents For
more information about dimensional analysis and self-similarity, see, for example, Ref.
[5, 6, 7]. Here, this section is described based on [6]

Scaling laws appear in various phenomena in nature. The scaling laws reveal self-
similarities behind the processes in the phenomena. Here, the scaling law for a quantity,
A, is a power-law monomial relation among the others, a1, . . . , ak,

A = Caα1
1 · · · aαkk , (1.14)

where C is a constant factor and α1, . . . , αk are scaling exponents.

In general, physical quantities have dimensions. Hence, the value of the quantity is
measured by adopting one unit of the dimension. Using this property, we can estimate
how the quantity depends on the other quantities, which is dimensional analysis.

2They are termed extreme events in their papers.
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1.3 Scaling law

1.3.1 Dimensional analysis

Dimensional analysis of a quantity, A, is a theoretical technique to determine a power-
law monomial relationship with the other quantities. The scaling law for the quantity,
A, is obtained by dimensional analysis as follows. First, we list quantities called gov-
erning parameters on which the quantity A depends as,

A = f(a1, . . . , ak, b1, . . . , bm), (1.15)

Here, we group the governing parameters separately into two categories, i.e., the k pa-
rameters {a1, . . . , ak} and the m parameters {b1, . . . , bm}. The parameters {a1, . . . , ak}
have independent dimensions while the dimensions of the parameters {b1, . . . , bm} can
be expressed as products of the dimensions of {a1, . . . , ak}:

[b1] = [a1]β11 · · · [ak]β1k,

...

[bi] = [a1]βi1 · · · [ak]βik,
...

[bm] = [a1]βm1 · · · [ak]βmk.

(1.16)

Here, f is an unknown function. Dimensional analysis cannot determine the functional
form of f except in special cases. Similarly, the dimension of A can be expressed by
the dimensions of {a1, . . . , ak}:

[A] = [a1]α1 · · · [ak]αk . (1.17)

Here, we assume that the governing parameters, {a1, . . . , ak} and {b1, . . . , bm}, are
given. For systems with many degrees of freedom such as turbulence, the number of
the quantities related to the phenomenon is too large, maybe infinity, to efficiently
perform the dimensional analysis. We should reduce some of the parameters in ad-
vance. Furthermore, we have to classify the governing parameters into two {a1, . . . , ak}
and {b1, . . . , bm} for dimensional analysis. The parameters {a1, . . . , ak} are of signifi-
cant for the scaling laws while the parameters {b1, . . . , bm} are not always crucial, as
described later. However, we cannot know how to classify them a priori. We should
perform the classification with carefully considering which quantity is important for the
phenomenon.

Next, we define some dimensionless parameters, {Π,Π1, . . . ,Πm}. The parameter
A is non-dimensionalized by using the parameter a1, . . . ak:

Π ≡ A

aα1
1 · · · aαkk

(1.18)
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Chapter 1 General Introduction

Similarly, the governing parameters {b1, . . . , bm} are also non-dimensionalized:

Π1 ≡
b1

aβ11
1 · · · aβ1k

k

,

...

Πm ≡
bm

aβm1
1 · · · aβmkk

(1.19)

The number of arguments of the relationship (1.15) can be reduced from k + m to
m by using the following theorem:

Buckingham Π-theorem The relationship (1.15) is equivalent to

Π = Φ(Π1, . . . ,Πm), (1.20)

where Φ is a dimensionless function with m arguments. The proof of the Buckingham
Π-theorem is provided by, for example, Ref. [17]. The unknown arguments of the
relationship among the quantity A and the governing parameters are reduced from
k +m to m:

A = aα1
1 · · · aαkk Φ

(
b1

aβ11
1 · · · aβ1k

k

, . . . ,
bm

aβm1
1 · · · aβmkk

)
(1.21)

This is a consequence of dimensional analysis. In particular, when m = 0, the dimen-
sionless function Φ is just a constant. Thus, the relationship (1.21) is simply described
as,

A = Caα1
1 · · · aαkk , (1.22)

where C is a constant factor. Therefore, we can completely determine the relation
between the quantity A and the governing parameters except for the constant factor.

On the other hand, when m 6= 0, we can not determine the functional form of Φ
by dimensional analysis. Nevertheless, we feel like we kind of understand if Φ is a one-
variable function, i.e., m = 1. Especially, if the parameter Π1, which is the argument of
Φ, is independent of both time and spatial coordinates, the function Φ can be regarded
a constant again. This is called the physical similarity. An example for this case is
the relation for the hydrodynamic drag in a long cylindrical pipeline. In this case, the
parameter Π1 is the Reynolds number.

Furthermore, when Π1 is dependent on time or spatial coordinates, the relationship
between the quantity A and the parameter Π1 is called self-similar. For instance, let
the quantity A a time dependent scalar field, i.e., A = A(x, t). The quantity A is
self-similar in time if the following relation holds:

A = C̃t−αΦ

(
x

X(t)

)
, (1.23)

8



1.3 Scaling law

where C̃ is a parameter independent of both t and x, and X(t) is a time-dependent
variable whose dimension is the same for x. Examples for this case include thermal
diffusion in the infinite space and the PDF of Brownian motion. We can determine
the functional form of Φ when we know the governing equation such as the diffusion
equation. At this point, the assumption that the quantity has the self-similar form
(1.23) simplifies to find a solution to the governing equation. There are many other
examples for the physical similarity and the self-similarity in Ref.[5, 6, 7].

As we can see from the above examples, it is important to reduce a priori the number
of the parameters {b1, . . . bm}, whose dimensions are given by the products of those
of {a1, . . . ak}, in order to obtain the relationship that allows physical interpretation.
However, the number of governing parameters becomes larger if the phenomenon is
more complicated. In this sense, the self-similarity emerges only as an approximation.
Therefore, we focus on asymptotic behaviors of the quantity A. Let us consider time
when and scale where the system is independent of fine details of initial conditions and
boundary conditions, and also still far from its final equilibrium state. This situation
is often found at problems of physics. This is intermediate asymptotics.

1.3.2 Intermediate Asymptotics

Let us consider three independent variables, b1, b2, and b which are governing parameters
for a quantity A under consideration. Assume that b2 is quite a bit larger than b1:

b1 � b2. (1.24)

Then, we consider an asymptotic behavior of the quantity A in an intermediate range,

b1 � b� b2. (1.25)

This asymptotics is called intermediate asymptotics. Namely, b is large enough in
comparison with b1 but small enough in comparison with b2. An example for b is a
spatial coordinate x or time t. Intermediate asymptotics appears frequently at problems
of physics. It is the case for turbulence as we will mention in the following sections.
In the intermediate asymptotics, we can expect that the number of the independent
variables for the quantity A is reduced. At a first sight, it seems that the quantity
A becomes independent of the dimensionless parameters b1/b and b2/b at intermediate
asymptotics because the parameter b1/b is infinitesimally small and the parameter b2/b
is infinitely large. In such a case, the parameters are no longer significant. As a
result, a self-similarity arises. For the simplest case, we may find the scaling law for
the quantity A only by using dimensional analysis. However, it does not always the
case for all phenomena. The parameters b1/b and b2/b remain essential at intermediate
asymptotics for some phenomena. In this case, we can still expect that a self-similarity
arises for the quantity A. The former self-similarity of the simplest case is called
complete similarity and the latter incomplete similarity. Of course, the self-similarity
does not arise in either case for some phenomena. In this case, we have to attack the

9



Chapter 1 General Introduction

phenomenon in other ways. In the next subsection, we describe more quantitatively
the two kinds of self-similarity.

1.3.3 Complete and Incomplete Similarities

According to the Π-theorem, a quantity A can be represented as Eq.(1.21). For clear
discussion, let m be 2, and we assume that the dimension of b1 is the same as one of
b2, that is, [b1] = [b2]. See Ref. [6] for more general case.

In such a case, Eq.(1.21) is simplified as

A = aα1
1 · · · aαkk Φ

(
b1

aβ11 · · · aβkk
,

b2

aβ11 · · · aβkk
,

)
. (1.26)

Here, we denote aβ11 · · · aβkk as b for simplicity, that is

A = aα1
1 · · · aαkk Φ

(
b1

b
,
b2

b

)
(1.27)

Then we consider the intermediate asymptotics for b1 � b � b2. In this intermediate
asymptotics, i.e., at b1/b → 0 and b2/b → ∞, we can expect that the dimensionless
function Φ approaches a non-zero and finite constant C. In this case, the scaling law
for A is revealed as

A ∼ Caα1
1 · · · aαkk for b1 � b� b2 (1.28)

Here，C is no longer dependent on b1 and b2. Therefore, the scaling law for A is
determined only by dimensional analysis. This kind of the self-similarity is called
complete similarity or similarity of the first kind.

On the other hand, for some phenomena, the parameters b1 and b2 remain essential
no matter how large or small the corresponding dimensionless parameters b1/b and b2/b
are. In such a case, at a limit b1/b → 0 and b2/b → ∞, the dimensionless function Φ
behaves singular, namely, approaches neither non-zero nor finite value. Nevertheless,
we can expect that there is another type of self-similarity. One possibility is that
the dimensionless function Φ has the properties of generalized homogeneity in its own
arguments:

Φ

(
b1

b
,
b2

b

)
∼
(
b2

b

)p
Φ∗

(
b1/b

(b2/b)q

)
, (1.29)

at small value of b1/b and large value of b2/b, where p and q are constants. This
relation (1.29) is similar to the result of the Buckingham Π-theorem, but the role is
quite different. The values of the scaling exponents, p and q, are not determined by
dimensional analysis. As a result, the scaling law for A is as follows:

A ∼ aα1−pβ1
1 · · · aαk−pβkk bp2 Φ∗

(
b1

a
β1(1−q)
1 · · · aβk(1−q)

k bq2

)
. (1.30)
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1.4 Eulerian turbulence

The result is quite different from complete similarity. The quantity A is essentially
dependent on b1 and b2 for b1 � b � b2. The additional exponents p and q are
determined not by dimensional analysis but by experimental data or by solving the
governing equations for A under the assumption of the self-similarity (1.30). This
self-similarity is called incomplete similarity or the similarity of second kind. When
p = q = 0, complete similarity recovers. Therefore, incomplete similarity contains
complete similarity.

1.3.4 Experimental asymptotics

Then, how can we know which type of self-similarities the phenomenon is classified
into, or the phenomenon is not classified into both types? Strictly speaking, this is at-
tained only when we obtain the solution of the governing equations for the phenomenon
without self-similarity assumptions. We cannot know it a prior. Therefore we only as-
sume, in succession, complete similarity, incomplete similarity, and no similarity, and
then compare it with the experimental data from laboratory experiments and numeri-
cal experiments etc. This analysis is experimental asymptotics, which is termed by N.
Zabusky [6].

The Richardson–Obukhov law is the standard and widely accepted scaling law for
the turbulent relative dispersion as we will describe in section 1.5 in detail. However, in
terms of the experimental asymptotics, the Richardson–Obukhov law does not converge
enough because it is not observed by any laboratory and numerical experiments.

1.4 Eulerian turbulence

In this section, we review theories and some experimental results of Eulerian turbulence
before we consider Lagrangian turbulence. This is because the phenomenology applied
to Lagrangian turbulence is based on that of Eulerian turbulence.

A starting point is the Navier-Stokes equations:
∂

∂t
ui(x, t) + u · ∇ui(x, t) = − ∂

∂xi
p(x, t) + ν∆ui(x, t) + fi(x, t),

∂

∂xj
uj(x, t) = 0.

(1.31)

Here, u(x, t), p(x, t), and f(x, t) denote fluid velocity, pressure per unit mass, and an
external force per unit mass at a d-dimensional spatial point x = (x1, . . . , xd) and a
time t, respectively. ν is a coefficient of kinematic viscosity.

We consider fully developed turbulence, i.e., ν → 0. At this condition, it is believed
that one can regard turbulence as locally homogeneous in regions far from boundaries
such as solid walls or free surface. Nevertheless, in this thesis, we restrict the boundary
conditions to the periodic boundary conditions in a squared plane for d = 2 or in a
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Chapter 1 General Introduction

cubic box for d = 3:

u(x1, · · · , xd, t) = u(x1 +m1L1, · · · , xd +mdLd, t), (1.32)

for all integers, m1, . . .md. Here Li is a positive real number, say, the period. For
simplicity, we set Li = L hereafter. There are some reasons why we assume the periodic
boundary conditions as below. First, effects of boundaries such as solid walls occur
only in the vicinity of the boundaries, say boundary layers [77]. Thus, we expect
universal properties of turbulence irrespective of the boundary conditions in domains
far from the boundaries. Given that L is infinitely large, i.e., L → ∞, the domain
filled by the fluid is regarded as infinitely large. Therefore we expect homogeneous
turbulence at L → ∞. Second, for the periodic boundary conditions, we can use the
Fourier analysis. It simplifies analytical treatments for the Navier-Stokes equations
and facilitates understanding of physics of nonlinearity of turbulence. Third, numerical
simulations are more feasible.

In this thesis, we denote the Fourier coefficient of a periodic function g(x) with
period L as ĝ(k), which is defined through the Fourier series in d-dimensional space,

g(x) =

(
2π

L

)d∑
k

ĝ(k, t)eik·x, (1.33)

and the inverse transform is

ĝ(k) =
1

(2π)d

∫
g(x)e−ik·xdx. (1.34)

1.4.1 Statistically homogeneous and isotropic turbulence

From now on, we consider more idealized settings. Namely, we assume that the tur-
bulent velocity is statistically homogeneous, i.e., homogeneous turbulence. Strictly
speaking, to realize homogeneous turbulence, the fluid fills all of the space with no
boundaries. In order to rule out problems at infinity, we assume periodic boundary
conditions with the period L, that is, Eq.(1.32) and we can recover the unbounded con-
ditions by letting L → ∞. In laboratory experiments, it is known that grid turbulence
[66] can realize homogeneous turbulence approximately.

In homogeneous turbulence, one-point statistics of velocity is independent of spatial
coordinates, x. In this thesis, we assume that a mean flow is zero, that is,

〈u〉 = 0, (1.35)

where the bracket 〈·〉 denotes an ensemble average.
Kinetic energy is input by the external forcing and dissipated by the viscosity of

the fluid:
∂

∂t

(
1

2
〈u2〉

)
= −ν〈ω2〉+ 〈f · u〉. (1.36)
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1.4 Eulerian turbulence

Here, ω = ∇× u is vorticity, and 1
2
〈ω2〉 is called enstrophy. Thus, turbulence cannot

be maintained unless energy is injected by the external force when the dissipation term,
ν〈ω2〉, is finite.

Enstrophy is dissipated by the viscosity of the fluid via palinstrophy 〈|∇×ω|2〉. On
the other hand, enstrophy is input not only by the external force but also by a vorticity
stretching:

∂

∂t

(
1

2
〈ω2〉

)
= 〈ω · S · ω〉 − ν〈|∇ × ω|2〉+ 〈ω · (∇× f)〉, (1.37)

where S = {Sij} = {1
2
(∂ui/∂xj + ∂uj/∂xi)} is the velocity gradient tensor [128]. The

first term in the right-hand side of Eq. (1.37) arises from the nonlinear term and
increases with vorticity stretching. It should be noted that for two-dimensional turbu-
lence, the vorticity stretching term is vanished so that the mechanism of maintaining
the enstrophy, as well as kinetic energy, is different between two-dimensional (2D) and
three-dimensional (3D) turbulence.

In homogeneous turbulence, one-point statistics such as the kinetic energy is con-
stant, and therefore, statistics that characterize the spatial structure of turbulence are
multi-point ones. The fundamental one is (second-order) Eulerian velocity correlation
tensor:

Uij(r) ≡ 〈ui(x + r, t)uj(x, t)〉, (1.38)

which are independent of each spatial points x and x + r and only dependent on
the relative distance, r, between the two points because of the statistical homogeneity.
According to the Navier-Stokes equations (1.31), the Eulerian velocity correlation tensor
satisfies the following equation,(
∂

∂t
− 2ν∇2

k

)
Uij(r) = −∇k [Uik,j(r)− Ujk,i(−r)]+〈ui(x)fj(x+r)〉+〈uj(x)fi(x−r)〉,

(1.39)
where ∇ denotes the gradient vector of r, and Uij,k(r) is third-order Eulerian velocity
correlation tensor:

Uij,k(r) = 〈ui(x + r)uj(x + r)uk(x)〉. (1.40)

It is noted that this equation for the second-order correlation tensor contains the third-
order one. Similarly, the equation for the third-order correlation tensor contains the
forth-order one, and so forth, ad infinitum. Hence, we cannot calculate any correlation
functions unless we give rules or assumptions for closing this infinite chain of coupled
equations. The rules for closing the equations have not yet been given deductively from
the Navier-Stokes equations.

To simplify calculations, we assume statistical isotropy in strict sense, which requires
symmetries with respect to rotation and parity inversion of the coordinate system.

For isotropic turbulence, the degree of freedom of the Eulerian velocity correlation
tensor reduces to one dimension and all components are represented by longitudinal

13



Chapter 1 General Introduction

one defined as,

ULL(r) = Uij(r)
rirj
r2

, (1.41)

ULL,L(r) = Uij,k(r)
rirjrk
r2

, (1.42)

such as

Uij(r) = − r

d− 1

∂

∂r
ULL(r)

rirj
r2

+

(
1 +

r

d− 1

∂

∂r

)
ULL(r)δij (1.43)

Uij,k(r) =
1

d− 1

(
1− r ∂

∂r

)
ULL,L(r)

rirjrk
r3
− 1

d− 1
ULL,L(r)δij

rk
r

+
1

2

(
1 +

r

d− 1

∂

∂r

)
ULL,L(r)

(
δik
rj
r

+ δjk
ri
r

)
. (1.44)

We obtain the so-called Kármán-Howarth equation [62] by substituting these relations
to Eq.(1.39) and by calculating straightforwardly,

ULL,L(r) = 2ν
∂

∂r
ULL(r)− 1

rd+1

∫ r

0

rd+1
1

∂

∂t
ULL(r1) dr1

− 1

rd+1

∫ r

0

2r1

∫ r1

0

rd−1
2 〈ui(x + r2)fi(x)〉 dr2dr1.

(1.45)

The Kármán-Howarth equation is fundamental to Kolmogorov phenomenology reviewed
in next subsection, which gives the assumptions for closing equations by the experimen-
tal result which the energy dissipation rate remains finite at ν → 0.

In the Fourier space, the Navier-Stokes equations (1.31) are represented as,(
∂

∂t
+ νk2

)
ũi(k, t) = − i

2
Pilm(k)

∑
p,q

(k+p+q=o)

ũl(−p, t)ũm(−q, t) + Pil(k)f̃l(k, t),

kiũi(k, t) = 0,
(1.46)

where Pij(k) and Pijk(k) are tensor operators defined respectively as,

Pij(k) = δij −
kikj
k2

, (1.47)

Pijk(k) = kkPij(k) + kjPik(k). (1.48)

In homogeneous turbulence, the Fourier coefficient of the Eulerian velocity correlation
tensor is as follows:

Ũij(k, t) = 〈ũi(k, t)ũj(−k, t)〉. (1.49)

Furthermore, in isotropic turbulence, the degrees of freedom of this correlation tensor
is reduced to one dimension and represented by Ũii(k, t) or the energy spectrum,

E(k) =

∫
|k′|=k

1

2
Ũii(k

′) dS(k′), (1.50)
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1.4 Eulerian turbulence

where the integral on the right hand side is performed on a sphere of radius k. Here, the
discrete wavenumber has been changed to a continuous one for the sake of convenience.

The governing equation of the energy spectrum E(k) is as follows:(
∂

∂t
+ 2νk2

)
E(k) = − ∂

∂k
Π(k) + F (k), (1.51)

where

Π(k) = −1

2

(
2π

L

)2d ∑
|k′|>k

∑
p,q

(k′+p+q=o)

Im (Pilm(k′)〈ũi(k′)ũl(−p)ũm(−q)〉) , (1.52)

F (k) =

∫
|k′|=k

〈f̃i(k′)ũi(−k′)〉dS(k′). (1.53)

Here, Π(k) is the energy flux function, which represents flux of the energy going to
larger wavenumbers than k due to the nonlinear interactions. By integrating Eq.(1.51)
in terms of k, we obtain,

Π(k) =
∂

∂t
E (k) + 2νΩ(k)−F (k), (1.54)

where
E (k) ≡

∑
k′≤k

E(k′), Ω(k) ≡
∑
k′≤k

k′2E(k′), F (k) ≡
∑
k′≤k

F (k′) (1.55)

In this subsection, we have derived the exact relations of statistics of a velocity
under the assumptions of statistical homogeneity and isotropy. However, as already
mentioned, the equations obtained above are not closed. The assumptions for closing
equations have been given by Kolmogorov [69] for 3D turbulence based on the exper-
imental result which the energy dissipation rate remain finite as ν → 0. Moreover,
Kolmogorov [70] have assumed additional conditions, which are called Kolmogorov
self-similarity hypothesis, and have performed dimensional analysis of statistics of tur-
bulence.

On the other hand, for 2D turbulence, the situation is quite different. This is
because the material derivative of vorticity is zero at the inviscid limit. As a result, n-
th moment in terms of vorticity for any n is invariant at the inviscid limit. In particular,
the conservation of the second moment, which is called enstrophy, makes it crucially
different from 3D turbulence. Therefore, we consider 3D and 2D turbulence separately.

1.4.2 Kolmogorov phenomenology for 3D turbulence

First, we assume that the energy dissipation rate, ν〈ω2〉, is finite as ν → 0, and
we denote it by ε. This assumption, at first sight, is doubtful because enstrophy is
diverged if ε is finite as ν → 0. This assumption is based on experiments, where the
energy dissipation rate ε is kept constant with decreasing the viscosity ν or increasing
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the corresponding Reynolds number. Of course, the energy dissipation rate might be
suddenly zero at larger Reynolds number which has not yet been attained at present,
but such behavior is not conceivable. Hence, we can still accept this assumption.

This assumption enables us to close the infinite chain of equations. Under this
assumption, we can assume that the turbulent velocity is statistically stationary:

∂

∂t

(
1

2
〈u2〉

)
= 0, (1.56)

which is equivalent to,

ε = 〈f · u〉, (1.57)

from Eq.(1.36). The right hand side is the energy input rate by the external force. It is
finite. Thus, the energy dissipation rate ε should be finite as ν → 0 in order to realize
the statistically stationary state (1.56) at ν → 0.

Furthermore, we assume that the external force is acting only at large scales, that
is the Fourier coefficients of it are non-zero only at small wavenumbers, k . kf ∼ 1/L
[45]:

f(x, t) '
∑
|k|<kf

f̂(k, t), (1.58)

where L is the integral length as defined by [112, 128],

L ≡ 1

ULL(0)

∫ ∞
0

ULL(r) dr. (1.59)

This assumption connects the external forcing terms in Eq.(1.45) and Eq.(1.54) at
r � 1/kf and k � kf with the energy dissipation rate such as,

〈u(x + r) · f(x)〉 ' 〈u(x) · f(x)〉 = ε, (1.60)

F (k) '
∞∑
k=0

F (k) = 〈u(x) · f(x)〉 = ε. (1.61)

As ν → 0, the viscous terms in Eq.(1.45) and Eq.(1.54) vanish if the following relations
hold: ∣∣∣∣2ν ∂ULL∂r

∣∣∣∣� εr, (1.62)

|2νΩ(k)| � ε, (1.63)
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1.4 Eulerian turbulence

that is 3 4,

r � λ, (1.64)

k � 1

λ
, (1.65)

where η is the Kolmogorov length as we will define later and λ is the Taylor micro-scale
defined as [10, 112],

λ2 ≡ −ULL(0)

U ′′LL(0)
=

5〈u2〉
〈ω2〉 =

5ν〈u2〉
ε

. (1.66)

It is noted that we can define a Reynolds number by using the Taylor micro-scale:

Reλ =
λ
√
ULL(0)

ν
, (1.67)

which is called Taylor micro-scale Reynolds number.
These equations (1.45) and (1.54) are, therefore, closed by third order quantities,

which are ULL,L(r) and Π(k) in the intermediate subrange λ� r � L or kf � k � 1/λ.
This intermediate range is called the inertial subrange. Here, we introduce the n-th
order structure function 5,

Sn(r) = 〈[δuL(r)]n〉, (1.68)

where δuL(r) = [u(x+r, t)−u(x, t)] ·r/|r|. Using the structure function, the Kármán-
Howarth equation (1.45) leads to6,

S3(r) ' −4

5
εr at λ� r � L, (1.69)

which is Kolmogorov four-fifth law [69]. Similarly, Eq.(1.54) leads to

Π(k) ' ε at kf � k � 1

λ
. (1.70)

3It is not obvious whether relation (1.64) is derived from relation (1.62). If we assume that the
ratio, εr/|2ν∂ULL/∂r|, monotonically increases with r, we can verify that relation (1.64) is a necessary
condition for relation (1.62) because εr ∼ |2ν∂ULL/∂r| at r ∼ λ. Of course, if we adopt the Kolmogorov
self-similarity hypothesis as we will describe later, relation (1.62) leads to r � η, where η is the
Kolmogorov length as we will defined later.

4Relation (1.65) is derived from relation (1.63) via the following inequality:

|2νΩ(k)| =
∣∣∣∣∣2ν ∑

k′<k

k′2E(k′)

∣∣∣∣∣ <
∣∣∣∣∣2νk2∑

k′

E(k′)

∣∣∣∣∣ = νk2〈u2〉,

where Ω(k) is defined in Eq. (1.55).
5This is because it is often used instead of the Eulerian velocity correlation function

ULL(r), ULL,L(r) as a convention.
6Here, S2(r) = 2[ULL(r)− ULL(0)] and S3(r) = −6 ULL,L(r).
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This is the intermediate asymptotics for S3(r) and Π(k). Therefore we further expect
the self-similarity, especially complete self-similarity for the other quantities in the
inertial subrange.

The scaling laws for S3(r) and Π(k) lead to those for the other quantities. In the
inertial subrange, we can assume that quantities related to the Eulerian velocity are
affected only by the energy dissipation rate ε and the scale r in real space or k in Fourier
space. Moreover, if the scale r is smaller than λ or k is larger than 1/λ, the quantities
are affected by the viscosity ν in addition to ε and r or k. These assumptions are called
the Kolmogorov self-similarity hypothesis [70]. Under the hypothesis, we perform the
dimensional analysis for any statistics in principle.

For example, the scaling law for the n-th order structure function, Sn(r) is,

Sn(r) ' εn/3rn/3Φn

(
r

η

)
. (1.71)

in the small scale r � L, where Φn is a dimensionless function and η is the Kolmogorov
length,

η ≡
(
ν3

ε

)1/4

. (1.72)

Here, the Kolmogorov length η is estimated as, η ∼ Re
−1/2
λ λ, from the definitions (1.66)

and (1.72). Similarly, the scaling law for the energy spectrum E(k) is

E(k) ≡ ε2/3k−5/3Φ̃(ηk) (1.73)

at k � kf , where Φ̃ is a dimensionless function.
Furthermore, the dimensionless function Φn and Φ̃ are finite at a limit r/η → ∞

and ηk → 0, respectively. Then Φn and Φ̃ approach constants Cn and CK ,respectively.
Here, CK is called the Kolmogorov constant. Namely,

Sn(r) ' Cnε
n/3rn/3 at η � r � L, (1.74)

E(k) ' CKε
2/3k−5/3 at kf � k � 1/η. (1.75)

Therefore, the n-th order structure function, the energy spectrum, and also the other
statistics, exhibit the complete self-similarity.

The intermediate scales, η � r � L or kf � k � 1/η, are estimated by a single
quantity such as L/η. The ratio, L/η, is also estimated from the dimensional analysis
by using the Kolmogorov phenomenology as follows [45]:

L

η
∼ Re

3/2
λ . (1.76)

For this reason, the Taylor micro-scale Reynolds number Reλ is frequently used for
estimating the width of the inertial range of 3D turbulence.
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1.4 Eulerian turbulence

1.4.3 Kraichnan–Leith–Batchelor phenomenology for 2D tur-
bulence

Next, we review Kraichnan–Leith–Batchelor (KLB) phenomenology for 2D turbulence
[11, 75, 78]. The main difference with respect to 3D turbulence is that enstrophy cannot
blow up, and thus energy is not dissipated by viscosity at the limit, ν → 0. This means
that the energy transfer to large wavenumber must be accompanied by comparable or
greater transfer to small wavenumber [43, 75], see [79] for the detail. On the other hand,
enstrophy can be dissipated by the viscosity at the limit, ν → 0, because of unbounded
properties of palinstrophy and the finite enstrophy dissipation rate defined as,

χ ≡ ν〈|∇ × ω|2〉. (1.77)

As a result, one-way transfer of enstrophy to large wavenumber is admissible.
Nevertheless, we assume that the energy spectrum exhibits the same scaling law

with Kolmogorov phenomenology, that is,

E(k) = Cε2/3k−5/3, (1.78)

at a range. In this case, according to the formal calculations [75], the enstrophy flux
Z(k) is zero at this range of k. Here, the enstrophy flux, Z(k), is defined as

Z(k) = −1

2

(
2π

L

)2d ∑
|k′|>k

|k′|2
∑
p,q

(k′+p+q=o)

Im (Pilm(k′)〈ũi(k′)ũl(−p)ũm(−q)〉) . (1.79)

Furthermore, the energy flux Π(k) becomes constant independent of k, that is,

Π(k) ∝ ε. (1.80)

On the other hand, if we assume that the energy spectrum exhibits the following
scaling law,

E(k) = C ′χ2/3k−3, (1.81)

in a range, which is resulted from the dimensional analysis by only using χ and k, the
energy flux Π(k) is zero in this range of k and the enstrophy flux Z(k) becomes constant
independent of k, that is,

Z(k) ∝ χ. (1.82)

,
If such constant cascades of energy and enstrophy are realized in real physical flows,

we expect Π(k) is negative and Z(k) is positive for such constant cascades range because
of inviscid conservation properties of vorticity as mentioned above. Therefore, when we
input energy at narrow high wavenumbers, k ∼ kf , by an external forcing, following
double cascades are expected,

Π(k) = −ε, Z(k) = 0 at k � kf , (1.83)

Π(k) = 0, Z(k) = χ at k � kf . (1.84)
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The former is the energy inverse-cascade range, and the latter is the enstrophy direct-
cascade range. Some experiments and numerical simulations corroborate the presence
of the double cascade regimes of 2D turbulence.

As predicted by Kraichnan [75], when the fluid is confined to a finite domain, energy
piles up at small wavenumbers because energy cannot dissipate at large scales. To avoid
this, one often adds a linear or hypodrag term to the Navier-Stokes equations, which
dissipates energy at large scales and enables a statistically steady state. Namely, we
consider the following Navier-Stokes equations which are written for the vorticity field
ω,

∂ω

∂t
+ (u · ∇)ω = ν∆ω + (−1)m+1α∆−mω + fω, (1.85)

where α is the (hypo)drag coefficient. Here, the linear drag corresponds to m = 0 and
the hypodrag corresponds to m > 0. In this condition, the scaling law for 2D turbulence
in the energy inverse-cascade range is consistent with Kolmogorov phenomenology for
3D turbulence except for the cascade direction of energy.

Similarly, we can expect the scaling laws in real space for 2D energy inverse-cascade
turbulence. In particular, the constant energy flux leads the exact relation for the
third-order structure function [14, 80, 124], that is,

S3(r) =
3

2
εIr, (1.86)

where εI is the energy input rate by the external force. Moreover, according to some
experimental results of both laboratories [92] and numerical simulations [22, 24], the
deviation from the self-similarity such as,

Sn(r) ∝ ε
n/3
I rn/3, (1.87)

is not found in contrast to the 3D turbulence. In this sense, 2D energy inverse-cascade
turbulence is an ideal framework for Kolmogorov phenomenology [26].

Here, it should be noted that the Taylor micro-scale Reynolds number Reλ as defined
in Eq. (1.67) is insufficient to characterize the width of the inertial range in 2D turbu-
lence. In 2D turbulence, there are two kinds of inertial range: energy inverse-cascade
range and enstrophy direct-cascade range. Accordingly, the number of characteristic
length scales of 2D turbulence is larger than that of 3D turbulence due to the double
cascades. Thus, another Reynolds number is required in order to characterize the dou-
ble cascades. A candidate for the additional Reynolds number ReΛ and an associated
micro scale Λ is, in analogy with the Taylor micro-scale Reynolds number, as follows
[53, 115]:

ReΛ ≡
(Λ〈ω2〉1/2)Λ

ν
, (1.88)

Λ2 ≡ 〈ω2〉
〈|∇ω|2〉 . (1.89)
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1.4 Eulerian turbulence

This Reynolds number ReΛ is estimated by the dimensional analysis using the KLB
phenomenology as,

ReΛ '
(
kη
kχ

)6

, (1.90)

where kη ∼ 1/η is a characteristic wavenumber of the energy dissipation called the
Kolmogorov wavenumber and kχ ≡ (χ/ν3)1/6 is a characteristic wavenumber of the
enstrophy dissipation. Moreover, as well as Eq.(1.76) for 3D turbulence, the Taylor
micro-scale Reynolds number Reλ is also estimated as Reλ ∼ (L/η)2/3 in 2D turbulence.
Therefore, Taylor micro-scale Reynolds number Reλ represents the intermediate range
between the integral scale and energy dissipative scale while the additional Reynolds
number ReΛ represents that between the energy dissipative scale and the enstrophy
dissipative scale. However, the energy inverse-cascade range and the enstrophy direct-
cascade range do not correspond to these intermediate ranges. In particular, these
Reynolds numbers have no information on the forcing scale, which is crucial for the
double cascades in 2D turbulence. The forcing wavenumber kf divides the double
cascade ranges. Therefore, we require different Reynolds numbers in order to estimate
the width of the two cascade ranges, which should include the forcing wavenumber kf ..

For this reason, the following Reynolds numbers are used for characterizing the
double cascades in 2D turbulence:

Reα ≡
kf
kα
, (1.91)

Reχ ≡
kχ
kf
, (1.92)

where kα ≡ (α3/ε)1/(6m+2) is frictional wavenumber which is a characteristic wavenum-
ber of the (hypo)drag term. The former is called the infrared Reynolds number [116] and
characterizes the width of the energy inverse-cascade range. The latter may character-
ize the width of the enstrophy direct-cascade range. Especially, numerical simulations
which we will perform in Chapter 2 and Chapter 3 resolve only the energy inverse-
cascade range, i.e., kf ∼ kχ so that we only use the infrared Reynolds number Reα in
this thesis.

1.4.4 Comparison with experimental results

We compare the phenomenology for both 2D and 3D turbulence with some experimental
results of laboratories and numerical simulations. For 3D turbulence, many laboratory
experiments and numerical simulations were performed and showed the consistent scal-
ing laws for energy spectrum, energy flux, and velocity structure functions etc. with
Kolmogorov phenomenology, and also the intermittency which is the deviation from
Kolmogorov phenomenology, see [54, 108, 128] for review.

KLB phenomenology for 2D turbulence is less certain than Kolmogorov phenomenol-
ogy for 3D turbulence as reviewed in 1.4.3. However, surprisingly, a lot of experimental
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studies reported that the scaling laws for the energy spectrum, the energy flux, the
velocity structure functions, etc., are consistent with those of KLB phenomenology:
see [31, 44, 93, 94, 101, 102, 119] for the details of the results of laboratory experiments
and [20, 22, 24, 31, 46, 114] for those of numerical simulations.

Some numerical simulations of 2D turbulence are performed by the modified Navier-
Stokes equations with the hyperviscous term, (−1)h+1ν∇2hu(x, t) (h > 1), instead of
the normal Laplacian term because the hyperviscosity can reduce the range of scales
which the dissipative term influences. In these simulations, the same scaling laws are
observed [38, 39, 85, 116, 122]. Therefore, it is considered that the hyperviscosity does
not influence the scaling exponents in the energy inverse-cascade range at least. In
Chapter 2, we verify that the hyperviscosity at h = 8 does not also influence the scaling
properties of turbulent relative dispersion in 2D energy inverse-cascade turbulence by
comparing with a normal viscous simulation. See [23, 63, 109] for the other topics of 2D
turbulence such as methods of experiments in laboratories, numerical simulation meth-
ods, non-local effects of the external forcing, vortex condensates, and free-intermittency
nature of 2D turbulence.

1.5 Turbulent relative dispersion

We review phenomenology of turbulent relative dispersion and its comparison with
experiments. Here, we consider statistics on relative motions of Lagrangian particle
pairs, i.e., the particle pairs that are passively advected by turbulent velocity. We just
call Lagrangian particle pairs particle pairs hereafter. The equation of motion is as
follows:

d

dt
r(t) = δv(t). (1.93)

Here, r(t) ≡X(x+ r0, s|t)−X(x, s|t) is a relative separation of a particle pair which
is initially, i.e., at time s, separated by r0, and δv(t) ≡ v(x + r0, s|t) − v(x, s|t) is
its relative velocity, which corresponds to the Eulerian velocity increment at time t,
δv(t) = u(X(x + r0, s|t), t)− u(X(x, s|t), t). By integrating Eq.(1.93), we obtain

r(t) = r0 +

∫ t

s

δv(t′) dt′. (1.94)

In this section, first, we consider the PDF and its moments of the relative separation
of particle pairs. Throughout this section, except for the final subsection, we assume
their self-similarity in time. We review the scaling laws of turbulent relative dispersion
obtained from so-called Richardson phenomenology under this assumption. Although
this assumption is historically standard, it seems to be inconsistent with experimental
data. Recently, some numerical studies reported the deviation from the self-similarity
due to extreme events of the motions of particle pairs [16, 105].

Second, we consider the exit-time statistics. The exit-time statistics have different
features and advantages from the PDF and its moments of the relative separation of
particle pairs.
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1.5 Turbulent relative dispersion

Finally, we review some experimental results of both laboratory experiments and
numerical simulations. Here we compare the phenomenology introduced in this section
with the experimental results.

1.5.1 Richardson phenomenology

Richardson [98] proposed the following diffusion equation for the PDF of relative sep-
aration of particle pairs, p(r, t),

∂

∂t
p(r, t) =

1

rd−1

∂

∂r

(
rd−1D(r)

∂

∂r
p(r, t)

)
, (1.95)

where D(r) is a scale-dependent diffusion coefficient. Furthermore, he suggested em-
pirically,

D(r) = D0r
4/3, (1.96)

where D0 is a constant. It is noted that this four-thirds law for the diffusion coefficient
D(r) is also obtained by simple dimensinal analysis [87].

This diffusion equation with the initial condition, p(r, 0) = δ(r− r0), can be analyt-
ically solved and provides a self-similar solution at asymptotically large time [4, 105],

p(r, t) ∝ r2

〈r2(t)〉3/2 exp

[
−A

(
r

〈r2(t)〉1/2
)2/3

]
, (1.97)

with
〈r2(t)〉 ∝ t3. (1.98)

Here, A is a constant. Hence, in this model, particle pairs separate in a super-diffusive
way and forget the initial separation r0 at large time. Moreover, this model provides a
self-similarity for the moments of relative separation r(t),

〈rn(t)〉 = 〈r2(t)〉n/2 ∝ t3n/2. (1.99)

Therefore, we can only consider 〈r2(t)〉. In this thesis, we call the self-similar PDF (1.97)
the Richardson self-similar PDF and the t3 scaling (1.98) the Richardson–Obukhov law
[103, 123]7.

As mentioned in the following subsection, the results of Richardson phenomenol-
ogy are also derived via Kolmogorov phenomenology [70, 87]. Because of this, the
Richardson phenomenology has been widely accepted in spite of inconsistency with
recent experimental results.

7It should be noted that Yaglom [123] originally suggested that the four-thirds law for the diffusion
coefficient D(r), i.e., Eq. (1.96), should be called the Richardson–Obukhov law. On the other hand,
the dimensional analysis by Kolmogorov phenomenology [70, 87] can derive both scaling laws (1.96)
and (1.98). Therefore, in this thesis, we refer to the t3 scaling law (1.98) as the Richardson–Obukhov
law following convention [103].
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1.5.2 Obukhov–Batchelor phenomenology via Kolmogorov phe-
nomenology

Here, we apply Kolmogorov phenomenology to the turbulent relative dispersion [8, 87].
First, we assume the self-similarity for the moments of relative separation, namely, we
assume the following relations:

〈rp(t)〉 ' 〈r2(t)〉p/2. (1.100)

Thus, we only deal with the mean square 〈r2(t)〉.
Second, we also assume that all particle pairs are always in the inertial subrange,

that is
η � r(t)� L, (1.101)

or we assume the mean square 〈r2(t)〉 is at least in the inertial subrange,

η � 〈r2(t)〉1/2 � L, (1.102)

Here, η is the Kolmogorov length (1.72) and L is the integral length (1.59), which is
maximum characteristic length scale of turbulence. The intermediate range (1.102)
may correspond to the intermediate range (1.101) if the self-similarity (1.100) holds.
In particular, we assume that the initial separation r0 is also in the inertial subrange:

η � r0 � L. (1.103)

On the other hand, statistics on the relative dispersion are dependent on time
unlike the statistics on the Eulerian velocity. We would like to carry out intermediate
asymptotics in terms of time scales. Thus, we introduce three time scales,

TB =
( r0

ε1/2

)2/3

, (1.104)

Tη =
( η

ε1/2

)2/3

, (1.105)

TL =

(
L

ε1/2

)2/3

, (1.106)

where TB is the characteristic time scale of the initial separation r0 called the Batchelor
time, Tη is the characteristic time scale of the energy dissipation called the Kolmogorov
time scale, and TL is the integral time scale. Using these time scales, we carry out the
intermediate asymptotics at

Tη � t� TL, and, Tη � TB � TL. (1.107)

Note that the former in (1.107) may correspond to relation (1.101) or (1.102) and the
latter corresponds to relation (1.103). It is noted that the former cannot be directly
derived from (1.101) or (1.102) unlike relation between the latter and (1.103).
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1.5 Turbulent relative dispersion

Finally, we assume that we can apply Kolmogorov or KLB phenomenology to the
time derivative of 〈r2(t)〉. Thus, we apply Buckingham Π-theorem to the following
equation,

d

dt
〈r2(t)〉 = G(t, ε, TB, Tη, TL), (1.108)

where G is an unknown function with five arguments. Here we notice that there are
two ways in the intermediate asymptotics, that is, we can carry out the intermediate
asymptotics in both the intermediate ranges,

Tη � t� TB � TL, (1.109)

Tη � TB � t� TL, (1.110)

and the results obtained are different from each other.

Batchelor regime

In the intermediate range (1.109), the Π-theorem provides a dimensionless relation,(
1

εT 2
B

)
d

dt
〈r2(t)〉 = Φ1

(
t

TB
,
Tη
TB

,
TL
TB

)
, (1.111)

Here we assume complete similarity at small value of Tη/TB and large value of TL/TB
but incomplete similarity at small value of t/TB. Hence, Φ1 has no finite limit at
t/TB → 0. We, furthermore, assume the generalized homogeneity in terms of Φ1, that
is,

Φ1

(
t

TB
,
Tη
TB

,
TL
TB

)
'
(
TB
t

)p
Φ∗1

(
Tη
TB

,
TL
TB

)
. (1.112)

As described later, we can obtain the value of p from physical considerations, i.e.,
p = −1. We assume complete similarity for Tη and TL so that Φ∗1 has a non-zero and
finite limit, say 2C. As a result, in the intermediate range (1.109), the scaling law for
〈r2(t)〉 is,

〈r2(t)〉 ' r2
0 + CεTBt

2. (1.113)

In this thesis, this ballistic scaling law for 〈r2(t)〉 is called Batchelor scaling law.

Richardson-Obukhov regime

On the other hand, in the intermediate range (1.110), the Π-theorem provides a dimen-
sionless relation, (

1

εt2

)
d

dt
〈r2(t)〉 = Φ2

(
TB
t
,
Tη
t
,
TL
t

)
. (1.114)

We assume complete similarity at large values of t/TB and TL/t, and small value of Tη/t,
and therefore, Φ2 has non-zero and finite limit, say 3g. As a result, in the intermediate
range (1.110), the scaling law for 〈r2(t)〉 is,

〈r2(t)〉 = gεt3, (1.115)
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which is Richardson–Obukhov law. Here, the universal constant g is called the Richard-
son constant. This is consistent with the results from Richardson phenomenology. At
this regime, we use complete similarity for all of the arguments, TB/t, Tη/t, and TL/t.
In terms of experimental asymptotics, we should verify that the resulted scaling law,
i.e., Eq.(1.115), is consistent with the experimental data. However, the above complete
similarity for 〈r2(t)〉 is not verified by the experimental data, and therefore we should
assume incomplete similarity, as we will discuss in Chapter 3.

Physical interpretations

We provide physical interpretations to the results of intermediate asymptotics (1.113)
and (1.115). The mean square 〈r2(t)〉 follows,

d

dt
〈r2(t)〉 = r0 · 〈δv(t)〉+ 2

∫ t

s

〈δv(t) · δv(t′)〉 dt′, (1.116)

where s is the initial time, when particle pairs are loosed with an initial separation
r0 = |r0|. Hereafter, we set s = 0. Here we assume that the first term in the right hand
side is so smaller than the second term that we can ignore the first term:

d

dt
〈r2(t)〉 ' 2

∫ t

0

〈δv(t) · δv(t′)〉 dt′. (1.117)

In the intermediate range (1.109), in particular, at t � TB, particle pairs almost
persist their initial relative velocity, i.e.,

〈δv(t) · δv(t′)〉 ' 〈δv2(0)〉. (1.118)

At the initial time, the relative velocity of particle pairs corresponds to the Eulerian
velocity increment separated by r0. Therefore we can apply Kolmogorov phenomenol-
ogy,

〈δv2(0)〉 ' Cε2/3r
2/3
0 . (1.119)

By substituting this and integrating Eq.(1.118), we obtain the same result as Eq.(1.113).
Here, we set t = 0 in the right hand side of Eq.(1.118), and then the right hand side
becomes zero. This is the reason why the complete similarity for small value of TB/t
fails.

On the other hand, the physical interpretation for Eq.(1.115) is more difficult. It
seems that additional assumptions are required. Then, we rewrite Eq.(1.118) as,

d

dt
〈r2(t)〉 ' 2〈δv2(t)〉

∫ t

0

g(t, t′)dt′, (1.120)

g(t, t′) ≡ 〈δv(t) · δv(t′)〉
〈δv2(t)〉 . (1.121)
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1.5 Turbulent relative dispersion

We assume that the correlation function g(t, t′) decays rapidly more than exponentially
with increasing t− t′, and the time scale of its decay is represented as τ(t). Hence, we
assume that the correlation function is as follows:

g(t, t′) = Ψ

(
t− t′
τ(t)

)
. (1.122)

Under these assumptions, the time-dependent variables can be taken out of the integral
in Eq.(1.120):

d

dt
〈r2(t)〉 ' 2

(∫ ∞
0

Ψ(x) dx

)
〈δv2(t)〉 τ(t). (1.123)

Moreover, we assume that 〈δv2〉 and τ(t) have Kolmogorov like scalings:

〈δv2(t)〉 ' ε2/3〈r2(t)〉1/3, τ(t) ' ε−1/3〈r2(t)〉1/3, (1.124)

which may correspond to the intermediate asymptotics at (1.102). By substituting
them into and integrating Eq.(1.123), we can obtain Eq.(1.115). It is unclear whether
these assumptions are allowed. The relative velocity δv(t) is essentially nonstationary.
Nevertheless, the assumption (1.122) does not contain information about the time evo-
lution in the direction of t−t′. We discuss the nonstationarity of the velocity correlation
in Chapter 3.

1.5.3 Exit-time statistics

So far, we only consider the probability distribution function and its moments of the
relative separation of particle pairs. Although, in stochastic dynamics, moments and
probability distribution function are important characteristic quantities to feature the
stochastic properties, it is useful to consider the other characteristic quantities. One of
these quantities is mean exit time. Another is escape probability.

Exit time, TE(R, ρ), is defined as,

TE(R, ρ) ≡ TF (ρR)− TF (R), (1.125)

where ρ is a constant slightly larger than 1, and TF (R) is the time when a relative
separation of a particle pair reaches a threshold, R, for the first time, so-called first-
passage time [3, 21, 25, 26]. The mean exit time is its ensemble average.

As well as the moments, we can apply Kolmogorov phenomenology to the mean exit
time. From the dimensional analysis by means of Kolmogorov phenomenology,

〈TE(R, ρ)〉 ' ε1/3R2/3. (1.126)

It should be noted that the ensemble average in the left hand side is different from that
for the moments of the relative separation of particle pairs at time t. It is rather similar
to the ensemble average for the Eulerian velocity increments separated by r because
both are given the scale in advance.
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The scaling law (1.126) is observed at recent experiments and numerical simulations
unlike the Richardson–Obukhov law. This is an advantage of mean exit time, but the
reason is unclear why the scaling law (1.126) can be observed while the Richardson–
Obukhov law cannot. Considering that, as mentioned above, the ensemble average for
mean exit time is similar to that for the Eulerian velocity, we can infer that Kolmogorov
scaling, which means scaling relations resulted from Kolmogorov phenomenology, can
be observed when the corresponding quantity is related only to a single scale whether it
is Eulerian or Lagrangian Anyway, it is difficult to consider a bridging relation between
mean exit time and the moments of the relative separation.

Another quantity is escape probability, which is the probability of time when a
particle pair starting from a separation R exits a threshold ρR first. In the current
case, it is defined as the PDF of exit time. We denote it as PE(TE|R, ρ).

The escape probability is calculated if the evolution equation for the PDF of the
relative separation, p(r, t) is given. The initial condition is p(r, 0) = δ(r − R). The
boundary conditions are the reflecting condition at r = 0 and the absorbing condition
at r = ρR. Then the relationship between PE(TE|R, ρ) and p(r, t) is as follow:

PE(TE|R, ρ) = − d

dt

∫
r<ρR

p(r, t) dr

∣∣∣∣
t=TE

. (1.127)

Therefore we obtain the relationship between the exit-time statistics and the PDF of the
relative separation though the time evolution of the PDF should be given in advance.

It is interesting to consider bridging relations between the PDF of the relative
separation and the mean exit time or the escape probability. In Chapter 2, we in-
troduce a conditional sampling method via exit-time statistics. It is used to recover
the Richardson–Obukhov law at moderate Reynolds numbers which we can attain at
present. Furthermore, it may be possible to obtain the relation between them numeri-
cally. The detail discussions are given in Chapter 4.

1.5.4 Experimental results

Square mean of relative separation

We survey comparison between the above phenomenology and experimental results.
For 2D turbulence, in laboratory experiments, Jullien et al. [56] and Von Kameke et al.
[119] observed the clear t3 scaling for the mean square of relative separations of particle
pairs and also estimated the Richardson constant. On the other hand, these results
are puzzling because at these experiments, the initial separation of particle pairs is
smaller than the inertial subrange, that is within the enstrophy cascade range or the
dissipation range, as pointed out by Kellay & Goldburg [63]. Moreover, the initial
separation dependence for the mean square 〈r2(t)〉 is observed in the inertial subrange
in other experiments [99, 100] and DNS for 2D energy inverse-cascade turbulence [26].
Boffetta & Sokolov [26] state that this initial separation dependence is resulted from the
finite size effect of the inertial subrange because mean exit time exhibits the consistent
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scaling with Kolmogorov phenomenology. Hence, the t3 scaling observed in [56, 119] is
probably due to the initial separation dependence. Here, it is noticed that the t3 scaling
for 〈r2(t)〉 can be observed by carefully selecting a special value of the initial separation.
However, it is unclear whether this t3 scaling is consistent with the Richardson–Obukhov
law.

For 3D turbulence, similar results are obtained. Ott & Mann [90] performed lab-
oratory experiments at Reλ = 78 to 104. They performed a time shift τ = t − T0 for
observing the t3 scaling, where T0 is estimated by the zero crossing of a linear fit of
〈r2(t)〉1/3 in the inertial subrange. The other experiments at Reλ = 172 by Berg et al.
[13] also obtained similar results by introducing the shift. On the other hand, Bourgoin
[28] and Ouellette et al. [91] performed laboratory experiments at Reλ = 200 to 815
but did not observe the Richardson–Obukhov t3 law. They inferred that this is due to
the finite size effect of the inertial subrange, that is decorrelation of relative velocity of
particle pairs at the integral length.

Similarly, there are many DNS investigations of turbulent relative dispersion in 3D
turbulence. Yeung [125] performed the DNS of 3D turbulence at Reλ ∼ 90. Yeung
[125] confirmed the Batchelor ballistic regime and normal diffusion beyond the integral
scale, but did not observe the Richardson–Obukhov law. Yeung [125] also stated that
the scaling exponent of 〈r2(t)〉 is different depending on the initial separation. Such an
initial separation dependence is also observed at the other DNS investigations [15, 19,
25, 30, 32, 33, 104, 126]. Ishihara & Kaneda [55] performed the DNS of 3D turbulence at
Reλ = 283 and were convinced that the Richardson–Obukhov law is observed through
the graph of 〈r2(t)〉1/3 similar to Ott & Mann [90] but this is not recommended because
the time scale expected for the Richardson–Obukhov law is ambiguous as pointed out
by Salazar & Collins [103]. Furthermore, there also exists the special value of the initial
separation where the t3 scaling is observed as well as 2D turbulence. Such an initial
separation is around 3η to 4η from DNS data [15, 19, 30], where η is the Kolmogorov
length. Recent DNS with high resolutions [30, 32, 33, 104] showed that the mean square
asymptotically approaches the Richardson–Obukhov as increasing Reynolds number.

Therefore, for both laboratory experiments and numerical simulations, and for both
2D and 3D turbulence, the Richardson–Obukhov law for the mean square of relative
separations of particle pairs, 〈r2(t)〉 has never been clearly observed in the sense that
the mean square 〈r2(t)〉 becomes independent of the initial separation r0 and exhibits
t3 scaling law in the inertial subrange. Almost all previous studies inferred that this is
due to the finite size effects of the inertial subrange. However, there is no quantitative
investigation of the finite size effects.

Exit-time statistics

On the other hand, the scaling law for the mean exit time is more clearly observed for
both 2D [25, 89, 100] and 3D turbulence [15, 16, 26, 91]. This is perhaps because the
exit-time statistics are more robust at finite Reynolds numbers. This clear scaling of
mean exit time enables us to estimate the Richardson constant via the mean exit time.
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It is noted that the Richardson constant is the universal constant, g, in Eq. (1.115).
In fact, the Richardson constant is estimated as g ∼ 4 in 2D turbulence and g ∼ 0.5 in
3D turbulence. These studies also observe that the PDF of the exit time is self-similar
in scale. However, recent DNS [16] showed the breaking of the self-similarity at large
exit time.

Probability distribution function and higher moments of relative separation

In terms of the PDF of relative separations of particle pairs, the situation is more com-
plicated. A central part of the PDF is approximately in agreement with the Richardson
self-similar one for both 2D [25, 56, 99] and 3D turbulence [16, 19, 90, 91, 104, 105].
On the other hand, these studies confirmed that the central part is consistent with
the Richardson self-similar PDF from the log-log plots of the PDF. Strictly speaking,
the log-log plots of the experimental data are slightly different from the Richardson
self-similar PDF. Although the difference is very small in the log-log plots, it appears
to be larger in the log-lin plots. Therefore, it is probably necessary to investigate the
central part by laboratory and numerical experiments at higher Reynolds numbers in
order to confirm the consistency of the central part with the Richardson self-similar
PDF.

According to the Richardson self-similar PDF the higher moments are dependent on
the mean square and thus the scaling exponents are proportional to that of the mean
square. However, these behaviors of the higher moments are not shown [15, 16, 19,
30, 32]. These higher moments are more influenced by large-separation pairs. Thus,
these deviations from the self-similarity may be due to finite size effects of the inertial
subrange. The deviation from the Richardson self-similar PDF is also confirmed directly
by the tails of PDF of relative separations of particle pairs [15, 16, 19, 25, 32, 91, 99,
104, 105]. Furthermore, it is shown that the PDF deviates from the Richardson PDF
at very small separations as well as very large separations in 2D turbulence [25, 99]
and, in 3D turbulence [15, 16, 19, 32, 91, 104, 105]. These parts deviated from the
self-similarity are strongly dependent on the initial separations.

1.5.5 Debates on Richardson phenomenology

Here we reconsider Richardson phenomenology, i.e., the Richardson–Obukhov law and
Richardson self-similar PDF according to the experimental results.

Richardson–Obukhov law

Although the Richardson–Obukhov law for the mean square of relative separations of
particle pairs has not been clearly observed, a few studies considered quantitatively
the reasons of the deviation from the Richardson–Obukhov law. Boffetta & Sokolov
[26] discussed the finite-size effects of the inertial subrange on the mean square, 〈r2(t)〉
according to the results of the numerical simulations of a synthetic velocity field [3, 21].
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1.5 Turbulent relative dispersion

In the synthetic velocity filed with sufficiently large shells, the expected scaling exponent
for the mean square is observed though it is not observed for smaller shells, and instead,
a different scaling exponent is estimated. They stated that this is due to a crossover
of two or more different ranges: a range where the mean square grows exponentially,
a range where it exhibits normal diffusion, and the inertial subrange. They concluded
that the crossover is also the case for the turbulent velocity field because the inertial
subrange is more limited in the laboratory experiments and numerical simulations.

It is obvious that some particle pairs are in the dissipation subrange and other par-
ticle pairs are in the large-scale range even when the mean square is within the inertial
subrange. Thus, the finite-size effects due to the crossover seem to be plausible. How-
ever, we cannot estimate the value of the Reynolds number where the finite-size effects
disappear, from the above consideration. This is because the Richardson–Obukhov law
becomes valid only at infinite Reynolds number if Richardson phenomenology is valid.
Moreover we cannot perform an asymptotic analysis for the mean square in the inertial
subrange.

The crossover may be related to the mean-field approximation such as Eq.(1.124).
This approximation is efficient to perform the dimensional analysis by means of Kol-
mogorov phenomenology because only one spatial length, 〈r2(t)〉1/2, appears explicitly.
On the other hand, the approximation seems to contradict the crossover effects, which
are intrinsically related to multi spatial scales. Recently more quantitative discussion
are given by [41] in terms of the PDF of relative separations. However, it is not obvi-
ous how strongly the mean-filed approximation affects the mean square of the relative
separation.

In such a situation, the problems to consider are as follows:

• to justify or invalidate the Richardson–Obukhov law at infinite Reynolds number.

• to estimate quantitatively the deviations from the Richardson–Obukhov law at
finite Reynolds numbers.

• to estimate the crossover effects, which are probably the non-local effects between
particle pairs whose separations are quite different.

In Chapter 2, we investigate numerically the Richardson–Obukhov law by means of
conditional sampling methods and gain an insight not to rule out the possibility that
the Richardson–Obukhov law is recovered at infinite Reynolds number according to non-
Kolmogorov scaling of the relative velocity of particle pairs. Furthermore, in Chapter 3,
we improve the Richardson–Obukhov law to be consistent with the experimental data
even at finite Reynolds number based on the DNS data. According to the results in
Chapters 2 and 3, we estimate qualitatively the crossover effects in terms of the final
problem in Chapter 4.
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Chapter 1 General Introduction

Richardson self-similar PDF

In terms of the PDF of the relative separation of particle pairs, similar problems have
been considered. Falkovich et al. [42] showed that the diffusion equation with scale-
dependent diffusivity is exactly derived in the Kraichnan model [76], which is the Gaus-
sian random velocity field with white noise in time. Nevertheless, this diffusion equa-
tion has a self-similar solution different from the Richardson one. As a result, the mean
square is not proportional to t3. The reason is that the temporal correlation of the
velocity cannot be ignored as pointed out in [42]. It is noted that this fact does not re-
quire the validity of the Richardson diffusion equation to be delta-correlated velocity as
carefully discussed by Eyink & Benveniste [41]. They concluded that the short-memory
approximation is not necessary to obtain the Richardson diffusion equation.

The importance of the velocity temporal correlation was corroborated by Chaves
et al. [36], who modified the Kraichnan model to be time correlated by using the Orn-
stein–Uhlenbeck type noise in time. On the other hand, this modified version of the
Kraichnan model has still a different time correlation from that of Lagrangian tur-
bulence. In Lagrangian turbulence, the time correlation develops in time. Namely,
turbulent relative dispersion is an aging phenomenon. The aging effects on the tur-
bulent relative dispersion have never been considered. In Chapter 3, we proposed a
scaling relation of the velocity correlation function. There, we consider the aging ef-
fects explicitly.

Although the temporal correlation of the velocity is crucial to the scaling exponents,
it does not probably lead the breaking of the self-similarity as observed in laboratory
experiments and numerical simulations at finite Reynolds numbers. According to these
experimental data, in particular, [16, 105], the breaking of the self-similarity, i.e, the
deviations from the Richardson self-similar PDF, especially occurs at very large separa-
tions and very small separations, namely, right and left tails of the PDF. Furthermore,
these tails are strongly dependent on the initial separations. This does not immedi-
ately mean that Richardson phenomenology is incorrect because such large or small
separations are outside the inertial subrange, where Richardson phenomenology can-
not be applied. Nevertheless, we do not conclude that these deviations are due to the
finite-size effects of the inertial subrange because these particle pairs were in the inertial
subrange at initial time and escaped from there by dynamics in the inertial subrange.
Otherwise, these particle pairs are influenced by non-locality of turbulence. To our
knowledge, nobody clearly understands the reasons why the tails of the PDF break the
self-similarity. In Chapter 4, we consider these problems according to the results in
Chapter 2 and 3.

1.6 Organization of the thesis

This thesis is composed of four chapters. Chapter 1 is General Introduction as al-
ready described above. Chapter 2 is entitled Conditional sampling method via
exit-time statistics. There, we develop a conditional sampling method by which
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1.6 Organization of the thesis

the mean square of the relative separations of particle pairs exhibits the t3 scaling for
any initial separations. This method reveals the anomalous scaling of the conditional
mean square of the relative velocity of particle pairs deviated from the prediction of
Kolmogorov phenomenology. Chapter 3 is entitled Two-time Lagrangian velocity
correlation function. There, we investigate the two-time Lagrangian velocity cor-
relation function [55] and propose its scaling law by means of incomplete similarity.
Then, we confirm that the proposed scaling law of the two-time Lagrangian velocity
correlation function is consistent with the experimental data of numerical simulations
in two-dimensional energy inverse-cascade turbulence. These two chapters are the main
parts of this thesis. Chapter 4 is General Conclusion, where we discuss the results
obtained the previous chapters and show some future prospects.
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Chapter 2

Conditional sampling method via
exit-time statistics

2.1 Introduction

Relative dispersion has been widely investigated following a pioneering study by Richard-
son [98], who observed the super-diffusive manner of separation between two particles
in the atmosphere. The study introduced the diffusion-type differential equation for
the probability distribution function (PDF) of separation, r. A significant part of this
equation is that it includes the diffusion coefficient dependent on r itself. Furthermore,
Richardson predicted the celebrated t3 law of the second-order moment of the relative
separation from the PDF, 〈r2(t)〉 ∝ t3, and this is referred to as the Richardson–
Obukhov law. The scaling argument leading to this law (which was developed first
for the three dimensional (3D) turbulence) can be applicable to two-dimensional (2D)
turbulence, as reviewed in Ref. [103]. In this study, we restrict our attention to the
relative dispersion in 2D turbulence.

The t3 prediction was performed prior to Kolmogorov phenomenology for 3D tur-
bulence proposed in 1941 (K41) [70], and later demonstrated as consistent with the
K41 dimensional analysis [8, 87]. With respect to the 2D turbulence, specifically, in
the inverse energy-cascade state, the Richardson–Obukhov law was similarly derived
from a 2D analog of the K41, which was developed by Kraichnan [75], Leith [78], and
Batchelor [11]; hereinafter, the analog is referred to as K41 for convenience. Specifically,
based on the phenomenologies, the second-order moment of the relative separation in
the inertial range can assume the following form:

〈r2(t)〉 '
{
〈r2

0〉+ S2(r0)t2 (t� tB),

gεt3 (tB � t� TL),
(2.1)

where r0 ≡ |r0| denotes the initial separation of the pairs, ε denotes the energy dis-
sipation rate or the energy flux in the inertial range, S2(r) = C2ε

2/3r2/3 denotes the

second-order longitudinal velocity structure function, C2 is a constant, tB = r
2/3
0 ε−1/3
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Chapter 2 Conditional sampling method via exit-time statistics

denotes the Batchelor time, TL denotes the integral time scale, and g denotes the
Richardson constant. Up to the Batchelor time tB, each particle moves with the initial
velocity. Subsequently, the relative separation becomes independent of r0 and behaves
according to the t3 law, exhibiting super-diffusivity (Richardson–Obukhov regime).

With respect to 2D inverse energy-cascade turbulence, the t3 law is observed in
laboratory experiments [56, 119] for appropriately selected initial separations. Recently,
Rivera & Ecke [99] and Rivera & Ecke [100] performed experiments by varying initial
separations and observed that the power-law exponent of 〈r2(t)〉 in the inertial range
depends on the initial separation r0. They also observed t3-scaling behavior similar
to the Richardson–Obukhov scaling law only for a certain range of initial separations.
The initial separation dependence and existence of special initial separations leading to
the t3 law were observed in 2D direct numerical simulation (DNS) [25] as well. With
respect to the 3D direct energy-cascade turbulence, the situation is similar: the slope
of 〈r2(t)〉 as a function of t varies due to the length of initial separations in laboratory
experiments [90]. Recently, DNSs in 3D also indicated that the t3 law only appears for
a certain selected initial separation [19, 104, 126].

Based on 2D and 3D results, the conclusion at currently achievable Reynolds num-
bers is that the time evolution of 〈r2(t)〉 strongly depends on the initial separation.
Thus, the Richardson–Obukhov t3 law emerges only for a selected initial separation,
and this is termed as the proper initial separation in the current study (as detailed in
Sec. 2.3.1). The problem to be solved is the dependence of the t3 law on the initial
separation; specifically, whether the t3 law observed for the special initial separation is
relevant with the K41 or just coincidental. It is known that the initial separation depen-
dence is alleviated by considering 〈|r−r0|2〉 instead of 〈r2〉. By analyzing 〈|r−r0|2〉 at
sufficiently high Reynolds numbers, Bitane et al. [18] and Bitane et al. [19] introduced
the modified scaling law including a subleading term, 〈|r(t)−r0|2〉 = gεt3(1+Ct0/t) for
t � t0, where t0 denotes a time scale of convergence to Richardson–Obukhov regime,
t0 = S2(r0)/2ε, and C denotes a parameter based on r0. It is noted that C = 0 for
r0 = 4η, where η denotes the Kolmogorov length scale. The r0 = 4η is termed as
”optimal choice” in their study and can correspond to the proper initial separation.
Furthermore, Buaria et al. [32] suggested an asymptotic state, and this is independent
of the initial separations. The same authors [33] investigated turbulent relative disper-
sion utilizing diffusing/Brownian particles, i.e., particles of various Schmidt numbers
(Sc) with white/Brownian noise added to their trajectories. They found that the initial
separation dependence is weaker and Richardson scaling is more robust for Sc = O(1)
than Sc =∞ (fluid particles).

Several studies [25, 99] in the 2D inverse-energy cascade turbulence discussed the
proper initial separation, and concluded that the t3-scaling behavior observed only
for the special initial separation is an artifact caused by the finite-size effect of the
limited inertial range. Given the aforementioned reasons, they argued that proper
initial separation exists even in the low Reynolds-number simulations and that the
proper initial separation is significantly lower than the smallest lower bound of the
inertial range. In particular, the observed scaling law 〈r(t)2〉 ∝ t3 started to hold
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outside of the inertial range, as already noted in [63]. Subsequently, the t3 law with
the proper initial separation extends into the inertial range. However, details of the
finite-size effects, e.g., the dependence of the t3 law on the width of the inertial range,
remains to be clarified.

There is another problem with respect to the proper initial separation. The K41
can be applied to the two-particle Lagrangian relative velocity, and predicts t1 scaling
for the second-order moment as

〈v2(t)〉 ∝ εt1, (2.2)

in the inertial range, where v(t) denotes the relative velocity. In recent 3D numerical
studies [19, 126], the relative velocity is also observed to depend on the initial separation
such as relative separation. Furthermore, it appears that the second-order moment of
the relative velocity exhibits a different scaling exponent from the K41 prediction.

The long-standing problem of two-particle relative diffusion in turbulence can be the
applicability of the K41 to the Lagrangian relative separation and velocity statistics and
at least at presently available Reynolds numbers. It is well-known that the K41 scaling
does not precisely hold, particularly for the 3D turbulence due to the intermittency
effect. However, the deviation from the K41 is small with respect to the low-order
statistics of the Eulerian velocity such as the energy spectrum or the second-order
structure functions. Thus, the K41 is successful for the Eulerian velocity. In contrast,
the K41 appears to fail in describing the second-order moments of the relative separation
and velocity, which are Lagrangian quantities, to the same extent as the low-order
Eulerian velocity. This large gap between Eulerian and Lagrangian statistics should be
filled. It is possible that the gap is caused by a finite Reynolds-number effect.

In this study, we numerically examine two-particle relative diffusion in 2D energy
inverse-cascade turbulence with either normal viscosity or hyperviscosity. The main
reason for selecting the 2D system is that detailed numerical studies (e.g., a large num-
ber of particle-pair samples and long-time integration) are more feasible. Furthermore,
the Eulerian velocity is intermittency free [22, 94], and consequently, corresponds to “an
ideal framework to examine Richardson scaling in Kolmogorov turbulence”, as noted by
Boffetta & Sokolov [25]. Thus, we can factor out the intermittency effect on the devia-
tion of the Lagrangian statistics from the K41 prediction when we analyze 2D results.
Evidently, limitations exist while selecting the 2D system. As aforementioned, there are
common problems in the Richardson–Obukhov law in 2D and 3D systems. However,
their nature is not necessarily identical. Careful discussion and further investigations
are required while applying our results in this study to the 3D case. Nevertheless,
insights obtained here in 2D can be useful in addressing the 3D problem.

We conduct our numerical study as follows. First, we develop a conditional sampling
to remove the initial-separation dependence. We demonstrate that the conditioned
〈r2(t)〉 curves of various initial separations collapse on the unconditioned curve starting
from the proper initial separation. From the robustness, we infer that the t3 law of
the proper initial separation is consistent with the K41. We then discuss the generality
of the conditional sampling, namely, the dependence of the conditioned results on the
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Chapter 2 Conditional sampling method via exit-time statistics

Table 2.1: Parameters of numerical simulations: N2, δx = 2π/N , δt, ν, h, α, kf , εin,
ε, σε, L, urms, Reα and N2

p denote the number of grid points, grid spacing, size of the
time step, (hyper)viscosity coefficient, order of the Laplacian of the (hyper)viscosity,
hypodrag coefficient, forcing wavenumber, energy input rate of the forcing, mean of the
resultant energy flux in the inertial range, standard deviation of the resultant energy
flux, integral scale, root-mean-square velocity, infrared Reynolds number and number
of the Lagrangian particles, respectively.

N2 δx δt ν h α kf εin ε σε L urms Reα N2
p

10242 0.006 0.002 1.8× 10−38 8 35 249 0.1 0.019 2.9× 10−4 0.38 0.5 40 20482

20482 0.003 0.001 4.664× 10−43 8 35 496 0.1 0.019 2.9× 10−4 0.37 0.5 80 20482

40962 0.0015 0.001 1.13× 10−47 8 35 997 0.1 0.018 2.6× 10−4 0.36 0.5 160 20482

20482 0.003 0.004 7.666× 10−6 1 3.005 200
3.027×
10−4

5.28×
10−5 3.35× 10−5 0.47 0.076 39 20482

parameters of the conditional sampling. Finally, we examine the scaling behavior of
the relative velocity with and without the conditional sampling in detail.

The two main results obtained in 2D energy inverse-cascade turbulence are: (i)
relative velocity deviates from the K41 scaling ,i.e., scaling law (2.2), although the
relative separation obeys the Richardson–Obukhov t3 law; and (ii) relative velocity is
self-similar (intermittency free).

Both suggest that the K41 does not hold for second-order statistics of relative ve-
locity.

Sec. 2.2 presents the details of our 2D numerical study. Sec. 2.3.1 introduces a
working hypothesis and describes the proper initial separation. In Sec. 2.3.2, we describe
our conditional sampling and discuss what can be inferred from conditional statistics
on the relative separation. Sec. 2.4 presents statistics on the relative velocity with and
without conditional sampling.

2.2 Numerical simulation method

We mainly consider pair-dispersion statistics in a statistically steady, homogeneous,
and isotropic 2D inverse-energy cascade turbulent velocity field u(x, t). In the velocity
field, we perform a set of DNSs of the 2D incompressible Navier-Stokes equation in a
doubly periodic square of side length, 2π. We integrate the equation in the form of
vorticity, ω(x, t) = ∂xuy(x, t)− ∂yux(x, t), which is

∂ω

∂t
+ (u · ∇)ω = (−1)h+1ν∆hω + α∆−1ω + f. (2.3)

The setting and our numerical method are identical to those used in [85, 122]. Here,
ν denotes the (hyper)viscosity coefficient and α denotes the hypodrag coefficient. The
order of the Laplacian of the (hyper)viscosity, h, is set to 8 or 1. The forcing term,
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2.2 Numerical simulation method

f(x, t), is given in terms of the Fourier coefficients, f̂(k, t) = k2εin/[nf ω̂
∗(k, t)], where

f̂ denotes the Fourier transform of the function f(x, t). The energy input rate is
denoted by εin, and nf denotes the number of the Fourier modes in the following

forcing wavenumber range. We select the coefficients, f̂(k, t), as non-zero only in high
wave numbers, k, satisfying kf − 1 < |k| < kf + 1. Thus, the energy input rate is
maintained as constant in time. Numerical integration of Eq. (2.3) is performed via the
pseudospectral method with the 2/3 dealiasing rule in space and the 4-th order Runge–
Kutta method in time. In this DNS, the maximum wavenumber is kmax =

√
2N/3,

where N2 is the number of grid points. Here, kmaxη ' 1.8 and 1.6 for h = 8 and 1,
respectively, where η is the Kolmogorov length. Moreover, lf/η ' 6.7 and 1.8× 10 for
h = 8 and 1, respectively. Table 2.1 lists the parameters of simulations used in the
study.

In the 2D energy inverse-cascade turbulence, the energy pumped in at the small
scale is transported to larger scales with a constant flux on average in the inertial
range. To measure this flux, we use the standard method to calculate the energy
flux function in the Fourier space. As shown in Fig. 2.1(a) and (c), the flux becomes
wavenumber independent in the intermediate wavenumbers. We consider the range of
the wavenumbers as the inertial range. Strictly speaking, a flat region is absent in
Fig. 2.1 (c) due to normal viscosity. The energy flux in the inertial range is equal to the
energy dissipation rate taken out by the large-scale hypodrag, ε =

∫∞
0

2αk−2E(k)dk,
where E(k) denotes the time-averaged energy spectrum. This corresponds to a standard
method to numerically realize a statistically steady state of 2D energy inverse-cascade
turbulence in a periodic domain. A statistically steady state is judged from behavior of
energy as a function of time. The typical wavenumber of the hypodrag is dimensionally
estimated as (α3/ε)1/8, which is termed as the frictional wave number, kα. Here, we use
the infrared Reynolds number, Reα ≡ kf/kα, as proposed by Vallgren [116] in order to
quantify the span of the inertial range. At the end of Sec. 2.4, we simulate a statistically
quasi-steady state [75] by solving Eq. (2.3) without the hypodrag.

Subsequently, we demonstrate that the Eulerian statistics on the velocity field are
consistent with the established picture of the 2D inverse energy-cascade turbulence. As
shown in the inset of Fig. 2.1(a) and (c), the energy spectra in the inertial range is
consistent with the K41 and more precisely with the Kraichnan-Leith-Batchelor phe-
nomenology. Figures 2.1(b) and (d) show that the PDFs of the longitudinal velocity
increments, δul(r, t) = [u(x + r, t) − u(x, t)] · r/r, at various r’s in the inertial range
collapse well to the Gaussian distribution irrespective of r, and this is in agreement
with [22]. Here, lf = 2π/kf denotes the forcing length scale.

To obtain the Lagrangian statistics, we employ a standard particle tracking method.
The flow is seeded with a large number of tracer particles, i.e., N2

p , in the velocity field.
The particles are tracked in time via integrating the advection equation,

d

dt
xp(t) = u(xp(t), t), (2.4)

where xp(t) denotes the particle position vector. The numerical integration of Eq. (2.4)
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Figure 2.1: (a) Time-averaged energy flux Π(k) for Reα = 40 (red line), Reα = 80 (blue
line) and Reα = 160 (green line). Ranges between the two gray dotted lines correspond
to the inertial ranges as determined by the plateau regions of the energy flux in the
Fourier space. The inset shows the time-averaged energy spectrum E(k) for Reα = 40
(red line), Reα = 80 (blue line) and Reα = 160 (green line). (b) Normalized PDFs of
the longitudinal velocity increments for Reα = 40 (red) and Reα = 80 (blue) at various
separations, r/lf = 1.1, 1.5, 2.2, 3.2, 4.8 and 7.1. Here, lf = 2π/kf is the forcing scale
and longitudinal velocity increment, δul, normalized by the second-order moment and is
denoted by s: s = δul/

√
〈δu2

l 〉. The dotted line denotes the Gaussian distribution with
zero mean and unit variance. The inset shows the second-order longitudinal structure
function, S2(r) for Reα = 40(red) and Reα = 80(blue). The dashed line represents the
K41 scaling, r2/3, for S2(r). (c) Same as (a) albeit for the normal viscous case (h = 1).
(d) Same as (b) albeit for the normal viscous case (h = 1).
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2.3 Initial separation dependence of relative diffusion statistics and conditional
sampling

is performed using the Euler method. The velocity value at an off-grid particle position
is estimated by the fourth-order Lagrangian interpolation of the velocity calculated on
the grid points.

The relative separation, r(t), is defined by r(t) = x1(t) − x2(t), where x1 and x2

denote the positions of a particle pair. The particles are initially seeded on square
grid points where the grid spacing corresponds to r0. The statistics on the relative
separation are calculated for the nearest neighbor particles at the initial time. In this
study, we vary the initial separation r0 while maintaining the same total number, N2

p ,
of the particles for each r0. For small values of r0 (which are typically lower than the
Eulerian grid size δx), the initial particles do not cover the whole periodic domain. We
verify that the inhomogeneity of the initial positions of the particles does not affect
Lagrangian statistics that are examined here by comparing results with different initial
particle positions covering different parts of the periodic domain. In addition to the
separation, r(t), our focus is on the longitudinal relative velocity of particle pairs as
defined by vl(t) ≡ [u(x1(t), t)− u(x2(t), t)] · r(t)/r(t).

We next discuss on how long we track the particles. We continue the tracking
until all the particle pairs leave the inertial range. We observe that this time typically
concerns 10 large-scale eddy turn-over times (L/urms) for the hyperviscous Reα = 40
case and approximately 20 turn-over times for the hyperviscous Reα = 80 case. With
respect to each r0, we perform the simulation of the duration twice.

The largest resolution simulation (N2 = 40982) as listed in Table 2.1 is used only for
confirming self-similarity of PDF of vl(t) in Sec. 2.4. We define the Lagrangian average

〈·〉 as 〈A〉 = 1
Nadj

∑Nadj

i=1 Ai, where A denotes any Lagrangian quantity and Ai denotes

a realization of A by the i-th particle pair. Nadj = 2Np(Np − 1) denotes the number of
pairs of particles which adjoin each other at the initial time.

In the following sections, we mainly use hyperviscosity rather than normal viscosity
for DNSs. This is because the hyperviscosity extends the inertial range for a given spa-
tial resolution. However, it is known to affect the statistics at the transition between
the inertial and dissipation ranges [23]. Thus, it is possible that the hyperviscosity
affects particle-pair statistics. Therefore, we perform hyperviscous and normal-viscous
simulations and confirm that the hyperviscosity does not affect the particle-pair statis-
tics.

2.3 Initial separation dependence of relative diffu-

sion statistics and conditional sampling

2.3.1 Proper initial separation

At the Reynolds numbers currently available in experiments and numerical simulations,
the time evolution of 〈r2(t)〉 depends on the initial separation. Hence, it is not possible
to conclude whether it obeys the Richardson–Obukhov prediction 〈r2(t)〉 ∝ εt3 ( for
e.g., [15, 19] for the 3D case and [25, 56] for the 2D inverse energy-cascade case). The
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same is applicable to the second-order moment of relative velocity, 〈v2
l (t)〉 for which the

K41 dimensional analysis yields 〈v2
l (t)〉 ∝ εt (for e.g., [126] for the 3D case). In the 2D

simulation at moderate Reynolds numbers, the initial-separation dependence is clearly
confirmed for both 〈r2(t)〉 shown in Fig. 2.2(a) and (c) and 〈v2

l (t)〉 shown in Fig. 2.2(b)
and (d) where tf = (l2f/ε)

1/3 denotes the forcing time scale. We examine the results
by varying the initial separations below the forcing scale, namely r0 < lf . Thus, the
initial separations are in the scales lower than the inertial range. If we set the initial
separation in the inertial range, the graphs of 〈r2(t)〉 and 〈v2

l (t)〉 are located (they are
not shown) above the curves plotted in Fig. 2.2. Thus, we normalize all quantities by lf
and tf unless there is some particular reason. This is because lf and tf approximately
define the lowest length and time scale of the inertial range, respectively.

The data with the initial-separation dependence indicates that it is possible to
select a special value corresponding to r0 for which 〈r2(t)〉 becomes consistent with the
Richardson–Obukhov law 〈r2(t)〉 = gεt3. Further, we include the Richardson constant,
g, which is non-dimensional and possibly universal. We show the squared separation
of the special case in the inset of Fig. 2.2(a) as a logarithmic local slope. However, it
should be noted that (even for the special case) agreement of the squared velocity with
the K41 prediction, 〈v2

l (t)〉 ∝ εt is not as good as that of the squared separation. This
is observed in the inset of Fig. 2.2(b).

Given the apparent failures of the K41, in this study, we still argue that a certain
bulk of the particle pairs starting from each initial separation r0 shown in Fig. 2.2
obey the Richardson–Obukhov law of the squared separation even at the moderate
Reynolds numbers. Thus, we perform conditional sampling of particle pairs. The
qualitative condition is that we remove particle pairs that prevent from separating too
fast. In the following section, we demonstrate that this type of a conditional average
〈r2(t)〉c becomes independent of the initial separation and that 〈r2(t)〉c is the same as
the unconditioned 〈r2(t)〉 commencing from the special initial separation (see Fig. 2.4).
Hence, the conditional sampling recovers the Richardson–Obukhov law, 〈r2(t)〉c = gεt3,
including the Richardson constant and flux. Thus, we term the special initial separation
as the proper initial separation, which we denote as r

(p)
0

Evidently, our conditional sampling is contrived. It has several tuning parame-
ters as we will specify them. We determine their values empirically by ensuring that
〈r2(t)〉c ∝ t3 holds. In order to demonstrate the extent to which it is contrived, we
examine the manner in which conditional statistics change by varying tuning parame-
ters. Furthermore, we demonstrate that the number of removed pairs decreases when
the Reynolds number increases. The details of the conditional sampling are given in
the next subsection.

2.3.2 Conditional sampling via mean exit time

Figure 2.2(a) plots nine cases of the different initial separations. To develop the con-

ditional sampling, we first focus on initial separations that satisfy r0 > r
(p)
0 , where r

(p)
0

denotes the proper initial separation. Thus, we consider three cases from above in In
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Figure 2.2: (a) Mean squared separation for the hyperviscous case with Reα = 40 as a
function of time for various initial separations. Here, tf = (l2f/ε)

1/3 denotes the forcing
time scale. The ranges between the two horizontal lines correspond to the inertial range
determined by the region of the mean exit time that is proportional to r2/3, which is
discussed later. Inset: the logarithmic local slope for the special initial separation,
r0 = 0.088lf ∼ r

(p)
0 , where ε denotes the mean energy flux in the inertial range. The

gray dashed line corresponds to the Richardson scaling exponent, 3. (b) mean squared
relative velocity for various initial separations. Inset: the logarithmic local slope for
the special initial separation, r0 = 0.088lf . The gray dashed line corresponds to the
Kolmogorov scaling exponent, 1. (c) Same as (a) albeit for the normal viscous case.
(d) Same as (b) albeit for the normal viscous case.
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Chapter 2 Conditional sampling method via exit-time statistics

Fig. 2.2(a). Our estimate of the proper initial separation is empirical: we examine
the compensated plot of the unconditional moment 〈r2(t)〉 as shown in Fig. 2.2(a) by
changing r0. Subsequently, we select r0 for which the compensated plot exhibits the
widest plateau. We evaluate the proper initial separation in this manner as r

(p)
0 =

0.088lf , 0.101lf , and 0.121lf for Reα = 40, 80, and 160, respectively.

With respect to the initial separations r0 > r
(p)
0 , the graphs of the mean squared

separation 〈r2(t)〉 are situated above the graph starting from r
(p)
0 as shown in Fig. 2.2.

This indicates that it is necessary to remove particle pairs moving too fast to recover the
t3 scaling. Now, we pose two questions on the conditional sampling: (A) Is it possible to
instantaneously determine whether it is excessively fast, i.e., exhibiting excessively large
r(t)?; (B) How to draw a line between excessively fast pairs and not excessively fast
pairs, i.e., the threshold level between the two sets? We handle both the questions with
exit-time statistics that are proved as effective tools in the study of relative diffusion.

The exit time concerns the first passage time. The first passage time of the sepa-
ration r(t) for a given value R is defined by the first instance when the separation r(t)
becomes equal to R. (for the first passage time of a general stochastic process, see, e.g.,
[47]). We express the first passage time as TF (R). To define the exit time, it is necessary
to set the domains. We denotes the domain as a series R0, R1, R2, . . .. The exit time
of the j-th zone Rj−1 ≤ r(t) < Rj is then defined as T

(j)
E = TF (Rj) − TF (Rj−1) where

Rj = rsρ
j with parameters rs and ρ > 1 for j = 1, 2, . . .. In the relative diffusion prob-

lem, exit-time statistics are introduced to solve the finite-size problems [3, 21, 25, 99].
By selecting thresholds Rjs in the inertial range, it is possible to exclusively extract
information of the inertial range. It is known that exit-time statistics are insensitive
to the Reynolds number(for e.g.,[89]). It is also known that the mean exit time is

consistent with the K41 prediction, 〈T (j)
E 〉 ∝ R

2/3
j when Rj is in the inertial range.

Furthermore, the scaling behavior holds independent of the initial separations [15, 25].
In our simulation with rs = 1.3lf and ρ = 1.1, the K41 scaling of the mean exit time
is observed for 1 ≤ j ≤ 7 for the hyperviscous Reα = 40 case and 1 ≤ j ≤ 14 for
the hyperviscous Reα = 80 case as shown in Fig. 2.3. Typical value of ρ as used in
the previous studies corresponded to 1.1 or 1.2 [3, 21, 25, 89, 99] and the properties of
exit-time statistics as mentioned above do not change in the range of ρ.

Now, we describe how we address the two questions of conditional sampling with the
exit time. For the first question (A), we assume that it is not possible to instantaneously
determine excessively-fast pairs. This is performed over certain consecutive zones in
the inertial range. We express the number of the zones by NQ (at the end of Sec. 2.3.2.
We change the parameter NQ and discuss question (A).).

With respect to the second question (B), evidently small exit time T
(j)
E corresponds

to pairs separating fast. Hence, to remove the excessively-fast pairs, we set an upper
threshold, τ , in terms of the exit time over the zones j = 1, 2, . . . , NQ. Hence, if the
exit time of the particle pair satisfies

T
(j)
E

〈T (j)
E 〉
≤ τ (2.5)
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Figure 2.3: (a) Mean exit time for the hyperviscous cases with Reα = 40 (dash-dotted
line) and Reα = 80 (solid line). Black solid line denotes r2/3 power law. The ranges
between the two gray dashed lines denote the inertial range estimated with the exit
time at Reα = 40 and Reα = 80. (b) The PDFs of exit time normalized by the
mean at Reα = 40 (red) and 80 (blue) for j = 0 to 6. Black dashed line and solid
line denote longtime asymptotic forms for the PDF of exit times, i.e., P (TE)〈TE〉 ∼
C
∑N

i=1 j2,iJ
′
2(j2,i) exp[− j22,i

12
ρ2/3−1
ρ2/3

t
〈TE〉

] [25], at N = 1 and N = 3, respectively. Here, C
denotes the normalized factor, J2 denotes the Bessel function, and j2,i denotes the i-th
zero point of J2 and ρ = 1.1.

in all of the zones, j = 1, 2, . . . , NQ, then this type of a pair is removed from the
Lagrangian average. It should be noted that the threshold τ is independent of j. The
condition implies that the removed pairs spend a short time when compared to the
average in any of the NQ zones. Thus, the removed pair separate too fast in all of the
monitored zones. Conversely, the remaining pairs in the conditional sampling generally
spend a sufficiently long time such that T

(j)
E /〈T (j)

E 〉 > τ . However, they can become
excessively-fast in several (but not all) of the NQ zones. It should be noted that the
conditional sampling includes two parameters: NQ and τ .

Our physical picture of the conditional sampling is as follows: The pair separation
r(t) is given by the time integral of the relative velocity from time 0 to t. The accu-
mulating nature of r(t) suggests that it is necessary to consider the history of a pair in
conditional sampling. We consider it in terms of the NQ zones starting from the lowest
scale of the inertial range. An actual value of NQ will be determined empirically. With
respect to τ , it is noted that the right part of the PDF of the exit time is given by the
Richardson PDF of the separation, P (r, t) ∝ ε−1t−3 exp[−(const.)ε−1/3t−1r2/3], which
denotes the self-similar solution to the Richardson’s diffusion (Fokker-Plank) equation
[25]. The correspondence of the PDFs shown in Fig. 2.3(b) indicates that the pairs
in the left part in the exit-time PDF should be removed in the conditional sampling,
thereby leading to the criterion, Eq. (2.5). This picture is only qualitative in nature.

We then describe the determination of parameter values in practice. In the case of
Reα = 40, the inertial range is covered by 7 zones. Hence, we set the number of the
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Chapter 2 Conditional sampling method via exit-time statistics

monitored zones to NQ = 7. Subsequently, we tune the threshold τ ’s based on the initial
separation r0 to recover the Richardson–Obukhov law by examining whether the com-
pensated plot 〈r2(t)〉c/(εt3) exhibits a plateau. We empirically determine that the τ val-
ues correspond to 0.40, 1.2, 3.4, and 4.6 for the initial separations r0/lf = 0.12, 0.24, 0.48,
and 0.71, respectively. Given the parameters, we present the results of the conditional
average of the squared separations in Fig. 2.4(a). With respect to the hyperviscous
Reα = 80 case, the inertial range is covered by 14 zones. However, we demonstrate
the result with the same NQ = 7 as that in the lower Reynolds number case to enable
a better comparison in Fig. 2.4(b). The thresholds are observed as τ = 0.25, 0.50, 1.4
and 3.0 for the same set of the initial separations r0/lf = 0.12, 0.24, 0.48 and 0.71,
respectively. In the normal-viscous case, NQ = 7 and the thresholds correspond to
τ = 0.45, 1.05, 2.4, and 4.4 for the initial separations r0/lf = 0.20, 0.29, 0.39 and 0.68,
respectively.

As shown in Fig. 2.4, the conditioned curves 〈r2(t)〉c collapse in the inertial range
and beyond the unconditioned curve for proper initial separation. It should be noted
that the width of the collapsed region increases as we increase Reα. When we compare
τ between the two Reynolds number cases for the same normalized initial separation
r0/lf , it approximately decreases by a factor of 1/2. The fraction of the remaining pairs
in the conditional sampling corresponds to 41 % for Reα = 40 and 65 % for Reα = 80.
Qualitatively, the increase in the fraction is interpreted as follows. We assume that we
compare each pair’s distance r(t) at the same time t for the two Reynolds numbers.
Given the wider inertial range at higher Reα, pairs with larger separation r(t) (i.e., pairs
separating fast) are tolerated in the higher Reα case to recover the Richardson–Obukhov
law. The increase in the fraction supports the working hypothesis that a certain bulk of
particle pairs obey the Richardson–Obukhov law even at moderate Reynolds numbers.

We then examine changes in the results of the conditional sampling when we vary
parameters NQ and τ ’s for various initial separation r0. For the purpose of simplicity,
we limit ourselves to the two hyperviscous cases with Reα = 40 and 80. With respect
to the reference exit-time statistics, we do not change the parameters rs = 1.30lf and
ρ = 1.1. At Reα = 40, we use NQ = 7 as the number of monitored zones independent
of the initial separation r0. The NQ zones, R1 = rsρ ≤ R ≤ R7 = rsρ

7, cover almost

the entire inertial range. We consider the initial separations satisfying r
(p)
0 < r0 <

rs. We then reduce NQ to 6, 5, 4, 3, 2, and 1 although we use the same set of τ ’s
determined with NQ = 7. The results indicate that further tuning of τ for the change
in NQ is not necessary. The reduction of NQ does not alter the behavior of 〈r2(t)〉c as
shown in Fig. 2.4(a). The same is applicable to the higher Reα = 80 case shown in
Fig. 2.4(b). In this case, we change NQ to 14, 13, . . . , 1 although we use the same τ for
each NQ. Therefore, the result of the conditional sampling is robust relative to changes
in the parameters. An important result obtained in the examination is that NQ = 1
is sufficient. This answers question (A) on the conditional sampling, namely it is not
possible to instantaneously determine if a given pair is excessively fast (consequently
exhibiting excessively high r(t)). However, it can be performed in terms of the exit time
of the first zone in the inertial range. Thus, it is possible to locally remove excessively-
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Figure 2.4: Conditionally sampled second-order moments of relative separations. The
initial separations exceed the proper initial separation r

(p)
0 . (a) Conditional sampling

for the hyperviscous Reα = 40 case starting from various initial separations. (b) Condi-
tional sampling for the hyperviscous Reα = 80 starting from various initial separations.
(c) Conditional sampling for the viscous Reα = 39 case starting from various initial sep-
arations. Inset shows the logarithmic local slopes of the conditionally sampled 〈r2(t)〉.
Black solid curve shows the second-order moment of the relative separation without any
conditional sampling starting from the proper initial separation, r0 = r

(p)
0 . The gray

dashed line denotes t3 power law. The range between the two horizontal gray solid lines
denotes the inertial range estimated with the exit time.
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Figure 2.5: (a) Mean squared separations for the hyperviscous case with Reα = 40
(dashed line) and Reα = 80 (solid line), although the initial separation is subtracted for
various initial separations. This is compensated by the scaling εt3. Inset shows the same
plots as the main panel although the horizontal axis is compensated by the Bitane time
scale, t0 = S2(r0)/2ε. Gray line denotes the scaling law, 〈r(t)− r0〉 = gεt3(1 + Ct0/t)
as suggested by Bitane et al. [18]. Here, C = 0.6. (b) Cubed-local slopes of 〈r2(t)〉 for
various initial separations at the hyperviscous Reα = 40 (dashed line) and Reα = 80
(solid line). In panel (a) and (b), the time is normalized with the Batchelor time,

tB = r
2/3
0 〈ε〉−1/3. In the inset of panel (a), the time is normalized with Bitane time,

t0 = S2(r0)/2ε.

fast pairs to recover the Richardson–Obukhov law in space at the entry of the inertial
range. Evidently, this is not locally in time. This implies that evolution of a pair in
the inertial range is somewhat monotone after the entry. As shown in the next section,
this is observed as a self-similar evolution of the relative velocity.

Other methods are developed to remove the initial separation dependence. For the
purpose of comparison, we apply two methods used for 3D turbulence [18, 19, 32] to
2D data without utilizing conditional sampling. A method involves subtracting the
initial-separation vector r0 from the separation vector r(t). In Fig. 2.5 (a), we plot
〈|r − r0|2〉/(εt3) of our data for the Reα = 80 case with the hyperviscosity. The
Richardson–Obukhov law appears as a plateau in the region t/tB � 1 or t/t0 � 1.
Although the range of t/tB in our data is comparable to that in the 3D study [32],
the degree of collapse of our 2D data is worse than that of the 3D result. The other
method involves extracting the possibly subdominant t3 term in r(t) with a suitable
exponentiation and temporal finite difference. In Fig. 2.5 (b), we plot the cubed local-

slope (CLS),
{

(d/dt)[〈r2(t)〉1/3]
}3
/ε, [32] of our 2D data. The Richardson–Obukhov

law appears as a plateau in the CLS in t/tB � 1. However, the degree of the collapse
for the 2D result is worse. The discrepancy between the 2D and 3D cases can be
ascribed to the difference in the physics of turbulence in 2D and 3D. Conversely, the
plateau is unclear irrespective of the dimensions. This can be due to finite Reynolds
number effects. However, in order to evaluate the effects, it is necessary to add the
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tuning parameter to the Richardson–Obukhov law. A physical meaning of the tuning
parameter is obscure in many cases. Although the scaling law suggested by Bitane et al.
[18] approximately corresponds to data for finite Reynolds number at small time, t . t0,
by tuning the parameter, C, it does not correspond to the data at large time, t & t0.
Hence, it is necessary to add another tuning parameter for large time. Furthermore,
the cause for the difference between 〈r2(t)〉 and 〈|r(t) − r0|2〉 is not clarified. Hence,
it is insufficient to only investigate statistical moments of all particle pairs. Thus, it is
necessary to investigate the PDF of particle pairs. We should consider extreme events
of particle pairs that can affect even lower moments such as 〈r2(t)〉. It is intrinsically
necessary to consider conditional statistics on a special part of particle pairs.

So far, we restricted the conditional sampling for the cases of r0 > r
(p)
0 . For lower

initial separations, r0 < r
(p)
0 , we can also recover t3 scaling with the same conditional

statistics. However, we found that the results indicate the condition for the threshold,
τ , changes from the inequality (2.5) to

τ1 ≤
T

(j)
E

〈T (j)
E 〉
≤ τ2, (2.6)

where τ1 6= 0. For example, we empirically determine (τ1, τ2) = (0.16, 7.5), (0.2, 1.0)
and (0.18, 0.50) for initial separations r0/lf = 0.024, 0.049, and 0.073, respectively at
Reα = 40. Although t3 scaling law is recovered via conditional sampling, the Richardson
constant, g = 〈r2(t)〉c/εt3, for the conditional data is extremely sensitive to the initial
separations (figure not shown). The sensitivity considerably differs from the cases

of r0 > r
(p)
0 . This indicates that for r0 < r

(p)
0 cases, we fail to construct conditional

statistics that remove the initial separation dependence. We infer that in these cases the
bulk of particle pairs do not obey the Richardson–Obukhov law in the aforementioned
cases. The initial separations are extremely small such that the pairs experience effects
from the dissipation range and the small-scale forcing is longer than that of the cases
with r0 > r

(p)
0 . Hence, two parameters are required for conditional sampling. We do

not focus on cases with r0 < r
(p)
0 in the remaining part of the section. However, the

failure implies that r
(p)
0 corresponds to the border line of the initial separation, beyond

which the bulk of the particle pairs becomes consistent with the Richardson–Obukhov
law.

2.4 Scaling of the relative velocity

2.4.1 Conditional sampling

Using the conditional sampling described in the previous section, we show conditional
averages of the squared longitudinal relative velocity, 〈v2

l (t)〉c in Fig. 2.6. Conditional
velocity statistics exhibit a collapse similar to that of the conditional separations.
Hence, the second-order and first-order conditional moments, 〈v2

l (t)〉c and 〈vl(t)〉c,
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Figure 2.6: Second-order (left panels) and first-order (right panels) moments of the
longitudinal relative velocity for conditionally sampled data starting from various initial
separations and for the unconditioned data starting from the proper initial separation,
r

(p)
0 . Inset: Logarithmic local slope. (a) (b) Reα = 40 with hyperviscosity. (c) (d)
Reα = 80 with hyperviscosity. (e) (f) Reα = 39 with normal viscosity. Dashed line
denotes t1.23 and t0.7 scalings for second-order and first-order moments, respectively.
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Figure 2.7: Reα-dependence of the logarithmic local slope of (a) 〈v2
l (t)〉, and (b) 〈vl(t)〉,

for unconditioned data at the proper initial separation, r
(p)
0 at Reα = 40, 80, and 160.

Gray dashed lines correspond to (a) 1.23 and (b) 0.70, respectively.

respectively, starting from various initial separations become almost identical to the
unconditioned moments starting from the proper initial separation. However, the de-
gree of collapse of the velocity data is worse at the hyperviscous Reα = 40 and normal
viscous Reα = 39 although it improves at Reα = 80 with hyperviscosity. The results
indicate that the second-order conditional moment 〈v2

l (t)〉c and conditional average
〈vl(t)〉c deviate from their K41 power-law predictions, t1 and t1/2, respectively. This
contrasts with the conditional relative separation 〈r2

l (t)〉c that is driven as consistent
with the K41 prediction or the Richardson–Obukhov law.

We observe the deviation from the Kolmogorov scaling exponents and then measure
the exponents from the logarithmic local slopes of 〈v2

l (t)〉 and 〈vl(t)〉 shown in the insets
of Fig. 2.6. At large times, the converging behavior of the local slopes to that of the
proper initial separation is observed. However, a plateau is absent in the converged part.
We then assume that at higher Reα, the converged part corresponds to plateau and
that the level of the converged (hypothetical) plateau is identical to that of the proper
initial separation. We then plot the logarithmic local slopes of the data starting from the
proper initial separation with three Reαs in Fig. 2.7. We observe that increases in Reα
widen the plateau and that the levels of the plateaus do not approach the K41 scaling
exponents, which correspond to the bounds of vertical axis in Fig. 2.7. Furthermore, it
should be noted that the differences between the neighbor levels decreases when Reα
increases. This indicates that asymptotic exponent values are present. As shown in
Fig.2.7, given our assumptions of the converged behavior, we infer that the scaling
exponents of the velocity statistics are

〈vl(t)〉 ∝ t0.7, (2.7)

〈v2
l (t)〉 ∝ t1.23. (2.8)

The scaling exponents are visually determined from Fig.2.7. The values increase with
increases in Reα.
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Figure 2.8: (a) PDFs of the rescaled longitudinal relative velocity, ζ(t) = vl(t)/t
0.7 for

unconditioned data at different instances t/tf = 1.0, 1.5, 2.0, 2.5, 3.0 for Reα = 80 with
hyperviscosity. Here, the initial separation corresponds to r0 = 0.48lf which is different
from the proper initial separation. It should be noted that ζ is non-dimensionalized
as it is divided by lf/t

1.7
f . Inset: PDFs without re-scaling of the longitudinal relative

velocity for the unconditioned data with the initial separation r0 = 0.48lf . (b) Same
as (a) albeit for the conditionally sampled data. (c) Same as (a) albeit for Reα = 39
with normal viscosity at different instances t/tf = 0.9, 1.4, 1.8, 2.3, 2.7. Here, the initial
separation corresponds to r0 = 0.39lf . (d) Same as (c) albeit for conditionally sampled
data.
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Figure 2.9: Evolution of PDFs of the rescaled longitudinal relative velocity, ζ(t) =

vl(t)/t
0.7, of the unconditioned pairs starting from the proper initial separation, r

(p)
0 .

The PDFs are for (a) Reα = 40. (b) Reα = 80. (c) Reα = 160.
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Furthermore, by normalizing with temporal scaling in Eq. (2.7), the time evolution
of the PDF of the conditionally sampled vl becomes self-similar as shown in Fig. 2.8(b).
Here, Pc(A, t) corresponds to the conditional PDF for a quantity, A. The collapse
among different instances does not appear perfect. The collapse around the peak is
important because the probability in the tails decays faster than the exponential decay
(we compare the degree of the collapse around the peak of the scaled PDF to that of
the PDF in the inset). Conversely, the unconditional vl scaled with the same scaling in
Eq. (2.7) does not exhibit the self-similar evolution as shown in Fig. 2.8(a). Even if we
scale the relative velocity with ta/2, where the exponent a is measured from 〈vl(t)2〉 ∝ ta

shown in Fig. 2.2(b) for each r0, the head parts of the PDFs do not collapse each other
as shown in the inset of Fig. 2.8(a). This implies that the evolution becomes self-
similar only for conditionally sampled relative velocity with scaling relations (2.7). We
obtained similar results for the normal viscous case as shown in Fig. 2.8(c) and (d). It
should be noted that in the instances plotted in Fig. 2.8, the conditional separation,
〈r2(t)〉c, is forced to agree with the Richardson–Obukhov law. The self-similar evolution
of the PDF of vl(t) also holds for unconditioned data starting from the proper initial
separation as shown in Fig. 2.9 for three cases of Reα with hyperviscosity.
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Figure 2.10: (a) Mean separation rate, 〈r(t)vl(t)〉c for conditioned data at various

initial separations and for unconditioned data at the proper initial separation, r
(p)
0 for

Reα = 40 with hyperviscosity. Dashed line denotes t2 scaling. Inset: The logarithmic
local slopes of the data shown in the outset. Dashed line denotes t2 scaling. (b) Same
as (a) but for Reα = 80 with hyperviscosity.

Now, we obtain two evidently incompatible results via conditional sampling and
selecting the proper initial separation. The second-order moment of the separation,
r(t), obeys the K41 scaling (although this is enforced). Conversely, the statistics of rel-
ative velocity, vl(t), deviate from the K41 scaling although its evolution is self-similar.
As a soft argument in favor of the compatibility between the two results, we examine
the mean of the product r(t)vl(t). It should be noted that it is directly related to the
evolution of the mean squared separation as d〈r2(t)〉/dt = 2〈r(t)vl(t)〉, and thus it is
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2.4 Scaling of the relative velocity

termed as the separation rate. As shown in Fig. 2.10(a), the conditional mean sepa-
ration rate obeys 〈r(t)vl(t)〉c ∝ t2 as expected given that we enforced the Richardson–
Obukhov law. The same t2 scaling also holds for the unconditioned mean separation
rate starting from the proper initial separation (figure not shown). Evidently, r(t) and
vl(t) are statistically dependent, and this is also evident from the kinematics. Hence
〈r(t)vl(t)〉c 6= 〈r(t)〉c〈vl(t)〉c. This indicates that 〈vl(t)〉c ∼ t0.7 does not affect the t2

law of the mean separation rate. We observe that the mean separation rate differs
from scaling 〈r(t)〉c〈vl(t)〉c ∼ t3/2+0.7 = t2.2 , as shown in the insets of Fig. 2.10(a) and
(b), if we consider proper initial separation data as the truly asymptotic data. There-
fore, non-Kolmogorov scaling 〈vl(t)〉c ∼ t0.7 is not ruled out due to the dependence
despite the Richardson–Obukhov law 〈r2(t)〉c ∼ t3 or, equivalently, the scaling of its
time derivative 〈r(t)vl(t)〉c ∼ t2.

2.4.2 Quasi-steady state simulation

The non-K41 scaling of the relative velocity as shown in Fig. 2.6 is not convincing due to
the limited scaling range. Here, we increase the scaling range by using the quasi-steady
state of the inverse energy-cascade turbulence [75].

Specifically, we solve the Navier–Stokes equation, Eq. (2.3), without the hypodrag
term, i.e., α = 0 by maintaining the other parameters as identical to those in Table
2.1 with hyperviscosity (h = 8). With respect to averaging, we generate ten ran-
dom initial data with flat energy spectra extending up to the truncation wavenumber
kmax = (N + 2)/3 with kinetic energy corresponding to 0.010. Over the ten runs, we
take the ensemble average. We perform the simulation with the three resolutions cor-
responding to N = 1024, 2048, and 4096. We use the statistically quasi-steady velocity
field obtained in time 24.0 ≤ t ≤ 26.5 for advecting the particle pairs. In the time win-
dow, the energy spectrum shows the k−5/3 scaling extending down to approximately
k = 1 and the energy grows linearly in time as εt. Here, we do not use conditional
sampling and consider only the particle pairs starting from the proper initial separation
estimated as r

(p)
0 = 0.60× (2π/N) for each resolution, which amounts to 0.145lf . The

value exceeds those of the statistically steady state, r
(p)
0 = 0.078lf at Reα = 39 with

normal viscosity and, r
(p)
0 = 0.089lf at Reα = 40, r

(p)
0 = 0.104lf at Reα = 80, and

r
(p)
0 = 0.122lf at Reα = 160 with hyperviscosity. This indicates that r

(p)
0 is affected by

the cut-off scale of the inertial range because small-scale quantities are expected to be
identical to steady-state simulations.

Figure 2.11(a) shows 〈r2(t)〉 satisfying the t3 scaling law for longer duration than
statistically steady-state cases. In Fig. 2.11(b), we present 〈v2

l (t)〉 that confirms the
non-K41 power-law scaling observed in the statistically steady-state simulations. In
more precise terms, from the logarithmic local slope in the inset of Fig. 2.11(b), we
estimate that the scaling exponent is approximately 1.2. This is consistent with the
relation (2.8). We note that the slopes in the inset of Fig. 2.11(b) do not exhibit
well-developed plateaus.
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Chapter 2 Conditional sampling method via exit-time statistics

To summarize Sec. 2.4, we find the non-K41 scaling law of the relative velocity,
vl(t) ∝ t0.7, and self-similar evolution of the PDFs of vl(t) in the two selected ensembles
of the particle pairs. An ensemble corresponds to pairs starting from the proper initial
separation r

(p)
0 . The other ensemble corresponds to the conditional sampling of the pairs

starting from r0 > r
(p)
0 . For both ensembles, the Richardson–Obukhov law, 〈r2(t)〉 =

gεt3, is designed to hold.
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Figure 2.11: (a) Second-order moments of the relative separations, 〈r2(t)〉, starting
from the proper initial separations in the quasi-steady simulations with resolution N =
1024, 2048, and 4096. Dashed lines denote t3 scaling. Inset: the logarithmic local slope
of 〈r2(t)〉. (b) Same as (a) albeit for the second-order moments of the longitudinal
relative velocity, 〈v2

l (t)〉. Dashed line denotes t1.2 scaling. Inset: the logarithmic local
slope of 〈v2

l (t)〉.

2.5 Concluding Remarks

In the 2D inverse energy-cascade turbulence, we developed conditional sampling to
recover the Richardson–Obukhov law by using the relation between the exit-time PDF
and Richardson PDF. Here, Eq.(2.5) and Eq.(2.6) are the conditions for the conditional

sampling to remove the particle pairs at r0 > r
(p)
0 and r0 < r

(p)
0 , respectively. Here,

r
(p)
0 is the proper initial separation as defined in Sec. 2.3.1. The conditional squared

separation obeys the Richardson–Obukhov law, 〈r2(t)〉c = gεt3, irrespective of the

initial separation r0. It is noted that we mainly considered r0 > r
(p)
0 . The fraction

of the particle pairs remaining in the conditional sampling increased with increases in
Reα. This supports our assumption that a bulk of the particle pairs for various initial
separations at the moderate Reynolds numbers are in agreement with the Richardson–
Obukhov law. As Reα → ∞, deviation in 〈r2(t)〉 from the Richardson–Obukhov law
gεt3 is likely to vanish. This leads to a conclusion similar to that in a study of the
Richardson–Obukhov law in 3D [32]. Furthermore, conditional sampling indicated
that the relative velocity exhibits a different temporal scaling from the prediction of
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the K41. The results are also obtained for the normal viscous and hyperviscous cases.
Therefore, we conclude that the hyperviscosity does not affect the statistical properties
of particle pairs.

Evidently, it is always possible to devise conditional sampling to obtain any desired
result. To avoid the pitfall, we showed that the conditional statistics are weakly depen-
dent on the parameters, number of the monitored zones NQ, and the thresholds of the
exit time τ ’s. An important finding is that NQ = 1 is sufficient. This implies that the
deviation from the Richardson–Obukhov law is caused in the dissipation range and also
by the forcing. It implies that a major deviation is not produced later in the inertial
range. The latter implication can result from the intermittency-free Eulerian velocity
field of the 2D inverse energy-cascade turbulence.

However, the implications can overlook the behavior of pairs starting from the
proper initial separation for which the deviation is negligible. The results indicated
that the self-similar evolution of the longitudinal relative velocity is a common feature
between the conditionally sampled pairs and unconditional pairs staring from r

(p)
0 . This

self-similarity is not observed in the unconditional pairs starting from r0 > r
(p)
0 . It

should be noted that the self-similarity emerges only with the non-K41 power law of
the equal-time relative velocity correlation, namely the relation (2.8). Furthermore,
the self-similarity among the PDFs of various instances indicates that the non-K41
scaling differs from the intermittency observed in the Eulerian velocity increments of
3D turbulence. We argued that the non-K41 velocity scaling is not immediately ruled
out by the enforced Richardson–Obukhov law.

The non-K41 power-law scaling obtained here, 〈v2
l (t)〉 ∝ t1.23, exhibits an exponent

that differs from the K41 prediction, 〈v2
l (t)〉 ∝ εt. This can be qualitatively explained by

the following behavior of the two-time correlation function of the Lagrangian relative
velocity, 〈δv(s1) · δv(s2)〉, where δv(t) = v(t|a + r0) − v(t|a). We use DNS data
starting from the proper initial separation and plot the correlation function in the 2D
space (s1, s2). This type of a plot is presented for the 3D case in [55]. The two-time
correlation is characterized by two functional forms as follows: one along the diagonal
line and the other along the line perpendicular to the diagonal line. The preliminary
study suggests that the two functional forms exhibit distinct self-similar functions.
Specifically, we speculate that the self-similarity of the latter one along the line normal
to the diagonal line leads to the deviation from the K41 scaling of the relative velocity.
Thus, the non-K41 behavior of the velocity can be ascribed to the temporal correlation,
which is ignored in the K41 argument [42, 88]. A future study will detail the two-time
correlation.

The results obtained with the enforced Richardson–Obukhov law lead us to conclude
that self-similarity of the relative velocity with the non-K41 scaling plays an indispens-
able role in the Richardson–Obukhov law of the squared separation. The condition is
fulfilled for the pairs starting from the proper initial separation, r

(p)
0 . An explanation

for this is absent. It can be cautiously stated that quantitative aspects of the proper
initial separation depend on the forcing because r

(p)
0 < lf .

We qualitatively discuss the characteristics of the special particle pairs initially sep-

57



Chapter 2 Conditional sampling method via exit-time statistics

arated by r
(p)
0 with respect to conditional sampling. The conditional sampling classifies

particle pairs into three groups as follows: (i) removed particles for r0 > r
(p)
0 , (ii) re-

moved particles for r0 < r
(p)
0 , and (iii) unremoved particles. It should be noted that

we here include the result of the conditional sampling for r0 < r
(p)
0 . We argue that the

nature of each group can be different. For r0 > r
(p)
0 , the power-law exponent of the

unconditional 〈r2(t)〉 is lower than the Richardson–Obukhov exponent 3 as shown in
Fig. 2.2(a). In the conditional sampling, we remove particle pairs in which the exit time
per the mean is lower than the threshold, τ . Subsequently, the power-law exponent of
〈r2(t)〉c rises to 3. This implies that the removed pairs for r0 > r

(p)
0 lower the power-law

exponent of 〈r2(t)〉.
A physical interpretation can be as follows. The removed pairs in the group (i)

typically either hardly expand and consequently stay at around the initial separation
or exit from the inertial range and then behave as standard Brownian particles while
the unremoved particle pairs are still in the inertial range. Conversely, for r0 < r

(p)
0 ,

the power-law exponent of 〈r2(t)〉 is larger than 3 as shown in Fig. 2.2(a). In the con-
ditional sampling, we remove the particle pairs in which the exit time per the mean
is within the interval, [τ1, τ2], i.e., Eq. (2.6). Subsequently the power-law exponent of

〈r2(t)〉c decreases to 3. This implies that the removed pairs for r0 < r
(p)
0 increase the

power-law exponent of 〈r2(t)〉. A physical interpretation is as follows. The removed

pairs for r < r
(p)
0 in the group (ii) typically expand anomalously fast through the iner-

tial range while the unremoved particle pairs are still in the inertial range. The pairs
in the group (iii), namely, the unremoved pairs in the conditional sampling regardless
of the initial separation, are typically those that satisfy the Richardson–Obukhov law.
The results indicated that the fraction of the pairs belonging to the groups (i) and (ii)
significantly depend on the initial separation. Groups (i) and (ii) are potentially related
to the extreme events [16, 105]. We now return to the proper initial separation. It is
inferred that the effects of the two removed groups on 〈r2(t)〉 are balanced at the proper

initial separation. Hence, the Richardson–Obukhov law recovers for r
(p)
0 without the

conditional sampling because contamination from the two groups is cancelled. Addi-
tionally, the cancelling also supports the dependence of the proper initial separation on
the width of the inertial range mentioned in Sec.IVB, i.e., r

(p)
0 increases with Reα. The

number of particle pairs in the group (i) that exit the inertial range relatively fast and
separate based on the t2 law decreases inversely with the width of the inertial range,
and the value of r

(p)
0 should be increased to cancel the anti-effects of groups (i) and (ii)

on the scaling exponent.

We observed the non-Kolmogorov scaling law of the Lagrangian velocity. Evidently,
an important question is whether or not the deviation from the K41 exponent persists
when the Reynolds number increases. The trend shown in Fig.2.7(a) indicates that
the deviation persists. However, it is not possible to eliminate the possibility that the
Kolmogorov scaling law 〈v2

l (t)〉 ∝ t prevails at significantly higher Reynolds numbers.
To address the question, an approach that differs from numerical simulation such as
Lagrangian two-point closure theory, is preferable.
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Our conditional sampling method can be easily adopted to 3D turbulence. However,
the insights gained in 3D should significantly differ from those obtained here in the 2D
inverse energy-cascade turbulence. Physics of the 2D energy inverse-cascade turbulence
considerably differs from that of the 3D turbulence although the scaling argument using
the dissipation rate (i.e., the mean energy flux) leads to the same prediction of scaling
exponents of various statistics. The main difference is that it is necessary to add the
forcing at a small scale for the 2D case. This implies that Lagrangian particles in 2D
turbulence are more directly affected by the forcing than those in 3D turbulence. A
future study will present a detailed analysis of the 3D problem.
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Chapter 3

Two-time Lagranian velocity
correlation function

3.1 Introduction

Velocity correlation function is fundamental to characterize turbulence. We can under-
stand dynamical couplings between two points and two times in turbulence through the
correlation function [51]. Eulerian and Lagrangian velocity correlation functions have
different characteristic time scales from each other, which is essential to develop two-
point closure approximations to the Navier-Stokes equations without ad-hoc parameters
[58, 71, 73]. These direct-interaction approximations or Lagrangian renormalized ap-
proximations provide consistent results with Kolmogorov’s 1941 (K41) phenomenology
[70] and also with the 2D analog [11, 75, 78]. In particular, the success of these closures
lies in adopting the approximation to the Lagrangian velocity correlation, not to the
Eulerian velocity correlation.

The most general form of the second-order Lagrangian velocity correlation function
can be written in terms of Kraichnan’s generalized velocity notation [73] as

QL
ij(a, s1|t1; b, s2|t2) ≡ 〈vi(a, s1|t1)vj(b, s2|t2)〉. (3.1)

Here vi(a, s|t) is the i-th component of the Lagrangian velocity measured at time t of
a Lagrangian particle passed through a point a at time s and 〈·〉 denotes an ensemble
average. Since the general form, Eq.(3.1), is too hard to tackle, majority of theoretical,
numerical and experimental investigations on the Lagrangian velocity correlation is
devoted to the abridged form of Eq.(3.1) by setting s1 = s2 and t2 = s2 [49, 50, 52, 59,
60, 61, 74], namely,

QL
ij(a, s|t; b, s|s) = 〈vi(a, s|t)vj(b, s|s)〉. (3.2)

It should be noticed that vj(b, s|s) coincides with the Eulerian velocity at a point b
at time s. Thus, the correlation Eq.(3.1) is between the Lagrangian velocity and the
Eulerian velocity.
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An abridged form of Eq.(3.1) but involving only the Lagrangian velocity can be

QL
ij(a, s|t1; b, s|t2) = 〈vi(a, s|t1)vj(b, s|t2)〉, (3.3)

where the measuring times t1 and t2 are different from the labeling time s. There
are few studies on the Lagrangian correlation function Eq.(3.3) that is an essential
ingredient to solve unsteady problems of turbulence such as turbulent diffusion and
turbulent mixing [34]. In a notable study of the correlation Eq.(3.3) [55], the authors
have performed a direct numerical simulation (DNS) to obtain the Lagrangian velocity
correlation function Eq.(3.3). However, to analyze the computed correlation function,
they had to resort to the theory developed for the Lagrangian-Eulerian correlation
Eq.(3.2). This may be not only because a theory for the Lagrangian correlation Eq.(3.3)
is not developed, but also because simple characterization of it remains to be done. By
simple characterizations, we mean answers to the following cascading questions: does
the Lagrangian correlation function Eq.(3.3) have a self-similar form?; if this is so, what
is the self-similar form?; if the self-similar form is a power-law function, what are scaling
exponents? In this section, we address these questions with phenomenological theory
beyond the dimensional analysis and direct numerical simulations. Our simulation
here is limited to two-dimensional energy inverse cascade turbulence, but the theory is
applicable both to two and three dimensions.

One of the difficulties in these questions is that the Lagrangian velocity correlation
function Eq.(3.3) is intrinsically dependent on both two times, t1 and t2. To illustrate
our approach, let us show a color map of the Lagrangian correlation function as a
function of t1 and t2 in Fig.3.1. For reasons described shortly, we do not consider the
Lagrangian correlation Eq.(3.3). In stead, we study the Lagrangian velocity increment
or, equivalently, the relative velocity between two Lagrangian particles

δvi(a, r0, s|t) ≡ vi(a + r0, s|t)− vi(a, s|t) (3.4)

and its correlation

CL
ij(r0, t1, t2) = 〈δvi(a, r0, s|t1)δvj(a, r0, s|t2)〉, (3.5)

where r0 = |r0|. We call the Lagrangian correlation Eq.(3.5) as two-time Lagrangian
correlation function in this section (on the left hand side of Eq.(3.5), we suppress to
write dependence on a, s). The two-time Lagrangian correlation function shown in
Fig.3.1 is numerically computed in two-dimensional energy inverse-cascade turbulence.
The details will be explained in Sec.3.3 in this section.

To characterize the two-time correlation function shown in Fig.3.1, one way is to
look at it along the diagonal line through the origin, t1 = t2. The line is parallel to
the “T” axis written in Fig.3.1. The other way is obviously to study it along the lines
perpendicular to the diagonal line, i.e, t1+t2 = cp, where cp is a positive constant. These
lines are parallel to the “τ” axis written in Fig.3.1. Accordingly, a correlation time can
be defined for each line. From Fig.3.1, it can be observed that a correlation time along
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3.1 Introduction

a perpendicular line grows as we increase the constant cp. This sort of non-stationary
behavior is not present in the two-point Eulerian velocity correlation, whose correlation
time is constant due to the statistical stationarity. Unlike the Eulerian one, the two-
time Lagrangian velocity correlation function has more than one degree of freedom. It
implies that the scaling law of the two-time Lagrangian correlation function cannot be
obtained by dimensional analysis. For this kind of problems, the incomplete similarity
[6] provides a framework to specify possible self-similar forms. In this study, by using
both the incomplete similarity and DNS, we propose a self-similar form of the two-time
correlation function shown in Fig.3.1
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Figure 3.1: Color map of the two-time Lagrangian velocity correlation function,
Eq.(3.5), with TB = 3.4Tη for Reα = 160, where TB and Tη are the Batchelor time
and the Kolmogorov dissipation time scale, respectively. The infrared Reynolds num-
ber Reα is defined in the main text. See Sec. 3.3 for details.

Now let us explain why we consider the correlation of the Lagrangian velocity in-
crement, Eq.(3.4). The two-time Lagrangian velocity correlation function is directly
related to relative dispersion as follows. The relative separation of a particle pair,
whose Lagrangian labels are a and r0 at time 0, is written as

r(t) = r0 +

∫ t

0

δv(t′) dt′. (3.6)

The squared separation can then be written in terms of the two-time Lagrangian velocity
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Chapter 3 Two-time Lagranian velocity correlation function

correlation function as

〈r2(t)〉 = r2
0 + 2

∫ t

0

r0 · 〈δv(t1)〉 dt1 + 2

∫ t

0

∫ t

0

〈δv(t1)δv(t2)〉 dt1dt2. (3.7)

The turbulent relative dispersion has been widely investigated since the pioneering work
by Richardson [98], who first predicted that the left hand side (lhs) of Eq.(3.7) grows
as 〈r2(t)〉 ∝ t3 over an appropriate time interval, see Ref. [103] as a review. The t3

prediction can be also derived by naively using the K41 dimensional analysis in the
inertial subrange [9, 87] and therefore, the t3 law is referred to as the Richardson–
Obukhov law.

In the K41 framework, statistics on the relative separation, whose best studied
quantity is the second moment 〈r2(t)〉, is considered to be independent of the initial
separation, r0, as long as r(t) is in the sufficiently wide inertial subrange. This implies
that, when we plot 〈r2(t)〉 starting from various r0’s, the curves become independent
of r0 and eventually collapses to the only one curve independent of r0, which is propor-
tional to t3. Indeed, such an asymptotic state is indicated by DNS in three dimensions
at high Reynolds numbers [32, 33, 104]. By contrast, one has never clearly observed
the r0-independence in laboratory experiments in three dimensions [90, 91] and in two
dimensions [56, 99, 100, 119]. The situation is similar in numerical simulations of the
3D turbulence [15, 19, 32, 104, 126] and of the 2D inverse energy-cascade turbulence
[25, 26, 65]. In this sense, the Richardson–Obukhov law is not verified satisfactorily
by observations. Of course, with much higher Reynolds number, a cleaner t3 law irre-
spective of r0 may be observed. In this section, we parametrize finite Reynolds-number
effect on the Richardson–Obukhov law by analyzing the two-time Lagrangian correla-
tion function Eq.(3.5). Specifically, we will study Reynolds-number dependence of the
correlation function. Then, through Eq.(3.7), we argue dependence of 〈r2(t)〉 on r0 at
finite Reynolds numbers and infer its asymptotic form at infinite Reynolds number.

In particular, with moderate Reynolds numbers it is known that the t3 scaling
behavior of 〈r2(t)〉 is observed for a certain selected initial separation, see Refs. [25,
63, 65] for further discussion. This special initial separation is around the Kolmogorov
dissipation length for both 2D and 3D and thus dependent on the Reynolds number.
Our argument on the r0-dependence reveals nature of this special initial separation.

We organize this section as follows. In Sec. 3.2, we make ansatz of the scaling laws
of the two-time Lagrangian velocity correlation function shown in Fig.3.1 by adopting
the incomplete similarity [6]. The method enables us to explore qualitatively scaling
laws that deviate from the K41 dimensional analysis. In particular, we take the finite
Reynolds number effect and the dependence on r0 into consideration.

Next, in Sec.3.3, we verify the ansatz and determine quantitatively scaling exponents
involved by comparing with DNS data of 2D energy inverse-cascade turbulence. We
estimate the scaling exponents as a function of Reynolds number by using DNSs with
four different Reynolds numbers. Subsequently, we infer asymptotic values of the scal-
ing exponents at infinite Reynolds number by extrapolating those at finite Reynolds
numbers. There are several reasons for selecting the 2D system; detailed numerical

64



3.2 Incomplete self-similarity of the Lagrangian correlation and scaling exponents

study is more feasible; the Eulerian velocity is intermittency free [22, 94] and therefore
we factor out the intermittency effects on the Lagrangian statistics. Of course, careful
discussion and further investigation are required when one applies the method used
here to the 3D system.

In Sec.3.4, we discuss implications of the self-similar ansatz of the Lagrangian ve-
locity correlation on the Richardson–Obukhov law. Furthermore, we explain why t3

scaling law of 〈r2(t)〉 is observed for a selected initial separation at moderate Reynolds
numbers. Concluding remarks are made in Sec.3.5.

3.2 Incomplete self-similarity of the Lagrangian cor-

relation and scaling exponents

In this section, we present a scaling ansatz of the two-time Lagrangian velocity cor-
relation function for particle pairs. It should be noted that the argument below is
independent of specific dimensions. Therefore, we expect that the ansatz is meaningful
for both 2D and 3D turbulence.

As we discussed in Sec.3.1, we consider the Lagrangian correlation function, CL
ii(r0, t1, t2),

of the velocity difference Eq.(3.4), where we use the Einstein summation convention of
the repeated indices. We write CL

ii(r0, t1, t2) as CL(r0, t1, t2) below.
We consider a statistically steady, homogeneous, and isotropic turbulent Eulerian

velocity field, and therefore we deal with an external forcing which leads to such a
state. In the following scaling argument, we ignore effects of the external forcing on
the Lagrangian correlation function. Later, in Sec. 3.5, we discuss the effects when we
analyze the DNS data of the correlation function.

Let us first change time variables from t1 and t2 to an average time, T , and a relative
time, τ as

T ≡ t1 + t2
2

, τ ≡ t1 − t2. (3.8)

The new variables are useful because the correlation function is symmetrical with re-
spect to the T -axis as shown in Fig.3.1.

Now we present the scaling ansatz for the Lagrangian correlation function. Our
arguments are given thereafter. The Lagrangian correlation function can be this form:

CL(r0, T, τ) = εTΦ(r0, T, τ), (3.9)

which we assume to be valid at an appropriate time interval. Here ε is the energy
dissipation rate. The non-dimensional function Φ(r0, T, τ) includes deviation from the
dimensional analysis. By using the idea of incomplete similarity [6], we argue that
Φ(r0, T, τ) can be written as

Φ(r0, T, τ) = G

(
TB
T

)γ
gL

(
τ

T βBT
1−β

)
, (3.10)
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Chapter 3 Two-time Lagranian velocity correlation function

where G is a non-dimensional, non-zero constant, TB is the Batchelor time as we will
define later, and gL(ξ) is a non-dimensional self-similar function with gL(0) = 1. Here
the two scaling exponents, β and γ, appear. They are not determined by dimensional
analysis. With the ansatz Eq.(3.10), the width of the ridge along the diagonal line
t1 = t2 shown in Fig. 3.1 is given by T (TB/T )β. Later in Sec.3.3, by comparing with
DNS data, we will show that the exponents take the following functional form

β = β0 + β̃

(
Tη
TB

,
TL
TB

)
, (3.11)

γ = γ0 + γ̃

(
Tη
TB

,
TL
TB

)
. (3.12)

Here, we introduce three time scales, TB, Tη, and TL, which are given by

TB ≡
(
r2

0

ε

)1/3

, Tη ≡
(
η2

ε

)1/3

, TL ≡
(
L2

ε

)1/3

, (3.13)

where TB is the Batchelor time associated with the initial separation r0 [8], Tη is the
smallest time scale of turbulence associated with the smallest length scale, η, such as
Kolmogorov dissipation length, and TL is the largest time scale of turbulence associated
with the largest length scale, L, such as the integral scale.

Now let us explain how we reach the scaling ansatz, (3.9)–(3.12), of the Lagrangian
correlation function. Our argument here follows the self-similar analysis of Ref. [6].
First, we specify a system of all the governing parameters of the correlation function,
CL(r0, T, τ). It depends on the average time, T , the relative time, τ , which are defined
in Eqs. (3.8), the initial separation of particle pairs, r0, the energy dissipation rate or the
average energy flux in the inertial subrange, ε, the smallest length scale of turbulence
such as the Kolmogorov length, η, and the largest length scale of turbulence such as
the integral scale, L. Taking them into account, we rewrite arguments of the two-time
correlation function of the relative Lagrangian velocity as

CL(r0, T, τ, ε, η, L) = 〈δvi(a, r0, s = 0|t1)δvi(a, r0, s = 0|t2)〉 (3.14)

Here we take average over the Lagrangian marker a. Hence we omit dependence on a.
We set the labeling time to zero, i.e., s = 0 and t1 and t2 are measured from this time
origin. We also omit dependence on s on the left hand side of Eq.(3.14). For the 2D
energy inverse-cascade turbulence, we can use the characteristic length of the drag as L
instead of the integral scale and use the energy flux cascading inversely in the inertial
range as ε. In this case, we can explicitly write down L dimensionally by using the
drag coefficient and the energy dissipation rate. This may be an advantage of the 2D
turbulence.

Second, we apply the Buckingham Π-theorem [6] to Eq.(3.14) by assuming that in-
dependent dimensions are ε and T . This means that all the other governing parameters
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3.2 Incomplete self-similarity of the Lagrangian correlation and scaling exponents

are non-dimensionalized by ε and T . This leads to an expression with a dimensionless
function, CL

∗ , as

CL(r0, T, τ, ε, η, L) = εT CL
∗

(
τ

T
,

r0

ε1/2T 3/2
,

η

ε1/2T 3/2
,

L

ε1/2T 3/2

)
. (3.15)

This is rewritten by using the time scales (3.13) as

CL(r0, T, τ, ε, η, L) = εTCL
∗

(
τ

T
,
TB
T
,
Tη
T
,
TL
T

)
. (3.16)

Third, we consider intermediate asymptotics of the time scales, Tη, T , and TL, and
reduce the number of the arguments on the right hand side of Eq.(3.16). As is clear from
our choice of the independent dimensions, we assume that Tη and TL, are sufficiently
separated and that

Tη � T � TL. (3.17)

This intermediate time interval for T is a Lagrangian counterpart of the inertial sub-
range of the Eulerian velocity statistics. We call the time interval the inertial subrange
in this section. In this inertial subrange, we assume that the correlation function be-
comes independent of Tη and TL. This implies that the complete similarity holds for
Tη and TL. Hence, with a dimensionless function CL

∗∗(ζ, ξ), Eq.(3.16) is simplified as,

CL(r0, T, τ, ε) = εTCL
∗∗

(
τ

T
,
TB
T

)
. (3.18)

Fourth, let us also assume that the initial separation, r0, is sufficiently small.
Namely, we consider that the average time is much larger than TB (∝ r

2/3
0 ):

(Tη �) TB � T (� TL) (3.19)

To discuss behavior of CL in this time range, for simplicity, we rewrite the dimensionless
times as

ζ ≡ τ

T
, ξ ≡ TB

T
. (3.20)

instead of τ , T in Eqs (3.8) and TB in Eqs (3.13). The additional asymptotics (3.19)
implies ξ → 0. Now there are two possibilities for the asymptotic behavior of CL

∗∗(ζ, ξ)
as ξ → 0 [6]:

(i) the limit of CL
∗∗(ζ, 0) exists and is finite and non-zero,

(ii) no finite limit of CL
∗∗(ζ, 0) exists, or the limit is zero if it exists.

We do not know a priori which case holds unless the full functional dependence of
CL(r0, T, τ, ε) was obtained theoretically from the Navier-Stokes equations. It is neces-
sary to study data for small ξ, which is obtained from DNS or laboratory experiment
in order to conclude which case is valid [6].
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Chapter 3 Two-time Lagranian velocity correlation function

Now let us discuss implications of each case. In the case (i), a scaling law for
CL(ζ, 0) is consistent with the K41 phenomenology. In other words, we can determine
the scaling relations for CL(ζ, 0) by dimensional analysis (complete similarity). In this
case, we can estimate ξ-dependence by the Taylor series

CL
∗∗(ζ, ξ) = CL

∗∗(ζ, 0) + A1(ζ)ξ +O(ξ2), (3.21)

where A1(ζ) = (∂CL
∗∗/∂ξ)ξ=0. Therefore, in the case (i), the scaling law for CL(r0, T, τ)

is as follows:

CL(r0, T, τ) = εTA0

( τ
T

)
+ εTBA1

( τ
T

)
+O(ξ2), (3.22)

where A0(τ/T ) = CL
∗∗(τ/T, 0).

Furthermore, when the intermediate asymptotics (3.17) is insufficient, we assume
that there were still complete similarity but no similarity in Tη and TL [7]. Under this
assumption, in the inertial range, Eq.(3.22) may be modified as

CL(r0, T, τ) = εTA0

(
τ

T
,
Tη
TL

)
+ εTBA1

(
τ

T
,
Tη
TL

)
+O(ξ2). (3.23)

It should be noted that the width of ridge along the diagonal line t1 = t2 shown in
Fig.3.1 is given by T in the inertial range for any Reynolds number.

On the other hand, in the case (ii), a scaling law for CL(ζ, ξ) has non-trivial scaling
exponents which cannot be determined by dimensional analysis (incomplete similarity).
When ξ is sufficiently small, as a natural self-similar form suggested in [6], we propose

CL
∗∗(ζ, ξ) = GξγgL

(
ζ

ξβ

)
, (3.24)

where gL(X) is a dimensionless function and gL(0) = 1. Here G is a non-zero constant
factor and independent of TB. It should be noticed that Eq.(3.24) is consistent with
the case (ii) since the function gL(X) is bounded. The scaling exponents, β and γ, are
determined either by the Navier-Stokes equations (or, more precisely, closure equations
for the Lagrangian correlation function) or by comparison with experimental data.

As we will show in Sec.3.3, the case (ii) yields a better agreement with DNS data
of 2D energy inverse-cascade turbulence than for the case (i). Therefore, we conclude
that the case (ii) holds for the 2D turbulence. Finally, we arrive at the following form
for the Lagrangian correlation function:

CL(r0, T, τ, ε) = GεT

(
TB
T

)γ
gL

(
τ

T
(
TB
T

)β
)
, (3.25)

which is supposed to hold under the conditions (3.17) and (3.19).
Having obtained the ansatz for the temporal inertial range, we now consider finite-

Reynolds number effect. The argument below is very much heuristic and should be
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3.2 Incomplete self-similarity of the Lagrangian correlation and scaling exponents

justified experimentally. At finite Reynolds numbers, we assume that the above self-
similar form (3.25) is applicable. However, we assume that the scaling exponents, β
and γ, are dependent on Tη and TL in such a way that

β = β0 + β̃

(
Tη
TB

,
TL
TB

)
, γ = γ0 + γ̃

(
Tη
TB

,
TL
TB

)
. (3.26)

Here β0 and γ0 are asymptotic values for infinite Reynolds number, and are therefore
independent of Tη and TL. In addition, the constant factor, G, may also depend on Tη
and TL at finite Reynolds numbers. In the next section we show that these hypothetical
formula of the exponents are useful to fit the DNS data obtained at finite Reynolds
numbers and to infer the asymptotic behavior of CL.

It should be noted that an undetermined scaling exponent such as β or γ does not
appear in a scaling relation for the Eulerian two-time correlation function CE(r, t1, t2)
of the velocity increments, which is defined by

CE(r, t1, t2) = 〈δui(x, r, t1)δui(x, r, t2)〉. (3.27)

Here the Eulerian velocity increment is given by

δui(x, r, t1) = ui(x + r, t1)− ui(x, t1) (3.28)

and r = |r|. We used spatial homogeneity and isotropy.
Because of the statistically steady state, CE(r, t1, t2) does not depend on T and can

be written with all the governing parameters by

CE(r, t1, t2) = CE(r, τ, ε, η, L). (3.29)

According to the Π-theorem, there exists a dimensionless function, CE
∗ , by regarding ε

and r as the independent parameters, such that CE has the form,

CE(r, τ, ε, η, L) = ε2/3r2/3CE
∗

(
τ

ε−1/3r2/3
,
η

r
,
L

r

)
. (3.30)

Furthermore, when we consider that r is in the inertial subrange,

η � r � L, (3.31)

we can assume that, as η → 0 and L→∞, the dependence on η and L can be ignored.
Then CE has a reduced form,

CE(r, τ, ε) = C2ε
2/3r2/3gE

( τ

ε−1/3r2/3

)
, (3.32)

where C2 is a universal constant related to the Kolmogorov constant and the function
gE(X) satisfies gE(0) = 1. This is consistent with Kolmogorov phenomenology. In this
way, the scaling law of the Eulerian velocity correlation function can be determined
by the dimensional analysis thanks to the statistical stationarity. This is different
from the Lagrangian velocity correlation function. However, it should be noted that
the sweeping effect by large-scale advection of eddies [72, 111] may be more dominant
than the Kolmogorov time scale ε−1/3r2/3. If that is the case, the Eulerian correlation
function may be different from the the scaling law given in Eq.(3.32), see Refs. [51, 120]
for review.
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3.3 Numerical experiments

3.3.1 Numerical details

We perform DNS of the 2D inverse energy-cascade turbulence in order to numerically
verify the ansatz made in Sec.3.2. We suppose that the Eulerian velocity field, u(x, t),
follows the two-dimensional Navier-Stokes equation with forcing, hyperviscous, and
hypodrag terms. We numerically solve the equation in terms of the vorticity,

∂ω

∂t
+ (u · ∇)ω = (−1)h+1ν∆hω + α∆−1ω + f, (3.33)

where ω is vorticity filed, ω(x, t) = ∂xuy(x, t) − ∂yux(x, t). The hyperviscous, and
hypodrag terms are the first and second terms on the right hand side of Eq.(3.33)
and f is an external forcing term. For the 2D inverse energy-cascade turbulence, the
smallest and largest time scale can be explicitly described by the viscous coefficient, ν,
and the drag coefficient, α, respectively as below:

Tη ≡
( ν
εh

) 1
3h−1

, TL ≡
(

1

αε

) 1
4

.

This is an advantage of the 2D turbulence, because the integral time scale of the 3D
turbulence cannot be explicitly described.

The forcing term, f(x, t), is given in terms of the Fourier coefficients, f̂(k, t) =
k2εin/[nf ω̂

∗(k, t)], where f̂ denotes the Fourier transform of the function f(x, t).
The energy input rate is denoted by εin, and nf denotes the number of the Fourier

modes in the following forcing wavenumber range. We select the coefficients, f̂(k, t),
as non-zero only in high wave numbers, k, satisfying kf − 1 < |k| < kf + 1. Thus, the
energy input rate is maintained as constant in time. Numerical integration of Eq. (3.33)
is performed via the pseudospectral method with the 2/3 dealiasing rule in space and
the 4-th order Runge–Kutta method in time. The setting and our numerical method
are identical to those used in [85, 122]. In this DNS, the maximum wavenumber is
kmax =

√
2N/3, where N2 is the number of grid points. Here, kmaxη ' 1.8, where η is

the Kolmogorov length. Here we use the infrared Reynolds number, Reα ≡ kf/kα, as
proposed by Vallgren [116] in order to quantify the span of the inertial subrange. In
Table 3.1 we list the parameters of simulations used in the study.

To obtain the Lagrangian statistics, we employ a standard particle tracking method.
The flow is seeded with a large number of tracer particles. The number of particles,
N2
p , for each simulation is described in Table 3.1. The particles are tracked in time via

integrating the advection equation,

d

dt
xp(t) = u(xp(t), t), (3.34)

where xp(t) denotes the particle position vector. The numerical integration of Eq. (3.34)
is performed using the Euler method. The velocity value at an off-grid particle position
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Table 3.1: Parameters of numerical simulations: N2, δx = 2π/N , δt, ν, h, α, kf , εin,
and N2

p denote the number of grid points, grid spacing, size of the time step, hyper-
viscosity coefficient, order of the Laplacian of the hyperviscosity, hypodrag coefficient,
forcing wavenumber, energy input rate of the forcing, and, number of the Lagrangian
particles, respectively. Turbulent characteristics: ε, σε, L, urms, Reα, Tη, and TL de-
note mean of the resultant energy flux in the inertial subrange, standard deviation of
the resultant energy flux, integral scale, root-mean-square velocity, infrared Reynolds
number, viscous time scale, and, drag time scale, respectively.

N2 δx δt ν h α kf εin N2
p ε σε L urms Reα Tη TL

10242 0.006 0.002 1.82× 10−38 8 35 249 0.1 20482 0.019 2.9× 10−4 0.38 0.5 40 0.091 1.1
20482 0.003 0.001 4.664× 10−43 8 35 496 0.1 20482 0.019 2.9× 10−4 0.37 0.5 80 0.057 1.1
40962 0.0015 0.001 1.05× 10−47 8 35 997 0.1 40962 0.019 2.6× 10−4 0.36 0.5 160 0.036 1.1

is estimated by the fourth-order Lagrangian interpolation of the velocity calculated on
the grid points.

In Eq.(3.33), we use hyperviscosity, h = 8, rather than normal viscosity, h = 1,
for DNSs. This is because the hyperviscosity extends the inertial subrange for a given
spatial resolution. We confirmed that the hyperviscosity does not affect the particle-pair
statistics in Ref. [65].

First of all, let us consider to what extent the assumptions on the time separations,
Tη � T � TL (Eq.(3.17)) and TB � T (Eq.(3.19)), made in Sec.3.2 holds in our
DNS. In the DNS, TL/Tη . 102. Certainly, this poses limitations on studying whether
the asymptotic behavior of the Lagrangian correlation function, Eq.(3.25), is valid. In
theory, if Tη � TB � TL, then the particle pairs may be hardly influenced by neither the
viscosity nor the large scale drag from the beginning of the relative diffusion. However,
in practice, due to the limited scale separation, ξ = TB/T may not become sufficiently
small in our DNS, as T = (t1 + t2)/2 increases while satisfying Tη < TB < T < TL.
Therefore, it is inevitable to consider that the numerically obtained correlation function,
CL(r0, T, τ, ε), depends on Tη and TL even if the large TB condition, Tη < TB < TL, is
satisfied.

Given this practical limitations, it is useful to relax the large TB condition and
to consider the case TB < Tη, which we call the small TB condition. Obviously in
the small TB condition, we cannot ignore viscous effects on particle-pair statistics.
However, the value of ξ = TB/T can become smaller as the average time T increases
in Tη � T � TL than in the large TB condition. Some previous studies investigate
particle-pair statistics in the small TB condition [16, 26, 56, 105]. Of course, it is
not obvious that the two different conditions give the same asymptotic behavior of
CL(r0, T, τ, ε) as ξ = TB/T → 0. Therefore, we investigate dependencies on Tη, TL and
TB for both conditions in the following subsections.

More specifically, we investigate the two scaling exponents, β and γ, appeared in
our anzats (3.9). For this purpose, we decompose the Lagrangian velocity correlation
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function CL(r0, T, τ, ε) into two parts:

CL(r0, T, τ, ε) = CL
d (T, TB)CL

p (T, τ, TB), (3.35)

where CL
d (T, TB) corresponds to the two-time Lagrangian correlation function along

the diagonal line t1 = t2, that is, CL
d (T, TB) ≡ CL(r0, T, τ = 0, ε). The other part

CL
p (T, τ, TB) corresponds to the two-time correlation along a line t1 + t2 = 2T , which is

perpendicular to the diagonal line. Its value at τ = 0 is normalized: CL
p (T, τ = 0, TB) =

1. If the ansatz is correct, CL
p (T, τ, TB) = gL(τ/[T 1−βT βB]).

In what follows, the values of the exponents, γ and β, are estimated from numerically
calculated CL

d (T, TB) and CL
p (T, τ, TB), respectively, as we vary TB and Tη. We consider

first the large TB condition (TB > Tη) and then the small TB condition.

3.3.2 Large TB condition: Tη � TB � T � TL

Let us consider the scaling laws of CL(r0, T, τ, ε) under the large TB condition. In DNS,
although this condition, Tη < TB < TL is satisfied, the scale separations, Tη � T � TL
and TB � T , are not sufficient even in our largest simulation with Reα = 160. Figure
3.2 shows color maps of CL(r0, T, τ, ε) in terms of the original time variables t1 and t2
with TB = 3.5Tη for the three cases of Reαs. We observe that the width of the ridge
along the diagonal line (the region where the correlation CL(r0, T, τ, ε) remains large)
becomes wider as the average time T = (t1 + t2)/2 increases. We also observe that
qualitatively this tendency appears to be independent of Reα.

Now we focus on the behavior of the correlation function along the diagonal line.
Figure 3.3(a) shows time evolution of CL

d (T, TB) = CL(r0, T, τ = 0, ε) for various TBs.
Obviously, it indicates that a scaling exponent, if it exists, is dependent on TB. Figure
3.3(b) shows logarithmic local slopes (LLSs) of CL

d (T, TB). If the ansatz (3.9) is valid,
the LLS becomes 1− γ (constant). We see that a narrow plateau region for each LLS.
For the plateau, as TB approaches Tη from above, we observe that the plateau region
becomes wider and that the value of the plateau region becomes closer to 1 which
corresponds to γ = 0. For further quantification, we infer the value of γ for each curve
from the maximum value of the LLS. In the argument given in Sec.3.2, we assumed
that the exponent γ is independent of TB, Tη, and TL. However, the data shown here
indicate that it is not the case. To circumvent this, we now use the empirical form for
γ given in Eq.(3.26).

Figure 3.3(c) shows the maximum values of the LLSs, which we regard as γ in
Eq.(3.26), which is dependent on TB, Tη and TL. The horizontal axis of Fig.3.3(c) is set
to (TB − Tη)/TL. We find empirically this combination of the independent variables,
(TB−Tη)/TL, to make the data points collapse onto a single curve. The first observation
concerns the behavior as (TB − Tη)/TL → 0 (when TB approaches Tη from above): the
exponent γ seems to approach 0. However, this limit TB → Tη violates the large TB
condition, Tη � TB � Tη. The second observation is about the behavior at the large
(TB − Tη)/TL range, which is consistent with the large TB condition. In this range, we
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Figure 3.2: Color maps of time evolution of the Lagrangian velocity-increment corre-
lation CL

ii(r0, t1, t2) defined in Eq.(3.5) with TB = (r2
0/ε)

1/3 = 3.5Tη. (a) Reα = 40, (b)
Reα = 80, (c) Reα = 160. The white lines indicate ti = TB (i = 1, 2). Here the time
axes, ti/Tη (i = 1, 2), span from 0 to TL/Tη.

73



Chapter 3 Two-time Lagranian velocity correlation function

10−1 100 101

T/TB

101

102
C
L
(T

)/
(r

0
/T

B
)2

(a) TB = 1.4Tη

TB = 2.2Tη

TB = 2.9Tη

TB = 3.5Tη

TB = 4.1Tη

10−1 100 101

T/TB

0.0

0.2

0.4

0.6

0.8

1.0

L
L

S
of
C
L
(T

)

(b)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

(TB − Tη)/TL
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ

(c)

Figure 3.3: (a) Time evolution of CL
d (T, TB) for various TBs at Reα = 40 (dashed

dotted), 80 (dashed), and 160 (solid). (b) Logarithmic local slope (LLS) of CL
d (T, TB)

at Reα = 40 (dashed) and 160 (solid). The filled circle on each line indicates the position
of the maximum. (c) Value of the exponent γ suggested by the maximum value of the
LLS plotted as a function of (TB−Tη)/TL at Reα = 40 (red) and 160 (green). The blue
solid line corresponds to 1.34[(TB − Tη)/TL]0.5, which is determined by the least square
fit in the range 0.039 ≤ (TB − Tη)/TL ≤ 0.16.
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observe that the master curve becomes independent of Reα as shown in Fig.3.3(c). Our
best fit function to the curve for the exponent γ is

γ

(
Tη
TB

,
TL
TB

)
= γ0

(
TB − Tη
TL

)1/2

, (3.36)

which is plotted as a solid line in Fig.3.3(c). Here γ0 is a constant estimated about
1.34± 0.01 by the fitting.

Now we come back to the ansatz (3.9) leading to CL(r0, T, τ = 0, ε) ∝ T 1−γ. The
functional form of the exponent (3.36) indicates that γ → 0, when the scale separation
(3.19) is sufficient. This implies that the K41 scaling, CL(r0, T, τ = 0, ε) = CL

d (T, TB) ∝
T , is recovered under the sufficient scale separation. However, for this recovery, the
exponent 1/2 in Eq.(3.36) suggests that we need an enormously large Reα. For example,
in order to get the value of γ valid for one effective figure, γ ∼ 0.01, we may need
TL/Tη ∼ 105 (in our DNS here TL/Tη ∼ 30 at most), which may correspond to Reα ∼
106.

On the other hand, at small values of (TB − Tη)/TL, γ deviates from the relation
(3.36) as shown in Fig. 3.3(c). Let us suppose that the deviation persists at larger
Reynolds numbers. Then γ may have a negative limit value as TB → Tη (approaching
Tη from above). We extrapolate the deviation to (TB−Tη)/TL = 0 and obtain the limit
value of γ about −0.25. We cannot conclude whether the deviation remains at sufficient
large Reynolds numbers from our DNS. In summary of the result for the correlation
function along the diagonal line, our simulation data suggest that the scaling law of
CL
d (T, TB) at sufficiently large Reα is,

CL(r0, T, τ = 0, ε) = CL
d (T, TB) = GεT

γ0

√
TB−Tη
TL

B T
1−γ0

√
TB−Tη
TL . (3.37)

where G, which is the constant appeared in Eq.(3.9), is estimated as G ∼ 80 from the
compensated plot of Fig.3.3(a) by T γBT

1−γ (the compensated plot is not not shown).
Next, we consider the behavior of the correlation function along the lines perpendicu-

lar to the diagonal line, which is given by CL
p (T, τ, TB). Figure 3.4 shows sectional views

of the color map shown in Fig.3.2 for various sections given by the lines t1 + t2 = 2T . It
should be noted that the curves shown in Fig.3.4 are normalized by CL

d (T, TB). Hence
they are the graphs of CL

p (T, τ, TB) as a function of the relative time τ = t2 − t1 for a
fixed average time T .

We first notice that the typical width of the peak of CL
p (T, τ, TB) centered at zero

relative time τ = 0 is given by the dissipation time scale Tη initially, i.e., for small aver-
age time T . Then, the width becomes larger and larger as the average time increases.
At large average times, T . TL, the function CL

p (T, τ, TB) decreases exponentially as
shown in the insets of Fig. 3.4. Moreover, the data indicate that CL

p (T, τ, TB) decreases
faster than exponential at τ ∼ TL.

To quantify the decay of CL
p (T, τ, TB), we use a n-th decay time scale, τ1/n(T ),

defined as

CL
p (T, τ = τ1/n(T ), TB) =

1

n
. (3.38)
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Figure 3.4: Normalized correlation function, CL
p (T, τ, TB), defined in Eq.(3.35) as a

function of the relative time τ with TB = 3.5Tη for various T s. The average time varies
in Tη < T < 0.54TL and the corresponding curves are colored from black to yellow.
The three panels corresponds to (a) Reα = 40, (b) Reα = 80, (c) Reα = 160. Two
vertical dashed lines in each panel show τ/TB = ±Tη/TB, respectively. The horizontal
axis spans in −TL/TB ≤ τ/TB ≤ TL/TB. The insets show the same plots as the outsets
but in the lin-log coordinates.
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If τ1/n(T ) is power-law such as τ1/n(T ) ∝ T 1−β and the scaling exponent, β, is indepen-
dent of the value of n, then CL

p (T, τ, TB) has the self-similar form of the ansatz (3.9),

that is, CL
p (T, τ, TB) = gL(τ/[T βBT

1−β]).
If β depends on n, which we denote by β1/n, we can still expect that CL

p (T, τ, TB)
has a self-similar form in a certain interval of τ . The interval is determined by the value
of τ1/n(T ).

Figure 3.5 shows τ1/n(T ) with n = 2, 8, and 32 for various TBs. With a small n
such as n = 2, we probe the behavior in the vicinity of the peak of CL

p (T, τ, TB), and
on the other hand, with a large n such as n = 32, we characterize the behavior in the
tail region of CL

p (T, τ, TB). For n = 2 as shown in Fig. 3.5(a), τ1/2(T ) strongly depends
on TB. This is because τ1/2(T ) is smaller than TB for almost all T s. Nevertheless,
there may be a power-law behavior in a certain range of T . On the other hand, for
larger n such as n = 8 and 32, as shown in Fig.3.5(b) and (c), the power law behavior
of τ1/n(T ) becomes clearer and τ1/n(T ) ∝ T 1−β1/n holds at a certain time interval of
T . The scaling exponents, β1/n appears to become independent of TB and the scaling
region becomes larger as increasing Reα. These observations lead us to conclude that
the ansatz (3.9) is a reasonable description of the function CL

p (T, τ, TB).
However, as shown in the insets of Fig. 3.5, the LLSs are too noisy to determine

a value of β1/n accurately. The noise may be suppressed as we increase massively the
number of particle-pair samples. Instead, here we use compensated plots of Fig. 3.5
to estimate the value of the scaling exponent β1/n. The compensation is based on the
self-similar variable ζ/ξβ in Eq.(3.24), which is the argument of the function gL. If the
self-similarity is valid at τ = τ1/n(T ) with the exponent β1/n, the self-similar variable

ζ

ξβ1/n

∣∣∣∣
τ=τ1/n(T )

=
τ1/n(T )

T
β1/n
B T 1−β1/n

≡ Dn,β1/n(T ) (3.39)

becomes constant which neither depends on T nor TB. Here, ζ and ξ are the dimension-
less times as defined in Eqs (3.20). For each n, we plot Dn,q(T ) by varying q and find q∗
that gives the widest flat region as a function of T . We regard this q∗ as β1/n. We show
Dn,β1/n(T ) in Fig. 3.6 for n = 2, 8, and 32. These compensated plots are less noisy
than the LLSs, but they still have tiny oscillations. As increasing Reα, we observe that
Dn,β1/n(T ) becomes independent of TB except for TB = 1.4Tη, in particular, for n = 32
as shown in Fig. 3.6 (c). The results indicate that the ansatz (3.25) is reasonable for
CL
p (T, τ, TB), albeit that the numerical data is noisy.

Now let us specify the empirical form of the exponent β given in Eq.(3.11). Figure
3.7 shows the measured values of β1/n with n = 2, 8 and 32 as a function of (TB−Tη)/TL
that is the same independent variable used in Fig.3.3 (c) for the other exponent γ.

For n = 2, the outset of Fig. 3.7(a) indicates that (TB − Tη)/TL is not appropriate
since the data points are still scattered. This leads us to search for a more suitable
self-similar variable for β1/2, which is found to be TB/TL as shown in the inset of
Fig. 3.7(a). This implies that β1/2 depends only on TB and TL, but not on Tη. The
dependence is consistent with the strong TB dependence of τ1/2(T ) observed in Fig.
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Figure 3.5: n-th decay time scale, τ1/n(T ) as a function of the average time T for (a)
n = 2, (b) n = 8, (c) n = 32 at Reα = 40 (dashed dotted), Reα = 80 (dashed), and
Reα = 160 (solid). The insets show the LLS of τ1/n(T ) shown in the ousets.

78



3.3 Numerical experiments

100 101

T/TB

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

τ 1
/2

(T
)/

[T
β

1/
2

B
T

1−
β

1/
2
]

(a)

TB = 1.4Tη

TB = 2.2Tη

TB = 2.9Tη

TB = 3.5Tη

TB = 4.1Tη

100 101

T/TB

0.5

0.6

0.7

0.8

0.9

1.0

τ 1
/8

(T
)/

[T
β

1/
8

B
T

1−
β

1/
8
]

(b)
TB = 1.4Tη

TB = 2.2Tη

TB = 2.9Tη

TB = 3.5Tη

TB = 4.1Tη

100 101

T/TB

0.9

1.0

1.1

1.2

1.3

1.4

τ 1
/3

2
(T

)/
[T

β
1/

32

B
T

1−
β

1
/3

2
](c)

TB = 1.4Tη

TB = 2.2Tη

TB = 2.9Tη

TB = 3.5Tη

TB = 4.1Tη
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3.5(a). Empirically we now fit the collapsed curve obtained in the inset of Fig. 3.7(a)
with a function β̌(TB/TL+a)b with constants β̌, a, and b. Our result is β1/2 ∝ [TB/TL+
ω1]0.4, where the constant ω1 takes zero or a non-zero small value possibly in a range,
0 ≤ ω1 . 0.01. The fitted functions are shown in the inset of Fig. 3.7(a).

On the other hand, for n = 8 and 32, the exponents β1/8 and β1/32 are dependent on
TB, Tη, and TL. Our best fit by a single parameter ω2 is β1/n ∝ [(TB − Tη)/TL + ω2]0.4

for n = 8, 32, as shown in Fig. 3.7(b) and (c). Here, ω2 is a constant in a range
0 ≤ ω2 . 0.01. The accurate values of ω1 and ω2 cannot be determined from the data
shown in Fig. 3.7. This is because the data are noisy and also the Reynolds numbers
are not sufficiently large for studying the behavior in TB/TL → 0. Nevertheless, it
is obvious that the behavior of β1/2 is different from the others. On the other hand,
for larger n’s such as n = 8 or 32, the behaviors of β1/n are similar to each other.
Therefore, these results suggest that the exponent β in the ansatz has two different
self-similar forms depending on τ . TB and τ � TB at sufficiently large Reynolds
numbers. Specifically, we infer from the data

β

(
Tη
TB

,
TL
TB

)
=



(
TB
TL

+ ω1

)0.4

≡ β1 for τ . TB,

(
TB − Tη
TL

+ ω2

)0.4

≡ β2 for τ � TB,

(3.40)

where ω1 and ω2 are Reα independent constants, which may be zero. Accordingly, the
function gL in the ansatz (3.25) can be given by

gL

(
τ

T βBT
1−β

)
=



gL1

(
τ

T β1B T 1−β1

)
for τ . TB,

gL2

(
τ

T β2B T 1−β2

)
for τ � TB,

(3.41)

where gL1 and gL2 are self-similar functions.
Now we discuss the limit of β as Tη → 0 and TL →∞. Here, ω0.4

1 in Eq.(3.40) is the
limit of β1 as TB/TL → 0. Similarly, ω0.4

2 is the limit of β2 as (TB −Tη)/TL → 0. These
limits correspond to β0 in Eq.(3.11). Let us suppose ω2 = 0. Then the K41 scaling
law is recovered at τ � TB at sufficiently large Reynolds numbers. It is impossible to
determine an accurate value of ω2 from Fig. 3.7. It appears that ω2 = 0.01 is the best
fitted value judging from Fig. 3.7(c) though ω2 = 0 is not ruled out. On the other
hand, even if ω1 = 0, the K41 scaling law may be not recovered at τ . TB because β1

may be dependent on TB at all Reynolds numbers. Both values ω1 = 0.01 and ω1 = 0
seem equally good as in the case for ω2. In order to determine the accurate values of ω1

and ω2, we need to perform DNSs with much larger Reynolds numbers and with much
larger number of the particle pairs. It is noted that TL does not change when Reα is
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increased in our DNS. Only Tη changes. Therefore we cannot study TL-dependency of
β in this study.

In Eq.(3.41), the two different behaviors of gL are inferred from those of β. We
now demonstrate that the two forms are consistent with the DNS data. Figure 3.8

shows CL
p (T, τ, TB) as a function of τ/[T 1−β1/nT

β1/n
B ] for n = 2 in Fig.3.8(a) and n = 32

in Fig.3.8(b). Figure 3.8(a) for n = 2 is plotted in lin-lin coordinates, which means
that we mainly observe regions where CL

p (T, τ, TB) is large. On the other hand, figure
3.8(b) for n = 32 is plotted in lin-log coordinates, which means that we mainly observe
regions where CL

p (T, τ, TB) is small. The master curve in Fig.3.8(a) corresponds to gL1
and the one in Fig.3.8(b) corresponds to gL2 in Eq.(3.41). Here we assume β1 = β1/2 and
β2 = β1/32. Compare the collapsed curves in Fig.3.8 to those shown in Fig.3.4 without
taking an appropriate similarity variable. Furthermore, let us assume that the rescaled
functions are exponential, namely gL1 (X) = exp(−k1X) and gL2 (X) = exp(−k2X). This
assumption is consistent with Fig.3.8. We can estimate the constants as k1 ∼ 2.3 and
k2 ∼ 3.0 from Fig.3.8, though these values are also slightly dependent on Tη, TL, and
TB. The exponential forms will be used to estimate the Richardson constant in Sec.3.4.

3.3.3 Small TB condition: TB < Tη

Now, we consider scaling laws of CL(r0, T, τ, ε) under the small initial separation condi-
tion, TB < Tη. Under this condition, particle pairs may be strongly influenced by small
scale effects caused by the viscosity and the forcing. On the other hand, the condition
TB � TL is met more easily than in the large TB condition, which we considered in
the previous subsection. Hence, we can expect that CL(r0, T, τ, ε) is independent of
large scale effects such as the drag. Moreover, the t3 scaling law for 〈r2(t)〉 has been
observed under the small TB condition in many previous studies for both 2D and 3D
as mentioned in Sec.3.1. We also investigate the reason why the t3 scaling is observed
even at moderate Reynolds numbers for a tuned initial separation r0.

First we study the correlation along the diagonal line. Figure 3.9(a) shows CL
d (T, TB)

as a function of T/TB for various TB’s. Figure 3.9(b) shows the corresponding LLSs.
Plateau regions of the LLSs are observed at large TB such as TB = 0.87Tη, though the
smaller TB is, the narrower the plateau region is. In the same way as we did in Fig.
3.3(b) for the large TB condition, we determine the exponent γ from the maximum
value of the LLSs. In what follows we write the exponents with check in the small TB
condition. In the inset of Fig. 3.9(c), we show the measured γ̌ as a function of TB/Tη.
This yields a curve independent of Reα. As a functional form of the curve, we propose
the following form:

γ̌(TB, Tη) = ln

(
TB
Tη

)
− υ, (3.42)

where the constant υ is 0.25 ± 0.02 which is determined by a least-square method.
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Figure 3.7: Scaling exponents, β1/n, evaluated from the compensated plots of Fig. 3.5
for (a) n = 2, (b) n = 8, and (c) n = 32 at Reα = 80 (red) and Reα = 160 (green). The
inset of (a) shows the same plots in the outset, but the horizontal axis is changed to
TB/TL from (TB − Tη)/TL. The orange solid line shows [TB/TL]0.4. The blue solid line
shows [TB/TL + 0.01]0.4. For (b) and (c), the orange solid line shows [(TB − Tη)/TL]0.4.
The blue solid line shows [(TB − Tη)/TL + 0.01]0.4.
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Figure 3.8: Normalized correlation function, CL
p (T, τ, TB) for TB = 2.2Tη rescaled as

a functions of (a) τ/[T
1−β1/2
B T β1/2 ] and (b) τ/[T

β1/32
B T 1−β1/32 ], where β1/2 = 0.64 and

β1/32 = 0.76, for TB < T < 0.54TL at Reα = 160. The colors of the curves change from
black to yellow as the average time T increases, which is similar to Fig.3.4. Black dashed

lines show (a) exp(−2.3|τ |/[T β1/2B T 1−β1/2 ]) and (b) exp(−3.0|τ |/[T β1/32B T 1−β1/32 ]). (c)
Same as (a) but for TB = 3.5Tη, where β1/2 = 0.57. (d) Same as (b) but for TB = 3.5Tη,
where β1/32 = 0.70.
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Therefore, at TB < Tη, the scaling law of CL
d (T, TB), can be,

CL
d (T, TB) = GεT

(
TB
T

)γ̌
= GT

1−ln
(
TB
Tη

)
+υ
, (3.43)

Next we focus on the other part of the correlation CL
p (T, τ, TB) defined in Eq.(3.35)

and the scaling exponent, β. Figure 3.10 shows the n-th decay time scale, τ1/n(T ) as a
function of T/TB with n = 2, 8, 32 for various TBs. Unlike TB > Tη cases, the value of
τ1/2(T ) becomes larger than TB in a small average time T . Figure 3.11 shows compen-
sated plots of Fig. 3.10 by T 1−β1/n , where the exponent β1/n is selected in the same way
as in the previous large TB case. It should be noted that what we show in Fig.3.11 is
not Dn,β1/n(T ) defined in Eq.(3.39), but τ1/n(T )/T 1−β1/n .since τ1/n(T )/T 1−β1/n is found
to be more appropriate as a self-similar variable than Dn,β1/n(T ). The plotted variable

τ1/n(T )/T 1−β1/n is less dependent of TB than Dn,β1/n(T ), which is consistent with the
TB independent behavior of the n-th decay time shown in Fig.3.10.

Although the compensated data shown in Fig.3.11 have oscillations and they become
stronger for large n, we observe a plateau region for each graph. It is noticeable that
the values of the plateaus depend on Reα. This tendency is not present in the large
TB case as shown in Fig.3.6 (ignoring data for the smallest TB). If self-similarity of the
kind written as Eq.(3.25) is valid for CL

p (T, τ, TB), the values of the plateaus should
become independent of Reα. Therefore, Fig.3.11 suggests two possibilities: one is that
CL
p (T, τ, TB) is not self-similar; the other is that CL

p (T, τ, TB) is self-similar but with
yet another time scale, TX .

Here we consider that the second possibility is more likely, although numerical
evidence is marginally convincing as we will see. With the hypothetical time scale TX ,
a similarity variable for CL

p (T, τ, TB) can be made as τ/[T βXT
1−β]. We just replace TB

in the similarity variable of gL in Eq.(3.25) by TX . The numerical value of TX can
be determined empirically by removing the Reα dependence shown in Fig.3.11. More

specifically, if we can make plateau values of τ1/n/[T
β1/n
X T 1−β1/n ] being independent of

Reα, such TX is the hypothetical time scale. The time scale TX should have the following

properties: T
β1/n
X is independent of TB, that is TX itself is dependent on TB, and TX is

dependent on Tη or Reα. We notice that TX may be affected by the external forcing
added in the high wavenumber region. We do not pursue the origin of TX further.

We next study the similarity function gL for CL
p (T, τ, TB), assuming that TX exists.

Let us write the variable in the vertical axis of Fig.3.11 as En,β1/n(T ) = τ1/n(T )/T 1−β1/n .
As we discussed with Fig.3.11, the levels of the plateaus of En,β1/n are independent of
TB. Regarding change in the numerical values of the plateau levels as we vary n, we
observe E2,β1/2 ' (1/3)E8,β1/8 ' (1/5)E32,β1/32 , yielding τ1/n(T ) = τ1/2(T ) log2 n. This

implies that CL
p (T, τ, TB) for TB < Tη decays exponentially in all the range of τ . On the

other hand, the numerical value of β1/n depends on n. Specifically, β1/2 is different from
those of β1/8 and β1/32, as read from the insets of Fig.3.11. The latter two exponents
β1/8 and β1/32 have similar values. Therefore, gL in the small TB condition is likely to
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Figure 3.9: (a) Time variation of CL
d (T, TB) for various TBs at Reα = 40 (dashed

dotted), 80 (dashed), and 160 (solid). (b) LLSs of CL
d (T, TB) at Reα = 40 (dashed) and

160 (solid). Filled circles on the curves show positions of their maximum value. (c)
Values of the exponent γ̌ as a function of TB/Tη, which are measured by the maximum
value of the LLSs at Reα = 40 (red) and 160 (green). The blue solid line shows
ln(TB/Tη)− 0.25.
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have two self-similar forms such as

gL

(
τ

T βXT
1−β

)
=



exp

[
−ǩ1

(
τ

T β̌1X T 1−β̌1

)]
for τ . TB,

exp

[
−ǩ2

(
τ

T β̌2X T 1−β̌2

)]
for τ > TB,

(3.44)

where β̌1 and β̌2 are exponents for the two self-similar regimes of τ and ǩ1 and ǩ2 are
constants. We consider that the exponent β̌1 for small τ is represented by β1/2 and β̌2

for large τ is by β1/8 ' β1/32. Equation (3.44) is analogous to Eq.(3.41) in the large TB
condition. However, in the present small TB condition, numerical distinction between
the two regimes, τ . TB (< Tη) and τ > TB, is harder to make than that in the large
TB condition with the limited scale separation of our DNS.

The dependence of the exponent β1/n on TB, Tη, and TL is also more complicated
than in the previous condition. Compare the insets of Fig. 3.11 to Fig.3.7 for the large
TB condition. We fail to collapse data points of β1/n by taking a suitable self-similar
variable with TB, Tη and possibly TX . The difficulty lies in the peculiar (non-monotonic)
behavior of β1/n as TB approaches to Tη, as shown in the inset of Fig. 3.11. We cannot
find a simple form of β1/n analogous to Eq. (3.40) for the large TB condition.

We show now that the two different scaling behaviors given in Eq.(3.44) are con-
sistent to the DNS data. Figure 3.12 shows CL

p (T, τ, ε) as a functions of τ/T β1/n with
n = 2 and n = 32. More precisely, since we do not know TX , we use TB to non-
dimensionalize τ/T β1/n in the horizontal axis of Fig.3.12. We can see that all the curves
in each panel collapse to one curve with each way to rescale τ . However, it should
be noted that the two rescalings may be not very different from each other since the
exponents β̌1 = β1/2 and β̌2 = β1/32 are rather close. Furthermore, as shown in Fig.3.12,
the similarity function gL can be fitted with an exponential curve.

Let us summarize the results in this section. We have considered numerically scaling
behavior of CL(r0, T, τ, ε) in comparison with the ansatz (3.25) under two conditions,
TB > Tη and TB < Tη. The DNS data of CL(r0, T, τ, ε) are consistent to the ansatz for
both conditions. The difference between the two conditions is in the functional forms
of the exponents, γ

(
Tη
TB
, TL
TB

)
(Eqs.(3.36) and (3.42)), and β

(
Tη
TB
, TL
TB

)
(Eq.(3.40)), al-

though β for the latter case was not identified. Furthermore, γ and β are probably
continuous at TB = Tη. In particular, in the large TB condition, our DNS data indi-
cates that γ and β do not approach zero as TB → Tη. If this is not a finite Reynolds
number effect, the non-zero limits of the exponents imply that the two-time Lagrangian
velocity-increment correlation function has exponents that deviate from the K41 dime-
sional analysys. Consequently, the squared relative separation 〈r2(t)〉 disagrees with
the Richardson–Obukhov law t3, even if we take r0 → 0 at infinite Reynolds number.
We will discuss this point in the next section.
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Figure 3.10: Time evolution of the n-th decay time scale, τ1/n(T ) for (a) n = 2, (b)
n = 8, (c) n = 32 at Reα = 160. The insets show the same plots as the outsets but at
Reα = 80.
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Figure 3.11: Compensated graphs of τ1/n(T ) by β1/n for (a) n = 2, (b) n = 8, and
(c) n = 32 at Reα = 80 (dashed) and Reα = 160 (solid). The Insets show β1/n as a
function of TB/Tη at Reα = 80 (red) and Reα = 160 (green).
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Figure 3.12: Normalized correlation function, CL
p (T, τ, ε), with TB = 3.5Tη as a func-

tion of rescaled variable (a) τ/[T
1−β1/2
B T β1/2 ] and (b) τ/[T

1−β1/32
B T β1/32 ] in the small TB

condition. Here the exponents are β1/2 = 0.82 and β1/32 = 0.96. Different curves have
different T s in TB < T < 0.54TL at Reα = 160. The black dashed lines correspond to

(a) exp(−2.7|τ |/[T β1/2B T 1−β1/2 ]) and (b) exp(−4.8|τ |/[T β1/32B T 1−β1/32 ]).

3.4 Implications on the Richardson–Obukhov law

Finally, we consider implications of the above scaling behaviors of CL(r0, T, τ, ε) on
relative separations of particle pairs. The second moment of the relative separation
r(t) can be reduced to

〈r2(t)〉 = r2
0 + 2

∫ t

0

r0 · 〈δv(t1)〉 dt1 + 2

∫ t

0

∫ t

0

〈δv(t1)δv(t2)〉 dt1dt2

∼ r2
0 + 4

∫ t

0

∫ t/2

0

CL(r0, T, τ, ε) dτdT, (3.45)

where the average time is T = (t1 + t2)/2 and the relative time is τ = t2 − t1. We
also assume r0 · 〈δv(t)〉 = 0 by taking the direction of the initial separation r0 being
randomly and isotropically distributed and use the symmetry of CL(r0, T, τ, ε) with
respect to the diagonal line t1 = t2.

First, we consider the scaling law of 〈r2(t)〉 under the large TB condition, Tη �
TB � TL, at sufficiently large Reynolds numbers. Under this condition, CL(r0, T, τ, ε)
has the form,

CL(r0, T, τ, ε) ∼ T 1−γgL

(
τ

T βBT
1−β

)
, (3.46)

where the exponent γ is given by Eq.(3.36). The self-similar function gL and the other
exponent β take two different forms as given in Eqs.(3.40)–(3.41), depending on τ . TB
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or τ � TB. This allows us to split the integral over τ in Eq.(3.45) into two parts,

〈r2(t)〉 ∼ r2
0+

∫ t

0

dT T 1−γ
∫ TB

0

dτ gL1

(
τ

T β1B T 1−β1

)
+

∫ t

0

dT T 1−γ
∫ t/2

TB

dτ gL2

(
τ

T β2B T 1−β2

)
.

(3.47)
When the Reynolds number is sufficiently large, the first interval 0 ≤ τ ≤ TB is much
shorter than the second interval TB ≤ τ ≤ t/2. Nevertheless, the second term on
the right hand side (rhs) of Eq.(3.47) cannot be neglected because the correlation is
large for small τ . We should consider which term becomes dominant at large Reynolds
numbers. To calculate it in more detail, we use the functional forms gL1 (x) = e−k1x and
gL2 (x) = e−k2x observed in Fig.3.8. Thereby, we can calculate Eq.(3.47) as follows:

〈r2(t)〉 ∼ r2
0 + t3−γ−β1 − Γ

(
a1,

k1TB
t1−β1

)
+ Γ

(
a2,

k2TB
t1−β2

)
− t

3+
2β2−γ
1−β2 Γ

(
a2,

k2t
β2

2

)
,

(3.48)
where we omit numerical constant in each term to highlight power law in t. Here
a1 = −2+γ

1−β1 − 1, a2 = −2+γ
1−β2 − 1, and Γ(a, x) is the upper incomplete gamma function

defined by Γ(a, x) =
∫∞
x
za−1e−zdz. The second and third terms on the rhs of Eq.(3.48)

come from the second term on the rhs of Eq. (3.47) and the forth and fifth terms come
from the third term of Eq. (3.47).

Now we consider conditions to recover the Richardson–Obukhov law, 〈r2(t)〉 ∝ t3.
It is known that the upper incomplete gamma function, Γ(a, x), has the following

asymptotic series: Γ(a, x) ∼ xa−1e−x[1+ a−1
x

+ (a−1)(a−2)
x2

+ · · · ] as x→∞ and Γ(a, x) ∼
−xa−1/a as x→ 0 [1]. With these asymptotic formula, we have Γ(a1, k1TB/(2t

1−β1)) ∝
t3−γ−β1 , Γ(a2, k2TB/(2t

1−β2)) ∝ t3−γ−β2 , and Γ(a2, k2t
β2/2)) ∝ exp(−k2t

β2/2), as t →
∞. Here we assume β2 6= 0 at infinitely large Reynolds number, i.e., ω2 6= 0 in
Eq.(3.40). Furthermore let us assume that β2 = β1 as Reα → ∞ from the behavior
shown in Fig.3.7. Therefore, the dominant power-law scaling at large t and large Reα
is given by

〈r2(t)〉 ∼ t3−γ−β1 . (3.49)

Here the power-law exponent of 〈r2(t)〉 is related to those of the two-time correlation
function CL(r0, T, τ, ε). In particular, it involves β1, which implies that 〈r2(t)〉 is af-
fected by the correlation CL(r0, T, τ, ε) in the vicinity of the diagonal line. As is clear
from Eq.(3.49), the Richardson–Obukhov t3 law can be recovered, if γ and β1 approach
zero asymptotically at infinite Reynolds number.

We have found the empirical form of γ as a function of TB, Tη, and TL, which is
given in Eq.(3.36). It suggests that γ → 0 as Reα → ∞. The similar form of β1

given in Eq.(3.40) indicates that β1 → ω0.4
1 as Reα →∞. As we discussed in Sec.3.3.2,

with our DNS data we are not able to conclude whether ω1 vanishes or not. However,
at the practically accessible Reynolds numbers, β1 is not zero as indicated by Fig.3.7.
Therefore, now including the constant factor, the Richardson–Obukhov law is modified
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at finite Reynolds numbers to

〈r2(t)〉 =
4Gε

k1(3− γ − β1)
T γ+β1
B t3−γ−β1 + (subleading terms) (3.50)

Although G and k1 are slightly dependent on Tη, TL, and TB, they are estimated as
Gε ∼ 1.5 and k1 ∼ 2.3 from the DNS data.

Now let us consider the numerical value of the Richardson constant gR involved
in the Richardson–Obkuhov law 〈r2(t)〉 = gRεt

3. To evaluate gR, we substitute the
values of G, ε and k1 in Eq.(3.50) by assuming that they do not change much at infinite
Reynolds number. We also assume that the modified exponent 3−γ−β1 approach 3 at
infinite Reynolds number, i.e., γ → 0 and β1 → 0 as Reα → ∞. Then the Richardson
constant is estimated as gR = 4G/k1 ∼ 5.0 × 101, which is distinctly different from
gR = 0.5 and 3.8 obtained in previous experimental and numerical studies, respectively
[26, 56]. This discrepancy of gR is not surprising since the measurements in the previous
studies were done in the small TB condition.

We then consider the scaling law of 〈r2(t)〉 under the small TB condition. By doing
an analogous calculation to that of the large TB condition, we have

〈r2(t)〉 =
4Gε

ǩ1(3− γ̌ − β̌1)
T γ̌+β̌1
X t3−γ̌−β̌1 + (subleading terms), (3.51)

at large t and large Reα in the small TB condition. This is similar to Eq.(3.50) for
the large TB condition. We assume here again that the exponent β̌2 6= 0 and that
β̌1 = β̌2 at large Reα. However, it is difficult to see whether the assumptions are valid
from the numerically obtained exponents shown as a function of TB/Tη in the insets of
Fig.3.11. A crucial difference between Eqs.(3.51) and (3.50) is that the exponent γ̌ is
negative as seen from Eq.(3.42). This enables one to tune TB for given Tη such that
−γ̌(TB, Tη)− β̌1(Tη/TB, TL/TB) = 0 in the small TB condition (our DNS data suggests
that β̌1 is generally positive). Consequently, we observe 〈r2(t) ∝ t3, the same scaling
exponent as the Richardson–Obukhov law. In contrast, this sort of tuning leading to
t3 is not possible in the large TB condition since γ is always positive, see Eq.(3.36).

Indeed, it is known that 〈r2(t) ∝ t3 can be observed even at moderate Reynolds
number by tuning the initial separation r0 which satisfies the small TB condition
TB ≤ Tη. See, for example, Refs. [26, 56, 63, 65, 99, 100] in the 2D energy inverse-
cascade turbulence. Specifically, with the tuned initial separation r0, TB is close to
Tη. In those circumstances, the equivalent of the Richardson constant can be given by

ǧR = 4GT γ̌+β̌1
X /(3ǩ1) from Eq.(3.51). It is noted that the value of G in this range is

strongly dependent on TB and Tη. The Richardson constant measured in the previous
experimental and numerical studies [26, 56] with the tuned initial separation should be
therefore compared to ǧR.

Let us now argue that the nature of the t3 law with the tuned initial separation is dif-
ferent from that of the Richardson–Obukhov law. In general terms, by the Richardson–
Obukhov t3 law, it is understood that the t3 law holds irrespective of the value of the
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initial separation r0, provided that the inertial range is sufficiently wide. Strictly speak-
ing, one should add a condition that r0 is inside the inertial range [8]. The large TB
condition which we have considered conforms to the added condition. From Eq.(3.50),
the Richardson–Obukhov law corresponds to γ = 0 and β1 = 0 and the resultant t3 law
does not depend on TB, or equivalently r0. For the sake of the argument, let us relax
the added condition. Now we consider the small TB condition. From Eq.(3.51), The
t3 law with the tuned initial separation corresponds to −γ̌ − β̌1 = 0 and the resultant

t3 law has a prefactor T γ̌+β̌1
X , which potentially depends on TB. Therefore, the t3 law

observed at a given Reynolds number (however large) by tuning the initial separation
is different from the Richardson–Obukuhov t3 law. The agreement of the power-law
exponents is coincidental.

It is interesting that such a coincidence do not occur in the large TB condition. Then,
in this condition, can we say anything about observability of the bona fide Richardson–
Obukhov law? As far as our DNS data suggest, the exponents γ and β1 do not vanish in
the large TB condition. Consequently, the Richardson–Obukhov law is not observable
with the current Reynolds numbers. It should be noted that this is caused not by
intermittency effects, but by correlation of the Lagrangian velocity. Extrapolation of
the data indicates that γ and β1 may vanish eventually at monstrously high Reynolds
number as we discussed. This implies that the Richardson–Obukhov law is observable,
if we are able to reach those high Reynolds numbers.

We presented here a framework to study the Richardson–Obukhov law by way of
the self-similarity of the Lagrangian two-time correlation. It can be adopted to the
3D turbulence. The t3 law with the tuned initial separation is also known in the 3D
case, see, for example, Refs. [15, 19, 32, 90, 104]. Our analysis on the 3D case will
be reported elsewhere. In this sense, the t3 scaling of 〈r2(t)〉 observed at moderate
Reynolds numbers is a different state from the complete similarity for 〈r2(t)〉, which is
consistent with the dimensional analysis naively using the K41 phenomenology.

3.5 Concluding remarks

We have investigated the two-time Lagrangian velocity-increment correlation function
for particle pairs with the incomplete self-similarity and the DNS of 2D energy inverse-
cascade turbulence. First, we have made the self-similar ansatz (3.25) of the correlation
function by using the idea of incomplete similarity. The ansatz includes the Bachelor
time, the Kolmogorov dissipation length, and the integral length as a similarity variable,
meaning that finite Reynolds number effects and the initial separation dependence are
encoded. The ansatz is characterized by the two scaling exponents, β and γ, and the
one-variable function gL. The exponent γ concerns the equal-time correlation along
the diagonal line through the origin shown in Fig.3.1. The other exponent β concerns
how the correlation decreases along the direction perpendicular to the diagonal line.
However, the ansatz is an example of the incomplete self-similarity, the two exponents
cannot be determined by dimensional analysis.
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In order to verify the ansatz, we have performed DNS of 2D energy inverse-cascade
turbulence and calculated the two-time Lagrangian correlation functions by varying
parameters such as the Batchelor time TB and the dissipation time Tη. We split the
DNS study into two parts: the large and small TB conditions. For both conditions, we
showed that the ansatz describes the DNS results reasonably well. Then we measured
the values of the two exponents and the functional form of gL from the DNS data
which are in some cases too noisy to have reliable measurements. In particular, the
measurements indicated that the exponents are weakly dependent on TB and Tη. In
theory, we assumed that they are independent. The dependence of the exponents are
empirically determined as Eqs.(3.36), (3.40), and (3.42). The function gL is determined
as an exponential function.

We next considered the limit of these empirical relations at infinite Reynolds num-
ber. The extrapolation of the relations obtained at moderate Reynolds numbers was
subject to uncertainty. Nevertheless, it suggest that the Lagrangian velocity correlation
is consistent to the K41 dimensional analysis at infinite Reynolds number in the large
TB condition. However, at finite Reynolds numbers, our results indicate that the cor-
relation in general has correction described by non-zero γ, non-zero β and the function
gL to the K41 dimensional analysis for both large and small TB conditions.

Finally, we have considered relation between the scaling law of the Lagrangian
velocity correlation and the Richardson–Obukhov t3 law for the second moment of
relative separation via the integral (3.45). With the asymptotic argument, we found
that the Richardson–Obukhov law is probably not recovered for finite TB at finite
Reynolds numbers in the large TB condition as shown in Eq. (3.50). Moreover, using the
scaling law of the Lagrangian correlation, we explained why we, nevertheless, observe
t3 scaling at moderate Reynolds numbers with a special initial separation under the
small TB condition. This is because γ and βB take a negative and positive values,
respectively. Therefore, we concluded that the physics of this t3-scaling behavior is
different from that of the Richardson–Obukhov law.

In this section, we assumed that forcing effects are negligible. The external forcing
is limited to small scales for 2D. In fact, the Eulerian statistics in the Fourier space
such as the energy spectrum or the energy flux is influenced by the forcing only in
the vicinity of the forcing scales [24, 85, 122]. Hence the influence is considered as
local. This may be the reason why the empirically found functional forms of the scaling
exponents, β and γ depend only Tη, TL and TB given by Eqs. (3.40) and (3.36) in the
large TB condition. Strictly speaking, we can neglect the forcing effects if correlation
between the forcing and the Lagrangian velocity, 〈fiδvj〉, rapidly decays in time. Here
fi is the forcing increment between two Lagrangian particles and δvj is the relative
velocity between them. We speculate that the cross correlation rapidly decays because
the characteristic time scales of the forcing and the velocity in the forcing scale are
small.

Given the self-similar form Eq.(3.9 - 3.10) of the two-time Lagrangian velocity-
increment correlation function, one would like to “derive” it from the Navier–Stokes
equations using only plausible assumptions. More precisely, we propose to use it as an
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input to a set of integro-differential equations (closure equations) for the Lagrangian
correlation function obtained by a closure approximation such as direct-interaction
approximation [58, 64, 71, 73]. One standard procedure in the last step of the closures
is to substitute certain self-similar forms for the correlation function and the linear
response function to those in the closure equations and then to study consistency of
the self-similar forms with the closure equations. By input, we mean to input the ansatz
studied here into closure equations of, for example, a direct-interaction approximation.
This may give analytically functional forms of the scaling exponents, β(Tη/TB, TL/TB)
and γ(Tη/TB, TL/TB) and their limits at infinite Reynolds number.

Closure approximations have been applied to study the Richardson–Obukhov t3

law, see e.g., Refs. [55, 74]. However, these studies have used one-time Lagrangian
velocity correlation function given by Eq.(3.2) in the Introduction, which is different
from the two-time correlation function CL(r0, T, τ, ε) we have studied here. In fact, the
two-time Lagrangian velocity correlation function is unexplored with the Lagrangian
renormalization approximation [58] and perhaps any other closure approximation 1.
Therefore, the results in this study play an important role to develop a new avenue of
closure theories.

Another approach can be to develop a stochastic model of turbulent relative disper-
sion using the ansatz we have obtained here. Recently, continuous time random walk
(CTRW) models [29, 113] have developed for the relative dispersion. These models are
constructed to be consistent with the Richardson–Obukhov law. It is possible to mod-
ify these models to have the self-similar properties of the two-time correlation function
obtained in this section. Building such a model corresponds to incorporating effects of
time correlations [41, 105] and finite propagation speed of the relative diffusion [57, 88].
We will report a stochastic modeling based on the ansatz elsewhere.

1Y. Kaneda (private communication)

94



Chapter 4

General Conclusions

4.1 Summary

We studied the turbulent relative dispersion in two ways: conditional sampling methods
and two-time Lagrangian velocity correlation function. According to the experimental
result that the mean square of the relative separations of particle pairs depends strongly
on the initial separations beyond the Batchelor time scale, we investigated the origins
of the initial separation dependence and improved the Richardson–Obukhov law to be
consistent with the experimental data.

In Chapter 2, in the 2D inverse energy-cascade turbulence, we have developed a
conditional sampling method to exhibit the t3 scaling like the Richardson–Obukhov
law by using the relation between the exit-time PDF and Richardson PDF. First of all,
we observed that the mean squares of the relative separations of particle pairs strongly
depend on the initial separations beyond the Bachelor time scale. The initial-separation
dependence indicates that it is possible to select a special initial separation for which
the mean square 〈r2(t)〉 exhibits the t3 scaling even at moderate Reynolds numbers.
We call the special initial separation the proper initial separation. This terminology is
based on the hypothesis that a certain bulk of the particle pairs starting from each initial
separation obeys the Richardson–Obukhov law at moderate Reynolds numbers. Under
this hypothesis, the proper initial separation is qualitatively interpreted as a state that
only the bulk of particle pairs contributes to the mean square relative separations.

In order to investigate the validity of the hypothesis, and thus the validity of the
Richardson–Obukhov law, we developed a conditional sampling method to recover the
Richardson–Obukhov law for any initial separations. In this conditional sampling,
We reject the particle pairs whose exit time is smaller than a given value, that is
TE < τ〈TE〉, where TE is the exit time of a particle pair and τ is a tuning parame-
ter. The value of the tuning parameter is set for the resulted conditional mean square
of the relative separation to exhibit the t3 scaling in the inertial range. As a result,
we showed that the initial separation dependence disappears for the conditional mean
squares of the relative separations irrespective of the initial separations, and the condi-
tional mean square collapses the curve of the unconditioned one for the proper initial
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separation. Furthermore, the fraction of rejected particle pairs decreases with increas-
ing the Reynolds numbers. Therefore, these results support the hypothesis described
above.

On the other hand, in terms of the mean square of the relative velocity of particle
pairs, we found that although the mean square of the relative velocity also collapses the
curve of the unconditioned one for the proper initial separation irrespective of the initial
separation, it deviates from the scaling law predicted by Kolmogorov phenomenology.

Based on these results, we qualitatively discuss the characteristics of the special
particle pairs initially separated by the proper initial separation. According to the
conditional sampling, we classify particle pairs into three groups as follows: (1) particle
pairs which separate fast and exit immediately the inertial subrange. (2) particle pairs
which expand anomalously fast through the inertial subrange but still stay at the inertial
subrange. (3) a certain bulk of particle pairs which typically satisfy the Richardson–
Obukhov law. Group (1) exhibits the scaling law with the exponent smaller than 3
while Group (2) exhibits the scaling law with the exponent larger than 3. Therefore, at
the proper initial separation, the effects of the groups (1) and (2) on the mean square
are balanced and canceled each other.

In Chapter 3, we have investigated the two-time Lagrangian velocity correlation
function for particle pairs with incomplete similarity and DNS of 2D energy inverse-
cascade turbulence. First, we have made the self-similar ansatz of the correlation
function by using the idea of incomplete similarity as follows:

CL(r0, T, τ, ε) = GεT

(
TB
T

)γ
gL

(
τ

T
(
TB
T

)β
)
,

Here TB is the Bachelor time, Tη is the Kolmogorov dissipation time, and TL is the
integral time. The ansatz means that the finite Reynolds number effects and the initial
separation dependence are encoded. The exponent γ concerns the equal-time correla-
tion along the diagonal line through the origin shown in Fig.3.1. The other exponent β
concerns how the correlation decreases along the direction perpendicular to the diago-
nal line. However, the ansatz is an example of the incomplete similarity, and therefore
the two exponents cannot be determined by dimensional analysis.

In order to verify the ansatz, we have performed DNS of 2D energy inverse-cascade
turbulence and calculated the two-time Lagrangian correlation functions by varying
parameters such as the Batchelor time TB and the dissipation time Tη. We split the
DNS study into two parts: the large and small TB conditions. For both conditions, we
showed that the ansatz describes the DNS results reasonably well. Then we measured
the values of the two exponents and the functional form of gL from the DNS data.
Furthermore, we considered the limit of these empirical relations at infinite Reynolds
number. The extrapolation of the relations obtained at moderate Reynolds numbers
was subject to uncertainty. Nevertheless we proposed that the power-law properties
of TB, Tη, and TL on the exponents β and γ appear only at the large TB condition as
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follows:
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Moreover, the function gL is determined as an exponential function. At the small TB
condition, these power-law properties of the exponents are not shown but the function
gL is also determined as an exponential function.

Our results indicate that at finite Reynolds numbers, the correlation in general has
corrections described by non-zero γ, non-zero β and the function gL to the Kolmogorov
dimensional analysis for both large and small TB conditions. Moreover, our data cannot
deny the possibility that the scaling law for the two-time Lagrangian velocity correlation
function deviates from Kolmogorov phenomenology at infinite Reynolds number, i.e.,
ω1 6= 0 or ω2 6= 0.

Finally, we have considered the relation between the scaling law of the Lagrangian
velocity correlation and the Richardson–Obukhov law. With the asymptotic argument,
we found that the Richardson–Obukhov law is probably not recovered for finite TB
at finite Reynolds numbers under the large TB condition. Moreover, using the scaling
law of the Lagrangian correlation, we explained why we, nevertheless, observe the t3

scaling at moderate Reynolds numbers with a special initial separation under the small
TB condition. This is because γ and β1 take negative and positive values, respectively.
Therefore, we concluded that the physics of this t3-scaling behavior is different from
that of the Richardson–Obukhov law.

4.2 Main results of the thesis

Throughout the thesis, we have investigated the initial separation dependence of the
mean square of the relative separations of particle pairs. We claim that the initial
separation dependence always remains at no matter how large but finite Reynolds
number. Furthermore, we have explained the properties of the special initial separation
where the t3 scaling law exhibits at moderate Reynolds numbers as follows. In terms
of the incomplete similarity for the two-time Lagrangian velocity correlation function,
the scaling exponent of the mean square of the relative separations is 3−γ−β1. Then,
we observed that its exponents γ and β1 are canceled each other at the special initial
separation, i.e., γ + β1 = 0 for γ < 0 and β > 0. We can interpret these values through
the qualitative classification of particle pairs discussed in Chapter 2. The negative value
of γ is due to particle pairs anomalously expanding fast in the inertial range, namely
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groups (1) and (2), i.e., non-Kolmogorov scaling for mean square of relative velocity,
while the positive value of β is due to long-time correlation between the particle pairs
of these groups.

4.3 Some remarks

Although the concluding remarks are already made in each chapter, we would like
to discuss once again the results in each chapter from a broader perspective. Here, by
revisiting the results critically, we aim at gaining more insights about turbulent relative
dispersion.

4.3.1 Conditional sampling method

The conditional sampling method via exit-time statistics, which is introduced in Chap-
ter 2, has some tuning parameters, whose physical interpretations are difficult. Es-
pecially, the dimensionless parameter τ controls the scaling exponent of conditional
moments of the relative separation of the particle pairs. It enables us to observe the t3

scaling like the Richardson–Obukhov law at moderate Reynolds numbers. However, we
could not interpret physically the tuned values of τ at which the t3 scaling is observed.
It seems to be a significant defect of the method.

On the other hand, the incomplete similarity for the two-time Lagrangian velocity
correlation function, which is introduced in Chapter 3, reveals that the Richardson–
Obukhov t3 law is not observable at finite Reynolds numbers. In Chapter 3, we esti-
mated the Richardson constant and it is larger than that estimated by the experiment
[56]. This is because in the experiment the Richardson constant is estimated by the
mean square of the relative separation at the proper initial separation. This is inconsis-
tent with the idea that the Richardson–Obukhov law is “recovered” at finite Reynolds
numbers by the conditional sampling method. This is because the Richardson constant
of the conditional mean square of the relative separation corresponds to the uncondi-
tioned mean square at proper initial separation. This consideration leads us to conclude
that the conditional sampling method do not recover the Richardson–Obukhov law.

Nevertheless, the conditional sampling method is still worth using for investigating
the origins of the initial separation dependence. We stated in Chapter 3 that the
initial separation dependence is crucial for the scaling law for the turbulent relative
dispersion by means of the incomplete similarity of the two-time Lagrangian velocity
correlation function. However, it is not yet clear why the initial separation dependence
remains for such a long time. The conditional moments of the order p, which include
the rational-order moments, of the relative separation as well as the relative velocity
are almost independent of the initial separation in the inertial subrange, especially
for p . 3. Therefore, it indicates that the initial separation dependence results from
particle pairs rejected for the conditional sampling, whose exit times are small. As
pointing out in Chapter 2, these pairs are classified into two groups (1) and (2). In
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terms of the probability distribution function, these belong to the left and right tails,
respectively. Thus, we can probably detect the rare events through the conditional
sampling method 1. Of course, it is not easy to define the rare events via the tuning
parameters of the conditional sampling. However, if we could define such values of the
tuning parameters, the conditional sampling as the rare-event detection system will give
us more information on the rare events than the instantaneous probability distribution
functions, which inform us about the information at a given scale r and a given time t,
not for a rare particle-pair path.

4.3.2 Two-time Lagrangian velocity correlation function

The framework in terms of the intermediate asymptotics and incomplete similarity
provides a few physical interpretations and unique values of scaling exponents which
are not determined by dimensional analysis. In this thesis, we only obtain from the
DNS data the values of the scaling exponents β and γ of the two-time Lagrangian
velocity correlation function. The physical interpretations of β and γ remain unclear.
The fact that the values of β and γ estimated by DNS are not rational numbers makes
the physical interpretations difficult. This may be similar to the problem that the
values of critical exponents in equilibrium systems deviate from those predicted by the
dimensional analysis.

Here, we consider a physical interpretation of β and γ via the discussions by Golden-
feld [48] on Barenblatt’s equation in one dimension [5] and the modified porous-medium
equation [37]. These equations are not conservative, especially break the law of conser-
vation of mass. Hence, information on the initial conditions are no longer available at an
intermediate asymptotic time scale. Analogous to the critical phenomena in equilibrium
systems, the anomalous dimensions of the above equations are derived by renormaliza-
tion analysis, where the coarse-graining is performed in time. Barenblatt’s equation
and the modified porous-medium equation are simple enough to apply renormaliza-
tion analysis. Furthermore, the values of the anomalous dimensions are calculated by
perturbation methods.

We can in principle apply the renormalization idea to the two-time Lagrangian
velocity correlation function. Of course, we cannot estimate the specific values of the
exponents by perturbation methods because we do not have the closed equations for
the two-time Lagrangian velocity correlation function. Here, we only aim to interpret
physically the exponents through the renormalization idea. We define a renormalization
constant Z as A(t) = Z−1Ar0 , where Ar0 = A(0) and A(t) are quantities related to
coarse graining. The quantity A(t) is less clear than that for Barenblatt’s equation and
the modified porous-medium equation. Heuristically, we select the energy dissipation
rate as the quantity A(t). This is because the two-time Lagrangian velocity correlation

1Here, it is noted that the number of particle pairs for the (conditional) ensemble averages in
our DNS data [65] in Chapter 2 may be not large enough to obtain converged higher-order statistics.
Hence, it is necessary to verify that we actually detect the rare events through the conditional sampling
method by numerical studies of higher-order statistics.
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function is related to it at initial time as follows [42]:

d

dT
CL(T, 0)

∣∣∣∣
T=0

=

{
−4ε for 3D turbulence,

4ε for 2D turbulence,
(4.1)

at infinite Reynolds number. Furthermore, at finite Reynolds number, the right hand
side may depend on the initial separations. Under these assumptions, we calculate
the so-called (bare) renormalization group equation and obtain the relation between
the exponents. However, the corresponding anomalous dimensions, i.e., β and γ are
not derived from this renormalization analysis. This is because the variables T and
τ are the same dimension, which is the condition different from Barenblatt’s equation
and the modified porous-medium equation. Hence, the corresponding conservation
law is unclear. Therefore we should find out, if they exist, the conserved and initial-
separation-dependent quantities for inviscid fluid in terms of the motions of particle
pairs.

Next, we consider relations between the anomalous scaling of the two-time La-
grangian velocity correlation function and the breaking of self-similarity of the proba-
bility distribution function of the relative separations of particle pairs. In the case of
generalized Lévy walk models [2, 27], the existence of rare events, i.e., the fat tails of
the probability distribution function can influence the scaling exponents of lower-order
moments [117, 118]. According to these results, the anomalous scaling of the two-time
Lagrangian velocity correlation function is likely to be influenced by rare events.

4.4 Future work

4.4.1 Stochastic modeling

Lévy walk models seem to own some of the same properties of the turbulent relative
dispersion. First, particles exhibit piecewise ballistic motions. In Lévy walk models,
duration of the ballistic motion and the velocity during the duration are randomly de-
termined according to given probabilities. In the turbulent relative dispersion, particle
pairs ballistically expand on average for a small time, that is the Batchelor regime.
Thalabard et al. [113] and Bourgoin [29] modeled the turbulent relative dispersion us-
ing this properties by means of the continuous random walk model. Second, both have
a self-similar probability distribution function at the central part and rare events at the
right fat tail. Recently, properties of the right fat tail were revealed by means of the
big-jump principle [117, 118] in terms of the generalized Lévy walk.

On the other hand, there are also different properties. The breaking of the self-
similarity at the left tail, which is observed in the turbulent relative dispersion, does not
occur in Lévy walk models, to our knowledge. Hence, we should develop the Lévy walk
to possess particle pairs slowly or hardly expanding. Furthermore, the turbulent relative
dispersion is an aging phenomenon, but the standard Lévy walk is not. Recently, several
studies [82, 106] extended the Lévy walk to be aging and investigated its properties.
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Although there are these problems, it may be easier to model the turbulent relative
dispersion with Lévy walk in such a way that the probability distribution function of
the model can be consistent with experimental data of the relative separation of particle
pairs. This is because recent Lévy walk models are very flexible enough to fit the data.
However, it is rather more difficult to justify from experimental data that the turbulent
relative dispersion actually possesses consistent probabilities with Lévy walk such as a
power-law distribution of the waiting time.

Even if we overcome all of the problems described above, we are not convinced that
the Lévy walk is the final word for the turbulent relative dispersion. As described in the
next subsection, the goal is to derive the model from the Navier-Stokes equations. The
Lévy walk model, where one supposes a random walker, may not be easy to be deduced
from the deterministic Navier-Stokes equations. We need a (generalized) Langevin
approach [40, 81, 121].

4.4.2 Deductive theories from the Navier-Stokes equations

Finally, we must derive the above model from the Navier-Stokes equations. In this task,
closure problems confront us. In terms of the closure problems of Eulerian turbulence,
Kraichnan [71] conjectured that any Fourier modes of the Eulerian velocity ũj(k, t)
are infinitesimally weak coupling with (but not completely independent of) the other
modes ũm(k′) and its linear response function ζjm(k′) for k′ 6= ±k. Kraichnan [71]
called this conjecture the weak dependence principle. This conjecture enables to derive
the closed equations for appropriate representatives for the second-order moment and
the response function by perturbation methods [58, 73]. On the other hand, the weak
dependence principle does not explicitly deal with a noise induced by the nonlinearity
of turbulence.

Then, let us consider the closure problems of turbulent relative dispersion. From
the Langevin model envisaged in the previous subsection, we may model the noise
explicitly. Therefore, it is probably possible to make a conjecture appropriately for the
closure problem. Namely, we can obtain the (generalized) Langevin equations for the
turbulent relative dispersion through the conjecture.

101



Chapter 4 General Conclusions

102



Bibliography

[1] Abramowitz, Milton & Stegun, Irene A. 1964 Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables , ninth dover printing,
tenth gpo printing edn. New York: Dover.

[2] Albers, Tony & Radons, Günter 2018 Exact results for the nonergodicity
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Langevin Picture of Lévy Walks and Their Extensions. Journal of Statistical
Physics 147 (1), 74–96.

[82] Magdziarz, Marcin & Zorawik, Tomasz 2017 Aging ballistic Lévy walks.
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