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ABSTRACT

Super-Eddington accretors exhibit various kinds of unique observational signatures. In this
thesis, we study their unique radiation properties by performing radiation hydrodynamic (RHD)
and transfer simulations.

We first perform two-dimensional RHD simulations of super-Eddington accretion flow and
the accompanying outflow to investigate how they will be observed from various viewing
directions. We consider gas flow around a 10 M⊙ black hole for a mass injection rates of
Ṁinj/ṀEdd = 102,103, and 104 (in the unit of ṀEdd ≡ LEdd/c

2 with LEdd and c being the
Eddington luminosity and the speed of light, respectively), and solve gas dynamics and radiation
transfer around the black hole, taking into account inverse-Compton scattering. We confirm
a tendency that the higher the mass accretion rate is, the larger the relative importance of
outflow over accretion flow becomes. The observational appearance of the super-Eddington
flow is distinct, depending whether it is viewed from the edge-on direction or from the face-on
direction. This is because nearly edge-on observers can only see the outer cooler (∼ 106 K)
surface of the inner vertically inflated part of the flow. Observational properties are briefly
discussed in the context of the ULXs, the extreme ULXs (E-ULXs), and the ultra-luminous
supersoft sources (ULSs). We find that the extremely high luminosities of E-ULXs (L ∼ 1041

erg s−1) can be explained when the flow onto the black hole with ≳ 20M⊙ with a very high
accretion rate, ṁacc (≡ Ṁacc/ṀEdd) ≳ 103, is observed from the nearly face-on direction. The
high luminosity ∼ 1039 erg s−1 and the very soft blackbody-like spectra with temperatures
around 0.1 keV, as are observed in the ULSs, can be explained, if the super-Eddington flow
with ṁacc ∼ 102 − 103, is viewed from large viewing angles, θ ≳ 30◦.

Next, we investigate the radiation fields around the super-Eddington accretion flow, in
which multiple inverse-Compton scattering plays a principal role, by using a newly developed
code of the Boltzmann radiation transfer in the Schwarzschild space-time. We apply this
code to the post-processing spectral calculations based on the general relativistic, radiation-
magnetohydrodynamic simulation data to obtain X-ray spectra seen from various viewing angles.
The radiation fields are distinctively separated to a funnel region with an opening angle of ∼ 30◦,
which is full with hot (with gas temperature of T > 108 K), tenuous and high-velocity plasmas,
and surrounding cooler (with T ∼ 107 K) and optically thick outflow regions. Accordingly, there
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is a clear tendency that the smaller the viewing angle is, the harder become the spectra. In
particular, hard photons with several tens of keV are observable only by observers at the viewing
angles less than ∼ 30◦, consistent with past spectral studies based on the simulations. Further,
we investigate how the spectra vary by a flare occurring at the innermost region, finding that
the variation amplitude grows as the photon energy increases and that the harder photons
emerge more quickly than softer photons. The observational implications on the long-term
spectral variability of Ultra-Luminous X-ray sources are briefly discussed.

The work in this thesis is established by the numerical calculations, the analysis and code
development of some parts of Boltzmann solver done by the author and the discussions with
co-authors.
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CHAPTER1
GENERAL INTRODUCTION

It is well known that numerous stars and galaxies shine the dark sky in the optical light. If
we observe the sky with X-rays, however, we obtain a distant view of the universe; that is,
we selectively see black holes both in binary systems and in galactic nuclei. In fact, accreting
black holes are one of the most energetic phenomena in the universe. Since the large amount
of energy is provided via release of gravitational potential energy of accreting gas, and since
the accretion power is so enormous that it can give large impacts to the environments, it is
very important to study the accretion, outflow, and radiative processes of black hole objects in
order to understand the high energy phenomena in universe. Also for the formation of galaxies
and large-scale structure in the universe, accreting black holes and its outflow seem to play an
essential role since black holes centered in galaxies are fed and grow by gas accretion or merger
of two galaxies.

In this chapter, we first overview the observational properties of the representative black
hole objects, in general, and then introduce several types of super-Eddington, accretion sources
and describe their generic features.
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1.1 What are accreting black holes?

Fig. 1.1 X-ray spectra in the two different states of Cyg X-1. The spectrum from top left to
bottom right in this figure shows the spectrum of high/soft state and from bottom left to top
right shows low/hard state. In the high/soft state, the spectrum can be fitted well by blackbody
with the temperature 1 keV. In the low/hard state, a power-law like spectrum is shown. (cited
from Yamada et al. 2013)

There are two main classes of black hole objects known to date: stellar-mass black holes in binary
systems and supermassive black holes at the center of galaxies. In addition, intermediate-mass
black holes may exist, although they receive no wide consensus.

The former class called "black hole binaries" shows several spectral states: low/hard
state with low luminosity (∼ 10−3 − 10−2LEdd where LEdd is the Eddington luminosity) and
with a hard, power-low like spectrum (see figure 1.1) , high/soft state with high luminosity
(∼ 10−2 − 10−1LEdd) and with a soft, blackbody-like spectrum (see figure 1.1; e.g., Tananbaum
et al. 1972; Dolan et al. 1979) , very high state with very high luminosity and both characters of
thermal soft blackbody and power-law (e.g., Miyamoto et al. 1993; van der Klis 1994; Gilfanov
et al. 1993). These can be lain out in order of luminosity and also accretion rate (see figure 1.4;
e.g., Esin et al. 1997). There is a theoretical model for each state:
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Fig. 1.2 The observed radiation of standard disk. This emission is the sum of the blackbody
radiation from each radius r. The Wien region emission corresponds to the radiation from the
innermost region of the disk, and The Rayleigh-Jeans region corresponds to the radiation from
the outer region. The power-law index in multi-color region is dependent on the r-profile of
effective temperature Teff(r).

(a) high/soft state
The standard disk model is widely accepted to explain this state. This is the most well
known model proposed by Shakura & Sunyaev (1973). Assuming that the disk is optically
thick and geometrically thin and the process of angular momentum transport (which is
always unknown and difficult to understand) is imposed on parameter α (which is now
well-known as α-viscosity), they achieved the solution of disk properties. Because the
effective temperature Teff is different by the position r as

Teff ∝ r−p (1.1)

from the standard disk model and the blackbody radiation is emitted from each position,
the observed spectrum is the sum of the blackbody radiation from every position (so-called
"multi-color blackbody"; see figure 1.2). The spectrum from standard disk tells us many
information such as the temperature of innermost region (corresponding to the Wien
region on figure 1.2) and the temperature of outer region (corresponding to the Rayleigh-
Jeans region on figure 1.2) and the r-dependence of temperature p (corresponding to the
steepness of the power-law in the multi-color region on figure 1.2). This model is reasonable
to explain the high/soft state because (i)the high/soft state has higher luminosity (and
simultaneously, has higher accretion rate) and thus the gas can be optically thick (ii) the
high/soft state has spectrum explained well by multi-color blackbody emission.
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Fig. 1.3 Schematic diagram for RIAF. Near the
black hole, the disk truncates and instead the
gas with high temperature resides. The high en-
ergy gas induce Compton up-scattering to soft
photons from the disk. ṁ means the Edding-
ton ratio Ṁacc/ṀEdd.(cited from Yamada et al.
2013).

Fig. 1.4 The spectral states of black holes can
be in order of accretion rate. (cited from Esin
et al. 1997).

(b) low/hard state
The Radiation Inefficient Accretion Flow (RIAF) model is considered to proposed to
explain the low/hard state (studied by Ichimaru 1977; Rees et al. 1982; Narayan & Yi
1994; Abramowicz et al. 1995). RIAF is radiation inefficient because the disk around
the black hole is optically thin and geometrically thick due to its low accretion rate
(see figure 1.3). The gas flow (no longer called "disk") has high temperature by viscous
heating and therefore can produce non-thermal emission by Compton scattering in X-ray
to gamma-ray and synchrotron emission in radio to optical bands. Since the flow at very
low accretion rate is considered to be radiatively inefficient, and since the overall SED
(spectral energy distribution) can roughly reproduced by the RIAF model, it is considered
to be a reasonable model for describing the flow in the low/hard state (see figure 1.1).
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1.2 Microquasars

Fig. 1.5 Scale drawings of 21 black hole binaries. The size of the Sun and the Sun- Mercury
distance (0.4 AU) are indicated at the top. The systems range in size from the giant GRS
1915+105 with an orbital period of 30.8 days to tiny XTE J1118+480 with an orbital period of
0.2 days. The shapes of the tidally distorted stars are accurately rendered, and the black hole
is located at the center of the accretion disk (see key in inset). The inclination of the binary
to our line of sight is indicated by the tilt of the accretion disk; an inclination angle of i = 0◦

corresponds to a system whose accretion disk lies in the plane of the sky and is viewed face on
(e.g., i = 21◦ for 4U 1543–47 and i = 75◦ for SAX J1819.3-2525).

A microquasar is a subclass of galactic X-ray binaries and is characterized by intense emission
from relativistic jets. Microquasar GRS1915+105 is one of the most well-studied source since
not only it is a galactic X-ray binary and thus easy to observe but also has interisting features,
such as very high luminosity and peculiar timing properties. It was shown to host a 10-18 M⊙

black hole from the measurements of the binary motion (whose period ≈ 30.8 days) and thus to
have the luminosity with about 0.2-1.2LEdd. Therefore GRS1915+105 is the place where the
(mildly or marginally) super-Eddington accretion occurs (e.g., Greiner et al. 1996; Vilhu 1999;
Vierdayanti et al. 2010). As results of analysis from its observations, GRS1915+105 has a very
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large accretion disk (McClintock et al. 2011, see figure 1.5). This is also an evidence for the
super-Eddington accretion.

1.3 ULXs (Ultra-Luminous X-ray sources)

Fig. 1.6 The optical (grey) and X-ray
(red) images of M74 galaxy (Credit:
X-ray: NASA/CXC/U. of Michi-
gan/J.Liu et al.). The ULX in the
box is apart form the galactic center.

Fig. 1.7 Hα image of NGC 1313 X-2.
The error circle of the variable ULX
is centered on the center of the bub-
ble nebula and marginally excludes a
relatively bright stellar object at the
western edge. (cited from figure 5 of
Pakull & Mirioni 2002).

In recent years, objects called ’Ultra-Luminous X-ray Sources (ULXs)’ have been successively
discovered (Fabbiano et al. 1989; Makishima et al. 2000; Liu 2011; Walton et al. 2011). The
ULX is a point X-ray source defined as it has very large X-ray luminosity (LX ≳ 1039erg s−1;
one of the brightest ULX (M101-X1) has the luminosity of ∼ 1041ergs−1 except for HLX-1) and
its position is offset from the galactic center (see figure 1.6).

The spectral shape of ULXs looks strange (see figure 1.8 and figure 1.9) and can be divided
into two groups: those that are consistent with a simple power-law, and those that are more
complex (Makishima 2007). The latter mainly refers to a mild broad curvature (convex shape)
over the whole band, a break or steepening above 2 keV, or a soft excess below 2 keV. A
typical ULX spectral shape of the latter is sketched in figure 1.9. For this observational facts,
ULXs are suspected to be in a new spectral state other than usual galactic X-ray binaries are
(Gladstone et al. 2009; Kawashima et al. 2012).

Since the luminosity of ULX exceeds the Eddington luminosity of a stellar mass black
hole (for MBH = 10M⊙, the Eddington luminosity LEdd ∼ 1039erg s−1), there are two most
reasonable scenarios to explain this nature:(i) hosting a stellar mass black hole accreting at
super-Eddington rate, (ii) hosting an intermediate mass black hole (IMBH) accreting at sub-
Eddington rate.
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Fig. 1.8 Several examples of the spectrum of
ULXs. The black is observational data, the
red is only multi-color blackbody emission from
its accretion disk, the blue is the reasonable
model where Compton up-scattering soft photon
from the disk by marginally optically thick (τ ∼
1) colona is taken into account. (cited from
Gladstone et al. 2009).

Fig. 1.9 A typical ULX spectral shape (grey) in
0.3-10 keV, with a soft excess below 2 keV and a
hard curvature above 2 keV. The soft excess can
be modeled by a cool thermal component, over
the power-law extension of the hard component.
A slim disk model (p-free) or a warm, thick
Comptonization model can adequately fit the
hard curvature.(cited from Feng & Soria 2011).

In the former case, the mechanism of large luminosity of ULXs can be explained by the large
Eddington luminosity because of its large mass MBH ≳ 102M⊙. In observation, Some of ULXs
show the quasi-periodic oscillation (QPO) whose frequency is about 1-100 mHz. Since there
is a good correlation between black hole masses and these QPOs from observation of galactic
X-ray binaries (but all of these X-ray binaries are stellar mass black hole binaries), Some of
ULXs should host an inter-mediate mass black if the same correlation holds for ULXs. Physical
explanation is the following: if this QPO is due to rotational motion around the inner-most
stable circular orbit1 (ISCO), the black hole mass MBH is simply calculated from Keplarian
rotation, resulting about 102 − 104M⊙. Although, there is a difficulty in making such a black
hole heavier than 100M⊙. However, some people suggest that IMBH can be formed in dense
globular clusters (Miller & Hamilton 2002) or in stellar evolution of very massive star in early
universe (Crowther et al. 2010; Yusof et al. 2013).

1the position of ISCO is dependent on the black hole mass MBH and its spin parameter a∗.
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Fig. 1.10 Power spectra of four ULXs.
There is a peak structure in each
power spectrum which is so-called QPO
(Quasi-Periodic Oscillation) around 1-100
mHz.(Feng & Soria 2011))

Fig. 1.11 The X-ray lightcurve and pulsa-
tions of M82X-2 from the region containing
NuSTAR J095551+6940.8. Panel a: the
background-subtracted 3-30 keV lightcurve.
Panel b: detections of the pulse period
(black points) fit using the best sinusoidal
ephemeris (grey dashed line). The mean pe-
riod is 1.37252266(12) seconds, with an or-
bital modulation period of 2.51784(6) days.
Panel c shows the fraction of pulsed flux
to total flux. The inserts show the pulse
profile. (from Bachetti et al. 2014)

In the case of super-Eddington model, the mechanism of large luminosity of ULXs can be
explained by the model of a super-Eddington accretion onto a stellar mass black hole (e.g.,
Watarai et al. 2001; Ohsuga et al. 2005, see Ohsuga & Mineshige (2014) for a concise review).
Some robust observational evidence for super-Eddington accretion are discovered in recent year:

(1) Some of ULXs are confirmed to host stellar mass black holes.
Motch et al. (2014) investigated the mass function of P13 in the galaxy NGC 7793 from observation

and concluded that the black hole mass is less than 15 M⊙, and therefore a super-Eddington

accretion onto a stellar mass black hole is confirmed.

(2) Discovery of a super-Eddington accreting neutron star
Bachetti et al. (2014) investigating M82 X-2 have demonstrated that there is a pulse component in

its emission (see figure 1.11) and the period is decreasing (i.e. spinning up) , and thus concluded

this ULX is a accreting neutron star system. This is the first evidence that the super-Eddington

accretion is also possible at a neutron star accretor.

(3) ULX bubbles
A significant amounts of ULXs are surrounded by highly ionized nebula (so-called "ULX nebula"
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Fig. 1.12 A density contour map of the accretion
disk of the fragment of a disrupted star at the
simulation in Sądowski et al. (2015). The arrows
show gas velocity.

Fig. 1.13 Radial profiles of the mass accretion
rate integrated over the total domain (solid lines)
or only inside π/4 wedge near the equatorial
plane (dashed lines). (From Sądowski et al.
2015)

or "ULX bubble", see figure 1.7; Pakull & Mirioni 2002, 2003; Soria et al. 2014) which is excited

by kinetic shock and X-ray and therefore is evidence of a large amount of outflow and luminosity

from the central accretor. Because the super-Eddington accretion induce very large amounts of

outflow and luminosity, this observational fact may agree with the super-Eddington model for

ULXs.

For this reason, the further study of properties of super-Eddington accretion flow is needed in
order to understand the physics of ULXs.

1.4 Other candidates for super-Eddington accretion

The super-Eddington accretion may occur in phenomena other than ULXs as following:

(a) Tidal disruption events (TDEs)

(b) Ultra-luminous supersoft sources (ULSs)

(c) The formation of supermassive black hole in the early universe

(a) TDE
The TDE occurs when a star approaches a black hole (or super-massive black hole in
ordinary case) close enough to disrupted by tidal force from central black hole. the
fragments of disrupted star forms very massive disk (≳ 1M⊙) and cause super-Eddington
accretion onto the central black hole. Several numerical simulations for TDE also confirms
super-Eddington accretion (Cheng & Bogdanović 2014; Sądowski et al. 2015). For example,
Sądowski et al. (2015) performed a general relativistic hydrodynamics (GRHD) simulation
which solve the tidal disruption event consistently from a star approaching the black hole
to accretion process by means of switching GR-SPH (Smoothed Particle Hydrodynamics)
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code with GR-MHD code.

(b) ULS
ULS is a newer population of X-ray binary which has following properties:

• very high luminosity (∼ 1039ergs−1; same order as the Eddington luminosity for
10M⊙ )

• supersoft thermal spectrum T ≲ 0.1keV (Di Stefano & Kong 2003)

Some of ULSs have blueshifted, broadline Hα emission in their spectra and thus there is a
relativistic jet or outflow (Liu et al. 2015). Similar to the case of ULXs, since ULSs have
very high luminosity around the Eddington luminosity for a stellar mass black hole, there
are two theoretical models, one of which is sub-Eddington accretion onto an intermediate
black hole, the other of which is super-Eddington accretion onto stellar mass black hole.
Gu et al. (2016) proposes that a super-Eddington accretion disk viewed from a large
inclination angle can be seen as a ULS (we will see later at §2.4.2).

(c) Formation of supermassive black holes
Considering the formation of the super-massive black hole in the early universe (for
example, a super massive black hole with MBH ∼ 1010M⊙ is found at z ∼ 6.4 e.g., Wu
et al. 2015), the existence of the epoch of the super-Eddington accretion is required to
achieve its large mass. The reason is the following:

As a result of studies for the formation of the first stars (so-called Population III
star), the mass of first star is about 102-103M⊙(Hirano et al. 2014; Susa et al. 2014)
and then 102-103 black holes are formed by the pair instability at z ∼ 20 (≈ 0.188

years old). Assuming the radiation efficiency is η and luminosity is fixed to LEdd,
the black hole mass at the time t is written as

MBH(t) = Mseed exp

(
1− η

η

t

0.45Gyr

)
(1.2)

where Mseed is the black hole mass at t = 0. Substituting Mseed = 102M⊙,η = 0.1

and MBH = 1010 (≈ 0.802 years old), we get the time needed to grow from 102M⊙

to 1010M⊙ and resulting t = 0.92Gyr. Since the growth at the Eddington rate
can’t reach the mass of supermassive black hole observed in the early universe, the
super-Eddington accretion onto the seed black hole is needed.

Despite the importance of super-Eddington processes, its observational signatures have
not been so well understood yet.
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1.5 Past numerical studies of super-Eddington accretion flow

In order to study the super-Eddington accretion processes, the simulation with higher dimensions
and radiative processes must be needed, because the accretion disk at the super-Eddington
phase is a radiation pressure dominated and very fat disk. Further, multidimensional motion
,such as internal motion (convection) and significant outflow, are essential. So, we will introduce
some of simulations studying super-Eddington accretion flow.

Fig. 1.14 Gas density contour map and gas ve-
locity vector field map. At the origin, a black
hole resides. (cited from Ohsuga et al. 2005)

Fig. 1.15 time dependence of accretion rate onto
the central black hole.

The first numerical study for super-Eddington accretion is in Ohsuga et al. (2005), where
they performed axisymmetric 2D radiative hydrodynamics (RHD) simulations and revealed that
super-Eddington accretion onto a black hole is possible (see figure 1.15) . Figure 1.14 shows
density map and velocity vector map. A large convective region appears in the fat accretion
disk and the board outflow region is shown near the outer region. The outflow is driven by
radiation-pressure force and the outflow is considered to Compton up-scattering (=inverse
Compton scattering) soft photons from the super-Eddington accretion disk. The summary of
their revealing properties for super-Eddington accretion flow is the following:

• A geometrically and optically thick disk

• A large amount of strong outflow driven by the radiation-pressure force

• photon trapping effect2

2In the very optically thick accretion disk, since the diffusion velocity of photos are less than the accretion
velocity, a large fraction of the photons generating in accretion disk accrete into the black hole together with
matters.
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• convective motion within the disk

• isotropic radiation flux (e.g., the luminosity from the face-on angle can exceeds the
Eddington luminosity)

Fig. 1.16 Distribution of temperature (top)
and mass density averaged over time(bottom).
(Left) Model including Comptonization. (Right)
Model without Comptonization. Arrows repre-
sent velocities of fluid motions.

Fig. 1.17 Schematic pictures of the states
of accretion disks. From top to bot-
tom:(a)Comptonizing outflow state, which con-
sists of super-Eddington accretion flows (i.e.,
slim disks) and Comptonizing outflows, (b) slim
disk state, (c) very high state, and (d) high/soft
state. The SED of the new state is harder than
that of the slim disk state, because the new
state includes a hot outflow which up-scatters
seed photons from the underlying disk.

After Ohsuga et al 2005, another axisymmetric 2D RHD simulation including thermal Compton
effects, which is supposed to be important because of large amounts of hot outflow from super-
Eddington accretion flow, was performed in Kawashima et al. (2009) (see figure 1.16). They
demonstrated that there appears a new hard spectral state at higher photon luminosities than
that of the slim-disk state. In this state, as the photon luminosity increases, the photon index
decreases and the fraction of the hard emission increases. Moreover, they said that the result
of this simulation can explain the observed spectral hardening of the ULX NGC 1313 X-2 in
its brightening phase, and thus supports the model of supercritical accretion onto stellar-mass
black holes in this ULX. Another study for applying the spectrum of super-Eddington accreting
black holes to that of ULXs was discussed in Kawashima et al. (2012). They computed the
spectrum from super-Eddington accretion flow and its outflow by using Monte-Carlo method
by post-processing the results of axisymmetric radiation hydrodynamic simulations, which



1.5 Past numerical studies of super-Eddington accretion flow | 13

takes into account thermal/bulk Comptonization, free-free absorption and photon trapping,
performed in Kawashima et al. (2012). They demonstrated that the spectrum of the emission
from the super-Eddington accreting black hole can explain the spectrum of some of ULXs (see
figure 1.18). The optically thick and cooler outflow surrounding the jet plays an important role
for creating a characteristic double-peak like spectrum (usually said "roll over" around 5keV) of
ULXs (see figure 1.19).

Fig. 1.18 Comparison of SEDs ob-
tained from the radiation hydro-
dynamic simulations (performed in
Kawashima et al. 2012) with those of
ULXs. The black is the data of ULXs
and the blue is the result of simula-
tion.These are well fitting to observa-
tion. (cited form Kawashima et al.
2012)

Fig. 1.19 Schematic picture of a supercritical ac-
cretion flow consisting of (1) a radiation pressure
dominant accretion disk, (2) a sub-relativistic,
mildly hot funnel jet, (3) a cool, dense, and slow
outflow, and (4) a shock-heated region. This
show the overall structure of a supercritical ac-
cretion flow obtained by our simulations.The
shock-heated regions are formed because the ac-
creting gas near the rotation axis is bounced
by the centrifugal barrier. Photons are upscat-
tered by electron scatterings in the converging
inflow (bulk Compton scattering) and the ther-
mal Comptonization by hot electrons in the
shock-heated region.

There is another interesting study for super-Eddington accretion. Takeuchi et al. (2013)
performed axisymmetric two-dimensional Radiation MagnetoHydroDynamics (RMHD) simula-
tions of super-Eddington accretion flow with high resolution and large simulation domain as
never before. That was the time of the discovery of the clumpy outflow. The clumpy structure
appears in the outer region where the radiation pressure force overcomes gravity (see figure
1.20). The mechanism of forming clumpy structure is the radiative Rayleigh-Taylor instability
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(RT) where the strong radiation force instead of gravity in usual RT works the density profile
thiner toward outer direction (Takeuchi et al. 2014, see figure 1.21).

Fig. 1.20 A snapshot of density contour map. The yellow vector is gas velocity vector plotted in
the case of its velocity greater than escape velocity and the green line shows the position where
the radiation-pressure force (toward outer direction) equals to the gravitational force (toward
inner direction). We can see the clumpy structure outside the green line. (cited from Takeuchi
et al. 2013)

Fig. 1.21 Time variance of density map in radiative Rayleigh-Taylor instability. The strong
radiation upward is instead of gravity in usual Rayleigh-Taylor instability. (modified figure in
Takeuchi et al. 2014).

1.6 Importance of Comptonization

How to accurately solve radiation transfer equations? This is one of the most fundamental issues
in astrophysics, since we can obtain rich information mainly via detecting electro-magnetic wave
radiation from astrophysical objects. Radiation is, however, not only means of observations but
it can also transport energy and momentum, thereby being able to give significant impact on
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the environment around a radiating source and even on the media inside the source. Radiation
can heat up gas (if absorbed and/or Compton up-scattered) or cool down gas (if Compton
down-scattered). It can also push material by asserting radiation-pressure force or line-driven
force. Good examples are stellar wind, which affects stellar evolution, and accretion disk outflow,
which controls disk activities, and so on.

Let us focus on the cases of accretion disks around black holes. Then we soon notice that it is
impossible to discuss X-ray emission properties without Comptonization. Seed photons emitted
from a cool and dense disk body are up-scattered by hot electrons existing around the disk to
produce characteristic spectral features, such as hard power-law components and/or spectral
humps. Two main sites are known to produce hard X-rays via inverse Compton scattering:
low accretion-rate flow or the so-called radiatively inefficient accretion flow (RIAF, see chapter
9 in Kato et al. (2008) and references therein), and accretion disk coronae above and below
sub-Eddington flow (see e.g., Liang & Nolan 1984; Haardt & Maraschi 1991; Kato et al. 2008).
In both cases, the system has high temperature (corresponding to photon energy of ∼ 100 keV)
ionized gases around the central object. The Thomson optical depth is typically τes ∼ 1 and
the Compton y-parameter is on the order of unity.

We wish to note that Comptonization should be critical also in the super-Eddington accretors,
since the strong radiation from the disk can blow off a large amount of gas to form mildly
relativistic, uncollimated hot outflow so that the photons emitted from the underlying disk body
can experience inverse-Compton scattering when passing through the hot outflow (Kawashima
et al. 2009). By contrast with the two sites mentioned above (i.e., RIAFs and disk coronae), the
Comptonizing outflow is characterized by (relatively) low temperature (∼ a few keV), optically
thick (τes ∼ 2− 5) Comptonization (e.g., Kitaki et al. 2017). Therefore, multiple scatterings
dominate over single scatterings there.

1.7 Goal of this thesis

As we have reviewed above, there are plenty of works done in the field of super-Eddington
accretion flow and outflow. However, systematic study of such flow for a variety of mass injection
rates has never been attempted. In this thesis, we hence examine how the results depend on
the mass injection rates. We wish to address the following questions:

• How large can the accretion rate and luminosity grow?

• How do the observable quantities (luminosity, kinetic luminosity, outflow rate, etc) depend
on the accretion rate?

• How do the spectral properties vary with inclination angles?

• What kinds of (long-term and short-term) spectral variations are expected?

To answer to these questions, we perform two-dimensional axisymmetric radiation hydrody-
namic/transfer simulations by taking into account thermal Compton scattering effects, and
discuss the unique properties of super-Eddington accretion flow.

The plan of this thesis is as follows. In next chapter (chapter 2) we discuss how the
super-Eddington accretor looks like when changing the viewing angles and accretion rates via
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(grey) RHD simualtions. After summarizing possible links between super-Eddington accretors
and ultraluminous sources, we discuss spectral properties (such as observational images and
time variabilities) by using a newly developed Boltzmann radiation solver in chapter 3. In
chapter 4, we summarize the conclusions and discuss remaining issues of this thesis.



CHAPTER2
RADIATION HYDRODYNAMIC SIMULATIONS OF A SUPER-EDDINGTON

ACCRETOR AS A MODEL FOR ULTRA-LUMINOUS SOURCES

2.1 Introduction to Chapter 2

Accreting black holes are known to exhibit various luminous and energetic phenomena in the
universe. This is made possible, because they extract enormous energy from accreting material
and/or utilize the rotation energy of the black holes themselves. Among various types of
astrophysical black holes super-Eddington (or super-critical) accretors have attracted much
attention recently, since they can produce extremely large luminosities and strong outflow so
that their power should give great impacts to their environments. Super-Eddington accretors
are thus suggested to play essential roles in yielding various active phenomena e.g., relativistic
baryon jets and huge ionized nebulae. It is, hence, of great importance to investigate the basic
processes, as well as their observational signatures, of the super-Eddington accretion flow and
associated outflow. Such study will be beneficial also for understanding how supermassive black
holes have grown up and what influence they should have given to their host galaxies.

As mentioned in Chapter 1, that robust observational evidences supporting the super-
Eddington scenario for the ULXs are accumulated in recent years. Motch et al. (2014), for
example, investigate ULX P13, which is observationally suggested to have 64 day period
binary motion. They modeled the strong optical and UV modulations due to X-ray heating
of the B9Ia donor star and conclude that this ULX hosts a stellar mass black hole whose
mass is less than 15 M⊙. Since the X-ray luminosity of P13 ranges from 1.6× 1039 erg s−1 to
4× 1039 erg s−1, P13 is suggested to be a super-Eddington source. Moreover, Bachetti et al.
(2014) investigating M82 X-2 have demonstrated that this ULX is emitting the pulse component
whose period is about 1.37s and thus it hosts a neutron star accretor. Because the luminosity
of this ULX (LX ≳ 1039 erg s−1) is much greater than Eddington luminosity of a neutron star
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(LEdd ≲ 1038.5 erg s−1 for the mass of a neutron star, MNS < 3M⊙), the central accretor must
be super-Eddington.

In addition to ULXs, we also pay particular attention to another type of enigmatic objects
called ultra-luminous supersoft sources (ULSs) which were recently discovered and are extensively
studied (Di Stefano & Kong 2003; Kong et al. 2004; Liu 2008). They produce very high X-ray
luminosities (LX ≳ 1039erg s−1) similarly to the ULXs, but nevertheless their X-ray spectra are
very soft and is thus distinct from those of the ULXs. More precisely, they are characterized
by exhibiting blackbody-like spectra whose blackbody temperature is less than 0.1 keV (Di
Stefano & Kong 2003). Because of their very high luminosities (above the Eddington luminosity
of stellar mass black holes), ULSs are also considered to be either super-Eddington sources
hosting stellar mass black holes or sub-Eddington sources hosting intermediate mass black holes.
Urquhart & Soria (2016) propose a unified scheme, in which the ULSs are super-Eddington
accretion systems accreting at high Eddington rate about 103ṀEdd viewed from large polar
angles of 20-90◦ (see also Gu et al. 2016).

In view of such diversity in possible super-Eddington objects we perform more extensive
and systematic study of super-Eddington accretors to clarify their observational signatures for
a variety of mass accretion rates and of viewing angles.

Multi-dimensional simulations are indispensable, since the super-Eddington accretion disk
is known to be very fat and full of multi-dimensional gas motion, such as internal circulation
and strong outflow. Radiation hydrodynamic (RHD) simulations are also needed, since intense
interactions between gas and radiation are essential. As a first step of systematic study, we
perform simulations in the Newtonian dynamics in the present study to discuss the overall
properties of the super-Eddington accretion flow, such as accretion rate, outflow rate, luminosity,
the impact onto circumstances, and so on. We take into account thermal Compton scattering
effects, since the optically thick outflow in the super-Eddington accretion phase suffers thermal
Comptonization (Kawashima et al. 2009). More details of numerical methods and calculated
models are explained in the next section (§2.2). We then show our results in §2.3. The last
section in this chapter is devoted to discussion.

2.2 Methods of calculations and calculated models

In the present study we use the two dimensional axisymmetric RHD code developed by
Kawashima et al. (2009). We inject mass to an almost empty region around a black hole (with
a mass of MBH = 10M⊙) from the outer boundary at a constant rate (Ṁinj) and solve how gas
accretes onto the central black hole and how much radiation is produced and propagated to
reach distant observers.

2.2.1 Basic Equation

We adopt the polar coordinates (r, θ, φ) (where r is the radius from the central black hole, θ is
polar angle from the rotational axis of the disk and φ is the azimuthal angle but this component
vanishes because of the axisymmetricity) with the origin being at the central black hole and
θ = π/2 being the equatorial plane, on which mass is injected (see §2.2.2). The α viscosity



2.2 Methods of calculations and calculated models | 19

prescription and the Flux Limited Diffusion (FLD) approximation (Levermore & Pomraning
1981) are adopted for solving radiation transfer. Further, thermal Compton effects are taken
into account in the energy equation. The general relativistic effects are incorporated by adopting
the Paczyński-Wiita potential ΦPW = −GMBH/(r − rS) , where rS is the Schwarzschild radius
of the central black hole. By the assumption of axisymmetry, we set ∂/∂φ = 0, while retaining
the φ-components of the velocity and the viscous force. All other φ-components of vector
quantities are set to zero.

The basic equations are then given by

∂tρ+∇ · (ρv) = 0 (2.1)

∂tρvr +∇ · (ρvrv) = −∂rp+ ρ

(
v2φ
r

+
v2θ
r

− GM

(r − rS)2

)
+ fr (2.2)

∂t(ρrvθ) +∇ · (ρrvθv) = −∂θp+ ρv2φ cot θ + rfθ (2.3)

∂t(ρrvφ sin θ) +∇ · (ρrvφv sin θ) = rqφ sin θ (2.4)

∂te+∇ · (ev) = −p∇ · v − 4κπB+ cκE0 +Φvis + ΓComp (2.5)

∂tE0 +∇ · (E0v) = −∇ · F0 −∇v : P0 + 4κπB− cκE0 − ΓComp (2.6)

where ρ, v= (vr, vθ, vφ), p, e and κ, are the mass density, velocity of gas, gas pressure, the
internal energy density of gas, (Rosseland-mean) absorption opacity measured in the fluid
co-moving frame, respectively, ∂t, ∂r, ∂θ, and ∂φ are the differential operators with respect
to t, r, θ, and φ, respectively, and ∇ = (∂x, ∂y, ∂z) is the natural vector differential operator,
qφ is the viscous force calculated based on the α viscosity model, f , E0, F0 and P0 are the
radiation force, the radiation energy density, the radiation flux, and the radiative stress tensor,
respectively. The subscript 0 indicates the value measured in the fluid co-moving frame. The
radiation force f is calculated by using the total opacity χ = κ+ ρσT/mp (with σT being the
cross section of Thomson scattering and mp being the proton mass) as

f =
χ

c
F0 (2.7)

and F0,P0 can be described by the radiation energy density E0 and its first derivative from
the FLD approximation. The quantities B,Φvis, and ΓComp are Planck function, the heating
rate by viscous dissipation, and the heating rate by thermal Compton scattering, respectively.
The term ΓComp is described as

ΓComp = 4πσTc
kB(Trad − Tgas)

mec2

(
ρ

mp

)
E0, (2.8)

where kB,me, Tgas, and Trad[≡ (E0/a)
1/4] (a is the radiation constant) are the Boltzmann

constant, the electron mass, gas temperature, and radiation temperature, respectively. Finally,
we need the equation of state to close the set of the basic equations: p = (γ − 1)e with γ = 5/3

being the specific heat ratio.
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2.2.2 Setup, Initial and Boundary Conditions

The simulation domain has the shape of a quarter circle on the r− θ plane set by 2rS ≤ r ≤ rout

and 0 ≤ θ < π/2. As to the boundary conditions, we set as follows: The outer boundary at
r = rout and θ < 0.45π is an outflow boundary where the radiation and gases can go through
freely and any information never goes into computational domain. The outer boundary at
r = rout and θ > 0.45π is the boundary from which we inject gas into computational domain at
the constant rate Ṁinj with a fixed value of angular momentum mentioned later. Finally, the
inner boundary at r = 2rS is an absorbing boundary with a damping layer where the physical
quantities are smoothly damped to the constant values near to the inner boundary. We only
solve the upper half domain of the gas flow, imposing the reflective boundary condition on the
equatorial plane at θ = π/2.

For the initial condition, we start with an empty space around the black hole, but for the
numerical reason, we put the thin isothermal (Tiso = 1011K) corona in the domain, which is in
hydrostatic equilibrium.

In our simulation code, we use the Godunov method for hydrodynamics solver. During the
simulation run, we continuously inject mass from the equatorial edge (r = rout, θ ∈ [0.45π, 0.5π])
at a constant rate of Ṁinj. We assume that the injected mass has an angular momentum with
its vector orientation being perpendicular to the equatorial plane and its absolute value being
the same as that of the Keplerian rotation at r = rrot. Throughout the present study we fix
rrot = 100rS. After the viscous timescale, an accretion disk is formed around the central black
hole and the disk size is determined by r = rrot. We can control the mass accretion rate (Ṁacc)
onto the central black hole by changing the mass injection rate Ṁinj. Hereafter, we use the
normalized mass injection rate as ṁinj ≡ Ṁinj/ṀEdd. Super-Eddington accretion flow appears
when ṁinj ≳ 102. Likewise the mass accretion rates are normalized as ṁacc ≡ Ṁacc/ṀEdd

In this paper, we simulated three models for a variety of the mass injection rate (see Table
2.1). In Table 2.1, the symbols ṁinj, ṁacc, ṁoutflow, ℓiso, ℓtot, ℓ

iso
kin and ℓkin are the value of

Ṁinj, Ṁacc, Ṁoutflow, Liso, Ltot, L
iso
kin and Lkin with the Eddington unit (ṀEdd for mass flow

rates or LEdd for energy flow rates ) , respectively. Here the accretion rate Ṁacc and the outflow
rate Ṁoutflow are the integral of the inward mass flux crossing the inner boundary r = 2rS and
the integral of the outward mass flux crossing the outer boundary r = rout, respectively, and
are numerically calculated by

Ṁacc = −
∫
r=2rS

min(ρvr, 0) dS, (2.9)

Ṁoutflow =

∫
r=rout,v>vesc

ρvr dS (2.10)

where dS is the surface element of the domain of integral and vesc is the escape velocity at
r = rout. Note that our definition of the outflow rates is different from that in Yuan & Narayan
(2014), in which the outflow rate is calculated by integrating the entire outgoing gas (with
vr > 0). Also note that our estimate of outflow rates seems to be underestimated because
the gas is pushed by radiation force so that the outflow rate should gradually increase as the
gas travels farther from the black hole (Hashizume et al. 2015) Here Liso means the isotropic
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luminosity viewed from the direction with the inclination angle of i ∼ 3◦ and Ltot means the
total luminosity integrated over the whole solid angle;

Liso = 4πr2outFr

∣∣
r=rout,θ∼3◦

, Ltot =

∫
r=rout

Fr dS (2.11)

and Liso
kin and Lkin are calculated by

Liso
kin = 2πr2outρ [max(vr, 0)]

3
∣∣∣
(r,θ)=(rout,3◦)

, (2.12)

Lkin =

∫
r=rout,v>vesc

ρv3r/2 dS. (2.13)

2.3 Results

In all the calculated models, we could finally achieve the quasi-steady states (Ohsuga et al.
2005). Hereafter, we only use the simulation data in the quasi-steady state. The elapsed times
spent to reach the quasi-steady state are 40s (model 1), 170s(model 2) and 90s (model 3),
respectively.

Table 2.1 Calculated three models. Here, ṁinj is denoted by mass injection rate. As for the
definition of other quantities, see text. Such as mass accretion rate, mass outflow rate, isotropic
luminosity, and etc, see equations (2.9)-(2.13)

model ṁinj rout[rS] ṁacc ṁoutflow ℓiso (θ = 3◦) ℓtot ℓisokin ℓkin

Eqn.# (2.9) (2.10) (2.11) (2.11) (2.12) (2.13)
1 102 500 70 2 2 1.5 10−4 10−2

2 103 5000 2× 102 7× 102 13 3 14 0.7
3 104 5000 4× 102 1.7× 103 50 3 70 0.9
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2.3.1 Simulation overview

Fig. 2.1 Time-averaged density contour maps averaged on the logarithmic scale for mass injection
rates of ṁinj = 102 (left), 103 (center), and 104 (right) , respectively. Here, the horizontal (R)
axis and the vertical (z) axis denote the cylindrical coordinates, respectively. Note different
length scales between the left panel, and the middle and right panels. The black line in each
panel indicates the location, where gas velocity is equal to the escape velocity, and the red line
indicates the location, where the radial component of the velocity vanishes (that is, the gas in
the region enclosed by the red line is falling onto the black hole).

We first overview the density structure of the super-Eddington flow in figure 2.1 for ṁinj = 102,
103, and 104 from the left panel to the right, respectively. There is a fat and dense disk at
2rS ≤ r ≤ 100rS around the black hole for the right two models. The disk is optically and
geometrically thick and is supported mainly by radiation pressure force. By comparing three
panels we find a clear tendency that the higher the mass injection rate is, the narrower becomes
the jet funnel. This is because the high-velocity jet is confined, being pressed by the pressure
force by the surrounding fat disk.

Fig. 2.2 Same as figure 2.1 but for the contour map of the gas temperature. The black line in
each panel indicates the location of a photosphere on which τeff = 1 holds when integrated from
the outer boundary, and the red line is for the Compton sphere yComp = 1 calculated from the
outer boundary as equations 2.16 and 2.17.

In figure 2.1 we see the blow up of a collimated jet with a very high speed (∼ 0.7c for
ṁinj = 103) in the polar direction. We also see an uncollimated outflow blowing out within the
a large opening angle (∼ 80◦). This broad outflow is significantly Compton-cooled by copious
soft photons emanating from the underlying gas inflow so that the gas temperature should be
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close to radiation temperature (Kawashima et al. 2009). There is characteristic inflow structure
at the angle of about ∼ 45◦ toward the center (see the region surrounded by the inner one of
the two lines in figure 2.1). This is convective inflowing gas produced by the convective motion
of gas.

Figure 2.2 shows the locations of the photosphere and Compton sphere plotted on the
temperature contours in quasi-steady state. We can see that the temperatures on the Compton
sphere and photosphere become low (∼ 106K) in the relatively high accretion rate case (ṁacc ≳

102). However, we can also see several high temperature parts (1 - 10 keV) in the outer region.
These hot parts appear within intermittently blowing outflow.

Figure 2.3 shows the radial dependance of the mass inflow rates Ṁin(r), the mass outflow
rates Ṁout(r), and the net flow rates Ṁnet(r) of each model;

Ṁin(r) ≡
∫

ρmin(vr, 0)r
2dΩ, Ṁout(r) ≡

∫
ρmax(vr, 0)r

2dΩ,

Ṁnet(r) ≡ Ṁout(r) + Ṁin(r). (2.14)

Although the net flow rate for models 2 and 3 is roughly constant at the regions of r ≲ 1000rS

and r ≳ 3000rS, it is found that the rate varies with the radius at r ∼ 1000− 3000rS. We also
find the similar tendency in the model 1, in which the net flow rate is almost kept constant at
r ≲ 100rS and r ≳ 300rS and decreases with the radius at the region of r ∼ 100− 300rS. This
implies that the resulting inflow-outflow structure is not in actual steady state. To estimate
the difference from the actual steady state, we continue the long term simulation for model
2 (about 5 times longer than model 2), in which we restart simulation from the end time of
model 2 by resetting ṁinj to be 700. The dashed line in the middle panel of figure 2.3 shows
the result of this long term simulation. We achieved a nearly steady state (the net flow rate is
constant within 40% (see the black dashed line in this figure)). In this time, the accretion rate
onto black hole and outflow rate from the outer boundary are almost same as model 2 and our
main result for ULSs and ULXs (we will see this in §2.3.2) is not altered. Therefore we can
rely on the results of model 1,2,3 although they have not reached their actual steady state yet.
We must note that the outflow rates may be slightly overestimated due to the energy released
by the accretion shock at r = rrot(but this energy is not so large when comparing the energy
released by the disk accretion).

2.3.2 Observed luminosity and temperature

Next, we see the observed luminosity and temperature. Figure 2.4 shows the θ-dependance of
observed temperature Tobs and isotropic luminosity ℓiso, where the observed temperature Tobs is
evaluated between the photosphere and the Compton sphere (see figure 2.2). The photosphere
and the Compton sphere are the place where the effective optical depth is τeff = 1 and Compton
y parameter is yComp = 1 calculated from the outer boundary of the simulation box, r = rout,
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where τeff and yComp are numerically evaluated by

τes(r) ≡
∫ rout

r
ρσT/mp dr, (2.15)

τeff(r) ≡
∫ rout

r

√
κ(ρσT/mp + κ) dr, (2.16)

yComp(r) ≡ τes

∫ rout

r

4kTgas

mec2
ρσT/mp dr, (2.17)

respectively.
From the top panel of figure 2.4, we can understand that the observed temperature viewed

from the angle θ < 20◦ is greater than several keV, typical temperature of ULX derived from the
X-ray spectrum. At the angle greater than 35◦, on the other hand, the observed temperature is
less than or equal to 0.1 keV, the typical temperature of ULS. Despite such low temperatures,
the observed luminosity is greater than Eddington luminosity in good agreement with the
observations of ULS and ULX. Importantly, the luminosity viewed by nearly face-on observers
is greater than that viewed by edge-on observers. This is consistent with the fact that the
category of ULXs is typically more luminous than that of ULSs.

2.4 Discussion

2.4.1 Brief summary

In the present study we investigated the observable properties of supercritical accretion flow for
a variety of accretion rates (ṁinj) and viewing angles (θ), taking into account inverse Compton
scattering effects. We pay particular attention to the distinct observational appearances of
nearly face-on sources and of nearly edge-on sources. This is a marked difference from the
cases of sub-Eddingtion source (either of standard-type disks or RIAF), in which the overall
appearance is similar, not critically depending on the viewing angle. In short, nearly face-on
observers will see supercritical accretors as luminous objects with large kinetic luminosities
(comparable to the radiation luminosity), high (∼ 1 keV) blackbody temperatures, and compact
emitting regions with area on the order of ∼ r2S. The nearly edge-on observer will see them as,
luminous but low-temperature (∼ 0.1 keV) objects with large emitting area (much greater than
r2S) and with less kinetic luminosities. Such differences are remarkable above ṁacc ∼ 102 and
are the results of high optical depth of accretion flow and significant outflow. We also confirm
the clear tendency that the opening angle of high-velocity jets decreases with the increase of
the mass accretion rate. In the following subsections we will discuss more about such unique
features of super-Eddington flow.

2.4.2 Super-Eddington model for Ultra-Luminous Supersoft sources

In this subsection we discuss if our simulations support the hypothesis that the ultra-luminous
supersoft sources (ULSs) may be a subgroup of the super-Eddington sources.

Some authors (Gu et al. 2016; Urquhart & Soria 2016) proposed a model of ULSs which unifies
ULSs and normal ultraluminous X-ray sources, where the different observational characteristics
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are probably related to the inclination angle and the mass accretion rate. They concluded
that there are two necessary conditions for ULSs, i.e., high mass accretion rates ṁacc ≳ 30 and
not small inclination angles θ ≳ 25◦. For the other cases with super-Eddington accretion, the
sources are likely to appear as normal ULXs.

Fig. 2.3 radial dependance of the mass inflow rate (yellow solid line), mass outflow rate (blue
solid line) and the net flow rate (black line) of models 1 to 3 from the top to the bottom,
respectively. The dashed line in the middle panel shows the result of the long term simulation
for model 2.
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Fig. 2.4 Viewing angle (θ) dependence of observed temperature Tobs (top panel) and isotropic
luminosity L defined by equation (2.18) (bottom panel) for various mass injection rates,
ṁinj = 102, 103 and 104. The horizontal axis is the polar angle θ [degree] and the vertical axes
are temperature [keV] (top panel) and normalized isotropic luminosity [LEdd] (bottom panel),
respectively. The dashed lines on the top panel indicate the temperature on the inner boundary
in the case that the optical thickness is less than unity. The dotted line of each figure shows
the result of the long term simulation for model 2.

We thus examine our simulation data to see if they support the super-Eddington hypothesis.
We found that the temperature and luminosity are in the reasonable ranges for explaining the
ULSs, if we adopt ṁacc ∼ 400 and θ ≳ 25◦. Figure 2.4 shows the θ-dependence of the isotropic
luminosity at the outer boundary, calculated by

L(θ) ≡ 4πr2outFr(r = rout, θ) (2.18)

and the observed temperature Tobs which can be considered to be the temperature on the outer
sphere between the Compton sphere and the photosphere, respectively. When the photosphere
viewed from an angle vanishes, the observed temperature is set as the temperature on the
inner boundary (see the dashed line on figure 2.4). Since the luminosity of ULSs are about
1039erg s−1 ∼ 1LEdd for 10M⊙, the reasonable viewing angles are whole angles for model 1,
θ ≳ 45◦ for model 2 and θ ≳ 25◦ for model 3, respectively. Since the blackbody temperature
of the ULSs are around 0.1 keV, the reasonable range of the viewing angle is θ ≳ 65◦ for
model 1, θ ≳ 35◦ for model 2 and θ ≳ 20◦ for model 3, respectively. We thus conclude that
the basic observed properties of the ULSs can be expained for the viewing angle of θ ≳ 30◦
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for 102 ≲ ṁacc ≲ 103. Moreover, our result shows that, the more the accretion rate is, the
more likely a ultraluminous source is to be observed as a ULS. This fact is consistent with the
classification of ULSs and ULXs in Urquhart & Soria (2016).

We can roughly understand why the observed temperature of supercritical accretor is ∼ 0.1

keV for an edge-on observer in the following way. From the relationship L ∼ 4πr2σT 4 we find

T (r) ∼ 1(M/10M⊙)
−1/4(r/3Rs)

−1/2 keV, (2.19)

for L ∼ LEdd due to the photon trapping effect (Begelman & Meier 1982). When we see the
supercritical flow from large angles, we see the outer surface of the inflated region. Further, the
size of the inflated region is approximately the trapping radius

Rtra ∼ ṁRs (2.20)

(see Kato et al. 2008, Chapter 10). We thus find

T (Rtrap) ∼ 0.1(ṁ/300)−1/2 keV (2.21)

From this relationship we also understand the tendency that the higher ṁ is, the lower becomes
the observed temperature, in good agreement with figure 2.4.

We have two remarks here. First, since the outflow blowing out is optically thick even at
the outer boundary, we might have overestimated the luminosity and the temperature. Second,
when the mass injection rate is high (in the model 2 for example), the outflow going along
the disk is accelerated and heated by radiation and thus the temperature is relatively high
(∼ 107K or higher). This may be because the disk has a steep edge facing to the equatorial
direction due to the low angular momentum of injected gases and the photons from the edge
can effectively accelerate the gas toward the equatorial direction. This is an artifact resulting
from our assumed (relatively small) specific angular momentum; that is, larger specific angular
momentum is needed in the injected gas. We, hence, need more extensive study with a larger
computation box to establish the super-Eddington scenario.

2.4.3 Application to the Extreme Ultra-Luminous X-ray sources

The Extreme Ultra-Luminous X-ray sources (EULXs), which have higher luminosities (LX ≳

1041erg s−1 ∼ 103LEdd for a 10 M⊙ black hole) than normal ULXs, were discovered recently.
Since such huge luminosity is not easy to explain by the super-Eddington accretion scenario, it
is considered as the most promising candidate for the intermediate-mass black hole. Our results
demonstrate, however, that even such huge isotropic luminosities as those of EULXs can also
be accounted for by supercritical accretion (see model 3, in Table 1; the luminosity viewed by
face-on observers can reach nearly 100 times greater than Eddington luminosity.). We thus
support that EULXs may also be super-Eddington accretors.

Note, however, that the luminosity of the EULXs can be reproduced only when the mass
injection onto the accretion disk is huge; ṁinj ≳ 104 and the central black holes is slightly heavier,
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MBH ≳ 20M⊙. Note also that special relativistic effect is not considered and thus the relativistic
beaming is neglected in our simulation. In other words, the isotropic luminosities could be
underestimated when ṁacc is high. This needs to be confirmed in future GR simulations.

2.4.4 Very strong outflow

One of the most remarkable observational features of the super-Eddington sources should be
emission from their environmental gas (or nebula) which shines by receiving a significant impact
by the strong outflow. This will explain the so-called ULX bubbles. In fact, our simulation
demonstrates the emergence of very strong outflow at high ṁacc ≳ 102. Furthermore, the
outflow rate overcomes the accretion rate at ṁacc ≳ 102 − 103. Such strong outflow inevitably
causes some significant impacts on its circumstances. It should be noted that the outflow rate
cannot exceed the mass injection rate (from the calculation boundary) but CAN exceed the
accretion rate (onto the black hole) (see also Hashizume et al. 2015). Note also that the sum of
the outflow and accretion rates is by about one order of magnitude less than the mass injection
rate, meaning that the mass is continuously accumulated within the simulation domain with
the time. In future work we plan to perform longer simulations with a larger rrot to see an
actual steady-state flow structure.

Outflow from radiation-pressure dominated disk is likely to become clumpy above the
photosphere (Takeuchi et al. 2013). Although we cannot resolve the clumpy structure in our
simulation because of lack of resolution (note that the size of each clump is about one optical
depth; see Takeuchi et al. 2014), we can easily check whether the outflow from super-Eddington
accretion flow calculated in our simulation could be clumpy or not by using the condition found
by Takeuchi et al. (2014). Basically, the condition is so simple; clumpy outflow appears if the
radiation force overcomes the gravitational force.

2.4.5 How to achieve high injection rates?

In our simulation, we consider the mass injection rate Ṁinj as a parameter. Here, we discuss
how a large amount of gas can be injected into the accretion disk from a companion (in the
case of binary system).

A population synthesis study for binary systems by Wiktorowicz et al. (2015) shows that
a 10M⊙ black hole is fed by a massive (∼ 10M⊙) Hertzsprung gap donor with Roche lobe
overflow (RLOF) rate of 10−3M⊙yr

−1 (≈ 2600ṀEdd ) and the maximum RLOF rate reaches
10−2M⊙yr

−1 (≈ 3× 104ṀEdd ).
There should be some circumstances, in which feeding sufficient gas at a super-Eddington

rate (up to ∼ 104ṀEdd) to the vicinity of the black hole is feasible.

2.4.6 Difference from other numerical simulations

Our simulations do not take into account the effects of general relativity. The effects of general
relativity become very important when considering the physics at the vicinity of the event
horizon and the spin of black holes. The general relativistic radiation hydrodynamical simu-
lations performed by Sądowski et al. (2015) show that the outgoing mass flow rate is by an
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order of magnitude greater than the accretion rate for Ṁacc ≈ 100ṀEdd when the black hole
spin is high, a = 0.9, while they are on the same order, if a = 0. Thus the general relativistic
simulation tends to show more significant outflow than Newtonian simulation, probably because
more gravitational potential energy is available in general relativity than in Newtonian or
post-Newtonian gravity, especially in the case of highly prograde rotating black hole. In table
2.1, the outflow rate at Ṁacc ≈ 200ṀEdd is an order of magnitude lower than the result of the
relativistic simulation. The higher the black hole spin is, the closer ISCO is to the event horizon,
so the more the released energy of the spinning black hole is (at maximum about 10 times higher
than the non-spinning case). Moreover, another mechanism, so-called Blandford-Znajek process,
works to increase the released energy for magnetized spinning black holes. For this reason, we
must also perform the general relativistic radiation magnetohydrodynamical simulations in
order to do more precise and realistic studies.





CHAPTER3
VARIABILITY OF COMPTONIZED X-RAY SPECTRA OF

SUPER-EDDINGTON ACCRETOR: APPROACH BY BOLTZMANN

RADIATION TRANSPORT

3.1 Introduction to Chapter 3

Precise modeling of Compton scattering process should be a critical issue, but it is not an easy
task especially for relativistic plasmas under strong gravity. Several semi-analytic or simple
numerical approaches are known for calculating radiation transfer with Compton scattering in
accretion flow (see Rybicki & Lightman 1979, and references therein). However, more accurate
and more realistic transfer calculations are required recently, since high resolution spectral data
are now available thanks to the rapid progress in observational instrumentations (e.g., NuStar
etc).

The Monte-Carlo method is the most widely used, powerful tool for calculating radiation
transfer with Compton scattering (e.g., Pozdnyakov et al. 1977; Dolence et al. 2009; Kawashima
et al. 2012; Mościbrodzka et al. 2014). The great advantage of this method is that it can
relatively easily calculate the scattering process, which is very complex in high temperature
gas layers and/or in moving scattering medium with relativistic speed. In this method, we
deal with statistics of the trajectory of photon packets in the phase space; that is, photons
experience Compton scattering with electrons, obeying the a priori prescribed statistics. The
disadvantage of the Monte-Carlo approach is, however, that the precision is limited by photon
statistics. This limitation appears to be most severe, when we handle the photons with much
higher energy than that of the seed photons, since the number of the former (up-scattered)
photons could be very small, leading to rather poor statistics. Other disadvantages are difficulty
in time-dependent calculation, lack of stimulated Compton scattering, and spatial resolution of
physical quantities.
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Another approach is solving the Boltzmann radiation transport equation to obtain the
distribution function of photons in 6-dimensional space (3-dimensional (3-D) real space and
3-D momentum space; see, e.g., Sumiyoshi & Yamada 2012; Nagakura et al. 2014; Takahashi
& Umemura 2017). The merit of this approach is its capability of simulating time evolution
of the medium, since we know the distribution function at all the spatial points and can thus
calculate feedback effects on the interacting medium. Another advantage is that this method
can naturally be connected to the radiation hydrodynamics (RHD) simulation codes, which
will make it possible to perform frequency-dependent RHD simulations in future. The weak
point of this method is a difficulty in calculating the Compton scattering process, since it is
highly complicated when bulk and/or thermal velocities are relativistic or when we consider
high energy regime. Another concern is the treatment of multiple scatterings. The scattering
timescale is generally much shorter than that of the fluid or light crossing time. Usually, the
time interval ∆t is determined by the light crossing time and so the gas-radiation interaction
term should be calculated by the implicit method. Then, the number of experiencing scattering
in one time-step should be much smaller than that in the realistic case, however, since the
scattering kernel describes only a single scattering. That is, the multiple scattering cannot be
precisely calculated by the Boltzmann-solver calculations, especially when the time interval ∆t

is taken to be much longer than the scattering timescale.

To summarize, the Monte-Carlo method is easier to handle with but has a difficulty in
solving time-dependent problems, while the Boltzmann method is advantageous in solving the
time-dependent problems but is not easy to properly calculate multiple scattering processes. In
the present study, therefore, we propose a new methodology how to combine these two methods
and apply our method to solve the problem of low-temperature, optically thick Comptonization
as is realized in super-Eddington flow. On the basis of the probability function of a single
scattering calculated by the Monte-Carlo method, we can reconstruct the probability function
of the multiple scattering. The time evolution is then solved by the Boltzmann equation and
the source term is calculated by the probability function of multi-scatterings. This enables us
to calculate time-dependent radiation fields with multiple thermal/bulk Compton scatterings.
The present study will mark an important milestone towards the construction of a frequency-
dependent GRRMHD simulation code of accretion flow in general context. We first explain the
basic methodology in §3.2 and then show the results of typical cases in §3.3. The final section
is devoted to discussion.

3.2 Method

We developed a new code of the grid-based Boltzmann solver of the radiation transfer, incorpo-
rating the Compton scattering process, in the curved space-time described by the Schwarzschild
metric and calculate the observed spectra of super-Eddington accretion flow and outflow by
the post-processing. In the present paper, we set G=c=1 so that the unit of the length scale is
1M = 15(M/10M⊙) km and that of the timescale is 1M = 5× 10−5(M/10M⊙) s.
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3.2.1 GRRMHD Data for Background

We use the GRRMHD data, (ρ, T,v), for calculating the radiation field in our simulation where
ρ is the density, T is the temperature, v is the velocity of the fluid. These data are obtained by
the 2-D axisymmetric simulations by Takahashi et al. (2018) who solve the GRRMHD equations
in the polar coordinates on the basis of the Kerr-Schild metric around a non-spinning black
hole. Here, we summarize the properties of the used GRRMHD simulation data:

• The simulation domain (r[M ], θ[rad]) ∈ [1.96, 245]× [0, π] is divided into 264× 264 cells.
They put a 10 M⊙ black hole at the origin (r = 0).

• They started the simulation from an equilibrium torus composed of pure hydrogen plasmas
and threaded with single poloidal magnetic fields. The inner edge of the initial torus is at
r = 20 M and the pressure maximum is at r = 33 M ,

• They could reproduce the super-Eddington accretion flow and radiatively driven outflows.
The mass accretion rate onto the central black hole is about 300LEdd in the quasi-steady
state, which is achieved after the elapsed time of 3000M .

• In the quasi-steady state, no unphysical flares (which are occasionally observed in the
simulations based on the M1 scheme) nor artificial abrupt heating do not occur.

We employ the simulation data which are time averaged over the time span of t = 3000−3300M

(in the quasi-steady state). Figure 3.1 shows, from the left to the right, the contour maps
of the density, temperature, and velocities overlaid with the velocity vectors, respectively.
We see two-phased structure composed of dense, low-temperature torus region and tenuous,
high-temperature outflow region.

Before performing the radiation transfer calculation, we transformed the values described in
the Kerr-Schild metric into those in the Schwarzschild metric. We also reduced the numerical
resolution of the data from 264× 264 grid points to 32× 64 grid points because of the limitation
from the calculation resource. The electron temperature in our calculation is assumed to be
equal to the proton temperature, for simplicity (this approximation will be discussed in §3.4.3).
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3.2.2 Basic equation

The basic equation that we solve in the present paper is the conservative form of the Boltzmann
equation in the Schwarzschild coordinates (t, r, θ, φ) derived by Shibata et al. (2014),(
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where f , M and Srad are the distribution function of photons, the mass of a central black hole
and the source term via gas-radiation interactions, respectively. The set (ν, θ̄, φ̄) represents the
coordinates in the momentum space of photons, in which ν is the frequency of photons measured
by an Eulerian observer, θ̄ is the angle between the direction of the photon propagation and the
r-direction, and φ̄ is the angle between the θ-direction and the projected photon momentum
vector on the plane perpendicular to the r-direction. Note that we use the fluid data provided
by 2-D axisymmetric simulation so that the derivative ∂/∂φ vanishes.

We solve the left-hand-side of the equation (3.1) (i.e., the advection term) by the second
order upwind method with the min-mod limiter (although it is slightly modified as will be shown
in appendix B.3.1). The right-hand-side which is the source term of gas-radiation interactions
is solved with using the interaction tables (see appendix B.3.2).

3.2.3 Simulation setup

We perform the radiation transfer simulations within the 5-dimensional (5-D) simulation
domain of r[M ] = 2.1-250, θ = 0-π, hν[keV] = 0.01-500, θ̄ = 0-π, and φ̄ = 0-2π. The grid
points are uniformly distributed in the θ-, θ̄-, and φ̄-directions, and uniformly distributed
in the logarithm in the ν- and r-directions, respectively. The number of grid points are
(Nr, Nθ, Nν , Nθ̄, Nφ̄) = (32, 64, 50, 9, 8). As the opacity sources, the Bremsstrahlung by a pure
hydrogen plasma and the electron scattering (with Klein-Nishina cross-section) are included.

At the inner and outer boundaries, r[M ] = 2.1 and 250, we employ the free (no-gradient)
boundary conditions for the outgoing radiation and the incoming radiation is set to be zero.
We use the reflective boundary condition at θ = 0 and π as well as at θ̄ = 0 and π. At the
boundaries of the frequency grid we employ the dumping boundary condition (i.e., we assign
small values there). We use the periodic boundary condition at φ̄ = 0 and 2π.



3.3 Results | 35

0 50 100 150 200
R/Rg

0

50

100

150

200

250
z/
R

g
log(ρ [g/cm3])

−8 −6 −4 −2

0 50 100 150 200
R/Rg

0

50

100

150

200

250

z/
R

g

log(Tgas [keV])

0 1 2 3

0 50 100 150 200
R/Rg

0

50

100

150

200

250

z/
R

g

|v|/c

0.0 0.5 1.0

Fig. 3.1 The GRRMHD simulation data used in the present study. Color contours of the gas
density, the gas temperature, and the gas velocity are displayed in the left, middle, and right
panels, respectively. The right panel is overlaid with the velocity vectors. The black (yellow)
dotted contour lines in the right panel indicate the loci of |v/c| = 0.2(0.5).

Initially we assume no radiation field in the whole simulation domain and calculate the time
evolution of the radiation fields by solving the equation (3.1).

3.3 Results

3.3.1 Simulation Overview

We calculate the observed luminosity at frequency ν seen from the viewing angle of θview,
Lν(θview, t), and the bolometric luminosity, Lbol(t), by

Lν(θview, t) = 4π

∫
{θ,θ̄,φ̄}∈Λ(θview)

Iν(t, r = rout, θ, θ̄, φ̄)dS (3.2)

where the set Λ(θview) contains all elements (θ, θ̄, φ̄) satisfying the condition where the direction
determined by (θ, θ̄, φ̄) is parallel to the direction of observer (θview) and where it is outward-
directing on the outer boundary of the simulation domain, and the area element dS is that on
the screen of the distant observer, and

Lbol(t) =
1

2

∫∫
Lν(θview, t)dνd(cos θview), (3.3)

at each time, respectively. Here, we assume that the photons go straight without being suffered
from the gravitational redshift at the outside the computational box, since the distance from the
black hole is sufficiently far that the GR effect is negligibly small. We plot how the bolometric
luminosity grows, starting from the initial zero-luminosity state, in the left panel of figure 3.2.
The bolometric luminosity reaches ∼ 1040erg s−1(∼ 10 LEdd) in four light crossing times (where
we define the light crossing time to be tcross ≡ rout/c = 250 M). We see that the radiation field
settles down in a quasi-steady state at t > tqss ≡ 4tcross (see the left panel of figure 3.2).

The right panel of figure 3.2 shows the observed spectra in the quasi-steady state, Lν(θview, t =

tqss) for various viewing angles. We see a clear trend that the larger the inclination angle is,
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Fig. 3.2 Left panel: Time evolution of the total luminosity over time span of 0 – 1000M . Right
panel: Observed spectra (in the quasi-steady state) viewed from a distant observer located at
angles of θview [radian]= 0.02 (∼ 0◦, red), 0.32 (∼ 20◦, green), 0.52 (∼ 30◦, blue), and 1.01
(∼ 60◦, purple), respectively. The closed circles denote the calculated data points, whereas the
curves represent the spline fits to the three-point average of the data points.

the lower becomes the hard X-ray component, and, hence, the softer becomes the spectrum.
This can be easily understood, since the high energy photons (with energy > 10 keV) are
mostly generated in the funnel region. Therefore, they can be observed only by a nearly face-on
observer (with a viewing angle θview ≤ 30◦) and are not seen by a nearly edge-on observer,
for whom they are effectively blocked by optically thick outflow. The lower energy photons
(with energy < 10 keV), by contrast, originate from much wider region surrounding the funnel
and disk, and, hence, always observable: they can directly propagate even to an edge-on observer.

We next examine the two-dimensional distributions of the radiation energy density in the
simulation box. The upper left panel of figure 3.3 shows the color contours of the total radiation
energy density (integrated over photon energy) overlaid with the total energy flux vectors, while
the other three panels of figure 3.3 illustrate the color contours of the energy density of radiation
with ν = 1 (upper right), 10 (lower left), and 100 keV (lower right), respectively. Loci of the
effective optical depth of τeff =1 and 10 are indicated by the black solid and black dotted lines,
respectively, while those of the Thomson optical depth of τes =1 and 10 are indicated by the
yellow solid and yellow dashed lines, respectively.

The strongest is the 10 keV emission from the optically thick disk region. (This is the reason
why the total radiation energy density reaches its maximum value there). Further, we find in
the lower two panels that the high energy photons with ≳ 10 keV emerge from hot regions
within the jet funnel region. Here, by the funnel region we mean the region which is full with
hot (T > 108 K), tenuous (with Thomson optical depth of τes < 1), and rapidly outflowing
(with v > 0.1 c) gas (Kitaki et al. 2017). Crudely, this funnel region has an opening angle of
30◦ (the region above the black dashed line in the upper-left panel) and is surrounded by the
slower (with velocity v < 0.1 c) and denser outflow region. Such high energy photons propagate
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Fig. 3.3 Contour maps of the total radiation energy density (upper left) and the radiation
density at different energy bins: 1 keV (upper right), 10 keV (bottom left), and 100 keV (bottom
right), respectively. The lines in the last three panels indicate the loci of τeff = 1 and 10 (black
solid and dotted lines), and τes = 1 and 10 (yellow solid and dotted lines), respectively. The
dashed line in the upper left panel is the line with the polar angle of θ = 30◦, which indicates
the approximate position of the funnel wall.
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along the polar axis or are advected by the optically thick outflow, which is launched from the
inner hot region and propagate toward the direction of the polar angle of 20◦ − 40◦. The 10
keV photons are produced mostly within the disk and some in the funnel, whereas the 1 keV
photons originate in much wider space in and around the disk. The photons emitted from the
disk can effectively lose their energy via Compton scattering, whereas those from the funnel
can partly leak into the slower and denser outflow region.

3.3.2 Dependence of intensity map on viewing angles and photon energies

We next show in figure 3.4 how the super-Eddington accretion flow and outflow look like in
X-rays to distant observers at different viewing angles (measured from the polar axis), θview.
The upper panels show the images of the flow seen from the viewing angle of θview ∼ 0◦ at
photon energy of 1 keV, 10 keV, and 100 keV from the left to the right panels, respectively. In
all the panels the polar cap region around (x, y) = (0, 0) is brightest and the region around
θ ∼ 50◦ is the second brightest, about one third of the former. Although the emission from the
latter is not so strong, it has a much wider area than the former.

The three panels in the middle row show the same but seen from θview ∼ 20◦. A large
fraction of hard photons (with ≳ 10 keV) comes from the funnel region, whereas lower energy
ones originates from more or less entire region. The brightest region at 1 keV is off-polar
regions of θ = 20◦ − 50◦. The same trend can be seen in the bottom panels for the cases
with θview ∼ 30◦. Since gas is rotating around the black hole, radiation tends also to go
around the polar axis after undergoing multi-scattering, especially in the optically thick re-
gion. This effect can be clearly seen in the middle and lower rows in figure 3.4. From all the
panels in figure 4 we understand that the very high-energy emission (above a few tens of keV)
is very sensitive to the viewing angle, while softer emission is not so sensitive to the viewing angle.

3.3.3 Spectral variability caused by a flare

It is well known that black hole objects commonly exhibit significant degree of variabilities
on various timescales. Such variabilities were already known in the dawn of X-ray astronomy
(e.g., Oda et al. 1971) but their origin remains to be an open issue until now (see, e.g., Done
et al. 2007; Falanga et al. 2015, and reference therein). One of the most promising possibility
is assembly of flare-like events (Galeev et al. 1979). Frequent occurrence of magnetic flares is
very likely in hot accretion flow like RIAF and in accretion disk corona, since both seem to be
composed of hot magnetized plasmas, like solar coronae. This has led to the idea of the lamp
post model, in which a compact hard X-ray emitting source above a black hole illuminates a
surrounding accretion disk (e.g., Martocchia & Matt 1996; Miniutti & Fabian 2004). It is thus
curious to see how spectra change with time in response to a flaring event occurring in the
innermost region.

Prompted by such consideration, we calculated the spectral variation of a super-Eddington
accretor in response to a sudden heating of the innermost zone caused by a flaring event (i.e.,
magnetic reconnection). Using the simulation data at t0 = 1000 M , in which a quasi-steady
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Fig. 3.4 Observed images by a distant observer located at viewing angles (measured from the
polar axis) of 0◦ (upper row), 20◦ (middle row), and 30◦ (bottom row) for the photon energy of
1 keV (left column), 10 keV (middle column), and 100 keV (right column), respectively. The
yellow line represents the intersection between the funnel wall (defined by the polar angle of
θ = 30◦, see figure 3.1) and the outer boundary of the simulation box. The plus marker indicates
the position of the origin, where the black hole is located.
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Fig. 3.5 Time evolution of the observed spectra in response to a flare that occurred at t = t0
in the innermost zone viewed by a face-on observer (with θview = 0◦). The color of the line
changes from blue, red, to green, as time goes on. The number near each line indicates the order
of the time evolution; that is, t− t0 [M ] = 50, 300, 350, 400, 450, 500, 550, 800, and 1000 for the
number, 1 to 9, respectively, Note that the time of 1000M corresponds to ∼ 0.05(M/10M⊙)
sec).

state is achieved, we suddenly raise the gas temperature Tgas in the innermost funnel region
(r < 20 M and τes < 10 where τes is the optical depth by electron scattering calculate from the
polar axis) by a factor of 10 for a time interval of 200M (corresponding to the 10 light crossing
time of the flare region), and then suddenly drop the gas temperatures to their original values.
We calculate how the spectrum changes with time by the occurrence and termination of the
flare and show the results in figure 3.5.

As is clearly shown in this figure, spectra are largely deformed during the flare, especially
in the hard X-ray range above ∼ 20 keV. Notably, such variations are sensitive to the viewing
angle; the smaller the view angle is, the larger becomes the variation amplitude. In the face-on
case, the high energy photon (≳ 20 keV) counts begin to increase at t = 1250 M (∼ t0 + tcross,
between the number 1 and 2 in figure 3.5), reach their maximum value at t ∼ 1400 M (between
the number 4 and 5 in figure 3.5), and then decay to the steady-state values. The maximum
amplitude of the variation is by a factor of ∼ 3 at photon energy of ∼ 60 keV.

Then, why is the variability amplitude larger in hard X-rays to a face-on observer? This is
because hard X-ray emitting region is much more compact than the soft X-ray emitting region
(see figure 3.3) and because the hard X-rays can only reach nearly face-on observers and are
blocked to large viewing-angle (θview) observers (see the right panel of figure 3.2, see also figure
3.4).

Another noteworthy feature is the time delay in response among different energy bands:
that is, 60-100 keV photons rise more quickly than 15-30 keV photons, but the decay is similar
among different energy bins. This time delay between the arrival of harder and softer photons
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shown in figure 3.5 indicates that the hard photons generated in the funnel area close to the
black holes are down-scattered at the funnel wall during the propagation to the outer boundary
and thus the arrival is delayed. This mechanism is the same as that claimed in Kitaki et al.
(2017). We may thus conclude that the spectral variability reflects the geometry of hard X-ray
emitting region.

We must admit, however, that it is practically impossible to detect such rapid hard X-ray
variation with the existing nor any planned X-ray satellites for the case with stellar-mass black
holes. But the timescale will be much longer in cases with massive black holes; on the order
of ∼ 400M = 2× 104(M/106M⊙) sec. It might then be feasible to detect spectral variations
with future mission with good hard X-ray sensitivity. The application to the massive black hole
cases will be a future issue (see next section).

3.4 Discussion

In this section we discuss the observational implications, comparison with the past simulation
study, and remaining future issues.

3.4.1 Observational implications: case of ULXs

Rather unique ULX spectra, in comparison with the (sub-Eddington) Galactic X-ray binaries
containing black holes, also supports the super-Eddington model. There are several distinct
spectral states known for the X-ray spectra of ULXs: the broadened disk (BD) state, hard UL
state, soft UL state, the supersoft UL (SSUL) state, etc (see, e.g., figure 2 of Kaaret et al. 2017,
for typical spectra). Interestingly, some of them (BD and hard UL states) show a rather broad
spectral bump in several to 10 keV range, which is consistent with the present study. To be
more precise, the hard UL spectra show rapid decay above several keV, whereas the typical
X-ray spectrum extends over 10 keV and is very reminiscent of our calculated spectrum (see
the right panel of figure 3.2). It is not clear yet why our model is consistent only with one
particular state; this issue is left as future subject.

Kitaki et al. (2017) investigate the spectral properties of super-Eddington accretion flows
by the Monte-Carlo approach. Their results can explain the typical spectral feature of ULXs,
such as the hard excess above several keV. Although the accretion rate they adopted is near the
same as that we adopted, the spectral shapes are distinct among the two. Such differences arise
because of different fluid model. We find that the gas temperatures differ by a factor of two or
more in the optically thick region near the black hole. Much larger differences are found in the
funnel region; the temperature in their simulation is ∼ 108 K (see their figures 1 and 2), which
is by more than one order of magnitude lower than our fluid data, ∼ 109 K, at most.

What causes such differences? These major differences may arise from the inclusion/absence
of general relativistic (GR) effects and/or of magnetic fields, since the data they use is based on
the 2D-RHD simulation (which does not include the GR effects nor MHD processes). This is
the main reason why the spectrum of our result is much harder than their one.

Narayan et al. (2017) investigated the spectra of super-Eddington flows, incorporating both
of the GR and magnetic field effects. Their spectrum of the model SANE (the green line in
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their figure 4) is also in good agreement with the BD-state spectra of the ULX. Big differences
from ours are that (1) they adopted a large outer boundary of the fluid data; i.e., 105M , which
is 400 times greater than ours, and that (2) they approximately handle the Compton scattering
by using the Kompaneets equation and isotropic scattering, while we handle it nearly perfectly
by directly solving the Boltzmann equation except for the induced scattering. The difference
of the outer boundary may affect the spectrum, as mentioned above (see also their figure 13),
since the optical depth of the outflow can become more than our result and because the soft
photons from the disk may increase.

The Kompaneets equation is derived under the assumption that the radiation field would
be isotropic and that the Fokker-Planck approximation would be a good approximation. In the
funnel, the radiation field is highly anisotropic and the energy shift by the single scattering is
very large, ∆ϵ/ϵ > 1 (with ϵ being the photon energy). This fact should inevitably affect the
calculated spectra at high energy regime. They also show the brightness map (see their figure
5), in which the funnel region is clearly seen when viewed from a low viewing angle direction.
This feature shares with that of our result.

3.4.2 On the long-term spectral variability of ULX

The ULXs are known to exhibit rather complex X-ray spectral variations. A good example is
displayed for the case with Ho IX X-1 (see figure 3 of Vierdayanti et al. 2010), where significant
spectral variabilities were found on timescales of several to 100 days or even longer. Obviously,
there is no one-to-one correspondence between the spectral shape and the X-ray luminosity. It
seems that the broad soft X-ray component (in the range of 0.5 - 5 keV) and the hard X-ray
component (above 5 keV) vary independently. In some epoch the former totally dominates with
the latter being missing, but in other epoch the latter dominates with the former being weak.
There also exists an epoch, at which both components are bright. How can we understand this?

Since the timescale of the spectral variations of a sort that we encounter here is much longer
the flaring timescale (see §3.5) the variations cannot be of flare origin. We need to consider
variations over much wider spatial range. It is important to note in light of the present analysis
that the soft, broad spectral component and the hard-band component have different origins:
the latter originates from the funnel region, while the former from the disk and surrounding
outflow. The broad soft X-ray component and the hard X-ray component should change in a
similar way, as long as the mass accretion rate (Ṁ) is roughly constant in space. The existence
of complex spectral variability thus means that accretion should be time-dependent. Suppose
that a mass injection rate suddenly increases at large radii, say at several hundreds of RS. Then,
the enhanced mass inflow is initiated there and propagates inward on the viscous timescale
on the order of several days or even longer (see §3.2.3 in Kato et al. 2008). Accordingly, the
broad soft X-ray component first grows, as the Ṁ -burst propagates inward, but the hard X-ray
component does not respond immediately, since it is generated only in the funnel region. The
hard X-ray component starts to rises only after the Ṁ burst reaches the innermost region.Hence,
there exists some time delay, comparable to the viscous timescale, between the rise of the soft
X-ray component and that of the hard X-ray one. In this way, we can qualitatively understand
the spectral behavior reported in Vierdayanti et al. (2010).



3.4 Discussion | 43

3.4.3 Future prospects

We finally summarize some remaining issues and future works for improvement of the present
code.

First, Narayan et al. (2017) also reported an important fact that the emerged spectrum
largely change, if we calculate the gas temperature self-consistently with radiation fields. The
temperature at the innermost funnel region is much lower than that obtained by the GRRMHD
simulation without such consideration, and thus the spectrum is softer. This ultimately requires
the calculation of radiation field and fluid simultaneously.

Second, the initial torus should be placed at much larger radius so as to correctly calculate,
especially, lower energy spectra. In our calculation, the disk is truncated at r ∼ 250 M or less,
whereas soft photons are expected to emerge from more distant regions (see figure13 in Narayan
et al. 2017). For this reason, much larger calculation box size in the GRRMHD calculation
is necessary. There is another reason why we should put an initial torus at as much larger
radius as possible. Kitaki et al. (2020) performed the long-term, large-box RHD simulation
of a super-Eddingtion accretion flow and could achieve the self-consistent (i.e., quasi-steady)
steady accretion flow and outflow structure over a large spatial range at r < 1200 M . They
report that the calculated outflow rate is much less, by one order of magnitude or even more,
compared with the value obtained by previous study, in which quasi-steady state is achieved
within a much smaller range (i.e., less than several tens of the Schwarzschild radius). Setting a
much larger computation box is needed to avoid artificial results.





CHAPTER4
CONCLUSIONS AND FUTURE ISSUES

4.1 Conclusions

We investigate the properties of super-Eddington accretion flow via numerical simulations and
conclude as below:

• The structure of super-Eddington flow can be decompose to three parts: relatively cool
and dense disk region with the scale height H ∼ r, the optically thick and relatively slow
(∼ 0.1c) outflow region and the jet funnel filled with fast tenuous hot gas (Tgas ≳ 109K).

• The opening angle of the funnel, which can be defined by the photosphere by the electron
scattering, is about 30◦.

• The spectrum becomes softer when the accretion rate increases. This trend can be
easily understood by the Ṁ -dependence of photon trapping radius (rtrap ∝ Ṁ), i.e.,
4πr2trapσSBT

4
eff = LEdd.

• The angular dependence of observed spectra, especially in hard X-ray, clearly reflects the
structure of the jet funnel, which means the hard X-ray photons emerge only from the
funnel region, and thus the larger inclination angle is, the softer the spectrum becomes.

• The flare occurring at the innermost region can be a good tracer to investigate the
inclination angle because the variation of hard X-ray photons is sensitive to the inclination
angle.

4.2 Future Issues

We finally discuss the remaining issues and future works in the line with this thesis. The
Boltzmann radiation solver in this thesis is a milestone for an goal of a complete radiation
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hydrodynamic simulation, i.e., the general relativistic frequency-dependent full transfer with
hydrodynamics in future. This will solve the radiation processes correctly and solve the fluid
properties self-consistently. For this purpose, there are some issues to be solved.

Our code (of course, Newtonian RHD simulations in chapter 2, but even the GR radiation
transfer in chapter 3) now cannot calculate the cases, in which a central black hole is rotating.
Since Kerr black holes seem to be more common than Schwarzschild black holes in the universe,
we need to upgrade our code so as to solve radiative transfer around a spinning black hole.
When the rotation of a black hole is prograde, the Blandford-Znajek mechanism will work to
possibly produce energetic jet. Narayan et al. (2017) reported the dependence of the spectra on
the black hole spin; the spectrum will be notably harder when the black hole is rapidly spinning.
This implies that the hardness ratio of the observed spectra may contain useful information
regarding the black hole spin.

Compton scattering must be included more correctly. Although the RHD simulation in
chapter 2 include the Compton heating/cooling there are large assumptions because of the grey
moment equation solver, which are the isotropy of radiation and the Planck distribution. The
GR radiation transfer code in chapter 3 improve the treatment of Compton scattering to some
extent since this code solve the distribution function of photons in the phase space. However,
even this code does not include induced scattering. Although this is a second-order (f2) effect
in Compton scattering, it may play an important role in the mildly optically thick region. In the
effectively optically thick region (i.e., in the disk region), frequent absorption and re-emission
take place, giving rise to blackbody radiation, and thus scatterings are not so important. In
the effectively optically thin but Thomson thick region (i.e., near the funnel wall), by contrast,
the Compton scattering could be effective. Since the radiation field in the comoving frame is
highly collimated (i.e., more coherent in the momentum space) in the funnel region, especially
near the funnel wall, the induced scattering might not be negligible. Since the anisotropy of
radiation field is larger in higher energy band (≳ 10 keV) in our calculation, the spectrum will
be softer than the present result by the contribution of the induced scattering occurring near
the funnel wall (with the temperature T ∼ 10 keV). Hence, we should more accurately calculate
the Compton scattering in a future work.

Finally, it would be interesting to apply our methodology to investigate Fe Kα line diagnosis
of the super-Eddington flow and moderately sub-Eddington accretion flow, around massive black
holes. Calculated line profile variations will be directly compared with future observations by
the Athena satellite to explore gas and radiation dynamics (and hopefully space-time geometry,
as well) near the black hole (see, e.g, Dovciak et al. 2013). Incidentally, strong Fe line emission
is not expected in the simulation data which we used in this study, since the disk surface is very
hot, with temperatures exceeding ∼ 107 K, so that metals including Fe will be fully ionized.

We also are interested in the low accretion rate regime. The Compton scattering is also
important in the RIAF, especially in the term of observations. In the hot and tenuous gas,
the temperatures of protons and electrons are not same because of the larger relaxation time.
Although there are many studies to determine the ratio of temperature between proton and
electron including magnetic turbulent heating and synchrotron radiation cooling, the inverse
Compton scattering effect is also important to decide the electron temperature. The Boltzmann
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radiation transfer code we develop can calculate the radiative impact on the electron temperature
including the almost correct (which means the induced scattering is negligible because of the
low luminosity) radiative process. This calculation will affect the interpretation of observed
image such as M87 in Event Horizon Telescope.
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APPENDIXA
FORMULATION FOR GENERAL RELATIVISTIC RADIATION MOMENT

EQUATION

In this section, we will formulate the general relativistic radiation moment equation for numerical
simulation.

A.1 Tensor field equation of k-th radiative moments

First of all, we begin with Boltzmann equation for photons.

dxα

dτ

∂f

∂xα
+

dpi

dτ

∂f

∂pi
= (−pαuα)S(p

µ, xµ, f) (A.1)

where {xµ, pµ} is a coordinate set on phase space (in mathematical term, a phase space is a
subset of tangent bundle), τ is a affine parameter for photon tragectory and uα is velocity of
fluid. Here,

pµ =
dxµ

dτ
(A.2)

and for massless particle, since its trajectory is null geodesic,

dpµ

dτ
+ Γµ

νρp
νpρ = 0 . (A.3)

Instituting equations (A.2) and (A.3) to Boltzmann equation (A.1), we get the relation

pα
∂f

∂xα
− Γi

νρp
νpρ

∂f

∂pi
= (−pαuα)S(p

µ, xµ, f) (A.4)
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Next, the definition of k-th moment tensor MAk

(ν) := Mα1α2···αk

(ν) for radiation field with frequency
ν can be written as

Mα1α2···αk

(ν) : = ν3
∫

f(ν,Ω, xµ)(uα1 + ℓα1)(uα2 + ℓα2) · · · (uαk + ℓαk)dΩ

=

∫
fδ(p · u+ ν)

(−p · u)k−2
pα1pα2 · · · pαk(−p · u)dVp (A.5)

where ℓα is a unit spacelike vector with ℓαℓα = 1, uαℓα = 0, Ω is solid angle associated with
ℓ,dVp = (−p · u)Ωd(−p · u) is the invariant volume element of the momentum space and δ is
the Dirac delta function. It is notable that pα = (−pµuµ)(u

α + ℓα). Since we can choose the
Riemann normal coordinates as the local coordinates in any case and it is very convenient to
calculate covariant derivatives of tensor field because of vanishing the Christoffel symbols, we
choose this coordinates. Then, the Boltzmann equation is transformed to

pα
∂f

∂xα
= (−pαuα)S(p

µ, xµ, f). (A.6)

This is the time to formulate the k-th moment tensor equation. We begin with calculating
the covariant derivative ∇β of MAkβ

(ν) . Since choosing Riemann normal coordinates and the
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coordinate derivatives work only on f and u ,

∇βM
Akβ
(ν) =∂βM

Akβ
(ν)

=

∫
(∂βf)δ(p · u+ ν)(−p · u)−k+1pα1pα2 · · · pαkpβdVp

+

∫
f∂β(δ(p · u+ ν)(−p · u)−k+1)pα1pα2 · · · pαkpβdVp

=ν3
∫

S(uα1 + ℓα1)(uα2 + ℓα2) · · · (uαk + ℓαk)dΩ (from equation A.6)

−
∫

fpµ∂βuµ(−k + 1)(−p · u)−kδ(p · u+ ν)pα1pα2 · · · pαkpβdVp

−
∫

fpµ∂βuµ
∂

∂(−p · u)δ(p · u+ ν)(−p · u)−k+1pα1pα2 · · · pαkpβdVp

=SAk

(ν) + (k − 1)MAkβγ
(ν) ∂βuγ

−
∫ [

fpµ∂βuµ(−p · u)−k+2pα1pα2 · · · pαkpβδ(p · u+ ν)
]∣∣∣−p·u=∞

−p·u=0
dΩ (integration by parts)

+

∫
δ(p · u+ ν)

∂

∂(−p · u)
[
fpµ∂βuµ(−p · u)−k+2pα1pα2 · · · pαkpβ

]
dΩd(−p · u)

=SAk

(ν) + (k − 1)MAkβγ
(ν) ∂βuγ

+

∫
dΩd(−p · u)δ(p · u+ ν)

∂

∂(−p · u)
[
f∂βuγ(−p · u)4(uα1 + ℓα1)(uα2 + ℓα2) · · · (uαk + ℓαk)(uβ + ℓβ)(uγ + ℓγ)

]
=SAk

(ν) + (k − 1)MAkβγ
(ν) ∂βu

γ

+

∫
d(−p · u)δ(p · u+ ν)

[
(−p · u)MAkβγ

(−p·u)∂βuγ

]
=

∂

∂ν
(νMAkβγ

(ν) ∂βuγ) + SAk + (k − 1)MAkβγ
(ν) ∂βu

γ

=
∂

∂ν
(νMAkβγ

(ν) ∇βuγ) + SAk + (k − 1)MAkβγ
(ν) ∇βu

γ (A.7)

where dVp is invariant against the Lorentz transformation (i.e. invariant against to changing
Eulerian observer moving with u ) and SAk is defined as

SAk

(ν) := ν3
∫

S(uα1 + ℓα1)(uα2 + ℓα2) · · · (uαk + ℓαk)dΩ. (A.8)

Therefore, we conclude this formulation as

∇βM
Akβ
(ν) − ∂

∂ν
(νMAkβγ

(ν) ∇γuβ)− (k − 1)MAkβγ
(ν) = SAk

(ν). (A.9)

Particularly, taking the 1st moment equation, we get

∇βM
αβ
(ν) −

∂

∂ν
(νMαβγ

(ν) ∇γuβ) = Sα
(ν). (A.10)
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Integrating equation (A.10) over frequency, we get

∇βM
αβ = Sα (A.11)

where
Mαβ :=

∫ ∞

0
dνMαβ

(ν) , SAk :=

∫ ∞

0
dνSα

(ν). (A.12)

Considering the radiation decouples the matter, ∇βM
αβ = 0, which is the property of energy-

momentum tensor. Yes, Mαβ is nothing other than the energy-momentum tensor of radiation.
From the definition, the radiation energy-momentum tensor is clearly traceless.

A.2 Conservative Form of Radiation Moment Equation

By doing 3+1 decomposition of tensor equation, we transform equation (A.10) into the conser-
vative form of radiation moment equation and we get:

∂t(
√
γE(ν)) + ∂j [

√
γ(αF j

(ν) − βjE(ν))] +
∂

∂ν

(
να

√
γnαM

αβγ∇γuβ

)
= α

√
γ[P ij

(ν)Kij − F j
(ν)∂j lnα− Sα

(ν)nα] (A.13)

∂t(
√
γF(ν)i) + ∂j [

√
γ(αP j

(ν)i − βjF(ν)i)]−
∂

∂ν

(
να

√
γγiαM

αβγ∇γuβ

)
=

√
γ
[
−E(ν)∂iα+ F(ν)k∂iβ

k +
α

2
P jk
(ν)∂iγjk + αSα

(ν)γiα

]
(A.14)

where of course

E(ν) := M(ν)(n,n) := Mαβ
(ν)nαnβ (A.15)

F(ν) := −γ⃗(·,M(ν)(n, ·)) := −Mαβ
(ν)nαγ

µ
β (A.16)

P(ν) := γ⃗∗M(ν) := Mαβ
(ν)γ

µ
αγ

ν
β (A.17)

and α,β,K,n, γij , γ are the lapse function of its folliation {Σt}t∈R, the shift vector, the
extrinsic curvature on Σt, unit vector normal to Σt, the metric matrix on Σt with respect to
the coordinates (xα) and the determinant of γij , respectively.



APPENDIXB
DETAIL FOR BOLTZMANN SOLVER

B.1 Derivation of Basic Equation

In this section, we derive the basic equation following Shibata et al. (2014).
In General, Boltzmann equation is written as

dxα

dτ

∂f

∂xα
+

dpi

dτ

∂f

∂pi
= (−pαûα)C[f ] (B.1)

dxα

dτ

∂f

∂xα
+

dpi

dτ

∂f

∂pi
= (−pαûα)Srad(f, x

µ, pµ) (B.2)

where f is the distribution function which is the function of 4-spacetime (x1, x2, x3, x4) and
3-momentum space (p1, p2, p3), τ is affine parameter of trajectory, ûα is a arbitrary timelike
vector (which may be fluid vector or 4-vector of Eulerian observer) and C is the collision term
which is the function of distribution function and properties of Collisional source such as gas
temperature and density. Hereafter we use the Einstein notation and Latin dummy indices run
over 3-space ({1,2,3}) and Greek ones run over 4-spacetime ({0,1,2,3}).

In the case of photons, pα = dxα/dτ and the equation of motion is very simple and can be
written as null geodesic equation:

dpα

dτ
+ Γα

µνp
µpν = 0 (B.3)

where Γα
µν is the Christoffel symbol defined by spacetime metric gµν as

Γα
βγ =

1

2
gαν(∂βgνγ + ∂γgνβ − ∂νgβγ). (B.4)
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Using this relation, equation (B.1) can be written as

pα
∂f

∂xα
− Γi

µνp
µpν

∂f

∂pi
= (−pαûα)C[f ] (B.5)

It is notable that this equation will be reduced into the usual radiation transfer equation
1
c∂tIν + n · ∇Iν = Cν3 (where Iν is the specific intensity) in Newtonian case (Γα

βγ = 0).
In equation (B.5), the variables indicates 4-spacetime and 3-momentum space. 3-momentum
space can be understood more easily when splitting momentum space into the direction of
photon and its energy. So we must rewrite equation (B.5) as the equation explicitly depending
on 4-spacetime and frequency and direction. This means we use the spherical coordinate system
for 3-momentum space.

When applying to Black hole accretion disk, it is convenient to use the spherical coordinate
(r, θ, ϕ) in 3-space and so we use this one. After that, we can set the spherical coordinate
(ν, θ̄, φ̄) in the momentum space as figure B.1. In momentum space, we can use the orthonormal
basis eβ(α) (which satisfies gµνe

µ
(α)e

ν
(β) = ηαβ) to measure the real length. The timelike vector

eµ(0) is the 4-velocity of the observer, and the projection of pα on the vector shows the frequency
of photons observed by him (for example, when setting eµ(0) to the fluid 4-velocity uµ, the
projection ν = −pµuµ is the frequency measured on the fluid rest frame). After setting the
timelike vector eµ(0), there are 3 degrees of freedom which corresponds to the dimension of
rotational group SO(3). Anyway to set these basis, the photon’s 4-momentum pα (which
satisfies the null condition pµpµ = 0) can be decomposed as

pα = ν(eα(0) +
3∑

i=1

C(i)e
α
(i)) (B.6)

where the coefficients C(i) can be written as

C(1) = cos θ̄, C(2) = sin θ̄ cos φ̄, C(3) = sin θ̄ sin φ̄ (B.7)

where the angles θ̄, φ̄ are the polar angle measured from eµ(1) and the azimuthal angle measured
from eµ(2), respectively. This is just an analog to the usual cartesian coordinate written by
spherical values (i.e. (x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)). Here we set orthonormal
basis as figure B.1, so that (eµ(1), e

µ
(2), e

µ
(3)) are the unit vectors directing to r, θ, ϕ directions,

respectively. After setting coordinates on the phase space, we can transform the basic equation
(B.1) into the coordinate description as

dxα

dτ

∂f

∂xα
+

dν

dτ

∂f

∂ν
+

dθ̄

dτ

∂f

∂θ̄
+

dφ̄

dτ

∂f

∂φ̄
= (−pαûα)Srad(f, x

µ, pµ) (B.8)
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and these derivatives of coordinates (ν, θ̄, φ̄) are

dν

dτ
= − d

dτ
(pαe(0)α)

= −pβ∇β(p
αe(0)α)

= −pαp
β∇βe

α
(0)

dθ̄

dτ
=

d

dτ
tan−1


√

p2(2) + p2(3)

p(1)


=

1

ν

(
− sin θ̄

dp(1)

dτ
+ cos θ̄ cos φ̄

dp(2)

dτ
+ cos θ̄ sin φ̄

dp(3)

dτ

)
=

1

ν

3∑
j=1

∂C(j)

∂θ̄

dp(j)

dτ
=

1

ν

3∑
j=1

∂C(j)

∂θ̄
pαpβ∇αe

β
(j)

dφ̄

dτ
=

d

dτ
tan−1

(
p(3)

p(2)

)
=

1

ν sin2 θ̄

(
− sin θ̄ sin φ̄

dp(2)

dτ
+ sin θ̄ cos φ̄

dp(3)

dτ

)
=

1

ν sin2 θ̄

3∑
j=1

∂C(j)

∂φ̄

dp(j)

dτ
=

1

ν sin2 θ̄

3∑
j=1

∂C(j)

∂φ̄
pαpβ∇αe

β
(j). (B.9)

According to these equations and pβ∇βp
α = 0, we can get the conservative form of the

Boltzmann equation as

1√−g

∂
(√−gν−1pαf

)
∂xα

∣∣∣∣∣
q(i)

+
1

ν2
∂

∂ν

(
−νfpαpβ∇αe

β
(0)

)

+
1

sinθ

∂

∂θ

ν−2sinθf

3∑
j=1

pαpβ∇αe
β
(j)

∂C(j)

∂θ


+

1

sin2θ

∂

∂φ

ν−2f
3∑

j=2

pαpβ∇αe
β
(j)

∂C(j)

∂φ

 = Srad. (B.10)

Another description of the conservative form is written clearly as

1√−g

∂

∂xα

∣∣∣∣
q(i)

[(
eα(0) +

3∑
i=1

ℓ(i)e
α
(i)

)
√−gf

]

− 1

ν2
∂

∂ν

(
ν3fω(0)

)
+

1

sin θ̄

∂

∂θ̄

(
sin θ̄fω(θ̄)

)
+

1

sin2 θ̄

∂

∂φ̄

(
fω(φ̄)

)
= Srad (B.11)



60 | detail for Boltzmann solver

where the coefficients are defined by

ω(0) ≡ ν−2pαpβ∇αe
β
(0) =

3∑
i=1

C(i)

γi00 +
3∑

j=1

γi0jC(j)

 (B.12)

ω(θ̄) ≡
3∑

j=1

ω(j)

∂C(j)

∂θ̄
(B.13)

ω(φ̄) ≡
3∑

j=2

ω(j)

∂C(j)

∂φ̄
(B.14)

ω(j) ≡ ν−2pαpβ∇αe
β
(j) = γ0j0 +

3∑
i=1

C(i)

{
(γ0ji + γij0) +

3∑
k=1

γijkC(k)

}
(B.15)

γαβγ ≡ ea(α)e
b
γ∇b

(
e(β)

)
a

(B.16)

and γαβγ are called Ricci rotational coefficients which measure the rotation of frame vector
when moved in every direction.
The conservative form of the Boltzmann equation can be derived straightforwardly as below.

pα
∂f

∂xα

∣∣∣∣
pj

=
1

−g

∂ [f (−g) pα]

∂xα
− 2pαΓβ

αβf − f
∂pt

∂t

∣∣∣∣
pj

(B.17)

∂pt

∂t

∣∣∣∣
pj

=− 1

pt

dpt
dt

(B.18)

− Γi
αβp

αpβ
∂f

∂pi

∣∣∣∣
xµ

=− ∂

∂pi

(
fΓi

αβp
αpβ
)∣∣∣∣

µ

+ 2fpα
(
Γi
iα + Γi

tα

∂pt

∂pi

∣∣∣∣
xµ

)
(B.19)

Γi
tα

∂pt

∂pi

∣∣∣∣
xµ

=− Γi
tα

pi
pt

= −Γi
tα

pβ
pt

+ Γt
tα (B.20)

dpt
dτ

=
dxα

dτ

∂pt
∂xα

∣∣∣∣
pi
+

dpi

dτ

∂pt
∂pi

∣∣∣∣
xµ

= pα
∂pt
∂xα

∣∣∣∣
pi
− Γi

αβp
αpβ

∂pt
∂pi

∣∣∣∣
xµ

(B.21)

Combining equations (B.17),(B.18),(B.19),(B.20),(B.21) and (B.5), we can achieve the conser-
vative form of natural coordinates as

pt
(−g)

[
∂

∂xα

(
f (−g) pα

pt

)
− ∂

∂pi

(
f (−g)

pt
Γi
αβp

αpβ
)]

= (−paû
α)Srad (B.22)

B.1.1 Conservative form of Schwarzschild spacetime

In the Schwarzschild spacetime, the metric is written as

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (B.23)
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Fig. B.1 The schematic image for setting coordinate system on momentum space. The polar
angle θ̄ on momentum space of (spatial) point r is defined as the angle between position vector
r and 3-momentum vector p, and the azimuthal angle φ̄ is defined as the angle between the
vertical component of p with respect to r and the unit vector θ⃗ parallel to θ direction on 3-space.
(from Shibata et al. 2014)

where the coordinates (t, r, θ, φ) are the usual Schwarzschild coordinates. We can choose a
tetrad as below:

eα(0) =

(
1− 2M

r

)−1/2( ∂

∂t

)α

,

eα(1) =

(
1− 2M

r

)1/2( ∂

∂r

)α

.

eα(2) =
1

r

(
∂

∂θ

)α

,

eα(3) =
1

r sin θ

(
∂

∂φ

)α

. (B.24)

where eα(0) is a timelike vector and eα(i) are spacelike vectors only in the region r > 2M . After
setting the tetrad, we can calculate the Ricci rotation coefficients:

γ122 = −γ212 = γ133 = −γ313 = −1

r

(
1− 2M

r

)1/2

, (B.25)

γ233 = −γ323 = −cot θ

r
, (B.26)

γ100 = −γ010 =
M

r2

(
1− 2m

r

)−1/2

. (B.27)
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Using γαβγ and equations (B.12)(B.13)(B.14)(B.15), the coefficients in conservative form of
orthonormal frame can be calculated as

ω(0) =
M

r2

(
1− 2M

r

)−1/2

cos θ̄, (B.28)

ω(1) = −m

r2

(
1− 2M

r

)−1/2

+
1

r

(
1− 2M

r

)1/2

sin2 θ̄, (B.29)

ω(2) = −1

r

(
1− 2M

r

)1/2

sin θ̄ cos θ̄ cos φ̄+
cot θ

r
sin2 θ̄ sin2 φ̄, (B.30)

ω(3) = −1

r

(
1− 2M

r

)1/2

sin θ̄ cos θ̄ sin φ̄− cot θ

r
sin2 θ̄ sin φ̄ cos φ̄, (B.31)

ω(θ) =
3M − r

r2

(
1− 2M

r

)−1/2

sin θ̄, (B.32)

ω(φ̄) = −cot θ

r
sin3 θ̄ sin φ̄. (B.33)

Substituting these relations into equation (B.11), we finally get the conservative form Boltzmann
equation in Schwarzschild coordinates:(

1− 2M

r

)−1/2 ∂f

∂t
+

1

r2
∂

∂r

[
fcosθr2

(
1− 2M

r

)1/2
]

+
1

rsinθ

∂

∂θ

(
fsinθsinθcosφ

)
+

1

rsinθ

∂

∂φ

(
fsinθsinφ

)
− 1

ν2
∂

∂ν

[
fν3cosθ

M

r2

(
1− 2M

r

)−1/2
]

− 1

sinθ

∂

∂θ

[
fsin2θ

r − 3M

r2

(
1− 2M

r

)−1/2
]

− ∂

∂φ

(
f
cotθ

r
sinθsinφ

)
= Srad (B.34)

The derivative term of frequency ν is the term of the gravitational red/blue shift and thus
vanishes when M = 0, and that of the angle θ̄ measured from the position vector shows the
photon circular orbit by the term r − 3M , which means at r = 3M the direction of photons
traveling along the sphere r = 3M does never change and thus remain on this sphere.

B.2 Monte-Carlo simulation

Klein-Nishina scattering cross section is described as

dσ

dΩ
=

re
2

(
λ

λ′

)2 [ λ
λ′ +

λ′

λ
− sin2 θ

]
, (B.35)

λ′ = λ+ λe(1− cos θ) (B.36)
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where λe is the Compton wavelength of electron, which is equal to h/mec
2, re = αrc (α ∼

1/137.036: the fine structure constant, rc = ℏ/mec
2: the reduced Compton wavelength) is the

classical electron radius.
Also, we can write down this equation by normalized energy x = hν/mec

2 as

dσ

dΩ
=

re
2

[(
1

1 + x(1− cos θ)

)3

+
1

1 + x(1− cos θ)
−
(

1

1 + x(1− cos θ)

)2

(1− cos2 θ)

]
.

(B.37)

Then, Integrating equation (B.37) over solid angle, we can get a formula below:

σ =

∫
dσ

dΩ
dΩ

=
3

4
σT

[
2

x2
+

1 + x

(1 + 2x)2
+

(
1

2x
− 1

x2
− 1

x3

)
log(1 + 2x)

]
. (B.38)

Of course, in the low energy limit x → 0, the total cross section becomes the Thomson cross
section σ → σT = 8π

3 r2e (cf. log(1 + 2x) ∼ 2x− 2x2 + 8x3/3 (for |x| ≪ 1)).
When considering the electron temperature, because the above equations are correct in electron
rest frame, we must rewrite correctly for the normalized frequency in the laboratory frame.
Assuming that uµ = (Γ,Γvi) is the electron 4-velocity in the laboratory orthonormal frame,
x and xc are the normalized energy on laboratory and electron rest-frame, respectively, the
relation between x and xc can be written as

xc = xD(v, ℓ)

= xΓ(1− v · ℓ) (B.39)

where D(v, ℓ) ≡ Γ(1 − v · ℓ) is the Doppler factor with respect to electron 3-velocity v and
the unit vector ℓ along to photon 3-momentum. If fixing the scattering electron velocity, we
can use equations (B.37) and (B.38) by replacing x with xD(v, ℓ). When the electrons have
some velocity distribution f(p) depending on temperature T , we can define so-called "hot
cross section" σhot(T ), which includes the velocity dispersion of electrons, by integrating over
electron’s momentum space:

σhot =

∫
σf(p)d3p

=

∫
d3pf(p)

3

4
σT×[

2

(xD(p))2
+

1 + xD(p)

(1 + 2xD(p))2
+

(
1

2xD(p)
− 1

(xD(p))2
− 1

(xD(p))3

)
log(1 + 2xD(p))

]
(B.40)

Assuming the canonical distribution of relativistic electrons, the distribution function must be
proportional to exp(−E/kB) and E = γmec

2, then the distribution function can be written by
f = Ξ−1 exp(−γ/θ) where Ξ is the normalization factor (or so-called the partition function). Ξ
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can be calculated by
∫
fd3p = 1 as

Ξ =

∫
exp(−γ

θ
)d3p

= 4π

∫ ∞

1
γ2βm3

ec
3 exp(−γ

θ
)dγ (∵ d3p = m3

ec
3γ2βdγdΩ)

= 4πm3
ec

3
[
γ
√

γ2 − 1(−θ) exp(−γ

θ
)
]∞
1

(partial integral)

+ 4πm3
ec

3θ

∫ ∞

1

(√
γ2 − 1 +

γ2√
γ2 − 1

)
exp(−γ

θ
)dγ

= 4πθm3
ec

3

∫ ∞

0

(
sinh t+

cosh2 t

sinh t

)
exp(−θ−1 cosh t) sinh t dt (γ = cosh t)

= 4πθm3
ec

3

∫ ∞

0
cosh 2t exp(−θ−1 cosh t)dt

= 4πθm3
ec

3K2(θ
−1) (B.41)

where γ, β and θ are the Lorentz factor of the electron, the velocity in the unit of light speed c

and the normalized temperature θ = kBT/mec
2, respectively, the function K2(x) is the modified

Bessel function of the second kind and the modified Bessel function of the α-th kind (but α

does not always have to be an integer) can be defined as

Kα(x) =

∫ ∞

0
coshαt exp(−x cosh t)dt (B.42)

and Kα is one of two linearly independent solution of the modified Bessel equation:

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0. (B.43)

After that, we can get the distribution function of canonical relativistic electrons called the
Maxwell-Jüttner distribution fMJ described as

fMJ(p) =
1

4πm3
ec

3θK2(1/θ)
exp(−γ(p)

θ
) (B.44)

or

fMJ(γ) =
γ2β

θK2(1/θ)
exp(−γ

θ
) (B.45)

B.3 Post-processing by Boltzmann solver

In this section, we introduce the numerical technic and method for chapter 3.

B.3.1 Advection terms

In our simulations, the time interval ∆t is determined by the CFL condition for the advection
terms. Hereafter, we write each grid in the 5-D real-momentum space by (rj , θk, νi, θ̄m, φ̄n).
The grid of the photon frequency is set regularly in the fluid-rest frame for the convenience
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of calculating the source term, since the scattering table which we refer to is defined in the
fluid-rest frame. Note that the scattering probability depends on the scattering angle and the
frequency of an incoming photon in the fluid-rest frame. In contrast, the grid for the direction
of the photon propagation (θ̄ and φ̄) is set regularly not in the fluid-rest frame but in the
laboratory frame, since then the advection term can be solved more easily and since the grid
regularity in the fluid-rest frame does not facilitate the calculation.

This sort of the grid setting is the same as that adopted by Nagakura et al. (2014). In such
a grid setting the grid of frequency in the laboratory frame is different for each grid (r, θ, ϕ, θ̄, φ̄)

(see Appendix.?? for more detail). For instance, if two neighboring grids have different fluid
velocity, the i-th frequency in the laboratory frame (which corresponds to i-th frequency in the
fluid-rest frame, νi) is different. This is because the frequency in the laboratory frame depends
on the Doppler factor, which is a function of the direction of the photon propagation and the
fluid velocity. We thus need to the variable frequency grid into a regular one in the laboratory
frame to solve the advection terms.

The numerical procedures can be summarized as below.

1. Interpolate the distribution function in the co-moving regular grid points to obtain the
values in the laboratory regular grid points.

2. Calculate numerical fluxes in each direction other than the frequency differential in the
laboratory regular grid points.

3. Interpolate the numerical fluxes in the laboratory regular grid to obtain the values in the
co-moving regular grid and evaluate the numerical flux in the frequency direction.

4. Update the values of the radiation intensity by using the numerical fluxes obtained in
step 3

We explain some technical details for the conversion of the grid points between the laboratory
frame and the fluid-rest frame below:
(STEP 1)

When calculating the numerical flux of the advection term [i.e., the left-hand-side of the
equation (3.1)], we should keep in mind that photon frequencies are calculated in the fluid-rest
frame, while the frequency ν used in the equation (3.1) is evaluated in the laboratory frame.
The difficulty resides in the fact that the 2D distribution of the frequency grid and other grid
of some quantity, X (either of r, θ, φ, θ̄ or φ̄) is not in lattice-shaped in the laboratory frame
(see figure 7, see also Nagakura et al. 2014). This is because the energy shift by the Doppler
effect is a function of all the variables.

Suppose that we solve the numerical flux on the interface at (j+1/2) between the j-th and
the (j +1)-th cells of some variable X. The number of the regular grids in the laboratory frame
(LRG: Laboratory Regular Grid) is set in such a way that each grid point should be in between
the neighboring grid in meshes regular in the fluid-rest frame (CRG: Co-moving Regular Grid).
If the cell center νs in the LRG frame lies between the CRG cells of νi and of νi+1 (which we
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Fig. B.2 Schematic diagrams showing the different 2-D grid distributions, the frequency grid in
the horizontal axis vs. that of some other quantity, X, in the vertical axis, in the Co-moving
Regular Grid (the black boxes in the left panel) and in the Laboratory Regular Grid (the red
boxes in the right panel). The grid distribution is regular in the LRG (right), while is not in
the CRG (left).

denote as ν̄i and ν̄i+1 in the co-moving frame), the interpolated value, fs,j at νs, is calculated
by

fs,j = fi,j +
fi+1,j − fi,j
ln νi+1 − ln νi

(ln νs − ln νi). (B.46)

(STEP 2)
After the interpolation, we calculate the advection terms of each differential, X(other than

that of the frequency differential) in the LRG by the 2nd-order up-wind method.
(STEP 3)

The numerical fluxes we obtain in the STEP 2 are those in the LRG frame, however we need
to update the distribution function in the CRG frame. Therefore, we should interpolate again
now from the LRG frame to the CRG frame. Since the interface of an LRG cell (denoted as s)
lies between the two CRG cells i-th and (i+ 1)-th cells), the numerical flux in the X-direction
in the s-th cell in the LRG, F j+1/2

s,LRG , should be split into these two CRG cells. Here, we define
the CRG numerical fluxes in the cell surface (j + 1/2), (j − 1/2) of the j-th cell of a variable
X,F j+

i,CRG, are defined as

F j+
i,CRG =

∑
s∈Λj

i

lnmin(νs+1/2, ν
j
i+1/2)− lnmax(νs−1/2, ν

j
i−1/2)

ln νji+1/2 − ln νji−1/2

F
j+1/2
s,LRG (B.47)

F j−
i,CRG =

∑
s∈Λj

i

lnmin(νs+1/2, ν
j
i+1/2)− lnmax(νs−1/2, ν

j
i−1/2)

ln νji+1/2 − ln νji−1/2

F
j−1/2
s,LRG (B.48)

Λj
i = {s|[νji−1/2, ν

j
i+1/2] ∩ [νs−1/2, νs+1/2] ̸= ∅} (B.49)

where the quantity νji is the frequency in the laboratory frame of the i-th cell of the frequency
(which is defined in the comoving frame) and the j-th cell of the variable X. It is notable that
the numerical fluxes F j+

i,CRG and F
(j+1)−
i,CRG are the flux at the interface at (j + 1/2) but are not

alway the same, since the numerical fluxes also depend on physical quantities at the cells of
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(i+ 1, j), (i− 1, j) etc because of the Doppler (frequency) shift.
(STEP 4)
After calculating the numerical flux in the CRG, we update the primitive value f (distribution
function), following the equation,

fi,j(t+∆t) = fi,j(t)−
∆t

∆xj
(F j+

i,CRG − F j−
i,CRG) (B.50)

Note that the grid-based Boltzmann solver inevitably suffers from the incorrectness for the
dynamic diffusion problem. Suppose the interacting fluid has a velocity v and the mildly large
optical depth τ . In this case, the radiation moves in the same velocity as that of fluid and
diffuses by the amount determined by optical depth. This is the dynamic diffusion problem.
In the case of the grid-based Boltzmann solver, the limitation of resolution for the direction
and the time make difficult to solve correctly the diffusion-advection problem. To avoid this
issue, we adopt the method analogous to that described by the equation (34) in ?, where the
numerical flux is made by the combination of numerical flux from the Boltzmann equation and
that from the assumption that the radiation moves with the fluid.

B.3.2 Source Term

Although the distribution function should be updated by solving (1− 2M/r)−1/2∂f/∂t = Srad,
evaluating the source term is basically difficult, especially when the Compton scattering process
is involved. Because information in the any positions of the 3-D momentum space (ν, θ̄, φ̄) is
coupled and entangled with each other unlike the cases with absorptions and/or Thomson (and
other elastic) scattering only. In other words, the non-elastic scattering process (e.g. Compton
scattering or even Thomson scattering by thermal electrons) can be considered as the flow in
the 3-D momentum space of photons, while the elastic scattering (e.g. Thomson scattering by
electrons, whose motion is negligibly slow) can be considered as the flow on the constant energy
surface, which has a 2-D structure, in the 3-D momentum space of photons. It is thus difficult
to integrate the scattering kernel whenever the Compton scattering is effective.

For this reason, we calculate two interaction tables (Sabs,scat
i,m,n;i′,m′,n′ and Semit

i,m,n) beforehand
and update the distribution function by

f(νi, θ̄m, φ̄n; t+∆t) =
∑

i′,m′,n′

Sabs,scat
i,m,n;i′,m′,n′f(νi′ , θ̄m′ , φ̄n′ ; t) + Semit

i,m,n. (B.51)

The first term of the right hand side corresponds to that the photons travels from (νi′ , θ̄m′ , φ̄n′)

to (νi, θ̄m, φ̄n) in 3-D momentum space while suffering from the absorption and the scattering.
Also, Semit

i,m,n means an increase of the distribution function by the emission. In the following
subsections, we introduce how we obtain Sabs,scat

i,m,n,i′,m′,n′ and Semit
i,m,n.

In this subsection, we omit the subscripts indicating the spatial grid points, since the
gas-radiation interaction occurs in a local grid.



68 | detail for Boltzmann solver

Single scattering function

To prepare for numerical calculations we first estimate the single scattering distribution function
by the Monte-Carlo simulations, in which we take into account the Compton scattering by
thermal electrons and the Klein-Nishina cross-section. These Monte-Carlo simulations provide
us with the total cross-section κtotal(νin, Te) and the single scattering distribution function
P1(νout,Θ, νin, Te) where νout, Θ, νin, and Te are the photon frequency after the scattering, the
angle between the incoming photon direction and the outgoing photon direction, the frequency
of the incoming photon, and the electron temperature.

For a set of (νin, Te), we perform Monte Carlo simulations, of which the number of injected
photons is 108, and scattered photons are collected for each ∆Θ = π/100 bin in the range of
0 ≤ Θ ≤ π and each ∆ log hνout[keV] = 0.055 bin in the range of 4×10−7 ≤ hνout[keV] ≤ 4×104.
We repeat above procedure 200× 30 times for each pair of (νin, Te) in order to cover the range
of 4× 10−7 ≤ hνin[keV] ≤ 4× 104 and 10−3 ≤ Te[keV] ≤ 103.

Interaction table for multi-scattering and absorption

Using the single scattering distribution function P1 obtained above, we produce the table for
the multiple scattering and the absorption. The time interval ∆t in the present simulations
becomes much larger than the scattering timescale in the high-density cells where the multiple
scattering intricately changes the distribution function. Thus, we employ sub-time interval,
∆tscat(= ∆t/N), for treating multi-scattering more accurately where a controll parameter, N ,
is fixed to 7 in our simulations. By starting from f̃0 = δii0δ

m
m0δ

n
n0 initially, we solve the following

equation,

f̃ l+1(νi, θ̄m, φ̄n)

= (1− ϕ[νi, θ̄m, φ̄n, T, ρ,v,∆tscat])(1− ϕabs[νi, θ̄m, φ̄n, T, ρ,v,∆tscat])f̃
l(νi, θ̄m, φ̄n)

+
∑

i′,m′,n′

ϕ([νi′ , θ̄m′ , φ̄n′ , T, ρ,v,∆tscat])(1− ϕabs[νi′ , θ̄m′ , φ̄n′ , T, ρ,v,∆tscat])

×P1(νi,Θm,n;m′,n′ , νi′ , T )f̃
l(νi′ , θ̄m′ , φ̄n′)∆p3i′,m′,n′ (B.52)

for i = 1-Nν , m = 1-Nθ̄, n = 1-Nφ̄, where f̃ is the working distribution function, ϕ is the
scattering probability function, ϕabs is the absorption probability function, Θm,n;m′,n′ indicates
the angle between the photon directions of (θ̄, φ̄) =(θ̄m′ , φ̄n′) and (θ̄m, φ̄n) and the superscript
l denotes the number of iteration of the sub time-step. It is notable that scattering/absorption
probability depends on the fluid velocity and the direction of the photon propagation. After
solving the above equation N times repeatedly, we obtain the table for the multiple scattering
and the absorption as Sabs,scat

i,m,n;i0,m0,n0 = f̃N (νi, θm, ϕn) for i = 1-Nν , m = 1-Nθ̄, n = 1-Nφ̄.
By repeating the above procedure Nν ×Nθ̄ ×Nφ̄ times while changing (νi0, θ̄m0, φ̄n0), we

obtain the full set of the coefficient of Sabs,scat in the equation (B.51). This is the table for the
multiple scattering and the absorption.
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Emission

In the previous subsection, the emitted photons during the time interval ∆tscat is not considered.
The emitted photons are also suffered from the multiple scattering and absorption, so that the
coefficient for the emission can be obtained by repeating the following equation N times,

f̃ l+1(νi, θ̄m, φ̄n)

= (1− ϕ[νi, θ̄m, φ̄n, T, ρ,v,∆tscat])
f̃ l(νi, θ̄m, φ̄n) + κabs(νi, θ̄m, φ̄n, T,v)ρ∆tscatBν(T )

1 + κabs(νi, θ̄m, φ̄n, T,v)ρ∆tscat

+
∑

i′,m′,n′

ϕ([νi′ , θ̄m′ , φ̄n′ , T, ρ,v,∆tscat])P1(νi,Θm,n;m′,n′ , νi′ , T )

× f̃ l(νi′ , θ̄m′ , φ̄n′) + κabs(νi′ , θ̄m′ , φ̄n′ , T,v)ρ∆tscatBν(T )

1 + κabs(νi′ , θ̄m′ , φ̄n′ , T,v)ρ∆tscat
∆p3i′,m′,n′ (B.53)

for i = 1-Nν , m = 1-Nθ̄, n = 1-Nφ̄ as Semit
i,m,n = f̃N (νi, θm, ϕn), where κabs is the opacity for the

absorption, Bν is the Planck function and f̃0 is set to be zero.
In the present simulations, we investigate the time evolution of f with using the equation

(B.51). Performing the Monte-Carlo simulations is needed to produce the table but not required
for every step.
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