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General Introduction

Organic synthesis is the “art” of building organic molecules[1]. To plan the chemical
syntheses of given molecules, chemists use retrosynthetic analysis, which is based on an
imaginary process of breaking molecules down into simple building blocks[2]. E. J. Corey
formalized the concept of retrosynthetic analysis (retrosynthesis knowledge) and synthetic
problem-solving strategies (e.g., transform-based strategy) and stated that the concurrent
use of as many different independent strategies as possible is key for efficient retrosynthetic
analysis[3, 4]. For the selection of optimal strategies, chemists’ knowledge of chemistry
and their experiments are essential; the optimal strategies depend on molecules, persons,
and situations involved (e.g., lead optimization)[5], which is one of the reasons why organic
synthesis is regarded as an “art”.

Since the 1960s, various computer-aided synthesis planning (CASP) applications have
been developed to emulate chemists’ thinking and help organic synthesis chemists in their
work[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. CASP applications have played
an important role in definable parts of synthesis (e.g., considering the characteristics of
chemical structures and retrosynthetic tree size), while the indefinable parts of synthesis
(e.g., chemists’ intuition) and opportunities to contribute creativity in retrosynthetic anal-
ysis have been left to chemists[6]. CASP approaches are generally classified into two
types: rule-based[9, 15] and data-driven approaches[13, 16]. Rule-based approaches em-
ploy manually encoded (human-coded) transformations (reaction rules) considering such
as stereo- and regioselectivity and electronic and steric effects[15, 20]. On the other hand,
data-driven approaches aim to automatically extract knowledge related to transformations
from numerous reaction records in order to discover synthetic routes[17]. Along with devel-
opments of these CASP tools, various computer-readable molecular representations (e.g.,
descriptors[21], fingerprints[22], strings[23], and graphs[24]) have also been developed
(Fig. 0.1).

Recent advancements in machine learning (ML), including deep learning (DL), have
dramatically improved the quality of CASP, triggering a revival of interest in CASPmethods,
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Figure 0.1: Computer-readable molecular representations.

especially data-driven methods[25, 26, 27]. Furthermore, several remarkable data-driven
CASP applications are at the stage of practical uses in laboratories[16, 28, 29]. However,
most data-driven CASP applications cannot explain how they make decisions due to the
black-box problem of DL and still have an insufficient ability to reflect or apply chemists’
“artistic” thinking into their systems flexibly.

This thesis describes the development of a data-driven CASP approach with retrosyn-
thesis knowledge (Fig. 0.2). Based on the results obtained through the development of the
proposed approach, this thesis also describes how computers recognize and learn organic
molecules and how retrosynthesis knowledge influences a search algorithm for CASP.

In this thesis, I divide the development of the proposed data-driven CASP approach into
three parts, namely, the developments of (1) a graph-based DL platform, (2) an interpretable
retrosynthetic reaction prediction model, and (3) a search algorithm integrating retrosynthe-
sis knowledge for a multistep synthetic route search. Chapter 1 focuses on the development
of the graph-based DL framework, in which a molecule is represented as a graph structure,
for various prediction tasks in the life sciences. This includes graph convolutional networks
(GCN) that show outstanding prediction performances for tasks related to molecules as well

ii



as a visualization technique, integrated gradients (IG), which can be used to calculate the
relationships between input features (e.g., atoms) and model predictions. In the following
two chapters, the developed framework is employed for a 1-step retrosynthetic reaction
prediction task and incorporated into a data-driven CASP application. Chapter 2 focuses
on evaluating the performance of a 1-step retrosynthetic reaction prediction model and its
interpretability using GCN and IG. Chapter 3 focuses on the development of a hybrid CASP
application combining ML techniques with various types of retrosynthesis knowledge and
the assessment of the application’s performance with and without the incorporation of
retrosynthesis knowledge.

This thesis provides insight that how computers recognize and learn chemistry knowl-
edge. This thesis is expected to contribute further developments and improvements in
data-driven CASP applications to build a bridge between chemists and applications.
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Chapter 1

Development of a Graph Neural Network Plat-
form

1 Introduction

Deep learning (DL) is emerging as an important technology for performing various tasks in
various fields, such as medicine[36, 37], language translation systems[38], agriculture[39],
and drug discovery[40, 41, 42]. Focusing on the field of drug discovery, the application
of DL approaches has been practically demonstrated for various prediction tasks, such
as virtual screening[43]; quantitative structure-activity relationship (QSAR) studies[44];
retrosynthetic reaction prediction[45]; and absorption, distribution, metabolism, excretion,
and toxicity (ADMET) prediction [46, 47]. In particular, with the democratization of
artificial intelligence (AI), it is becoming expected that these prediction tools should be
readily usable by non-experts. The accessibility of DL to non-experts is an important issue
in the field of cheminformatics. For example, because DL can be applied in a wide range of
research areas related to drug discovery, such as ADMET prediction for lead optimization
or virtual screening for lead identification, chemists should be able to solve such research
problems by using the latest technologies and analyzing the results, thus availing themselves
of the benefits of DL. However, since chemists are typically not proficient in DL techniques,
the development of easy-to-use, multifunctional DL software is necessary.

For prediction tasks based on molecular structures, graph neural network (GNN), in
which a chemical structure is represented in the form of a graph, have been reported to
perform well [48, 49]. In particular, graph convolutional network (GCN), as a type of GNN,
exhibit excellent performance in many applications [50, 51]. Nevertheless, the appropriate
application of GCN to real-world research problems requires practical programming skills
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1. INTRODUCTION

Figure 1.1: Architecture of kGCN.

and a comprehensive understanding of DL and GCN.

To address this issue, a new open-source software tool, Kyoto University Graph Con-
volutional Network Framework (kGCN), has been introduced to allow diverse users to take
advantage of DL technology, including GCN. kGCN is designed to provide the following
functions:

• Interfaces suitable for users of various levels, including users with limited program-
ming skills

• Handling of different types of data for cheminformatics tasks
• Easy, intuitive, and convincing interpretation of results
• Hyperparameter optimization

As mentioned above, one function of kGCN is to provide interfaces to assist various
users, such as chemists, cheminformaticians, and data scientists. Considering the diverse
levels of expertise of these users, a software tool should provide multiple interfaces suitable
for different types of users. To satisfy these requirements, kGCN provides three types
of user interfaces. Figure 1.1 shows the architecture of the kGCN system. The kGCN
system supports both a graphical user interface (GUI) and a command-line interface. To
provide intuitive access to machine learning (ML) procedures, the kGCN system provides
a GUI on the GUI platform known as the Konstanz Information Miner (KNIME)[52]. The
command-line interface supports typical ML procedures such as training, evaluation, and
cross-validation. Additionally, the kGCN modules can be used in the form of a Python
library to allow flexibility and processing through programming languages. Users can
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1. INTRODUCTION

use the Python library in web applications such as Jupyter Notebook, and kGCN provides
example files showing how to construct DL model using the Python library in Jupyter
Notebook.

The second function is to support different types of data. In cheminformatics, various
types of data, including chemical structures represented by graphs, should be considered.
For example, protein sequence data are often represented as symbol sequences or vector
descriptors. In the context of DL, various architectures for neural networks have been
proposed[53]. The simplest GCN is based on a single-graph-input single-label-output
architecture. The kGCN system supports (1) multi-input (multimodal GCN) and (2) multi-
output (multitask GCN) architectures. A multimodal GCN is a neural network that can
accept inputs ofmultiplemodalities[54, 55]. kGCNcan accommodate a neural networkwith
two inputs: a chemical structure represented as a graph and a protein sequence represented as
a series of characters. This type of neural network can be used to predict interactions between
compounds and proteins for virtual screening and/or drug repurposing[43, 56]. In addition,
multiple related tasks often need to be simultaneously handled in cheminformatics[57], for
example, tasks for predicting multiple different properties of a compound. To address these
tasks, a multitask neural network affords better results than individual predictions[58, 59].

The third function is the interpretation and understanding of the underlying causes of the
prediction results via DL by visualizing the contributions of the input data to the prediction
process. Such a visualization is important because the validity of a prediction model can
be examined through a visual inspection of the good and bad features. The prediction
model can be refined or reconstructed if the causes driving the prediction do not appear to
be reasonable or are contrary to common sense. In particular, designing new molecules
with improved properties is possible if the reasons for good and/or bad predictions can be
identified through visualization. In recent years, several methods of calculating the different
contributions to the prediction results obtained through DL have been proposed [60, 61].
The kGCN system uses the method of Integrated Gradients[62], which can be applied to any
type of neural network architecture, including multitask and multimodal neural networks.

The last function is hyperparameter optimization. In analysis using deep neural net-
works, the hyperparameters for DL, such as the number of network layers, the number of
nodes per layer, the learning rate, and the batch size, should be appropriately set. However,
setting these parameters is not easy for users without knowledge and experience in DL.
To assist such users by automatically determining the optimal hyperparameters, the kGCN
system employs Bayesian optimization and metaheuristics for hyperparameter optimization
[63].
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In addition to these functions, the kGCNsystemalso provides tools for improving usabil-
ity. The back-end implementation of kGCN uses Tensorflow[64] and supports execution on
a graphics processing unit (GPU). For setting up the execution conditions, kGCN-installed
Docker images are also provided at https://hub.docker.com/r/clinfo/kgcn. Addi-
tional unique tools for enhancing the usability of kGCN are provided for each interface (see
later description in the Implementation section).

Similar types of software have been reported in previous studies, e.g., DeepChem[65],
Chainer Chemistry[66], and OpenChem[67]. DeepChem is a Python library for neural
networks, including GCN. A notable feature of DeepChem is that it supports various ML
methods as well as DL methods. Because DL usually requires large amounts of data, this
feature can help users handle relatively small amounts of data. Chainer Chemistry provides
support for GCN through an extended Python library of Chainer[68]. Both libraries can be
used with Python and were developed for use by professional programmers familiar with
ML and Python. Although OpenChem supports both command-line and Python interfaces,
strong programming skills are still required to use it. By contrast, the kGCN system is a
framework containing a GUI, a command-line interface, and a Python interface. The GUI
of kGCN is expected to support users with limited programming skills related to GCN and
DL. To my knowledge, kGCN is the first open-source and multifunctional GCN software to
support all three types of interfaces.

2 Implementation

Before the details of the kGCN system are described, the basic implementation techniques
for the graph representation of molecules and graph convolution are discussed.

2.1 Graph representation of molecules for GCN

This section first describes the formalization of a molecule for application in a GCN.
Figure 1.2 shows an illustrative example of molecular graph representation. A molecule
is formalized as a tupleM ≡ (+, �, �), where + is a set of nodes. Each node represents
an atom in the molecule. Each node has features f8 ∈ � (8 ∈ +), where � is a set of
feature vectors representing the atomic properties such as atom type, formal charge, and
hybridization. These features should be appropriately designed by the users. � is a set of
edges, with each edge 4 ∈ � representing a bond between atoms, i.e., 4 ∈ + ×+ ×) , where

4
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2. IMPLEMENTATION

) is a set of bond types. An adjacency matrix A(C) is used, which is defined as follows:

(A(C))8, 9 =


1 (E8, E 9 , C) ∈ �
0 (E8, E 9 , C) ∉ �

, (1.1)

where (·)8, 9 represents the 9-th element in the 8-th row. Similarly, the feature matrix is
defined as follows:

(F) 9 ,: = (f 9 ): , (1.2)

where (·): represents the :-th element of a vector.

Using these matrices, the molecule is represented byM′ = (A,F), where A = {A(C) |C ∈
)}. In the present system, the RDKit library[69] is used to create the adjacency and feature
matrices, andM′ is employed as the input to a GCN.

Molecule Graph representation

Edge
(bond) Node

(atom)

Feature vectorO

S S

NH

O

C

C
S

C
S

N

Figure 1.2: Example of molecular graph representation

2.2 GCN

kGCN supports GCN in addition to standard feedforward neural networks. Therefore, GCN
for molecules are described first. Graph convolution layers, graph dense layers, and graph
gather layers are defined as described below, and visual images of these layers are shown in
Fig. 1.3.

Graph convolution layer
The graph convolution operation is applied to the input X(ℓ) to the ℓ-th layer as
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follows:

X(ℓ+1) = f

(∑
C

Ã(C)X(ℓ)W(ℓ)
C

)
, (1.3)

where X(ℓ) is an # × � (ℓ) matrix, W(ℓ)
C is the parameter matrix (� (ℓ) × � (ℓ+1)) for

bond type C, f is the activation function, and Ã(C) is the normalized adjacency matrix
(# × #). This layer normalization and implementation follows Kipf’s model [70] by
default. There are various possible choices for implementing the settings of graph
convolution layers. In the kGCN system, the operation on the first-layer input can be
easily switched by changing the initial settings file for building the model.

A GCN is fundamentally based on this graph convolution operation. The input to the
first layer, X(1) , often corresponds to the feature matrix, F.

Graph dense layer
When X(ℓ) is the input to a graph dense layer, X(ℓ+1) is calculated as follows:

Xℓ+1 = X(ℓ)W(ℓ) , (1.4)

where X(ℓ) is an # × � (ℓ) matrix and W(ℓ) is a parameter matrix (� (ℓ) × � (ℓ+1)).

Graph gather layer
This type of layer converts a graph into a vector[71], i.e., if the input X(ℓ) is an
# × � (ℓ) matrix,

(X(ℓ+1)) 9 =
∑
9

(X(ℓ))8 9 , (1.5)

where (·)8 represents the 8-th element of a vector. This operation converts a matrix
into a vector.

6



2. IMPLEMENTATION

O

C

C
S

C
S

N

O

C

C
S

C
S

N

O

C

C
S

C
S

N

O

C

C
S

C
S

N

Graph convolution Graph dense Graph gather

O

C

C
S

C
S

N

O

C

C
S

C
S

N

O

C

C
S

C
S

N

!

!

Figure 1.3: Visual images of graph convolution, graph dense, and graph gather operations.
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Figure 1.4 shows an example of a GCN for a prediction task. The GCNmodel is a neural
network consisting of a graph convolutional layer (GraphConv) with batch normalization
(BN) [72] and rectified linear unit (ReLU) activation, a graph dense layer with ReLU
activation, a graph gather layer, and a dense layer with softmax activation. Because it
assigns labels that are suitable for each task to compounds, this type of model can be
applied for many types of tasks, e.g., ADMET prediction based on chemical structures.

Figure 1.5 shows an example of a multitask GCN for a prediction task. The only
difference is that multiple labels for each compound are predicted as the output. In this
type of neural network, multiple labels associated with a molecule, such as several types
of ADMET properties, can be predicted simultaneously. It is well known that multitask
prediction affords more improvement in performance than individual single-task prediction
[73].

Figure 1.6 shows an example of amultimodal neural network taking a graph representing
a compound and a sequence representing a protein as inputs. In addition to the information
derived from a molecular structure, information from other modalities can also be used
as input. An example of the prediction of activity using compound- and protein-related
information is described in detail in the experiment section.

The kGCN system supports the operations described above and other additional opera-
tions for building neural networks. These operations are implemented using TensorFlow[74]
and are compatible with Keras[75], allowing users to construct neural networks such as con-
volutional neural networks and recurrent neural networks [53] with Keras operations.

These neural networks are characterized by hyperparameters such as the number of
layers in the model and the number of dimensions of each layer. To determine these
hyperparameters, the kGCN system includes a Bayesian optimization functionality.
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Figure 1.4: GCN for a prediction task with a compound as input.
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Figure 1.5: Multitask GCN with a compound as input.
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Figure 1.6: Multimodal GCN with a compound and a sequence as inputs.

2.3 Visualization of GCN

To confirm the features of molecules that influence the prediction results, a visualization
system using the IGmethod[62] has been developed. After the construction of the prediction
model, it is possible to visualize the importance of each atom in a molecular structure based
on the IG value I(G) derived from the prediction model.

The IG value I(G) is defined as follows:

I(G) = G

"

"∑
:=1
∇(( :

"
G), (1.6)
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where G is the input, which is an atom of a molecule; " is the number of divisions of the
input; ((G) is the prediction score, i.e., the output of the neural network with input G; and
∇((G) is the gradient of ((G) with respect to the input G. In the default settings, " is set to
100. The importance of an atom is defined as the sum of the IG values of the features of
that atom. The calculation of atom importance is performed on a compound-by-compound
basis.

The evaluation of the visualization results depends on each case. Although methods
for the visualization of DL results are still under development, their effectiveness in solving
common problems has not been reported. Hence, I address a quantitative evaluation of the
IG values in the context of retrosynthetic reaction prediction in Chapter 2.

2.4 Hyperparameter optimization

For the optimization of a neural network model, hyperparameters such as the number of
graph convolution layers, the number of dense layers, the dropout rate, and the learning rate
should be determined. As it is difficult to manually determine all these hyperparameters,
kGCNenables automatic hyperparameter optimization bymeans ofGaussian-process-based
Bayesian optimization using a Python library, GPyOpt [76].

2.5 Interfaces

This section describes the three interfaces of the kGCN system.

Command-line interface

The kGCN system provides a command-line interface suitable for batch execution. Data
processing is designed according to specific aims, but there is a standard procedure common
to many data processing designs, e.g., a series of processes for cross-validation. The kGCN
commands include these common processes, i.e., the kGCN system allows preprocessing,
learning, prediction, cross-validation, and Bayesian optimization to be performed using the
following commands:

kgcn-chem command allows the preprocessing of molecular data, e.g., in the structure-
data file (SDF) or Simplified Molecular Input Line Entry System (SMILES) format.
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kgcn command allows batch execution related to prediction tasks: supervised training,
prediction, cross-validation, and visualization.

kgcn-opt command allows batch execution related to hyperparameter optimization.

These commands can be used with Linux commands and enable users to construct
automatic scripts, e.g., Bourne again shell (Bash) scripts. Because such batch execution is
suitable for large-scale experiments using workstations and reproducible experiments, this
interface is useful for the evaluation of neural network models.

KNIME interface

The kGCN system supports KNIME modules as a GUI. KNIME is a platform for preparing
workflows consisting of KNIME nodes for data processing and is particularly useful in
the field of data science. The kGCN KNIME nodes described below are useful for the
execution of various kGCN functions in combination with existing KNIME nodes. The
command-line interface allows batch execution, whereas the KNIME interface is suitable
for early steps of the ML process, such as prototyping and data preparation.

For model training and evaluation, kGCN provides the following two nodes.

GCNLearner trains a model on a given dataset. This node receives the training dataset
and produces the trained model as its output. Detailed settings such as the batch size
and learning rate can be set as the node properties.

GCNPredictor predicts labels from a given trained model and a new dataset.

Using the kGCN nodes mentioned above, Fig. 1.7 shows two examples of workflows.
Each data flow can be separated into the flows before and after GCNLearner. The purpose
of the former part is data preparation, for which kGCN includes the following KNIME
nodes:

CSVLabelExtractor reads labels from a comma-separated values (CSV) file for training
and evaluation.

SDFReader reads the molecular information from an SDF.

GraphExtractor extracts the graph for each molecule.

11
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AtomFeatureExtractor extracts the features of each molecule.

GCNDatasetBuilder constructs the complete dataset by combining the input and label
data.

GCNDatasetSplitter splits the dataset into training and test datasets.

The test dataset is used for the evaluation and interpretation of the results. kGCN also
provides modules for displaying the output results.

GCNScore provides the scores of the prediction model, such as accuracy.

GCNScoreViewer displays a graph of the receiver operating characteristic (ROC) scores
as an image file.

GCNVisualizer computes the IG values and atom importance.

GCNGraphViewer displays the atom importance as an image file.

Another example of a workflow, this one involving multimodal neural networks, is
shown in Fig. 1.8. For the design of multi-modal neural networks, the kGCN system
provides the following modules:

AdditionalModalityPreprocessor reads data of an additional modality from a given file.

AddModality adds data of an additional modality to the dataset.

To change from a single-task workflow to a multimodal workflow, the AddModality node
should be added next to the GCNDatasetBuilder node.

The visualization process shown on the bottom right in Fig. 1.8 requires a specific com-
putation time depending on the number of molecules to be visualized, as the computation
time of the IG method for each molecule is 1-5 sec during GPU execution. To reduce the
size of the dataset, GCNDatasetSplitter can be used to select only part of the dataset.
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This node reads

a comma-separated values(CSV) file

stored multiple labels for each molecule.
In the multi-task setting,

this node outputs the evaluation score

for each task.
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this node saves the ROC images
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the molecular information

 from a structure-data file (SDF)
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the graph from each molecule

AtomFeatureExtractor extracts the features from each molecule.
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the complete dataset
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Multi-task workflow

Single-task workflow

   This part of the workflow constructs a dataset from the input files. A dataset consists of 
a set of pairs whose components correspond to a molecule and a label. Settings like 
input file paths can be set from the properties for each node in this part.

Preprocessing:
   This part carries out the hold-out evaluation, a standard machine learning procedure. The hold-out evaluation con-
sists of two steps: training a GCN using a training dataset and evaluation of the model using a test dataset. Detailed 
settings such as batch size and learning rate can be set as the properties of the nodes.

Training and evaluation:

   This part carries out the hold out evaluation considering multiple tasks, i.e.,  the training a GCN model for the all tasks 
and evaluate the model using the test dataset for each task.

Training and evaluation:
   The topology of this part is the same as the single-task workflow. The process of this 
part is similar to that of the single-task workflow. The different part is reading a label file 
containing multiple labels corresponding to multiple tasks and constructing a dataset 
containig multiple labels.
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Figure 1.7: Single-task workflow for the hold-out procedure using the KNIME interface
(top). Multitask workflow for the hold-out procedure (bottom).
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AddModality adds

an additional modality

into the dataset.

AdditionalModalityPreprocessor

 constructs an input vector modality

from a specified CSV file.

This node extracts

a part of the dataset

to reduce samples for visualization.

GCNVisualizer computes

the integrated gradient scores.

GCNGraphViewer

 displays the computed

 integrated gradients

in an image file.

Multi-modal workflow

   In the multi-modal workflow, the two nodes are added after GCNDatasetBuild-
er: AdditionalModalityPreprocessor and  AddModality. This additional part adds 
the vector input data from the additional CSV file.

Preprocessing:
   In the multi-modal workflow, the two nodes are added after GCNDatasetBuilder: AdditionalModali-
tyPreprocessor and  AddModality. This additional part adds the vector input data from the additional 
CSV file.

Training and evaluation:

   This part outputs the images visualizing the contribution to the prediction using the integrated 
gradient method.

Visualization:
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Figure 1.8: Multimodal workflow for the hold-out procedure.
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Python interface

The kGCN system also provides a Python library to allow programmers to more precisely
tune the settings for analysis. The kGCN system can be used in a manner similar to any
standard library and supports pip, a standard Python package manager. Furthermore, the
kGCN system can be used in the Jupyter notebook, which is an interactive interface. There-
fore, users can easily explore this library using Google Collaboratory, a cloud environment
for the execution of Python programs.

The kGCN system adopts an interface similar to that of scikit-learn, a de facto standard
ML library in Python. Accordingly, the procedure for employing the kGCN library includes
preprocessing, training by fitmethods, and evaluation with predmethod, in this order. Users
can easily access the kGCN library in a manner similar to that of scikit-learn. Furthermore,
designing a neural network, which is necessary for using kGCN, is easy if users are familiar
with Keras because kGCN is fully compatible with the Keras library, and users can easily
design a neural network in the same way as with Keras.

To demonstrate the broad applicability of the presented framework, three sample pro-
grams comprising datasets and scripts using the standard functions of kGCN are available
on the web site for the framework.

Flexible user interfaces

As described in the introduction and implementation sections, kGCN provides a KNIME
GUI, a command-line interface, and a programming interface to support various types
of users with various skill levels. For example, the easy-to-use high-layer GUI can assist
chemists with limited programming knowledge in using kGCN and understanding structure-
activity relationships at themolecular level. By contrast, it is expected thatML professionals
with good programming skills will focus on the improvement of algorithms using the low-
layer Python interface. By using the Python interface, users can make ML procedures more
flexible and incorporate kGCN functions into user-specific programs such as web services.
Users with good programming skills can also use the command-line interface to automate
data analysis procedures using kGCN functions because this interface makes it easy to
construct a pipeline in combination with other commands, such as Linux commands.
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3 Results

Regarding the applications of kGCN, this section describes the prediction of assay results
for a protein based on molecular structure. The prediction of compound-protein interaction
(CPI) has played an important role in drug discovery [77], and CPI predictionmethods using
DL have achieved excellent results [43, 54, 55, 56]. In this study, the applicability of kGCN
for CPI prediction is demonstrated as examples of single-task, multitask, and multimodal
GCNs using matrix metalloproteinase (MMP) inhibition assay data. A single-task GCN
predicts the activity against a protein based on a chemical structure represented as a graph.
A multitask GCN predicts the activities against multiple proteins based on a chemical
structure. Whereas single-task and multitask GCNs do not use information related to the
proteins themselves, multimodal neural networks predict activity based on information on
both protein sequences and chemical structures.

For this examination, a dataset was prepared from the ChEMBL ver. 20 database. The
threshold for classification as active or inactive was defined as 30 `M. This dataset consists
of results from four types of MMP inhibition assays: MMP-3, MMP-9, MMP-12, and
MMP-13. The number of compounds for each assay is listed in Table 1.1. These MMPs
were selected because relatively large amounts of data are available for them in the ChEMBL
dataset [78].

Table 1.1: Numbers of compounds in MMP inhibition assay dataset

Assay type Number of compounds
MMP-3 2095
MMP-9 2829
MMP-12 533
MMP-13 2607

kGCN provides many types of descriptors for compounds and proteins. For example,
kGCN allows graph representations for GCNs and vector representations, such as extended-
connectivity fingerprints (ECFP) [22] and DRAGON [79], for standard neural networks.
Additionally, to represent proteins, kGCN uses amino acid sequences and vector represen-
tations such as PROFEAT descriptors[80]. This application uses a graph representation for
a compound and a sequence representation for a protein by default.

To simplify the experiment, moleculeswithmore than 50 atomswere excluded. Because
the dataset was unbalanced, negative data corresponding to inactivity were selected in the
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same manner [54]. Negative data were then generated to equalize the numbers of negative
and positive data entries for each assay. Such preprocessing can be realized using the
kgcn-chem command introduced in the section describing the command-line interface.

Figure 1.9 shows the areas under the ROC curves (ROC-AUCs) for five-fold cross-
validation. The results show that the multimodal approach outperforms the other ap-
proaches. The reason why prediction with the multimodal approach yields a better ROC-
AUC is speculated to be the use of the sequence-related information of the target proteins
in addition to the graph representations of the compounds. These results suggested that
the multimodal model learned more general features associated with the CPI by extracting
common information between molecules and proteins, compared with the single-task and
multitask models that can use only molecule information. These results are consistent with
previously reported results indicating that the inclusion of sequence descriptors contribute
to improving accuracy [43, 54, 55, 56].
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Figure 1.9: ROC-AUCs obtained from five-fold cross-validation.

kGCN enables the visualization of the atomic contributions to the prediction results,
as shown in Fig. 1.10b. The compound N-hydroxy-2-[N-(propan-2-yloxy)[1,1’-biphenyl]-
4-sulfonamido]acetamide (Fig. 1.10a) was used for this prediction, and its reported activity
against MMP-9 is 200 nM (IC50) [81]. The label of this compound for MMP-9 in the
dataset is active, and the activity predicted for this compound in single-task mode is correct
(the probability of the active label is 0.964). This compound possesses a hydroxamic acid

17



4. CONCLUSION

group (-C(=O)NHOH), and it is well known that many MMP inhibitors have a hydroxamic
group. The crystallographic structure of a complex of MMP-9 and this compound has been
previously reported [82]. MMP-9 is a zinc protease, and the hydroxamic acid group of the
above compound is coordinated to the zinc ion of MMP-9. The positive contributions of
the OH, NH, and C=O of the hydroxamic acid group shown in Fig. 1.10b are consistent
with the interaction of the hydroxamic group with the zinc of MMP-9.
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Figure 1.10: (a) Chemical structure. (b) Atomic contributions to the predicted MMP-9
activity. Red shading indicates positive contributions to the prediction results (MMP-9
active in this case). Blue shading indicates negative contributions (not active).

Such a visualization can be used to confirm the validity of a prediction by comparing the
atomic contributions to the prediction with the structure-activity and/or structure-property
relationships. Additionally, such visualizations can be useful in drug design for improving
the activity, physicochemical properties and/or ADMET properties of a drug candidate by
modifying the chemical moieties that contribute negatively to the corresponding prediction.

4 Conclusion

An open-source GCN tool named kGCN that is designed to assist various types of users,
including chemists and cheminformaticians, is described. To support users with various
levels of programming skill, kGCN provides three interfaces: a GUI using the KNIME
platform for users with limited programming skills, such as chemists, and command-
line and Python library interfaces for advanced users, such as cheminformaticians and
data scientists. A three-step procedure consisting of preprocessing, model tuning, and
interpretation of results is required for the construction of a prediction model and the
utilization of its prediction results. kGCN supports all three steps by means of functions
such as the automatic preparation of graph representations based on chemical structures for
preprocessing, Bayesian optimization for the automatic optimization of the hyperparameters
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of neural networks for model tuning, and the use of the IG method to visualize the atomic
contributions to the prediction results for interpretation. Regarding the approaches used
for prediction, kGCN supports single-task, multitask, and multimodal predictions. CPI
prediction based on inhibition assays for four MMPs, namely, MMP-3, MMP-9, MMP-12,
and MMP-13, is presented as a representative case study using kGCN. In this case study,
multimodal prediction shows higher accuracy than single-task or multitask prediction.
Additionally, a visualization of the atomic contributions to the prediction results indicates
that the hydroxamate group of the compound exhibits a positive contribution to the activity,
which is consistent with the known structure-activity relationships. Such visualizations
are useful for the validation of models and the design of new molecules based on a given
model. This visualization capability also allows the realization of “explainable AI” for
understanding the factors influencing the results of AI prediction tools, which are typically
black boxes.

kGCN is available at https://github.com/clinfo/kGCN. Various examples, such
as Jupyter notebooks, are also provided. Future work will address support for new methods
based on GNNs because GNNs are a popular focus of related research at present, and hence,
new related methods, such as graph attention and pooling, are actively being developed. I
will proactively adopt the latest methods and continue to develop kGCN to enable diverse
users to easily apply such methods to appropriately analyze their data and understand the
reasons underlying the corresponding predictions. Additionally, I will gather user feedback
to improve kGCN in terms of usability.

In the next chapter, I describe the application of kGCN for the task of retrosynthetic
reaction prediction.
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Chapter 2

Interpretable Retrosynthetic Reaction Prediction
Using Graph Convolutional Networks

1 Introduction

One-step retrosynthetic reaction prediction is an essential step of implementing retrosyn-
thetic analysis in data-driven approaches. Retrosynthetic reaction prediction in data-driven
approaches corresponds to the reaction rules in rule-based approaches and must be per-
formed repeatedly for retrosynthesis. Hence, the quality of retrosynthetic reaction pre-
diction strongly influences the quality of a synthetic route designed via data-driven ap-
proaches because the prediction errors associated with multiple predictions will accumulate
throughout the analysis process. To date, investigations of DL-based approaches to ret-
rosynthetic reaction prediction have shown that such approaches can achieve excellent
performance[45, 83, 84, 85, 86, 87, 88, 89].

However, there is a gap between the process of retrosynthetic reaction prediction based
on DL and chemist’s basic knowledge of reaction mechanisms. When chemists design a
proposed synthetic route, they consider not only the local structures of a molecule but also
its overall structure because chemical reactions may be affected by atoms and functional
groups that appear to be irrelevant to the reactive center of the molecule[4]. Therefore,
due to the lack of complete chemical structural information, molecular fingerprints such
as extended-connectivity fingerprint (ECFP)[22, 90] are considered inadequate as input
features for reaction prediction. However, for handling molecular structures in machine
learning (ML) or DL, ECFP is still used because it is handy and effective[45, 83, 91].

In addition, the black-box problem often arises[92] with DL methods, which tend to
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1. INTRODUCTION

achieved higher prediction accuracy than conventionalMLmethods. The black-box problem
causes difficulty in the interpretability of the underlying drivers of predictions. Hence, the
black-box problem can make predictions generated by means of DL less acceptable to
chemists, whereas it is easy to explain why a certain reaction is selected via the rule-
based approach. Despite these problems, data-driven approaches have shown comparable
performance to rule-based approaches[16, 18]. Thus, to make data-driven approaches
more accessible to chemists, it is essential to solving the above problems. To this end,
this chapter aims to address two issues: (1) improving the performance of retrosynthetic
reaction prediction and (2) developing an interpretable visualization system to resolve the
black-box problem.

In this chapter, I propose a new framework for retrosynthetic reaction prediction based
on graph convolutional network (GCN)[70], using the IntegratedGradients (IG)method[93]
for visualization, to address the above two problems. It has been reported that GCN is a
state-of-the-art method that treats a molecule as a graph structure in various tasks[71, 94].
A GCN can offer a solution to the problems that arise with fingerprints because a GCN uses
information on the whole molecular structure for prediction. To overcome the black-box
problem of DL prediction, methods of visualizing the feature contributions for each sample
can be applied[93, 95, 96, 97]. IG is an architecture-free visualization method, i.e., this
method can be applied to any differentiable neural network, including a GCN, without
affecting the neural network performance. However, IG has been proposed and evaluated
mainly in the context of image recognition [93], and no study has yet been conducted
on the use of IG to quantitatively analyze chemical properties. In addition, in studies on
retrosynthetic reaction prediction[45, 83, 91], no comparison of the performance of GCN
and ECFP for retrosynthetic reaction prediction, i.e., which molecular representation is
better suited for retrosynthetic reaction prediction, has yet been reported.

In this study, I demonstrated the effectiveness of my framework combining a GCN
and IG using a United States patent dataset[98] that has been employed in many studies on
data-driven approaches[83, 91, 99]. Following previous studies[45, 83], I extracted reaction
templates from the patent dataset. I trained a GCN model and an ECFP model to predict
the reaction template for a given molecule. I found that the GCN model showed better
performance in retrosynthetic reaction prediction toward retrosynthetic analysis than the
ECFP model did. I also demonstrated that IG-based visualizations of the GCN predictions
successfully highlighted reaction-related atoms. Furthermore, the visualizations of the
GCN predictions quantitatively showed the contributions of the reaction-related atoms
to the prediction results. My implementations are available on GitHub at https://
github.com/clinfo/kGCN and https://github.com/clinfo/extract_reaction_
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2. METHODS

template. My method will contribute to retrosynthetic analysis based on data-driven
approaches.

2 Methods

Figure 2.1 shows the workflow of the developed framework based on the GCN and IG.
Detailed procedures for constructing the framework are described in the following sections.
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Input molecule

Visual Reasoning
Using Integrated Gradients

Graph Convolutional Networks

Predicted Reaction Template

Figure 2.1: Workflow of the framework based on the GCN and IG in a retrosynthetic
reaction prediction.

2.1 Dataset

I define a reaction template as consisting of a reactive center, orphan atoms, and their first-
degree neighbors in a reaction, as shown in Fig. 2.2. An orphan atom is one that appears
only on one side of the reaction arrow in ChemAxon[100]. I refer to a product in a reaction
template as a reaction center. To create a dataset of reaction templates, I employed a set of
1,808,937 reactions from United States Patent and Trademark Office (USPTO) published
between 1976 and September 2016, prepared by Lowe[98]. The reactions are stored in the
form of reaction SMILES: reactants‘>’agents‘>’products, where the reactants, agents, and
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2. METHODS

products are separated by ‘>’, and the agents include solvents, reagents, and catalysts. This
reaction set contains many duplicate reactions, and the solvents and chemical agents are
inconsistently recorded. Therefore, I used only the reactants and products in the reactions
for simplicity. As part of my procedure, I removed duplicates (resulting in 1,105,130
reactions), reduced all reactions to their reactants and products, and retained only reactions
with a product. In detail, I filtered the reactions by performing two steps. First, I removed
agents defined by the reaction SMILES syntax. Then, I removed salts from the reactions
because the presence of salts would influence the condition of retaining only reactions with
a product. I defined salts in reference to ChemAxon’s default salts (Table 2.1). After
the refinement of the reaction set, a total of 1,072,175 reactions remained, and I extracted
reaction templates from those reactions using Automapper in the ChemAxon API[100].
Following previous studies[16, 83], I used 1,752 unique templates occurring at least 50
times among the 1,072,175 extracted reaction templates and 371,003 molecules with a
corresponding correct template among the unique templates as the input dataset.
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Figure 2.2: Example of a reaction template extracted from the original reaction.

Graph representation of molecules for GCN

A molecule is formalized as a tupleM ≡ (+, �, �), where + is a set of nodes. Each node
represents an atom in the molecule. Each node has features 58 ∈ � (8 ∈ +), where � is a
set of feature vectors representing the properties of an atom. Here, I employed the features
used in DeepChem[65] (Table 2.2). � is a set of edges. Each edge 4 ∈ � represents a bond
between atoms, i.e., 4 ∈ + × + × ) , where ) is a set of bond types. I used an adjacency
matrix A(C) of the form defined in Eq. (1.1). With this matrix, a molecule is represented
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2. METHODS

by M′ = (A, �), where A = {A(C) |C ∈ )}. Specifically, I used RDKit[69] to create the
adjacency matrix and the feature matrix and employedM′ as the input to a GCN.

Table 2.1: List of removed salts

List of removed salts
(2E)-but-2-enedioic acid butanedioic acid methanesulfonic acid
(2Z)-but-2-enedioic acid cesium(1+) ion nitric acid
2,3-dihydroxy-2,3-bis
(4-methylbenzoyl) butanedioic acid chloride oxalate

2,3-dihydroxybutanedioic acid cyclohexanamine oxalic acid
2-(dimethylamino)ethan-1-ol fluoride perchlorate
2-hydroxypropane-1,2,3-tricarboxylic
acid formic acid phosphoric acid

4-methylbenzene-1-sulfonic acid hydrogen bromide potassium(1+) ion
acetic acid hydrogen chloride sodium(1+) ion
ammonia hydrogen fluoride sulfuric acid
aluminium(1+) ion hydrogen iodide triethylamine
aluminium(3+) ion iodide trifluoroacetate
barium(2+) ion lithium(1+) ion trifluoroacetic acid
bromide magnesium(1+) ion zinc(1+) ion
butanedioic acid magnesium(2+) ion
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2. METHODS

Representation of molecules in terms of ECFP

ECFP is a circular topological fingerprint for molecular characterization[22] and is com-
monly used in a wide variety of studies. In this study, I set the maximum diameter to four
and prepared ECFPs with different bit lengths of 2,048, 4,096, and 8,192 bits. I used the
ChemAxon API for calculating ECFPs.

2.2 Retrosynthetic reaction prediction

I aimed to predict the reaction templates from corresponding molecules (products) cor-
rectly. In this study, the retrosynthetic reaction prediction task was defined as a multiclass
classification problem. I built twomodels for comparison, namely, amodel taking graph rep-
resentations of molecules as input (GCN model) and a model taking ECFPs as input (ECFP
model); see Fig. 2.3. To evaluate the prediction performance, a balanced accuracy[101]
and an accuracy for each reaction template were used as evaluation metrics, and a five-fold
cross-validation was performed. The balanced accuracy is the average of recall scores per
class.

recall =
TP

TP + FN (2.1)

balanced accuracy =
1
�

�∑
8=1

recall8 (2.2)

Here, TP and FN represent the number of true positives and false negatives, respectively,
� denotes the number of classes, and recall8 denotes a recall score of a class. Accuracy for
each reaction template is the ratio of the number of correct predictions to total predictions
per reaction template. In the cross-validation, the dataset was split into three sets in each
fold: 65% of the dataset was used for training, 15% for validation, and 20% for testing.

2.3 GCN and ECFP Models

GCN model

In this study, I used graph convolution layers (Eq. (1.3)), graph dense layer (Eq. (1.4)),
and a graph gather layer (Eq. (1.5)) to construct my GCN model. The GCN model was a
neural network consisting of three graph convolution layers with batch normalization[72]
and rectified linear unit (ReLU) activation, a graph dense layer with ReLU activation, a
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graph gather layer and a dense layer with softmax activation. Each layer contained 128
units. I set the hyperparameters as follows: epochs = 100, batch size = 128, and learning
rate = 0.0001. In addition, I adopted early stopping with a patience of three. To implement
this model, TensorFlow[74] was used.

ECFP model

The ECFP model was a neural network designed in following previous studies[16, 45],
consisting of a dense layer with exponential linear unit (ELU) activation and five highway
network layers with ELU activation. The dense layer contained 512 units with a dropout
ratio of 0.3. The highway network layers each contained 512 units with a dropout ratio of
0.1. I set the hyperparameters as follows: epochs = 1,000, batch size = 128, and learning
rate = 0.001. In addition, I adopted early stopping with a patience of three. To implement
this model, Keras[75] was employed.
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Figure 2.3: Overview of the GCN and ECFP models.

2.4 Visualization

To confirm which features of the molecules influenced the prediction results, I developed a
visualization system using the IGmethod[93]. Once I had trained a model for retrosynthetic
reaction prediction, this system allowed us to visualize the attributes of the prediction results
with respect to the molecular structures. I also quantitatively evaluated the IG values of
10,000 molecules that were correctly predicted.
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Integrated Gradients (IG)

I used the IG values O as defined in Eq. (1.6). I defined the importance of an atom as the
sum of the IG values of its atomic features and calculated the IG values for each reaction
template individually.

Quantitative evaluation of IG-based visualization

To quantify the visualization results obtained using the IG method, I calculated the average
of IG value of the atomic features in a reaction center. If multiple reaction centers existed
in a molecule, I chose the reaction center with the highest average IG value among them. I
then compared the average IG value of the reaction center to the IG values of all atoms in
the molecule by means of a histogram. To facilitate these comparison, I standardized the IG
values in each molecule and plotted Gaussian kernel density estimates of each histogram.

3 Results

3.1 Retrosynthetic reaction prediction

The GCN model showed better performance than the ECFP model in terms of balanced
accuracy, as shown in Fig. 2.4. For determining the top-n balanced accuracy, we regard a
prediction that contains the correct reaction template among the top-n reaction templates
in terms of the softmax probability as a correct prediction. The best GCN model was a
model with three convolutional layers; its top-one balanced accuracy was 0.249, its top-10
balanced accuracy was 0.510, and its top-30 balanced accuracy was 0.662. The best ECFP
model was a model with 2,048 dimensions; its top-one balanced accuracy was 0.217, its
top-10 balanced accuracy was 0.473, and its top-30 balanced accuracy was 0.642. Table 2.3
shows detailed results of the retrosynthetic reaction prediction with the GCN and ECFP
models.

Table 2.3: Top-n balanced accuracies of the GCN and ECFP models

Descriptor ECFP GCN
2048 dim 4096 dim 8192 dim 1 conv layer 2 conv layers 3 conv layers 4 conv layers

Top-1 balanced accuracy 0.217 0.205 0.192 0.192 0.237 0.249 0.128
Top-10 balanced accuracy 0.473 0.464 0.451 0.421 0.489 0.510 0.347
Top-30 balanced accuracy 0.642 0.634 0.623 0.569 0.641 0.662 0.496
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3. RESULTS

Figure 2.4: Comparison of the balanced accuracies of the GCN (blue) and ECFP (orange)
models.

To elucidate the differences between the GCN and ECFP models, we show the detailed
prediction results in Fig. 2.5. We compare the top-10 accuracies for each reaction template
achieved with the best GCN and ECFP models. Figure 2.5 presents the differences in
accuracy between the GCN model and the ECFP model. We also show corresponding
results for the top-one and top-30 cases in Fig. 2.6.
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3. RESULTS

(a): Histograms of the accuracies for each template achieved by the GCN
(blue) and ECFP (orange) models.

(b): Scatter plot of the accuracies, where the color corresponds to the
logarithm of the number of molecules in which the template appears, as
indicated by the color bar on the right.

Figure 2.5: Comparison between the distributions of the top-10 accuracies for each template
achieved by the GCN and ECFP models.
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(c): Histograms of the counts of duplicated reaction templates appearing
as the top reaction template (orange) and the bottom reaction template
(blue).

O
O

O

N

N
+

O

O

Br

-O

O

O-

N Br N
++

O

N O

N

O+

-O

O

O

+

O

N S

N

S+

N

S

C

N

NN

S

+

Cl

N
O-

N
++

Example of top reaction template

Example of bottom reaction template

[#8-]-[#6](-[#8-])=O.[#6]-[#7]-[#6].[#6]-[#6]Br>>[#6]-[#6]-[#7](-[#6])-[#6]
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[#6]-[#6](-[#6])=O.[#6]-[#7]-[#6](=O)-[#8]C([#6])([#6])[#6]>>[#6]\\[#7]=[#6](/[#6])-[#6]
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(d): Examples of top and bottom reaction templates. Below the template
drawings, the reaction templates are also expressed in the SMARTS
format.

Figure 2.5: Comparison between the distributions of the top-10 accuracies for each template
achieved by the GCN and ECFP models.
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Figure 2.5a shows that the GCN model yielded more accurate predictions than the
ECFP model, with an accuracy ranging from 0.7 to 1.0 for a larger number of templates
and lower accuracy for fewer templates. Figure 2.5b shows a scatter plot of the accuracy
achieved for each template by the GCN model versus that achieved by the ECFP model. To
clarify the effect of the number of molecules in which a reaction template appears on the
prediction results, we have also added color information reflecting the number of molecules
on a logarithmic scale. We can see from this figure that both the GCN and ECFP models
tended to generate more accurate predictions for templates associated with a large number
of molecules, whereas the prediction performance tended to be poorer for a small number
of molecules per reaction template. In the dataset we used, the frequencies of occurrence
of different reaction templates are quite different, as shown in Fig.2.7. When a dataset is
biased, conventional ML methods will tend to mainly learn the characteristics of classes
containing many training data. We can see in Fig. 2.5b that the ECFP model also showed
this tendency, achieving more accurate predictions for reaction templates associated with
many training data, more so than the GCN model. In addition, Figure 2.5b shows that the
GCNmodel offered more accurate predictions for reaction templates that were not predicted
accurately by the ECFPmodel. To clearly show the differences between the GCN and ECFP
model predictions, we present the distributions of the top-10 accuracies for the top-100 and
bottom-100 reaction templates (ranked by the frequency of occurrence of each reaction
template) achieved by the GCN and ECFP models in Fig. 2.8.

Additionally, to clarify which reaction templates the GCN and ECFP models could and
could not predict with high accuracy, we selected the top and bottom reaction templates
and counted duplicated product structures. We defined the top reaction templates as the
129 templates predicted with more than 90% accuracy and the bottom reaction templates
as the 125 templates predicted with less than 10% accuracy. Figure 2.5c shows that various
unique product structures appear among the top reaction templates, i.e., the corresponding
prediction tasks are easy, whereas there are many duplicated product structures among
the bottom reaction templates. Examples of top and bottom reaction templates are shown
in Fig. 2.5d. We can see that reaction templates with the same product structure have
significant negative effects on the performance of both the GCN and ECFP models.
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(a)
(b)

(c)
(d)

Figure 2.6: Comparison between the distributions of the top-1 and top-30 accuracies for
each reaction template achieved by the GCN and ECFP models. (a) Histograms of the
top-1 accuracies for each reaction template achieved by the GCN (blue) and ECFP (orange)
models. (b) Scatter plot of the top-1 accuracies, with the color bar on the right representing
the logarithm of the number of molecules in which the reaction template appears. (c)
Histograms of the top-30 accuracies for each reaction template achieved by the GCN (blue)
and ECFP (orange) models. (d) Scatter plot of the top-30 accuracies, with the color bar
on the right representing the logarithm of the number of molecules in which the reaction
template appears.
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Figure 2.7: Histogram of the number of compounds per reaction template. The number of
reaction templates is 1,752, and the number of compounds per template ranges from 50 to
8,000.

(a) (b)

Figure 2.8: Distributions of the top-10 accuracies achieved by the GCN and ECFP models
for the top 100 and bottom 100 reaction templates, where the reaction templates are ranked
by the number of compounds per reaction template. (a) Scatter plot of the top-10 accuracies
achieved by the GCN and ECFP models for the top 100 reaction templates. (b) Scatter
plot of the top-10 accuracies achieved by the GCN and ECFP models for the bottom 100
reaction templates.
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3.2 Visualization

We visualized the contributions of the atomic features in a molecule, which is a product
in a reaction, to the results of retrosynthetic reaction prediction (Fig.2.9). We selected
examples for which the GCN model correctly predicted the reaction template, as shown in
Fig. 2.9a and 2.9b. Figure 2.9a shows examples in which the reaction center and the atomic
contributions match, and Fig. 2.9b shows examples in which the reaction center and the
atomic contributions do not match. Figure 2.9c shows examples of incorrect prediction;
here, both the correct reaction template and the predicted reaction template are shown in the
reaction template column. Red shading indicates positive contributions to the prediction
results, and blue shading indicates negative contributions to the prediction results. The
product substructures corresponding to correctly predicted reaction templates are indicated
in light green, and the product substructures corresponding to incorrectly predicted reaction
templates are indicated in light purple. To determine the atoms belonging to these light-
green and light-purple substructures, we performed substructurematching for eachmolecule
(as shown in, e.g., the left column in Fig. 2.9a) using the corresponding reaction center, as
defined in the Dataset section (as shown in, e.g., the right column in Fig. 2.9a). Then, we
marked the matching part of the molecule with the appropriate color.
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(a): Examples of correct predictions for which the atomic contributions and
the reaction center match.

Figure 2.9: Visualization of the contributions of the atomic features in a molecule to
retrosynthetic reaction prediction. The atomsmarked in light green in amolecule correspond
to the reaction center in the correct reaction template. The IG values are represented by
shading in various colors, as shown by the color bar. Below the template drawings, the
reaction templates are also expressed in the SMARTS format.
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(c): Examples of incorrect predictions. The substructures marked in light
green and light purple correspond to the correct and predicted reaction
centers, respectively.

Figure 2.9: Visualization of the contributions of the atomic features in a molecule to
retrosynthetic reaction prediction. The atomsmarked in light green in amolecule correspond
to the reaction center in the correct reaction template. The IG values are represented by
shading in various colors, as shown by the color bar. Below the template drawings, the
reaction templates are also expressed in the SMARTS format.
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Quantitative evaluation of IG-based visualization

To quantitatively evaluate the visualization performance, we calculated the average IG
values of the atomic features in the reaction centers. Figure 2.10 shows a histogram of
the standardized IG values of all atoms in a molecule (orange) and a histogram of the
standardized average IG values in reaction centers (blue). Here, the standardized average
IG value in a reaction center is defined as the average of the standardized IG values of
the atoms in the reaction center. The orange and blue lines show Gaussian kernel density
estimates of the distributions of the standardized IG values of all atoms in amolecule and the
standardized average IG values in reaction centers, respectively. The average IG value of a
reaction center is 3.71, whereas that of all atoms in a molecule is 0.0 because the IG values
for each molecule are standardized. Thus, the distribution of the standardized averages
in reaction centers is positively shifted. This result suggests that my system successfully
recognizes reaction centers. The reason why the two distributions are not completely
separated is that not all atoms in a reaction center will necessarily have a positive IG value
(see Fig. 2.9).

Figure 2.10: Histograms of the standardized average IG values in reaction centers (blue)
and the standardized IG values of all atoms in a molecule (orange).
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4 Discussion

As seen from the results shown in Fig. 2.4 and 2.5, the GCN model showed higher perfor-
mance than the ECFP model in retrosynthetic reaction prediction. Many previous studies
have shown that in tasks involving the prediction of molecular properties, graph-based
approaches outperform conventional ML approaches[94]. In addition, graph-based ap-
proaches have performed well in multitask learning for problems involving as many as
hundreds of classes[94]. In this study, it was found that compared to a conventional neural
network method based on ECFP, the graph-based approach was also effective for retrosyn-
thetic reaction prediction and showed better performance for prediction involving almost
1,800 classes. Moreover, although the dataset was biased, the GCNmodel tended to predict
a wide range of reaction templates correctly. This may be attributable to the generally
low susceptibility of graph-based methods to overfitting on a dataset[102]. In general, this
tendency is important in retrosynthetic analysis because important reactions do not always
appear frequently among the reaction templates.

Using the IG method, I have shown that the proposed system successfully recog-
nizes reaction centers for retrosynthetic reaction prediction, as illustrated in Fig. 2.9 and
2.10. Although data-driven retrosynthetic analysis has not previously shown sufficient
interpretability for retrosynthetic reaction prediction, my IG-based system offers a basic ap-
proach for investigating the rationale for each step of a proposed synthetic route. Even if the
contributions to a prediction generated based on ECFP can be visualized, this can be done
only by the substructure unit. When contributions are visualized by the substructure unit, I
cannot consider the influences of neighboring atoms on the reaction center because the sub-
structures in the fingerprint are not related to each other. Conversely, using my model, I can
visualize the contributions by the atomic unit, allowing the influences of neighboring atoms
on the reaction center to be considered. I believe that this improvement in interpretability
is essential in making data-driven approaches more accessible to chemists.

Figure 2.9 suggests that the existence of common substructures in molecules associated
with the same reaction template contributes positively to retrosynthetic reaction prediction.
If various molecules are associated with the same reaction template, as shown in Fig. 2.9a,
the IG method can reflect the common reaction center for visualization. However, if similar
molecules are associated with the same reaction template, the GCN model tends to predict
a reaction template by recognizing a characteristic substructure (e.g., the cyclopropyl group
in Fig. 2.9b) other than the reaction center, as shown in Fig. 2.9b. One possible solution to
the above problem could be to use larger-scale chemical reaction databases such as Reaxys
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and SciFinder. Larger databases would ensure higher diversity of molecules associated with
the same reaction template, and the GCNmodel should be more likely to predict the correct
class by recognizing a common reaction center.

To confirm the GCN model’s performance for natural products, I performed retrosyn-
thetic reaction prediction for four natural products with different structural complexities:
benzylpenicillin, erythromycin A, morphine, and prostaglandin E1 (Fig.2.11), which were
not included in the training dataset. The prediction for benzylpenicillin is thought to be
reasonable. However, the other prediction results are considered to be unreasonable. The
reason why these predictions were unsuccessful is that the model could not effectively learn
important features for natural products because the USPTO reaction dataset contains few
natural products.

Figure 2.11: Examples of the top-1 predictions of my model for four natural products with
different structural complexities.
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In future work, I will focus on improving the performance of my model in the following
three ways. The first is by oversampling the lower reaction templates. The second is by
setting a postfiltering parameter in combination with the IG method to rerank the predicted
reaction templates. The last is by developing a molecular representation that considers
precise local charge and chemical structure information, such as rotamers, topoisomers, and
steric hindrance. These methods are expected to improve the top-n balanced accuracy and
make the improved model more suitable for chemist-friendly retrosynthetic analysis. I also
plan to compare the improved GCN model with other advanced DL approaches, including
Transformer models[88, 89]. Additionally, I will address the tasks of predicting reaction
conditions, yields, and multistep routes using my system.

5 Conclusion

I succeeded in developing a GCN-based interpretable retrosynthetic reaction prediction
system using IG for visualization. The prediction performance of my GCN-based model
was compared with that of a traditional ECFP model. The results showed that the pre-
diction accuracy of the GCN model was higher than that of the ECFP model and that the
GCN predictions were less influenced by dataset bias. Additionally, visualizations of the
GCN predictions using IG successfully showed the atomic contributions to the results of
retrosynthetic reaction prediction. Through such visualization, I can investigate the un-
derlying drivers of retrosynthetic reaction predictions, which is expected to help chemists
better understand the outcomes of retrosynthetic reaction prediction based on a data-driven
approach. My model is expected to serve as a cornerstone for the construction of a high-
quality model for retrosynthetic reaction prediction, which will be important in facilitating
searches for retrosynthetic routes.

In the next chapter, I develop a data-driven CASP approach using this graph-based
retrosynthetic reaction prediction model.
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Chapter 3

AI-Driven Synthetic Route Design with Retrosyn-
thesis Knowledge

1 Introduction

As briefly described in the general introduction, CASP approaches are generally classi-
fied into two types: rule-based[15, 9] and data-driven approaches[13, 16]. One excellent
rule-based CASP application, Chematica[15] (now rebranded as Synthia™), provides con-
siderable discretion for chemists to perform retrosynthetic analysis based on their own ways
of thinking and has come into global use[20, 103]. However, rule-based approaches require
the extreme efforts of many experts and cannot keep up with the exponential growth in
knowledge related to chemistry[104].

On the other hand, recent breakthroughs in deep learning (DL)[37, 105], along with the
widespread availability of reaction records[98, 106] and open-source codes[69, 107, 108,
109], have improved the core techniques of data-drivenCASP, such as 1-step (retro)synthetic
reaction prediction[45, 88, 110] andmultistep synthetic route searches[16, 29, 18, 111, 112].
In reaction prediction models, various representations of molecules (e.g., fingerprints[45],
SMILES strings[88, 110, 113], and graphs[86]) and corresponding suitable DL techniques
have been used, showing promising performances. Regarding search algorithms, Monte
Carlo tree search (MCTS)[16, 109, 114, 115], depth-first proof number search[111, 116],
and graph-based exploration methods[29, 112] have been used to obtain optimal or possible
synthetic routes. Several outstanding data-driven CASP applications have been on the stage
of practical use in industry and in the laboratory[16, 28, 29]; these applications have led to
a remarkable revival of interest in CASP research[25, 26, 27].
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However, in regard to practical retrosynthesis, most data-driven CASP applications are
lacking in their ability to reflect or support flexible adaptation to individual chemists’ ways
of thinking. The search algorithms used in such applications depend on naive scoring
functions for evaluating whether one synthetic position found during a search is preferable
to another[16, 114]; this implies that there are few opportunities to learn diverse strategies
for retrosynthetic analysis. Moreover, the data-driven CASP approaches incorporating gen-
erally used retrosynthesis knowledge have not been developed, and the effects of knowledge
on search performance have yet to be investigated.

In this study, I developed a hybrid CASP application combining data-driven and rule-
based techniques called “ReTrosynthesis planning application using Retrosynthesis Knowl-
edge (ReTReK),” which integrates the knowledge into the evaluation of promising search
directions. ReTReK takes the knowledge as input in the form of user-adjustable parameters,
thus allowing users to easily decide which retrosynthesis knowledge to use and how much
emphasis to place on it. To represent retrosynthesis knowledge in ReTReK, I formulated
four scores: a convergent disconnection score (CDScore), an available substances score
(ASScore), a ring disconnection score (RDScore), and a selective transformation score
(STScore). To construct the ReTReKmodel with high generalization capability, the Reaxys
reaction database[106], one of the largest reaction databases in the world, was used. I eval-
uated and demonstrated the performance of ReTReK using molecules from the ChEMBL
database[117] and drug-like molecules[30, 33, 31, 32, 34, 35]. I successfully demonstrated
that synthetic routes designed using ReTReK with retrosynthesis knowledge were prefer-
able to those designed without retrosynthesis knowledge. Furthermore, I demonstrated
that retrosynthesis knowledge improves the performance when solving for certain target
molecules, and I successfully guided the search direction in MCTS. The proposed con-
cept of integrating retrosynthesis knowledge, in the form of adjustable parameters, into a
data-driven CASP application is expected to enhance the performance of both existing data-
driven CASP applications and those under development. My implementation is available
on GitHub at https://github.com/clinfo/ReTReK.
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2. METHODS

2 Methods

2.1 Construction of ReTReK

To implement a data-driven CASP application that can reflect the retrosynthesis knowledge,
ReTReK was constructed using MCTS and graph convolutional network (GCN) techniques
in addition to the four retrosynthesis knowledge scores introduced above (Fig. 3.1).
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Figure 3.1: Whole workflow of ReTReK. ReTReK combines MCTS and GCN techniques,
and retrosynthesis knowledge is incorporated into the selection step of the MCTS proce-
dure. The retrosynthesis knowledge is represented by four scores: the CDScore, STScore,
RDScore, and ASScore.

The basic MCTS algorithm comprises four steps: selection, expansion, rollout, and
update. For the selection step, a tree policy is used to select a promising retrosynthetic tree
position; this policy considers the retrosynthesis knowledge scores. A GCN-based model is
used for 1-step retrosynthetic reaction prediction as a policy network in the expansion and
rollout steps. Reaxys reaction records[106] were used to train the model and prepare the
starting materials; compounds obtained from the ZINC database[118] were used as starting
materials. By iterating through the four steps listed above, a retrosynthetic tree is expanded,
thus attempting to identify a promising synthetic route.
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2.2 Datasets

To create the ReTReK model, compounds obtained from Reaxys reaction records[106] and
the ZINC 15 database[118] were used. To evaluate the performance of ReTReK, compounds
obtained from the ChEMBL 27 database[117] and the literature[30, 33, 31, 32, 34, 35].

Reaction template extraction

A set of approximately 50 million reaction records from Reaxys[106] (from 1795–2019)
was used to construct a 1-step retrosynthetic reaction prediction model. The model was
designed to take a target or intermediate molecule as input and was trained to predict a
suitable reaction template for the input molecule. The purpose of a reaction template is to
represent a generalized chemical reaction, and for this study, a reaction template was defined
as consisting of a reactive center, orphan atoms, and their first-degree neighbors. An orphan
atom is one that appears on only one side of the reaction arrow in ChemAxon[100]. The
reaction template extraction procedure comprised four steps (see Fig. 3.2 for the workflow
of reaction template extraction).

In the first step, the reaction records were standardized by removing explicit hydrogen,
aromatizing, and retaining the largest fragments.

In the second step, the reaction records were filtered based on three conditions: (1)
the reaction was required to consist of a single step, (2) the reaction was required to have
a product and up to three reactants, and (3) the number of heavy atoms in the product
was limited to 50 or fewer. After this step, the number of remaining reaction records was
22,337,137.

In the third step, reaction templates were extracted from the reaction records, and sets
consisting of a product and the corresponding reaction template were retained if the reaction
template occurred at least 50 times. To prevent the occurrence of two or more fragments,
a reaction template was retained only in the case in which all atoms on the product side of
the template were connected.

In the final step, the sets consisting of a product and the corresponding reaction template
were filtered by the condition that the reaction template could be reversibly applied to the
product and the derived reactants. With this requirement, 7,589,744 product–template
sets remained, and the number of unique reaction templates was 19,633. Referring to a
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Figure 3.2: Workflow of reaction template extraction. The reaction template extraction
procedure consists of four steps: (1) Reaction records were standardized by removing
explicit hydrogen, aromatizing, and keeping the largest fragments; (2) Reaction records
were narrowed down under the condition that a reaction is a single-step reaction that has a
product and 1–3 reactants; (3) Reaction templates were extracted from the filtered reaction
records; (4) Sets of a product and the corresponding reaction template were filtered by the
condition that the reaction template can reversibly be applied to the product and the derived
reactants.

previous study[119], a time-splitting strategy was employed to evaluate the neural network
model performance. I assigned 6,321,451 sets published before 2017 to training data and
1,268,293 published in 2017 and later to test data.

Preparation of molecules for ReTReK evaluations and demonstrations

The molecules used for the ReTReK evaluations were obtained from ChEMBL 27[117]
and preprocessed via the following procedures. First, molecules whose USAN years ranged
from 2017 to 2019 and for which chemical structure records were available were selected,
resulting in a total of 219 compounds. Then, the compounds were preprocessed using the
following steps: removing explicit hydrogen, aromatizing, retaining the largest fragments,
removing compounds with more than 50 atoms, and removing duplicates. The remaining
161 compounds were used for the evaluations (ChEMBL dataset). For further evaluation
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of ReTReK, six drug-like compounds[30, 33, 31, 32, 34, 35] were also used for synthetic
route search demonstrations.

Starting materials

A set of compounds obtained from the ZINC database and Reaxys reaction records were
used as starting materials. A subset of 100,023 building blocks from major suppliers
(Sigma-Aldrich, Alfa Aesar, and Acros) was obtained from the ZINC database. From
the Reaxys reaction records, 649,130 compounds recorded as reactants with at least five
occurrences before 2017 were used. All compounds were stored in the canonical SMILES
format calculated by RDKit[69].

2.3 MCTS for retrosynthesis

MCTS has been implemented in various CASP studies based on the achievements of
Segler et al.[16]. MCTS is a search algorithm for exploring optimal solutions and com-
prises four steps: selection, expansion, rollout, and update[120]. Following Segler’s
implementation[16], a state contains a set of molecules and is solved (the optimal so-
lution) if all molecules in the state are starting materials. In this study, retrosynthesis
knowledge scores were incorporated into the evaluation term used in the selection step. The
same policy network was used for both the expansion and rollout steps, similar to previous
research[114].

Retrosynthesis knowledge used in ReTReK

I have defined four scores representing four types of retrosynthesis knowledge, namely, the
CDScore, ASScore, RDScore, and STScore, inspired by previous work[10, 14, 15].

Convergent disconnection score The CDScore is designed to favor convergent synthesis,
which is known to be an efficient strategy in multistep chemical synthesis. The CDScore is
calculated by evaluating how equally a product is divided among the reactants of a reaction
{R1 + R2 + · · · + Rn −→ P}, where Ri is a reactant and P denotes the product.

MAE =
1
=

=∑
8=1

����0(P)= − 0(Ri)
���� (3.1)
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CDScore =
1

1 +MAE
(3.2)

Here, 0(P) and 0(Ri) represent the numbers of atoms in the product and a reactant, respec-
tively, and MAE is the mean absolute error.

Available substances score To serve a similar purpose as the CDScore, the ASScore is
defined to reflect the number of available substances generated in a reaction step and is
calculated as

ASScore =
1(S)
1(R) (3.3)

Here, 1(S) and 1(R) represent the numbers of available substances (starting materials) and
reactants, respectively.

Ring disconnection score A ring construction strategy is preferred if the target compound
has complex ring structures because the construction of ring structures in a synthetic route
tends to result in simple and easily available starting materials. The RDScore is calculated
by checking whether ring construction occurs in a reaction step, as follows:

RDScore =


1 3 (P) > ∑=
8=1 3 (Ri)

0 otherwise
(3.4)

Here, 3 (P) and 3 (Ri) represent the numbers of rings in the product and a reactant, respec-
tively.

Selective transformation score A synthetic reaction with few byproducts is preferred in
terms of yield. To reflect the number of possible products from a reaction, the STScore is
calculated by focusing on the number of reactive centers in the reactants, as follows:

STScore =
1

4(∑=
8=1 Ri)

(3.5)

Here, 4(∑=
8=1 Ri) represents the applicable number of patterns of products enumerated using

the reactants and a certain reaction template.
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Policy network

In this study, the term ‘policy network’ (Fig. 3.3a) refers to a template-based retrosynthetic
reaction prediction model, and the same model was used in both the expansion and rollout
steps. I employed aGCNmodel, whichwas found to be a promisingmodel for retrosynthesis
in Chapter 2, as the retrosynthetic reaction prediction model. The model was trained using
the dataset prepared as described in the reaction template extraction section and comprised
three graph convolutional layers with leaky rectified linear unit (Leaky ReLU) activation and
a dropout ratio of 0.3, a graph dense layer with Leaky ReLU activation, a graph gather layer
with hyperbolic tangent activation, and a dense layer with softmax activation. To confirm
the effectiveness of the expansion sizes on the MCTS performance, the top–n accuracies
were calculated for n values in the range from 1 to 1000. To implement this model, the
graph-based deep learning framework kGCN (Chapter 1) was used.

Selection

Starting from the root node, a tree policy is recursively applied to select the next action,
which implies that the simulation descends through the search tree step by step until an
unvisited node with a nonterminal state is reached. The tree policy is based on the upper
confidence bound (UCB) score, and retrosynthesis knowledge is incorporated into the policy
as follows:

 =
1
=
(F1CDScore + F2ASScore + F3RDScore + F4STScore), (3.6)

where the F8 represent weights, with values of F1 = 5.0, F2 = 0.5, F3 = 2.0, and F4 = 2.0,
and = denotes the number of retrosynthesis knowledge scores used in a search (e.g., = is
four if all four types of retrosynthesis knowledge are used).

action =
&

#
+ 2%
√
#−1

1 + # +  (3.7)

Here, & denotes an action value calculated in the update step; # and #−1 are the visit
counts of the child and parent nodes, respectively; 2 denotes a constant value that is set to
10; % denotes the softmax probability obtained from the policy network; and  represents
the mean of the retrosynthesis knowledge scores.
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Expansion

Child nodes whose states are selected by the policy network are added to the node selected
by the tree policy. Based on the top-n accuracies in the policy network, in independent
trials, the top 50, 100, 300, and 500 reaction templates were selected, and they were filtered
by the condition that the reaction templates could be successfully applied to the molecules
in the states and were then added to the node selected by the tree policy.

Rollout

A simulation is implemented in the policy network if the state of a node is not proven
or terminal[16]. During the simulation, the following steps are recursively implemented
for a maximum of five times: an unresolved molecule (not included among the starting
materials) of the state is randomly sampled, the top 10 reaction templates of the molecule
are obtained by the policy network, and a randomly sampled reaction template is applied to
the molecule. At the end of each step, it is checked whether the state is proven or not.

A reward function A returns one of three values as a reward I, depending on the
simulation result. Before the simulation is started, the reward is 10 if the state is proven
and -1 if the state is terminated. After the simulation, the reward is equal to the ratio of the
number of resolved molecules in the state to the total number of molecules.

Update

The reward obtained from the rollout step is backpropagated through the selected nodes to
update their action values &. Based on previous research[16], the value of & is defined as

, = <0G

(
0,
!<0G − ! +

∑=
8=1 %8

!<0G

)
, (3.8)

& = I,, (3.9)

where !<0G denotes the maximal branch length and is set to 10, ! denotes the current branch
length, and

∑=
8=1 %8 denotes the sum of the softmax probabilities of the reaction templates

in the selected nodes.
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2.4 Evaluating the effects of expansion sizes and retrosynthesis knowl-
edge on MCTS solution performance

To investigate the effect of the expansion size on the MCTS performance in solving for
target molecules, both the number of solved molecules in the ChEMBL dataset and the
times needed to solve the molecules were compared for different expansion sizes and six
retrosynthesis knowledge patterns. The expansion sizes were 50, 100, 300, and 500, and
were determined by the policy network’s top-n accuracies. The six knowledge patterns were
as follows: no retrosynthesis knowledge (no knowledge), the CDScore, the ASScore, the
RDScore, the STScore, and all four retrosynthesis knowledge scores (all knowledge). In
these experiments, the maximum number of iterations was set to 500 and the score weights
for the CDScore, ASScore, RDScore, and STScore were fixed to 5.0, 2.0, 0.5, and 2.0,
respectively.

2.5 Evaluating the effects of retrosynthesis knowledge on the search
directions in MCTS

To quantify the effects of retrosynthesis knowledge on the search directions in MCTS, I
defined a route score as the average value of the corresponding retrosynthesis knowledge
score in each step of a solved synthetic route. I calculated four types of route scores
(rCDScore, rASScore, rRDScore, and rSTScore) for the solved synthetic routes under the
corresponding retrosynthesis knowledge patterns. To facilitate comparison, each route score
for the five retrosynthesis knowledge patterns was standardized based on the corresponding
mean and standard deviation for the no-knowledge patterns. In these experiments, synthetic
routes solved under the condition of an expansion size of 500 were used. The maximum
number of iterations was set to 500, and the score weights for the CDScore, ASScore,
RDScore, and STScore were fixed to 5.0, 2.0, 0.5, and 2.0, respectively.

52



3. RESULTS AND DISCUSSION

3 Results and Discussion

3.1 Top-n accuracies of the GCN-based policy network

To determine the effective size for the expansion step in the MCTS procedure, the top-n
accuracies (for n up to 1,000) of the GCN-based policy network were calculated, as shown
in Fig. 3.3b. The 1-step retrosynthetic reaction prediction model aimed to prioritize 19,633
reaction templates for application to an input molecule. In this study, I used reaction
templates consisting of a reactive center, first-degree neighbors, and protecting groups
because a previous study proposed the use of this type of reaction template to maintain
chemical integrity[114]. Accordingly, the top-1, top-50, top-100, top-300, and top-500
accuracies were found to be 0.361, 0.906, 0.938, 0.968, and 0.976, respectively. Beyond
the top-500 accuracies, the increase in the prediction performance was not insignificantly.
Considering the results of Chapter 2 for reaction templates of different sizes, the prediction
performance was assumed to be equivalent to or better than that of the previous template-
based 1-step retrosynthetic reaction prediction model[16]. Based on the results for the
top-n accuracies, I evaluated the effect of the MCTS expansion sizes and retrosynthesis
knowledge on the performance of solving for target molecules using the top 50, 100, 300,
and 500 predicted templates.

Figure 3.3: (a) Model architecture of the GCN-based policy network. (b) Top-n accuracies
of the model for n values ranging from 1 to 1000. Specifically, the top-1, top-50, top-100,
top-300, and top-500 accuracies are 0.361, 0.906, 0.938, 0.968, and 0.976, respectively.
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3.2 Effects of expansion sizes and retrosynthesis knowledge on the
performance of solving for target molecules

Figure 3.4 shows how the expansion sizes and retrosynthesis knowledge influenced the
performance of solving for target molecules. The 161 molecules from the preprocessed
ChEMBL dataset were used as the target molecules. The searches were performed with
different expansion sizes (50, 100, 300, and 500) and six retrosynthesis knowledge patterns:
no retrosynthesis knowledge (no knowledge), the CDScore, the ASScore, the RDScore,
the STScore, and all four retrosynthesis knowledge scores (all knowledge). In most cases,
the solution performance was improved in proportion to the expansion size. However, the
case of the STScore pattern and an expansion size of 100 resulted in a lower number of
solved molecules than in the case of the same pattern and an expansion size of 50. This
result is attributed to a relative lack of MCTS iterations because of the increase in the
expansion size. Regarding retrosynthesis knowledge, all knowledge patterns except the
STScore pattern resulting in an increase in the number of solved molecules compared to
the no-knowledge pattern. The CDScore pattern with an expansion size of 500 showed the
best solution performance, yielding 90 solved molecules, whereas the no-knowledge pattern
with the same expansion size resulted in 59 solvedmolecules. Although the STScore pattern
resulted in fewer solved molecules than the no-knowledge pattern, this result is considered
reasonable because the STScore focuses on reactions with few byproducts, which often
leads to strict conditions for retrosynthesis.

Figure 3.4: Comparison of the numbers of solved molecules with different expansion sizes
and retrosynthesis knowledge patterns. The green, orange, blue, and pink bars correspond to
expansion sizes of 50, 100, 300, and 500, respectively. The results of retrosynthetic analyses
with five retrosynthesis knowledge patterns (CDScore, ASScore, RDScore, STScore, and
all knowledge) and without any retrosynthesis knowledge (no knowledge) are shown.
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Moreover, the search times necessary for solution were compared for the different
expansion sizes and the six retrosynthesis knowledge patterns, as shown in Fig. 3.5. The
search time increased in proportion to the expansion sizes because an increase in the
expansion size expands the search space for MCTS. The median search times for expansion
sizes of 50, 100, 300, and 500 were 32, 45, 133, and 294 seconds, respectively. The
STScore pattern required shorter search times than the no-knowledge pattern, although all
other knowledge patterns except STScore resulted in longer search times. These results
suggest that synthetic routes can be more efficiently identified under the STScore pattern
than the other patterns, although the STScore pattern results in lower solution performance.

Figure 3.5: Comparison of the times necessary to solve compounds for different expan-
sion sizes and retrosynthesis knowledge patterns. The green, orange, blue, and pink bars
correspond to expansion sizes of 50, 100, 300, and 500, respectively. The results of retrosyn-
thetic analyses with five retrosynthesis knowledge patterns (CDScore, ASScore, RDScore,
STScore, and all knowledge) and without any retrosynthesis knowledge (no knowledge)
are shown. The maximum reach of the whiskers in each boxplot is defined as 1.5�&',
where �&' represents the interquartile range. Outliers, defined as data points beyond the
whiskers, are not shown in the boxplots.

3.3 Effects of retrosynthesis knowledge on the search directions in
MCTS

Figure 3.6 shows how the six retrosynthesis knowledge patterns influenced the character-
istics of the searched synthetic routes in terms of four route scores (rSTScore, rCDScore,
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rASScore, and rRDScore). Each route score was defined as the average corresponding
retrosynthesis knowledge score in each step of the searched synthetic route. For ease of
comparison, each route score for each of the five knowledge patterns was standardized with
respect to the corresponding score for the no-knowledge pattern. The standardized mean
values of the rSTScore for the STScore pattern, the rCDScore for the CDScore pattern,
the rASScore for the ASScore pattern, and rRDScore for the RDScore were 0.178, 0.555,
0.130, and 0.309, respectively. All values were positively shifted compared to the values
for the no-knowledge pattern, indicating that all four retrosynthesis knowledge scores suc-
cessfully guided the search directions in MCTS according to the characteristics of each type
of knowledge. Intriguingly, the CDScore pattern led MCTS to selective transformation-
oriented searches compared to the STScore pattern (the mean values of the CDScore and
STScore were 0.299 and 0.178, respectively). A convergent-disconnection-oriented search
is assumed to have more chances to split reactive centers into divided molecules because
the CDScore attempts to minimize the sizes of each divided molecule simultaneously.

Figure 3.6: Evaluation of the effects of retrosynthesis knowledge on the search directions in
MCTS. Synthetic routes solved with an expansion size of 500 were used for this evaluation.
Each route score was standardized based on the corresponding mean and standard deviation
for the no-knowledge pattern. The black, blue, orange, green, red, and gray plots represent
the standardized route scores for the all-knowledge, STScore, CDScore, ASScore, RDScore,
and no-knowledge patterns, respectively. The rhombuses represent the mean values for each
case, and the confidence intervals at the 95% confidence level are also shown.
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Considering that the all-knowledge pattern showed a higher rSTScore than the CD-
Score and STScore patterns, these results suggest the existence of synergistic effects of
retrosynthesis knowledge; however, this hypothesis needs further analysis.

3.4 Demonstrations of ReTReK for drug-like molecules

To demonstrate retrosynthesis planning using ReTReK, I applied ReTReK to two drug-like
molecules in the cases of the all-knowledge and no-knowledge patterns, and the results
are presented in this section. Figure 3.7 illustrates exemplary retrosynthetic routes to
molecule 1, known as a hepatitis B virus capsid inhibitor[30], found by ReTReK with and
without retrosynthesis knowledge. Exploration with retrosynthesis knowledge suggested
a convergent route, successfully reflecting the specified knowledge scores (Fig. 3.7a). In
this route, the target molecule 1 is disconnected into two main segments, iodophthalazi-
none 7 and pyridylboronic acid 12, which can be converted into 1 by the Suzuki coupling
reaction. The key intermediates 7 and 12 could be retrosynthetically divided into three
representative materials: hydroxyphthalazine 2, benzyl alcohol 3, and tri-halogenated pyri-
dine 8. Iodination of 2 and subsequent N-benzylation with p-iodobenzyliodide 5, which
can be obtained from 3, would give 2-(iodobenzyl)phthalazin-1-one 6. A reaction of 6
with copper cyanide would provide the intermediate 7. The other intermediate 12 would
be prepared from 8 via a 3-step sequence (i.e., chlorination, incorporation of a boronic
acid moiety, and amination with aminoalcohol 11). In contrast, a straightforward route was
presented through exploration without the retrosynthesis knowledge (Fig. 3.7b). Friedel-
Crafts acylation of trihalopyridine 14 with 2-(chlorocarbonyl)benzoic acid (13) would give
2-(pyridinecarbonyl)benzoic acid 15, which is further reacted with aminoalcohol 11 to af-
ford tricyclicl ketone 16. Construction of the phthalazine ring could be performed by the
reaction of 16 with p-bromobenzylhydrazine (17) to yield the precursor 18. Finally, the in-
troduction of a nitrile group into the benzyl group of 18would provide the target molecule 1.
Additional demonstrations for two other drug-like molecules[31, 32] are shown in Fig. 3.8
and 3.9.
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Figure 3.7: Comparison of (a) the synthetic route for a target compound (hepatitis B
virus capsid inhibitor)[30] found by ReTReK with retrosynthesis knowledge and (b) a
corresponding route found without retrosynthesis knowledge. The weight parameters of
the retrosynthesis knowledge scores, F1, F2, F3, and F4, were set to 5.0, 2.0, 0.5, and 2.0,
respectively. Molecule 1 is the target.

58



3. RESULTS AND DISCUSSION

a) With retrosynthesis knowledge

b) Without retrosynthesis knowledge

O

OH

OH
OHO

O

O

OH

OH

O

HO

OH

N O

O

OH

OH

O

O

HO

OH

O

OH

OH

O
P

O

OH
O

P

O

OH
OH

O

OH

OH
OHO

O

O

OH

OH

O

HO

OH

O O

O

O

HO

OH

OH

OH

O

O

O

HO

OH

O

OH

OH

Figure 3.8: Comparison of (a) the synthetic route for a target compound (kwakhurin)[31]
found by ReTReK with retrosynthesis knowledge and (b) a corresponding route found
without retrosynthesis knowledge. The weight parameters of the retrosynthesis knowledge
scores, F1, F2, F3, and F4, were set to 5.0, 2.0, 0.5, and 2.0, respectively.

59



3. RESULTS AND DISCUSSION
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Furthermore, the effectiveness of retrosynthesis knowledge was confirmed in several
cases of retrosynthetic analyses. In these cases, ReTReKwith retrosynthesis knowledge suc-
ceeded in finding retrosynthetic routes to the target molecules, whereas no routes were found
using ReTReK without retrosynthesis knowledge (Fig. 3.10, 3.11, and 3.12). Figure 3.10
shows the retrosynthetic route to a molecule 19, known as a Mycobacterium tuberculosis
thymidylate kinase (MtbTMPK) inhibitor[33], as a representative example. In the suggested
route, 19 is disconnected in the center of the molecule, giving imidazo[1,2-a]pyridine-3-
carboxamide 25 and 1-(piperidin-4-yl)pyrimidine-2,4-dione 29. Compound 25 would be
obtained from dibromide 24 via a selective SNAr reaction with an organometallic reagent,
such as ethylmagnesium bromide, which is prepared from ethyl bromide. Dibromide 24 can
be obtained from benzylamide 22 via stepwise SEAr bromination. Amide 22 would be pro-
vided from imidazopyridine-3-carboxylic acid (20) and N-Boc-benzylamine (21). Another
intermediate 29would be synthesized from4-iodopiperidine (27) with pyrimidine-2,4-dione
28 by SN2 reaction. 27 would be easily prepared from N-Boc 26. From the viewpoint of
the practical synthesis, deprotection of N-Boc group of the piperidine ring should be per-
formed after N-alkylation of 28with 26 to avoid oligomerization of 27 by self N-alkylation.
Additional demonstrations of other two drug-like molecules[34, 35] are shown in Fig. 3.11,
and 3.12.
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Figure 3.12: For the target compound (EGFR kinase inhibitor)[35] considered here, (a) a
synthetic route was found by ReTReK with retrosynthesis knowledge, whereas (b) ReTReK
without retrosynthesis knowledge did not find any synthetic route. The weight parameters
of the retrosynthesis knowledge scores, F1, F2, F3, and F4, were set to 5.0, 2.0, 0.5, and
2.0, respectively.

Overall, the results demonstrate that retrosynthesis knowledge effectively contributes
to retrosynthetic analyses using ReTReK. Considering these demonstrations, the ReTReK
framework with integrated the retrosynthesis knowledge has the potential to further improve
the performance of data-driven CASP applications. In future work, I plan to conduct an AB
test with chemists to show the effectiveness of the retrosynthesis knowledge in a statistical
way using a large variety of molecules.
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4 Conclusion

I developed ReTReK, a hybrid CASP application combining data-driven and rule-based
techniques that can flexibly reflect and apply retrosynthesis knowledge. Through an evalu-
ation of ReTReK with and without retrosynthesis knowledge, I showed that the integration
of such knowledge into data-driven CASP applications helps improve their performance
and enhance the quality of the explored synthetic routes. I expect the concept of ReTReK
to contribute to further developments and improvements in data-driven CASP applications;
furthermore, it is expected to bridge the current gap between applications and chemists by
allowing chemists’ ways of thinking to be interactively introduced into CASP systems.

To allowmore realistic and preferable synthetic routes to be obtained in the future, I will
address the further development of automatic reaction template extraction methods while
maintaining chemical integrity. In this study, orphan atoms (atoms appearing on only one
side of the reaction arrow) were included in the reaction templates in order to automatically
retain protecting and leaving groups in the templates because these groups are often not
recorded as reactants or products. Considering that such groups have been manually
defined in a previous study[107], this template definition is expected to contribute to the
further development of the template extraction methods. In future work, I will also focus
on integrating chemical knowledge, such as electronic and quantum-mechanical aspects
of chemical reactions, into the template. As a solution for describing such information
in reaction templates, Chemical Terms—one of the functions of ChemAxon—may be
considered. In addition, I may define additional retrosynthesis knowledge scores to allow
ReTReK to represent chemists’ ways of thinking more extensively than in the current model.
Furthermore, to ensure the ease of use of ReTReK, I will prepare a user-friendly interactive
interface with functions such as range sliders for adjusting each retrosynthesis knowledge
score and other tools for displaying explored synthetic routes.
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Conclusion

In this thesis, I achieved (1) the application of GCN to the retrosynthetic reaction prediction
task, (2) showing that the GCN model for the task recognized the reaction-related atoms
of a molecule using IG through the quantitative evaluation, and (3) the development of a
data-driven CASP application considering retrosynthesis knowledge usingMCTS and GCN
techniques as well as four retrosynthesis knowledge scores.

In Chapter 1, I developed a graph-based deep learning platform, kGCN, to enable users
with various levels of programming skill to use GNN for various prediction tasks related to
chemistry. Additionally, I implemented the explainable AI technique IG, which allows us to
calculate the relationships between model predictions and the features of organic molecules.
In Chaper 2, I successfully developed a GCN-based interpretable retrosynthetic reaction
prediction model using IG. The prediction accuracy of my GCNmodel was higher than that
of a conventional (ECFP) model, and the GCN predictions were less influenced by dataset
bias, which is a beneficial characteristic for a data-driven CASP approach. Visualizations
of the GCN predictions using IG successfully showed the contributions of individual atoms
to the results of retrosynthetic reaction prediction. Based on such visualizations, my
system is expected to aid chemist’s understanding of data-driven retrosynthetic reaction
prediction models. In Chapter 3, I developed ReTReK, a data-driven CASP application
integrating retrosynthesis knowledge. Experimental results showed that the consideration
of retrosynthesis knowledge successfully increases the solution performance and can guide
the search directions in MCTS according to the characteristics of each type of knowledge.
Through an evaluation of ReTReKwith andwithout retrosynthesis knowledge, I showed that
the concept of integrating such knowledge into data-driven CASP applications can improve
their performance and enhance the quality of the explored synthetic routes. Furthermore,
I clearly demonstrated that synthetic routes found with retrosynthesis knowledge were
preferable to those found without such knowledge.

I believe that the results obtained through thework presented in this thesiswill contribute
to the development ofmore practical data-driven CASP approaches and furthermore provide
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important concepts, such as the integration of retrosynthesis knowledge in the form of
adjustable parameters into a CASP system, to bridge the gap between chemists and data-
driven approaches. I also believe that pure data-driven AI will be able to discuss with
chemists how to synthesize molecules in their daily work within several decades. To realize
such AI, I think there is a need for a better understanding of how AI learns and recognizes
chemistry and the development of interfaces between chemists and AI to communicate with
each other, as well as we should improve AI performances of chemical synthesis planning
more and more. In the hope of developing such AI, I will continue to address and contribute
these attractive themes.
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