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Abstract

This thesis provides a general design framework for stand-alone distributed systems with
DC inputs. A complete control methodology is provided to stabilize the system output
voltage. Various applicable designs for stand-alone distributed systems are introduced and
the mathematical tools needed to design and apply a control strategy based on the energy
dynamics of the systems are provided in this dissertation. Across these applications, the
results are further validated with numerical simulations which show the successful appli-
cation of a feedback control regime to guarantee the stabilization of the entire distributed
generation network to a desired AC or DC output voltage.

The open loop distributed network is analysed by calculating the duty ratio corre-
sponding to the desired output voltage via steady state analysis. This allows for deter-
mination of the behaviour of the system in the absence of a feedback control. It was
observed that the open loop system displays undesirable transient behaviour. A key
contribution of this dissertation is to develop a control methodology that manages the
behaviour of the distributed network in the event of transient changes in the system pa-
rameters. Each of the distributed networks is represented by port-controlled Hamiltonian
modelling (PCHM), the characteristics of which facilitate the description of the system
into well defined matrices indicating dissipation, structure and external inputs. For each
distributed network, the feedback control paradigm is set with the energy shaping and
damping injection framework of passivity-based control. The structural analysis through
zero dynamics dictates that the system retains stability when the feedback is applied
through the current through the inductor rather than the output capacitor voltage.

It was found that the feedback control methodology with PBC was successful in damp-
ing transient oscillations and achieve a fast convergence in contrast to the open loop for
all distributed networks explored in this thesis. In the case of stand-alone networks with
an AC output voltage, this control methodology was also used in congruence with phase
locked loops to achieve phase and frequency synchronization. In addition, it was proven
that PBC can be used for energy functions other than the conventional quadratic function
of errors, to suit the solar array-DC/DC converter system’s bifurcation characteristics. It
was observed that in this case, for a system with multiple equilibrium points, PBC can
drive the system to settle at the equilibrium point at a higher power output.
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Chapter 1

Introduction

Renewable energy is derived from natural sources or process that are constantly replen-
ished [1]. Such renewable sources are available abundantly, and in some capacity, every-
where on the planet [2]. Renewable generation produces electricity without the release of
carbon dioxide in the atmosphere causing fewer environmental impacts [3,4]. It also pro-
vides fuel diversification and reliable sources of power with a lower risk of fuel spills and
reduced necessity for importing fuel. The global focus is thus shifting towards developing
innovative methods to harness renewable energy in an increasingly cost-effective and effi-
cient manner [5, 6]. One such method that has attracted interest of governments as well
as utility companies worldwide is distributed generation [7–9]. It consists of generation
and storage of electricity with the help of various distributed resources (power resources
covering a large area) connected in a grid [10].

Distributed stand-alone power systems is an emerging concept wherein the generation
of electricity is moved away from centralized power plants and towards individual gen-
erator units scattered over towns and villages [11]. It has been discussed widely as an
alternative to solve the electrification problem of rural and remote areas by construct-
ing small stand-alone power grids by installing renewable energy generators in multiple
households [12]. Such projects have been developing under the umbrellas of local govern-
ments as well as the private sector [13,14]. In remote rural parts of numerous developing
countries in Africa and south east Asia, stand-alone systems powered by DC sources such
as solar photovoltaic coupled with batteries are gaining popularity [13,15]. In areas with
abundant sunlight, they provide an effective and reliable way to power small irrigation
systems as well as for lighting and household use. Towards the goal of rural electrifi-
cation, various local governments are offering subsidies on installation of photo-voltaic
stand-alone systems in remote areas [16, 17]. These systems consist of DC sources like
solar panels and batteries that employ voltage conditioning tools like DC/DC converters
and inverters to enhance the system efficiency and deliver a stable output voltage [18].
It is imperative to give attention to the control of these power electronic circuits for the
design of an effective stand-alone distributed power system [19].

In the last two decades, extensive research has been dedicated to devising control
techniques to implement power conditioning, maintain system stability and regulate the
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output voltage [20]. To ensure stable operation of a distributed generation system, there
is a growing need for a control method which will be able to incorporate the diverse
nature of renewable energy resources and increase operational flexibility [21]. As power
electronics devices are physical devices that can be mathematically modelled as controlled
dynamic systems, it allows for their state variables to be controlled by the application of
various control theories [22]. A relatively recent control strategy that has been proposed
by [23] for the stabilization of the output voltage of DC/DC converters is passivity-based
control (PBC).

PBC was introduced first in [24] to define a control methodology whose objective was
to render the closed loop passive. This control method was first employed for the adaptive
control of robot manipulators [25]. The energy-shaping plus damping injection method-
ology used to solve state feedback set point regulation problems in fully actuated robotic
systems by Takegaki and Arimoto, has evolved into today’s ’passivity-based control’ [26].
Along with mechanical systems, this approach is now used to stabilize and control an ar-
ray of systems that are described by Euler Lagrange or Hamiltonian equations [24]. PBC
arises from the theory of passive systems where energy stored in the system is always
less than the energy supplied to the system from outside [27]. PBC is applied to passive
systems and is performed in two stages. The first stage is the shaping of the potential
energy of the system such that the potential energy function has a global and unique
minimum at the desired equilibrium. The second stage is to add damping to make the
system exponentially stable [24]. Port-controlled Hamiltonian modelling (PCHM) is an
indispensable tool for applying PBC to electrical systems that have switching elements
and dissipation [28]. It facilitates the description of the system to well defined matrices
indicating dissipation, structure and external inputs to the system.

The objective of this thesis is to provide a general design framework for distributed
stand-alone systems with DC inputs, and provide a complete control methodology to
stabilize the system output voltage. The purpose of this study is to introduce various
applicable designs of distributed generation stand-alone systems and to provide the math-
ematical tools needed to design and apply a control strategy based on energy dynamics.
The application of PBC for DC/DC converters was shown in [23]. The application of PBC
for parallely connected DC/DC converters was described in detail in [29]. Based on these
works, this study extends the application of PBC to three different kinds of stand-alone
networks. Firstly, a DC output distributed stand-alone network with multiple DC/DC
boost converters connected in a ring formulation is analysed. Extending the scope of this
design, a more practical stand-alone network with DC inputs and multiple inverters to
obtain AC outputs was introduced. For the AC system, along with stabilization of the
output voltages of individual inverters, grid synchronization is a crucial task. The appli-
cation of PBC with phase-locked loop was shown to be successful to obtain a stable AC
output voltage. Integrating these two ideas, a hybrid (DC-AC) stand-alone network is
designed. The idea behind this network framework is to introduce a hybrid DC-AC net-
work feasible for small, remotely located areas with stand-alone DC grids, in the vicinity
of larger towns requiring a functional AC connection. Finally, based on the conventional
application of PBC, we focus on the energy function and tailor it to suit the character-
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istics of the system in consideration. This is accomplished for a ring coupled converter
system having solar arrays as DC inputs. The current voltage (IV) characteristics for the
solar array-DC/DC system as given by [30] are studied and the energy function in PBC
is modified to have multiple equilibria to accommodate the system characteristics.

1.1 Distributed Generation
The current model for the generation of electricity, conventional as well as renewable,
is through the centralized power plants, requiring transmission and distribution system
from the centre to the outlying consumers [31]. The substations are located 10s to 100s
of miles away, causing heavy transmission losses [32]. Apart from the energy loss, the
construction of a transmission system is a mammoth task, especially for remotely located
areas in developing countries [33]. Many of these issues can be solved by distributed
generation with renewable energy sources. Distributed generation is defined as the decen-
tralized generation of electricity through small generators located near the end user or the
consumer. Distributed generation may serve as a single structure or may be a part of a
micro-grid (a smaller grid that is also tied into the larger electricity delivery system), such
as at a major industrial facility, a military base, or a large college campus. Distributed
generation with renewable resources helps in the supply of clean energy while reducing
the distribution and transmission losses. Distributed generation typically employs small
photo-voltaic power systems, small wind generators, batteries and diesel generators.

Global distributed energy resource (DER) capacity is expected to grow from 132.4 GW
in 2017 to 528.4 GW in 2026 [34]. The introduction of new technology has resulted in
the price reduction of solar panels, wind energy, energy from waste and other DER [35].
This in turn has led to the economic viability of DERs and consequently distributed
generation has been projected to grow their share in the energy market [36]. There is
an increasing interest in decentralised management of DERs due to expected associated
risks for over-voltage, under-voltage and grid congestion caused by the penetration of
distributed generation. Thus, integration of the distributed energy resources into the
grid, and the development of stand-alone microgrids is becoming a widely researched
topic.

Stand-alone power systems, which is also referred to as remote-area power supply, is an
off-grid electricity system meant for areas that have not yet been included in the traditional
utility network [37]. These primarily include remote areas in developing nations, not yet
included in the existing distribution network. In remote areas it is more effective to build
a off-grid distribution network powered by small generators, typically solar photovoltaic,
small wind turbines, and small hydro-power systems depending on the availability in
the area. In remote areas, stand-alone systems are proving to be more cost-effective
than extending power lines from centralized power plants (which can range from $15,000-
$50,000 per mile) [38]. Even though stand-alone distributed generation is an upcoming
technology with numerous benefits, it faces various issues such as non-linear loads, voltage
instability, output voltage synchronization and fatal transients [11,14].
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Figure 1.1: Passivity in systems

Desried Equilibrium
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Figure 1.2: Passivity in systems

1.2 Passivity-based Control

1.2.1 Passivity in Systems
Passive systems are a class of dynamical systems in which the energy exchanged with

the environment plays a central role. In passive systems the rate at which energy flows in
the system is less than or equal to the energy that is supplied from outside. This implies
that a passive system cannot store more energy than is supplied to it [24]. Passivity
theory is one of the important theories in nonlinear control theories since 1970s. It has
also been seen as in important tool for modelling and controlling interconnected systems.
The interconnection of passive systems retains the property of passivity [27]. Passivity
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is also used in designing various robust control methods. Dissipativity is another basic
concept needed in defining passive systems.

The concept of passive systems was first developed in [39] in the context of electrical
circuits. If an electrical circuit consists of only passive elements, i.e. resistors, inductors,
and capacitors, then it cannot generate energy. The framework of dissipative systems
was later developed in [40]. This framework helps to understand the concepts of passive
systems and passivity-based control from a dynamical systems point of view.

1.2.2 Dissipative Systems
Consider a system described by Eq. (1.1).

dx

dt
= f(x,u)

y = h(x,u)

(1.1)

Here, x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, y ∈ Y ⊂ Rm are the state, input, and output
variables. X, U , and Y are state, input, and output spaces respectively. This system is
a dissipative system if there exists a non-negative real function S(x), called the storage
function (more often than not, it is the energy of the system), such that, for all time
t1 ≥ t0 ≥ 0,x0 ∈ X ⊂ Rn,u ∈ U ⊂ Rm,

S(x)− S(x0) ≤
t1∫
t0

w(t)dt , (1.2)

where w(t) is the supply rate, a function of the input u and the output y. Here the
expression x(t) = φ(t, t0,x0,u) is used to denote the state at time t reached from initial
state x0 at t0. To put it simply, a dissipative system is the one in which the stored energy
is always less than the energy supplied to the system, thus it ‘dissipates’ energy [27].
Diagrammatic representation of dissipativity in systems is given by Fig. 1.1.

1.2.3 Passive Systems
A passive system is a dissipative system for which the supply rate is a function of the

input and output as given by Eq. (1.3) [27,39].

w(u(t),y(t)) = uT(t)y(t) (1.3)

Thus passive systems are systems in which the product of the port variables has units
of power, e.g. in case of electrical circuits they are current and voltage [41]. As passive
systems come under dissipative systems, passive systems cannot store more energy than
is supplied from outside. The difference between the stored and the supplied energy is
the dissipated energy.
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1.2.4 Lyapunov’s Theorem
Stability of the solutions of differential equations describing a dynamical system can

be given by a Lyapunov stability criteria [42]. Likewise, to test for the stability of passive
systems, the Lyapunov stability criteria is employed.

For a system ẋ = f(x), having an equilibrium x = x∗, consider a function v(x) :
Rn → R with the following three conditions.

(a) V (x∗) = 0

(b) V (x) > 0 for x 6= x∗

(c) V̇ (x) ≤ 0 for all x 6= 0

If the first two criteria are satisfied, i.e. V (x) is a locally positive definite function, then it
is a Lyapunov function. If all three conditions are satisfied, the system is Lyapunov stable.
If V̇ (x) < 0 then the system is asymptotically stable [43]. This determines local stability.
For global stability, another property of radial unboundedness has to be satisfied. The
function V (x) is analogous to a potential function.

1.2.5 Passivity-based Control
Passivity-based control (PBC) is a method which brings the system to the desired

equilibrium state by shaping the energy characteristics of the system. It is done in two
steps i.e. energy shaping and damping injection. Energy shaping implies the design of a
new ‘desired’ energy function which has a minimum at the desired equilibrium. The first
step entails modifying the potential energy function of the system in such a way that the
newly modified energy function has a minimum at the the desired equilibrium. Energy
shaping in PBC is represented in Fig. 1.2. The modified storage function has to be shown
to be a candidate of a Lyapunov function. The second step is the damping injection stage,
where appropriate damping is added to the system to ensure asymptotic stability [44].

Passivity-based control has been traditionally applied to Euler-Lagrange systems [24].
Here, the energy shaping stage accomplishes shaping of the potential energy and keeping
the original kinetic energy to satisfy the passivation objective. Addition of the damp-
ing reinforces the property of output strict passivity, thus giving asymptotic stability.
Lyapunov stability can be confirmed from the input-output stability properties from the
output strictly passive map [24].

Thus, a given system needs to be modeled as Hamiltonian or Euler-Lagrange systems
of equations for the application of PBC. For electronic systems which consists of non-
energy elements like dissipation through resistance and switching elements, Lagrangian
formulation is difficult or at times impossible to implement [24]. For systems like these,
the kinetic as well as potential energy of the system need to be modified to design a storage
function. Considering these resctrictions, instead of Euler-Lagrange modelling, PCHM is
used to achieve better results with PBC. The modified storage function has to be shown
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to be a candidate of a Lyapunov function. The second step is the damping injection where
appropriate damping is added to the system to ensure asymptotic stability [44].

1.3 Port-controlled Hamiltonian Modelling
The concept of energy shaping, formulation of a ‘desired’ energy function, and making

it suitable to be used as a Lyapunov function were introduced in [45]. This lead to the
development of a passivity-based control (PBC). For the application of PBC, it is first
necessary to model the system mathematically [46]. Generalized Hamiltonian modelling
is applied in the case of lossless nonlinear systems with elements that keep the traditional
canonical form [24] . In case of electrical systems with resistances and switiching elements,
the system is no longer lossless and switching implies a inherent change in the structure of
the circuit [44]. In such cases, generalized Hamiltonian modelling is difficult or sometimes
even impossible to implement [47].

It is desirable to shape the total energy of the electrical system while considering
the physical structure. Port-controlled Hamiltonian modelling (PCHM) is the network
representation of systems in interaction with their environment [48, 49]. These systems
are called as port-controlled Hamiltonian systems (PCHS). PCHM captures the energy
balancing features of the system. It classifies the system neatly into physically well de-
fined interconnection (J), dissipation (R) and external input (E) matrices within a state
space framework [24]. The system model using the port-controlled Hamiltonian (PCH)
framework is given by Eq. (5.22) and is in the form given in [47].

ẋ = [J−R]
∂H

∂x
+ g(x)u

y = gT(x)
∂H

∂x

(1.4)

Here, x is a matrix of system variables with dimensions n×1. J is the n×n intercon-
nection matrix satisfying J(x) = −JT(x). R is the dissipation matrix consisting of all the
dissipation elements in the system. R which is a n×n matrix satisfies R(x) = RT(x). u
is the input matrix with size n×1. y is the output of the system. H is the Hamiltonian of
the system, which, in this case, is the total energy of the system. In equations described
by PCHM the control is applied through the interconnection structure. For example, for a
system consisting switching devices, the duty ratio will be included in the interconnection
structure.

The energy balance of PCHS can be given by Eq. (1.5). This equation is obtained
after evaluating the rate of change of energy.

dH

dt
= −

[
∂H

∂x
(x)

]
R(x)

∂H

∂x
(x) + uTy ≤ u(t)Ty(y) (1.5)

Here, the first term represents the dissipation rate (non-positive) due to the dissipative
elements like resistances. Thus after integrating Eq. (1.5), the energy balance of the system
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can be obtained.∫ t

0

uT(s)y(s)ds = H[x(t)]−H[x(0)] +

∫ t

0

[
∂H

∂x
[x(s)]

]T

R[x(s)]
∂H

∂x
[x(s)]ds (1.6)

In Eq. (1.6), the first term denotes the energy supplied from outside, the second term,
the stored energy, and the third term, the dissipated energy (from Eq. (1.5)). It is clear
that this equation holds for all t ≥ 0, so that energy function H(x) is bounded from
below. The energy balance shows that when a system is modeled with PCH, it retains
the property of passivity, given in Eq. (1.3) and Eq. (1.2).

It is thus verified that the system cannot hold more energy than is supplied to it, and
the difference between the two is the energy that is dissipated. With Eq. (1.7), it can be
understood that any system modeled with PCHM satisfies the property of passivity.

dH

dt
≤ uT(t)y(t) (1.7)

1.4 Dissertation Objectives
The dissertation aims to provide a comprehensive design for stand-alone distributed gen-
eration systems with DC inputs. The following are the main tasks performed in this
dissertation.

• Circuit design of different types of distributed generation system with DC inputs.
These include the stand-alone DC output system, stand-alone AC output system
and the hybrid system consisting of both AC and DC systems.

• Proposing a averaged dynamical circuit model described with a system of differential
equations and using the port-controlled Hamiltonian modelling to organize the sys-
tem of equations in matrices neatly describing the structure, inputs and dissipation
in the aforementioned stand-alone distributed generation networks.

• Analyse the structural properties of the network to recognize the minimum phase
nature of the desired method of feedback to design the control equations through
PBC.

• Prove that the shaped energy function for the application of PBC is a candidate of
Lyapunov function.

• Formulate a method to stabilize the state variables to a desired state through a
feedback control focussing on the energy characteristics of the system (PBC).

• To verify the application of PBC under a variety of conditions with numerical sim-
ulations.
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• To study the application of PBC for a storage functions other than the conventional
quadratic function of errors by proving the Lyapunov stability for the double well
potential function.

• To verify with numerical simulation the application of PBC with a dual equilibrium
function.

1.5 Dissertation Organization
The thesis is organized as follows. Chapter 2 reviews the application of passivity-based
control for a DC/DC boost converter. After the review of the operating principle, the
first step is the formulation of the dynamic state model of the converter. The study of
the structural properties of the boost converter is an important preliminary step to rec-
ognize that PBC applied with feedback through the inductor current guarantees stability,
rather than the conventional feedback through the capacitor voltage. The next step is
the modelling of the state equations with PCH framework as an indispensable tool for
the application of PBC. Finally this chapter reviews the details of the energy shaping and
damping injection PBC for a boost converter. This provides a foundation to generalise
the application of PBC for more complex networks of converters and inverters as pursued
in the later chapters.

Chapter 3 introduces the basic ring-coupled DC network. Here, multiple DC resources
with as many DC/DC boost converters are connected in a ring-coupled configuration. This
chapter will delve in the design of the circuit as well as the structural stability through
zero dynamics before going into details about the steady state analysis and PCHM of
the entire network. A control rule with PBC is formulated after proving the Lyapunov
stability of the selected desired energy function. Finally, the the effectiveness of PBC is
verified through numerical simulations.

Chapter 4 deals introduces an AC output ring coupled network with multiple DC
inputs connected to as many buck-type inverters. The buck-type inverter has a H-bridge
at the input the invert the polarity to obtain the negative component of the AC output
voltage. In order to maintain the stability of the network, synchronization of all the AC
outputs is essential. To maintain the phase and frequency synchronization, PLLs are
employed in congruence with PBC.

Chapter 5 turns towards a more practical extension of Chapter 2 and Chapter 3,
introducing a hybrid network with DC as well as AC outputs. The hybrid network
consists of a main AC output ring of multiple inverters connected to multiple DC rings.
The network modelling of the system as a whole is discussed. Here, importance of the
structure matrix for system extension and analysis of the vulnerable nodes is explored.

Finally, the application of PBC with multiple equilibria for a system of solar arrays
and DC/DC converters is investigated in Chapter 6. After examining the bifurcation
characteristics of the solar panel-DC/DC converter system, an dual-equilibrium energy
function is designed as the desired function. Behaviour of the ring coupled network to
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drive the system to the equilibrium with the higher power is studied in detail.
Chapter 7 is the conclusion of the PhD dissertation and indicates the potential future

directions of the research presented herein.
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Chapter 2

Basics of Energy Shaping with PBC for
Power Converters

This chapter introduces the dynamic model of DC-DC boost converter based on Kirchoff’s
current and Kirchoff’s voltage laws. Here, the differential equations of the circuit model
are derived for the different switch positions. These derived model equations are combined
into a single set of equations parameterized by the switch position function whose value
must be co-incide and have the numerical value of either 0 or 1. That is, the numerical
values given to the switch function are in the binary set {0, 1}. This switch model can
be interpreted as the ‘averaged switch model’ with the switching function taking values
on the real interval [0, 1]. The averaged model discussed below can be used in conjuga-
tion with PWM. It will be shown that the averaged model satisfies the energy-balance
equation for passive systems. This establishes that the property of ‘passivity’ for the
DC/DC boost converter. Besides this fundamental property, the boost converter also has
some structural properties that need to be considered for the application of PBC. This
chapter lays out the procedure to obtain the port-controlled Hamiltonian modelling for
the boost converter. Taking into consideration the structural properties, PBC is applied
with indirect stabilization through the inductor current.

2.1 Operating Principle of a Boost Converter
DC/DC converters are electronic circuits that regulate the flow of energy between two

DC systems [50]. A boost converter is a type of DC/DC converter that converts the input
voltage to a higher value. At the same time, the current becomes lower while keeping the
power between the input and the output. That is, the output voltage of a boost converter
is always greater than the input voltage. The circuit diagram of a boost converter is
shown in Fig. 2.1.

The boost converter includes two switches, a diode and a controllable transistor switch.
When the switch is ON, the diode is reversed biased, thus isolating the output stage. At
this time, the input supplies energy to the inductor. When the switch is OFF, the output
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E R

Figure 2.1: Schematic of a boost converter

stage receives energy from the input as well as the inductor [51]. The diode and transistor
switch are assumed to be ideal elements, i.e. the transistor has an infinitely fast response
and the diode has 0 V threshold voltage. This assumption will be valid throughout this
thesis.

The dynamics of a boost converter are formulated in equations based on Kirchhoff’s
laws in each one of the circuit topologies. The first circuit topology is obtained when the
switch position is set to take the numerical value s = 1 as shown in Fig. 2.2. In the second
topology, the switch takes the numerical value s = 0 shown in Fig. 2.3.

When the switch is ON, i.e. s = 1, the equations are given by Eq. (2.1).
L

diL
dt

= E

C
dvC
dt

= − v
R

(2.1)

When the switch is OFF, i.e. s = 0, the equations are as given in Eq. (2.2).
L

diL
dt

= −vC + E

C
dvC
dt

= iL −
vC
R

(2.2)

Combining these equations, the dynamics of a boost converter are given by Eq. (2.3).
L

diL
dt

= −(1− s)vC + E

C
dvC
dt

= (1− s)iL −
vC
R

(2.3)

These equations consider the switch position to be either OFF or ON (s = 0 or s = 1).
As the switching is done with PWM or other such methods, if the switching is sufficiently
fast, the switching is replaced by averaged states with averaged duty ratio µ between 0
and 1. The averaged model for the boost converter is introduced by replacing s with µ .

12



L

E R

Figure 2.2: Effective circuit for boost converter when switch is ON

L

E R

Figure 2.3: Effective circuit for boost converter when switch is OFF

2.2 Indirect Stabilization with Inductor Cur-
rent

Some structural properties of DC/DC converters have to be taken into consideration
before designing PBC. Eq. (2.4) is obtained by eliminating iL from Eq. (2.3).

v̈C +

(
1

RC
+

µ̇

1− µ

)
+

1

LC

[
(1− µ)2) +

L

R

µ̇

1− µ

]
vC = (1− µ)

E

LC
(2.4)

The dynamics at an equilibrium point vC = vCd are obtained by setting the derivatives
to zero. Then the duty ratio µ is obtained by Eq. (2.5).

µ̇ =
R(1− µ)2

LvCd

[
E − (1− µ)vCd

]
(2.5)

The equilibrium points of this equation are given by Eq. (2.6)

µ = 1 ; µ = 1− E

vCd
(2.6)

Among these, the second one has physical significance. If vCd > E, it is confirmed that the
output voltage will always be higher than the input of the converter. However, the phase
diagram describes this equilibrium point as unstable, making the system non-minimum
phase with respect to the output voltage. This is shown in Fig. 3.4.
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Figure 2.4: Zero dynamics corresponding to constant output voltage

Figure 2.5: Zero dynamics corresponding to constant inductor current

Next, the structural properties of the boost converter with respect to the inductor
current will be considered. Writing the boost converter equations in terms of the inductor
current, we get Eq. (2.7).

ïL +

(
1

RC
+

µ̇

1− µ

)
i̇L +

[
(1− µ)2 1

LC

]
iL =

E

L

(
1

RC

µ̇

1− µ

)
(2.7)

Considering the zero dynamics, i.e. by setting the derivatives at zero, for an equilibrium
point iL = iLd, µ takes the following values.

µ = 1; µ = 1−
√

E

RiLd
; µ = 1 +

√
E

RiLd
(2.8)

Plotting the phase diagram of these equilibrium points as given by Fig. 3.3, it is seen
that the equilibrium point µ = 1 −

√
E/RiLd is stable, as long as RiLd > E. This
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again emphasizes the properties of the boost converter, making the system controlled
with inductor current a minimum phase system. The inductor current will be used to
stabilize the system rather than the output capacitor voltage.

2.3 PCHM for Boost Converter
The Hamiltonian approach allows for the systematic modelling of electrical systems

including resistors and switching elements. These non-energetic terms are extracted from
the circuit. This leaves the energy conserving LC circuit. These non-energy elements
are then introduced into the circuit in the form of ‘ports’ [48]. This configuration of the
LC circuits with ports are represented as a generalized Hamiltonian system with external
input variables. This technique is used when modelling DC/DC converters, to allow for
the inclusion of power electronic switches and load resistances [29].

The energy of the capacitor plays the role of potential energy and the energy of the
inductor plays the role of kinetic energy [44]. These are given by Eqs. (2.9) and (2.10)
respectively. U denotes the potential energy and T , the kinetic energy. The total energy
is the sum of the kinetic and potential energy and is given by Eq. (2.11). The total energy
function is a candidate Hamiltonian function.

U =
1

2
Cv2

C (2.9)

T =
1

2
Li2L (2.10)

H =
1

2
Cv2

C +
1

2
Li2L (2.11)

Considering x as the state vector, consisting of inductor current and capacitance voltage,
the total energy is given by Eq. (2.12). Here, D is a diagonal matrix of inductance and
capacitance values corresponding to the current and voltage in x.

H =
1

2
[iL, vC ]T

[
L 0
0 C

] [
iL
vC

]
=

1

2
xTDx (2.12)

Eq. (2.3) is obtained by extracting the non energy elements, and representing them as
external ports. Thus, the structure of the system is denoted in a separate matrix and so
are the dissipation elements. The boost converter equations (Eq. (2.3)) are written in the
form of PCH equations (Eq. (5.22)) as given in Eq. (2.13).[

L 0
0 C

] [
i̇L
v̇C

]
=

[
0 −(1− µ)

(1− µ) 0

] [
iL
vC

]
−
[
0 0
0 R

] [
iL
vC

]
+

[
1
0

]
E (2.13)

As is seen, the interconnection matrix is skew symmetric and the dissipation matrix is
symmetric, and µ denotes the averaged duty ratio. It is obvious from Eq. (2.13) that J
is a function of the duty ratio µ. Hereon, we shall consider J = J(µ) . With this, the
modelling of a boost converter with PCHM was accomplished.
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2.4 PBC for a Boost Converter
With the averaged model of boost converter represented as a port-controlled Hamilto-

nian system, it is possible to apply passivity-based control. Let us consider the generalized
model of the boost converter in the form given by Eq. (2.14) [44].

Dẋ(t) = [J(µ)−R]
∂H

∂x
+ E (2.14)

Here, x denotes a matrix of system variables consisting of the inductor currents and the
capacitance voltages. J denotes the interconnection matrix and R denotes the dissipation
matrix. The control objective is to follow the desired state trajectory, given by x∗(t).
This vector represents the desired values of inductor current and capacitor voltage. We
start by choosing a Lyapunov function which preserves the energy characteristics of the
system, i.e. the quadratic function of errors. This function is given in Eq. (2.15).

Hd =
1

2
eTDe, e = x(t)− x∗(t) (2.15)

First, it is necessary to prove that the storage function (Hd) is a candidate of Lyapunov
function. By taking the derivative of this function, Eq. (2.17) is obtained.

Ḣd = (x− x∗(t))TD(ẋ− ẋ∗(t)) (2.16)

= (x− x∗(t))T([J−R]x + E−Dẋ∗(t)) (2.17)

By setting the term Dẋ∗(t) as given in Eq. (5.24), the control rule with PBC for boost
converters can be formulated.

Dẋ∗(t) = (J−R)x∗(t) + E + RI(x− x∗(t)) (2.18)

In Eq. (5.24), RI is a symmetric, positively defined matrix which acts as the damping
injection, making the system asymptotically stable if R + RI > 0. By considering that
eTJ(µ)e = 0 for all values of µ, we get the following condition on the derivative of our
chosen Lyapunov function Hd(e).

Ḣd = eT (J(µ)e−R)e−RIe = −eT (R + RI)e < 0 (2.19)

The error e has the origin as the asymptotically stable equilibrium. By satisfying the
condition (R + RI) > 0, the system becomes exponentially asymptotically stable at the
equilibrium point [43]. The derivative of Hd is given in Eq. (3.25).

Ḣd(e) = −eT (R + RI)e ≤ −kHd(e) (2.20)

Thus, according to Lyapunov’s Theorem, the equilibrium state x∗ is asymptotically stable
with the control rule given in Eq. (5.24), and exponentially asymptotically stable with the
damping injection.
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The boost converter equations, written in the form of Eq. (5.24), are given in Eq. (2.21).

[
L 0
0 C

] [
i̇Ld
v̇Cd

]
=

[
0 −(1− u)

(1− u) 0

] [
iLd
vCd

]
−
[
0 0
0 R

] [
iL
vC

]

+

[
1
0

]
E −

[
R1 0
0 0

] [
iL − iLd
vC − vCd

]
(2.21)

Here, iLd is the desired inductor current and vCd is the desired voltage state, and R1 is
the term in the damping injection matrix RI . Thus the controller is obtained by solving
Eq. (2.21) for the duty ratio, which is the control parameter in Eq. (2.22).

µ =
1

vCd

[
E +R1(iL − iLd)

]
+ 1

Cv̇Cd = (1− µ)iLd −
[
vCd
R

] (2.22)

The direct output stabilization zero dynamics do not allow for stability in the neigh-
bourhood of the equilibrium point [22, 24]. Thus, indirect control is chosen for the boost
converter. Instead of having a constant value for the desired voltage vCd, it is favourable
to have a constant value of the inductor current iLd.

2.5 Conclusion
This chapter served as an introduction to the ideas that will be explored further in the

thesis. Firstly, the definitions of key concepts that will be used in this thesis were ex-
plained. These are the concepts of passivity, dissipativity, Lyapunov stability and, PCHM.
The boost converter was introduced and was modelled using PCHM. This chapter dis-
cussed the structural properties of the boost converter and their effect on the stability
properties. Finally, energy shaping for PBC was employed for the boost converter suc-
cessfully.
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Chapter 3

Passivity-based Control for Stand-alone
DC/DC Ring-Coupled Converters

Power converters are seen as an important interface to transfer electricity from renewable
sources of energy into the power network. Towards designing a distributed generation
system,which is autonomous from the conventional power grid, we propose a DC/DC
converter system with DC power sources connected in a ring formulation and coupled
with dissipation. Ring formulation is proposed to represent one of the ways to realize
distributed autonomous systems in small residential areas [52]. The basic idea of such an
‘autonomous distributed generation system’ is illustrated in Fig. 3.1. This configuration
is useful in harnessing energy from DC sources of electricity like solar cells, batteries, fuel
cells, and so on.

LOAD

LOAD

LOAD

Figure 3.1: System Configuration
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Figure 3.2: Schematic diagram of ring coupled converters.

3.1 System Design and Modelling

For a ring-coupled converter system introduced in this chapter, it is confirmed that the
converters keep the property of passivity, individually. In addition, the feedback control
is employed with minimizing the energy function of the entire system, as opposed to the
individual function of a single DC/DC converter. The energy transfer between the indi-
vidual converter units governs the dynamic behaviour of the whole ring coupled system.
The application of PBC, with ‘energy shaping’ of the entire system, manifests the prop-
erty of robustness despite the flow of energy between individual elements. We introduce
a system consisting of multiple boost converters with multiple DC input sources. These
converters are coupled together with dissipation through inductance and resistance. The
coupling through dissipation represents a transmission line model, with inductive and
resistive elements [53]. The basic configuration is shown in Fig. 3.1.

The schematic diagram of the circuit is shown in Fig. 3.2. The coupled converters
are responsible for the constant voltage output in the ring. Here, load resistances(R2Tn)
are across the output voltages, where as the dissipation elements of line inductor (LTn)
and line resistance (R1Tn) are in series. The capacitor in the transmission line model is
considered as negligible. This is owing to the fact that a parallel capacitor is dominant in
the boost converter configuration. The number of converters was set such that it enhances
the asymmetry of the system. The number of converters in the ring does not cause any
loss of generality. The objective is to apply PBC to the whole system, including the
dissipation between the converters.
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The system equations are given by Eqs.(3.1)-(3.3). Subscription n denotes the index
of the converter. un denotes the switch position for the #n converter. un = 1 implies
that the switch is ON and un = 0, that it is OFF. LTn is the inductance and R1Tn is the
dissipation between the #n and #n + 1 converter.

Lni̇Ln = −(1− un)vCn + En (3.1)

Cnv̇Cn = (1− un)iLn − iTn + iT (n−1) −
vCn

R2T (n−1)

(3.2)

LTni̇Tn = vCn − vC(n+1) −R1TniTn (3.3)

Here, the dot notation represents differentiation with respect to time.

3.1.1 Port-controlled Hamiltonian Modelling
Port-controlled Hamiltonian modeling (PCHM) is the network representation of systems
in interaction with their environment [48]. The Hamiltonian approach allows for the
systematic modelling of electrical systems including resistors and switching elements. The
non-energetic terms are extracted from the circuit. It leaves the energy conserving LC
circuit. The non-energy elements are then introduced into the circuit in the form of
‘ports’ [48]. Such configuration of LC circuits with ports is represented as a generalized
Hamiltonian system with external input variables. PCHM technique is used for modeling
DC/DC converters was shown in Chapter 2. The same technique will be used to model
the distributed generation DC system presented in this chapter.

PCHM classifies the system neatly into physically well defined interconnection (J), dis-
sipation (R) and external input (E) matrices within a state space framework [24]. The sys-
tem model using the Port Controlled Hamiltonian(PCH) framework is given by Eq.(5.22)
as in the form given in [47].

Dẋ(t) = [J−R]
∂H

∂x
+ E (3.4)

For m converters in the configuration, x, the state of the system, is a column matrix
((m × 3) × 1) of all the inductor currents and capacitance voltages. The matrix D is a
diagonal matrix of the capacitances and inductances of the corresponding currents and
voltages. J gives the interconnection, and R the dissipation in the system. The inter-
connection is a function of un, the switch position of the corresponding boost converters
in the ring configuration. E , the input matrix is a column matrix of the input voltages
to the respective converters. H is the Hamiltonian, which, in this case, is a quadratic
function of x, given as H = 1

2
xTAx, where A = In.

D =


D0 0 . . . 0
0 D1 . . . 0
...

... . . . ...
0 0 . . . Dm

 Dn

Ln 0 0
0 Cn 0
0 0 LTn

 (3.5)
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x =

x0
...

xm

 xn =

 iLn

vCn

iTn

 (3.6)

J =



A0 −BT 0 . . . 0 B
B A1 −BT 0 . . . 0

0 B . . . . . . . . . ...
... 0

. . . . . . . . . 0

0
... . . . . . . . . . −BT

−BT 0 . . . 0 B Am


(3.7)

Here, An =

 0 −(1− un) 0
(1− un) 0 −1

0 1 0

 ,B =

0 0 0
0 0 1
0 0 0

 (3.8)

R =


R0 0 . . . 0
0 R1 . . . 0
...

... . . . ...
0 0 . . . Rm

 Rn =


0 0 0

0
1

R2Tn

0

0 0 R1Tn

 (3.9)

E =

E0
...

Em

 En =

En

0
0

 (3.10)

Looking at the adjacency matrix of the interconnection matrix (J), the ring coupled
structure is clearly verified. It is seen that D is a diagonal matrix and R is a symmet-
ric matrix for m converters. The matrix J is the interconnection matrix, and shows the
coupling between neighbouring converters through dissipation. From Eq.(4.9), it can be
verified that J is a skew-symmetric matrix, with keeping the PCHM structure [47].

3.1.2 Steady State Equations of the System: Open Loop
Analysis

Till now the switched model for boost converters, given by [22, 51] has been considered.
The control objective is to regulate the average output voltage to a constant reference (e.g
DC/DC converters) or a periodic value with frequency much smaller than the switching
frequency (inverters). Thus, it is desirable to consider the average value of the voltages
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and currents rather than the instantaneous values, given that the ripple and harmonics
are sufficiently small.

The averaging of the circuit implies the extracting the DC components of the circuit
variables as well as the switching function which governs the switch position. In order
to obtain the averaged model of the switching function, we replace the switch position
un in the instantaneous circuit with a modulating signal µn through averaging. A pulse
width modulation (PWM) policy is implemented for switch regulation for the converters.
PWM is a method for generating a digital pulse signal to drive the transistor switches
in the boost converter circuit from a continuous control input or a modulating signal. If
the modulating signal varies slowly in comparison to the switching frequency, it can be
shown that the switching function is equal to the modulating signal [51]. As all the other
components in the circuit are linear time invariant (LTI), they can be just replaced by
their average values without any change of relationship. The only modification necessary
is the replacement of the switching function with the modulating signal for the PWM,
which will be referred to as the duty ratio. Here after, in this chapter, the state variables
iLn, iTn, vCn will be considered the average values of the instantaneous variables, and µn

as the duty ratio.
Before the application feedback control through PBC, the steady state analysis is

provided to gain insight in the open loop system. It is desirable to establish the rela-
tionship between the equilibrium values of the average output voltage, the average input
current, and the average dissipation current. This analysis provides the constant duty
ratios µn = Un for all the converters, to be implemented to obtain the open loop system.
It is clear from Eqs.(3.1)-(3.3) that the equilibrium values of the state variables are given
by Eqs.(3.11)-(3.13).

īLn =
En

R2T (n−1)(1− Un)2
+

1

R1Tn

[
En

(1− Un)2
−

E(n+1)

(1− Un+1)(1− Un)

]

− 1

R1T (n−1)

[
E(n−1)

(1− U(n−1))(1− Un)
− En

(1− Un)2

] (3.11)

v̄Cn =
En

(1− Un)
(3.12)

īTn =
1

R1Tn

[
En

(1− Un)
−

E(n+1)

(1− U(n+1))

]
(3.13)

Here, īLn denotes steady state inductor current, v̄Cn the steady state output voltage,
and īTn the steady state dissipation current for converter #n.

The desired output voltage v∗C decides the duty ratio. In other words, the duty ratio
is used to keep the output in the ring at v̄Cn = v∗C for all m converters. This is an open
loop system. The next section gives the estimation of the open loop system for comparing
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Figure 3.3: Zero dynamics of ring coupled converter system corresponding average output
capacitor voltage.

to the results with closed loop system with PBC.

3.2 Application of Passivity-based Control

The control objective for the ring coupled converter system is to regulate the output
voltage of the ring towards a desired equilibrium value through faster convergence with
a feedback control. First we analyse the structural dynamics of the system and then
stabilize the system with a feedback control.

3.2.1 Consideration of Zero Dynamics

In this section we consider the analysis of the averaged ring coupled converter system
through to the zero dynamics at the equilibrium points. Zero dynamics are defined as
the dynamics that characterizes the internal behaviour of the system once the initial
conditions and inputs are chosen, such that the output is identically zero [54]. Here, we
consider the ‘zero dynamics’ associated with the equilibrium points given for the output
as the capacitor voltage and the inductor current respectively.

Firstly, the output voltage of the capacitor is regarded as the output of the averaged
PWM model of the ring coupled system. Rewriting the equations given by Eqs.(3.1)-(3.3)
in terms of vCn the following relation is obtained.

24



Cnv̈Cn =− µ̇niLn + (1− µn)i̇Ln − i̇Tn + i̇Tn −
v̇Cn

R2T (n−1)

(3.14)

=
−µ̇n

(1− µn)

[
Cnv̇Cn + iTn − iT (n−1) +

vCn

R1Tn

]

+
(1− µn)

Ln

[
En − (1− µn)

]
− (i̇Tn − i̇T (n−1))−

v̇Cn

R2T (n−1)

(3.15)

The objective for the zero dynamics is to choose the control variable µn so as to keep the
output voltage as well as the dissipation current constrained as: vCn = v̄Cn, iTn = īTn.
Then, it can be conferred that v̈C = 0 and v̇Cn = 0 as well as i̇Tn = 0 and i̇T (n−1) = 0.
Thus, the output is fixed but the control is not, and hence µ̇n 6= 0. Then, the following
relationship is held.

µ̇n =
(1− µn)2

Ln[(̄iTn − īT (n−1)) + v̄Cn/R2T (n−1)]

[
En − (1− µn)v̄Cn

]
(3.16)

The equilibrium points of Eq.(3.16) are given at µn = 1−En/v̄Cn and µn = 1. Among
them, the first has physical significance. If v̄Cn > En, it is confirmed that the output will
be always higher than the input of the converter. However, the phase diagram describes
this equilibrium point as unstable, making the system non-minimum phase with respect
to the output voltage. The phase diagram is drawn by Fig. 3.3 in accordance with the
parameters given in Table. 3.1. Such analysis is possible for single boost converter in [22]
and [24].

Next, the analysis of the system corresponding to the zero dynamics with the inductor
current as the output of the averaged PWM model is carried out. Rewriting the equations
given by Eqs.(3.1)-(3.3) in terms of iLn the following equation is obtained.

LnïLn = µ̇n

[
En − Lni̇Ln

(1− µn)

]
− (1− µn)

LnCn

[
(1−µn)iLn−iTn+iT (n−1)−

En − Lni̇Ln

(1− µn)R2T (n−1)

]
(3.17)

Same as above, the control variable µn can be chosen so as to keep the output at a constant
value iLn = īLn which implies that iTn = īTn. It follows that ïLn = 0 and i̇Ln = 0. The
remaining dynamics related to the control variable, i.e the duty ratio µn are described by
Eq.(3.18).

n (3.18)

The three equilibrium points, {µn,i}i=1,2,3, corresponding to Eq.(3.18) are obtained as
Eq.(3.19).
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Figure 3.4: Zero dynamics of ring coupled converter system corresponding to average of
output inductor current.

µn,1 = 1−
(̄iTn − īT (n−1))

2̄iLn

−

√
En

R2T (n−1)iLn

−
[

(̄iTn − īT (n−1))2

4(̄iLn)2

]

µn,2 = 1−
(̄iTn − īT (n−1))

2̄iLn

+

√
En

R2T (n−1)iLn

−
[

(̄iTn − īT (n−1))2

4(̄iLn)2

]

µn,3 = 1 (3.19)

As (̄iTn − īT (n−1)) is sufficiently small, we can safely neglect it in the squared terms.
It can also be established that (̄iTn − īT (n−1))/2̄iLn <<

√
En/R2Tn. Thus, only one

equilibrium point satisfies the condition of 0 ≤ µn ≤ 1 and is of physical significance. All
the equilibrium points are given by Fig. 3.4, in accordance with the parameters specified in
Table. 3.1 . It is seen that this equilibrium point is stable, as long as R2TnīLn > En. This
again emphasizes the properties of the boost converter, making the system controlled with
inductor current a minimum phase system. The inductor current will be used to stabilize
the system rather than the output capacitor voltage.

3.2.2 Energy Shaping in PBC
We investigate wether it is possible for PBC to be applied to a system of multiple con-
verters coupled with dissipation. The stored energy of a circuit is the sum of the energy
in the passive elements, that is the inductors and capacitors. The energy of the multiple
converter system is given by Eq.(4.16).

H =
1

2
xTDx (3.20)
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x and D are as given in Eqs.(4.8) and (3.5), respectively. H, which is the total energy,
consisting of the kinetic energy through the inductor and the potential energy stored in
the capacitor.

The desired energy function is designed based on the total energy of the system. The
formulation is taken to be the quadratic function of errors. It is given by Eq.(4.17).

Hd =
1

2
eTDe, e = x− xd (3.21)

Here, xd = [x1d x2d . . .xmd]
T is the desired trajectory of the state. xnd = [̄iLn vCnd iTnd]

T ,
where īLn is a constant, vCnd(t) and iTnd(t) are the desired output voltage and line currents.
In order to prove that the function given in Eq.(4.17) is a candidate of Lyapunov function,
let us check the derivative of the energy function as in Eq.(3.22).

Ḣd = (x− xd(t))
TD(ẋ− ẋd(t))

= (x− xd(t))
T ([J−R]x + E−Dẋd(t))

(3.22)

By setting the term Dẋd(t) as given in Eq.(5.24), the control rule with PBC can be
formulated for boost converters.

Dẋd(t) = (J−R)xd(t) + E + RI(x− xd(t)) (3.23)

Where, RI is a symmetric and positively defined matrix, which acts as the damping
injection, making the system asymptotically stable if R + RI > 0. The damping is added
via the controller, thus helping to determine the duty ratio after feedback. The damping
injection compliments the dissipation of the original system [44]. By considering that
eTJ(µ)e = 0 for all values of µ, we obtain the following condition on the derivative of our
chosen Lyapunov function Hd(e).

Ḣd(e) = eT (J(µ)e−Re−RIe) = −eT (R + RI)e < 0 (3.24)

Under the control rule, the error e converges to the origin asymptotically. By satisfying
the condition (R + RI) > 0, the system becomes exponentially and asymptotically stable
at the equilibrium point [43]. Then, the derivative of Hd(e) is given in Eq.(3.25).

Ḣd(e) = −eT (R + RI)e ≤ −kHd(e) (3.25)

Hence, it is proved that Lyapunov’s Theorem is satisfied. That is, the equilibrium state
xd is asymptotically stable with the control rule given in Eq.(5.24), and exponentially
asymptotically stable with the damping injection. RI is given in Eq.(4.18). The damping
injection is a diagonal matrix of the damping matrices. The damping matrix for the #n
converter in the system is represented by RIn

RI =


RI0 0 . . . 0

0 RI1 . . . 0
...

... . . . ...
0 0 . . . RIm

 , where RIn =

Rn 0 0
0 0 0
0 0 0

 . (3.26)
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Then, the control equation is obtained for the given system in Eq.(3.27). The boost
converter is controlled with inductor current keeping the minimum phase nature as given
by the zero dynamics. The constant desired inductor current (̄iLn) is obtained by solving
the steady state Eq.(3.11).

µn =
1

vCnd

[
En +Rn(iLn − īLn)

]
+ 1 (3.27)

Cnv̇Cnd = (1− µn)̄iLn − iTnd + iT (n−1)d −
[ vCnd

R2T (n−1)

]
(3.28)

LTn i̇Tnd = vCnd − vC((n+1))d −R1TniTnd (3.29)

The value of the duty ratio µn is evaluated at every instant t depending on the input,
the parameters, and the desired output of the system. That is, µn depends on time and
the state. Hereafter, when PBC is applied to the system, µn(t) is considered as a function
of time.

3.3 Numerical Simulations
The desired voltage is set as v̄Cn. The duty ratio for open loop system (Un) without
feedback control is given by Eq.(3.12). For feedback through PBC, via Eqs.(3.11)-(3.13),
the associated desired current īLn is calculated. From this, the corresponding desired
trajectory xd(t) is calculated by solving Eqs.(3.27)- (3.29). When the operator wants to
set a desired voltage, only the current via the duty ratio is directly controllable. Hence
it is necessary to convert the problem of obtaining the desired voltage, into a control
problem of the current. Consequently, in the transient dynamics, the desired voltage,
vCnd, will remain fluctuating around v̄Cn.

The simulation results obtained for five converters coupled in a ring form are given
in this section. The numerical simulations were carried out on ode45 solver Simulink
(Version 8.7 R2016a).

3.3.1 Simulation results for a balanced system
Parameters in the ring coupled converter system are set at the same values respectively.
This is a balanced case. Additionally, the dissipation between the converters (LTn, R1Tn)
as well as the inputs En are also set at same values for all the converters. This naturally
creates an energy balance in the ring. To begin with, numerical simulations are performed
for the open loop balanced system without applying any feedback control. The duty cycle
was set at a constant value (Un). This value is calculated by Eq.(3.12) for a particular
v̄C . Thus, any disturbance in the system will not be acted on but will affect the system
output adversely. The parameters for simulation are given in Table. 3.1. Fig. 3.5 shows
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Table 3.1: Parameters for Balanced Sys-
tem

Parameter Value Unit
En 15 V
Ln 46 mH
Cn 100 µF
LTn 15 mH
R1Tn 100 Ω
R2Tn 170 Ω
v̄Cn 40 V

Table 3.2: Different Input Voltages

Parameter Value Unit
E0−4 15,13,12,13,15 V
Ln 46 mH
Cn 100 µF
LTn 15 mH
R1Tn 100 Ω
R2Tn 170 Ω
v̄Cn 40 V

Table 3.3: Different Load Resistances
Parameter Value Unit
E0−4 15 V
Ln 46 mH
Cn 100 µF
LTn 15 mH
R1Tn 100 Ω

R2T0−4 130,170,140,170,130 Ω

v̄Cn 40 V

the inductor current, dissipation current, output voltage, and duty cycle with respect to
time. In the transient, the output voltage and the inductor current shows the transient
oscillations. After the transient, the system reaches an equilibrium. The equilibrium value
of the output voltage becomes equal to v̄C . As all the boost converters have same inputs
and same parameter values, no current flows through the dissipation.

Next we look at simulations results when PBC is applied. PBC results in an output
dynamic feedback controller which induces a shaped closed loop energy and enhances the
closed loop damping of the system. The damping has the condition R + RI > 0. It
was set and kept at RI1 = 15 for all the simulations. The results, for a balanced case,
show faster response and damped oscillations. Feedback is provided by solving Eq.(3.27)
to obtain the appropriate duty cycle value to maintain the desired equilibrium voltage.
Here, the inductor current is the variable that is measured to provide feedback. The
numerical simulation results are shown in Fig. 3.6.

The simulation parameters are set as given in Table. 3.1. Comparing Fig. 3.6 with
Fig. 3.5, it is seen that the transient is sufficiently dampened. The time to stabilize the
system to the equilibrium is also significantly faster. As all the parameters are the same for
all boost converter systems as well as the dissipation, the trajectories on the output voltage
and inductor current plane coincide for all five converters. The asymptotic behaviour is
clearly observed with a phase plot on the energy sets of Hd. This is shown in Fig. 3.7.
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Figure 3.5: Balanced system behaviour of original system with respect to time. Parame-
ters of all converters are set at equal values. The desired output voltage v̄C = 40 V for
all 5 converters. The output of all converters coincides through the transient and settles
at 40 V.

Figure 3.6: Balanced system behaviour with application of PBC to all converters. The
energy function Hd goes to zero as system settles to the desired equilibrium. As the
system is balanced, all the converters move synchronously. The transient peak is damped
and the convergence time is improved.
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Figure 3.7: Asymptotic behaviour of the original system and system with PBC

Figure 3.8: Original unbalanced system with different input voltages to the boost con-
verter. Imbalance is created with input values given in Table.3.2.
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3.3.2 Simulation results for an unbalanced system
Imbalance occurs in the ring coupled system when converters in the ring and/or the
dissipation between two neighbouring converters have different parameter values. In the
following simulations we consider imbalance in two different ways: imbalance created with
varying input voltage and load resistance values. First, simulations were carried out to
see the behaviour of the open loop unbalanced system without application of PBC. The
values of the input voltages are varied as given in Table. 3.2.

Fig. 3.8 shows that different input voltages give rise to different current values for
the same desired voltage. In this case, all converters have constant but different duty
cycles as calculated from Eq.(3.12). Due to the different inputs, it is found that current
appears through the dissipation between the coupled converters. The dissipation current
is reduced after the transient when the converters converge to the desired voltage.

Figure 3.9 shows simulation results when PBC is applied. The direction of flow of
the dissipation current depends on the imbalance created by the different inputs. The
duty ratio changes according to the energy function (Hd) and becomes constant as soon
as the energy function attains a zero value. The energy function for each of the converter
is different for the unbalanced case. It is seen in the results that each energy function
becomes zero as the control is applied. This implies that PBC is successfully applied to
each converter system as well. Thus, it can be confirmed that interconnection of passive
systems is a passive system [27]. Even though energy is exchanged between converter
systems during transient period, passivity is retained for each converter, and all converters
stabilize at the desired equilibrium.

Next, the load resistances are set differently for each of the converters as given in
Table. 3.3. The simulation results for the original system are shown in Fig. 3.10. The
different load resistances cause the voltages to settle at slightly different values, this
difference is unrecognizable but can be inferred from the continuous flow of dissipation
current between the converter systems. This indicates the flow of energy between the
converters. The flow of energy is in the direction of the load that consumes the most
current, i.e towards the smallest resistance.

Finally, Fig. 3.11 shows the results of PBC applied to the system when the load re-
sistance values are different. As is expected, the results are better than the uncontrolled
case. This implies that PBC can successfully regulate the coupled converter systems when
the system has different loads. The loads in a realistic system would vary depending on
their power demand. Therefore, the successful stabilization of system with PBC with
different loads serves as an useful tool for designing practical systems.
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Figure 3.9: Unbalanced system controlled with PBC having different input voltages for
the boost converters. Imbalance is created with input values given in Table.3.2.

Figure 3.10: Original system with imbalance created with different load resistance values
as given in Table.3.3
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Figure 3.11: Unbalanced system controlled with PBC having different load resistance
values as given in Table.3.3.

3.3.3 Stabilization to non stationary state

So far the control has been constructed assuming that the desired state, v∗C = v̄C is a
constant. We may further extend PBC to the case in which the desired state is not a
constant but a function on time. A sinusoidal function with a DC bias is selected as the

Desired State

Original

System

(a)

System with 

PBC

Desired State

(b)

Figure 3.12: Asymptotic behaviour of system with the desired equilibrium as a function
of time: (a) Without application of control (b) With application of PBC
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desired state. The desired state is set to be v∗C = vDC + A sin(2πft). Here, vDC is the
DC bias voltage, A and f are the amplitude and frequency of the sinusoidal voltage. The
frequency is much smaller than the switching frequency of the PWM. For simulations we
set vDC = 40 V, A = 8 V, f = 60 Hz. Firstly, the simulations were carried out for the
original system, where the duty ratio Un is calculated from Eq.(3.12). The results are
shown in the form of an energy plot (Fig. 3.12(a)). The other parameters are set as given
by Table. 3.1.

Next, simulations were carried out by applying PBC as given by Eqs.(3.27) and (3.29).
The results are given in Fig. 3.12(b). Again, the parameters are set as given by Table. 3.1.

It was seen in Sec. 4.5, that the desired function is considered as a function of time.
The subsequently obtained control equations for the feedback through the duty cycle also
emphasize the fact that it is permissible to have the desired state as a function of time. It
implies that PBC is a suitable method of control for such a case. The simulation results
confirm the improvement at the application of PBC. The open loop system exhibits an
unstable transient and a high transient peak voltage. The system with control settles
down to the desired equilibrium relatively faster.

3.4 Conclusion
In this chapter we proposed a method to stabilize a ring coupled converter system, con-
sisting of DC/DC boost converters, to a desired state with the application of feedback
control through PBC. PBC, with energy shaping and damping injection was discussed for
the quadratic function of errors as the desired storage function. The desired storage func-
tion deviates around zero and finally approaches zero as the system attains equilibrium.

Numerical simulations show that PBC can stabilize the output voltage values at the
desired state even for a ring coupled configuration of the DC/DC converters. Comparison
to the dynamic behaviour of the original open loop system suggests the successful applica-
tion of PBC during transient operation. Numerical simulations were carried for different
initial conditions. This included a balanced condition, where all the boost converters have
same parameters, an unbalanced state with different parameters, including the dissipa-
tion, and the case in which the desired state is non stationary. PBC was applied for all the
three cases. The results for the balanced system show all converters in the ring operating
synchronously. There is no energy exchange in the form of dissipation current. Imbalance
causes energy imbalance, but the application of PBC restores this imbalance and the en-
tire system stabilizes at the desired state. Practically, the input voltages to the converters
as well as the load resistances are not same for all converters in the ring. Even in such
imbalanced conditions, the converters co-operate to maintain a stable voltage through the
ring coupling. For non stationary desired states, the convergence of the output voltage as
well as the inductor current to the desired sinusoidal state is vastly improved under PBC
as compared to the original system, with a dampened transient peak.
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Chapter 4

Phase and Frequency Synchronization
for Autonomous AC-Grid System

In this chapter we focus on renewable DC sources of electricity, and suggest an autonomous
grid formulation to utilize the DC electric power. We introduce a ring coupled buck-
type inverter system to utilize energy from DC power sources by converting it to AC
voltage. The basic design of this grid is shown in Fig. 4.1. In the ring coupled buck-type
inverter system, multiple units of inverter circuits are connected in a ring formulation
with dissipation in between them. Power inverters play the role of an interface to transfer
energy from DC sources of electricity to AC voltage form with a desired frequency [51,
55]. The buck-type inverter circuit employs the circuit configuration of a DC/DC buck
converter with the DC input switched using a H-bridge circuit which enables to change
the polarity to obtain AC output voltage.

The stabilization of the grid to the desired AC voltage, usually carried out by AVR
and governer, is replaced by passivity-based control (PBC). In this chapter we imple-
ment PCHM to the autonomous AC grid formulate the feedback control rule using PBC.
Conventionally, the objective for PBC has been to stabilize the system to a constant DC
voltage. When stabilizing the system to a sinusoidal desired state, the steady state analy-
sis for obtaining the duty ratio of the open loop system is significantly intricate [29,44,56].
This chapter lays out the steady state analysis for the open loop system as well as formu-
lation of the feedback control equations for a sinusoidal desired state.

Another crucial task is that of grid synchronization. Various methods for synchronizing
the power from multiple renewable resources to the existing power system are shown
in [57]. Here, we focus on synchronizing the multiple AC voltage outputs to the desired
state in terms of frequency and phase. It is shown that, if the multiple inverters in the ring
coupling have inconsistent phase or frequency, it can prove to be harmful to the system. It
is desirable that all the inverters autonomously adjust themselves to the desired sinusoidal
state without any phase difference. To achieve this, phase synchronization for all the
inverter units in the grid is implemented with attached phase locked loop (PLL) [58].

Finally, the theory is successfully tested with numerical simulations to illustrate the
temporal behaviour of the system. Numerical simulations are performed in the SIMULINK
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Figure 4.1: Design of a stand-alone distributed autonomous grid

environment on MATLAB R2017.

DC/DC to DC/AC

Figure 4.2: Design of a buck-type inverter with a H-bridge
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4.1 Buck-type Inverter
The circuit configuration of the buck-type inverter is shown in Fig.4.2. A double bridge
is implemented to invert the polarity of the DC source [50]. Here, u represents the
instantaneous switch position as shown in the figure. The instantaneous switch position
takes the values in the discrete set {−1, 0, 1} as shown in the figure. It is seen that the
value of u is responsible for changing the polarity of the DC source, thus making it possible
to obtain the negative part of the sinusoidal output voltage.

To obtain a constant AC output voltage, the control objective is to regulate the av-
erage output voltage to a periodic value with frequency much smaller than the switching
frequency (usually 50 or 60 Hz). It is desirable to consider the average value of the
voltages and currents rather than the instantaneous values, given that the ripple and
harmonics are sufficiently small. To derive an averaged model, it is necessary to average
the circuit variables as well as the switching function [51]. Hence, we replace the instan-
taneous switch position with a modulating signal for the averaged circuit. Hereafter, the
modulating function will be referred to with the variable µ(t).

To implement a PWM policy for switch regulation for generating a digital pulse signal
to drive the transistor switches, this modulating function µ acts as the continuous control
input. As the modulating signal varies slowly in comparison to the frequency of the
switching, it can be shown that the switching function is equal to the modulating signal
[51]. We refer to the switching function as the duty ratio.

To obtain the averaged circuit variables, we replace the instantaneous values by the
average values. Thus, iL and vC are the average the inductor current and capacitor voltage
respectively, and µ, the duty ratio. The output voltage of the inverter depends on the
duty cycle of the switching [22]. Thus, the averaged control input is takes values in the
closed set [−1, 1]. The averaged duty cycle will be sinusoidally modulated to achieve a
sinusoidal output voltage. The average model of a buck-type inverter is given in Eq.(4.1).
Owing to the buck-type configuration, the peak output voltage will be less than the DC
input voltage.

Li̇L = −vC + µE

Cv̇C = iL − vC/R (4.1)

Here L, C and R represents the inductance, capacitance and load resistance respectively.
E is the external DC input. Optimal control of DC/AC inverters with an H-bridge
topology has been obtained in [55]. Here, we aim to stabilize the output of the inverter
with PBC.

4.2 System Design
The AC grid has multiple DC sources each connected to a buck-type inverter, to invert
the DC voltage to AC output, which can be used by the existing household loads. These
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inverters are coupled together with dissipation through inductance and resistance.
The schematic diagram of the circuit is shown in Fig. 3.2. The role of the control

input, for each buck-type inverter, is to decide the amplitude and frequency of the output
voltage. In a ring coupled configuration, it is imperative that the output voltage of each
inverter converge to the same value. The voltage in the ring will be maintained at a
user-defined desired value.

Here, load resistances(R2T ) are across the output voltages whereas the dissipation
elements of line inductor (Lt) and line resistance (R1T ) are in series. The coupling through
dissipation represents a transmission line model, with inductive and resistive elements.
The capacitor in the transmission line model is considered as negligible. This is owing to
the fact that a parallel capacitor is dominant in the buck-type inverter configuration. The
number of inverters in the ring does not cause any loss of generality. Then, the objective
is to apply PBC to the whole system, including the dissipation between the inverters.

Ln
diLn

dt
= −vCn + µnEn (4.2)

Cn
dvCn

dt
= iLn − iTn + iTn−1 −

vCn

R2n−1

(4.3)

LTn
diTn

dt
= vCn − vCn+1 −R1niTn (4.4)

The averaged model of the ring coupled buck-type inverter system is given by Eqs.(4.2)-
(4.4). Subscription n denotes the index of the inverter. µn denotes duty ratio function for
the #n inverter. LTn is the inductance and R1Tn in the dissipation between the #0 and
#1 inverter.

To ensure phase and frequency synchronization of the ring coupled inverter system,
PLLs are added to the basic circuit formulation. Let v̄Cn = An sin(Φn) be the desired
sinusoidal output voltage. Then, sin(Φn) is the sinusoidal reference, where, Φn = ωdt +
θin(t) is the phase. Here ωd is the centre frequency, and θi the phase angle of the input
singal. In order to synchronize the phase of the output voltages of ring coupled buck-type
inverter systems, any #p inverter can be taken as a reference. The sinusoidal reference
for the #p inverter is used as the input signal for the PLL, the output of which is used
as the sinusoidal reference of the #p− 1 and #p + 1 inverter. The sinusoidal reference of
#p− 1 and #p + 1 is in turn used as the input to PLL, the output of which is used as the
sinusoidal reference to #p− 2 and #p + 2, respectively. It ensures minimun time delay
in synchronising the phase and frequency of all the inverters in the ring. The connection
of the PLL to the system is shown in Fig.4.4.

We consider the centre frequency ωd to be the same for all the PLLs employed in the
ring coupled AC grid. θi(t) incorporates the error in the input frequency (ωi) from the
centre frequency of the VCO. This error is given by ∆ω = ωi − ωd. Let the output of the
VCO be r(t, Φ̃n) = V0 cos(ωdt+θo(t)), with V0 as the amplitude and Φ̃ = ωdt+θo(t) as the
phase. θo represents the phase angle of the output signal. The state equation governing
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Figure 4.3: Schematic citcuit diagram of ring coupled buck-type inverters.

the change in the phase are given by Eq.(7.7) [59,60].

dθo
dt

= KC [L−1[F (s)Vcomp(s)]KpA sin(θe) + ve] (4.5)

Here, θe = θi− θo is the phase error, vcomp is the input of the low pass filter, and Vcomp(s)
is the Laplace transform of vcomp. The transfer function of the LPF in the frequency
domain is given as F (s) and Kp and KC are the gains of the phase detector and VCO
of the PLL respectively. Lastly, L−1 denotes the Laplace inverse and ve is the external
control voltage. For more details on the working of PLL, please refer to Appendix A.

4.3 Port-controlled Hamiltonian Modelling
PCHM technique is used for modeling the inverter circuit, to allow for the inclusion of
power electronic switches and load resistances. PCHM classifies the system neatly into
physically well defined interconnection(J), dissipation(R) and external input(E) matrices
within a state space framework [24]. The system model using the PCH framework is given
by Eq.(5.22) as in the form given in [47].

Dẋ(t) = [J−R]
∂H

∂x
+ G(x)E (4.6)

y = GT (x)
∂H

∂x
(4.7)
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Figure 4.4: System Configuration: Connection of PLL to multiple inverter system.

For m inverters in the configuration, x, the state of the system, is a column matrix
((m × 3) × 1) of all the inductor currents and capacitance voltages. The matrix D, is a
diagonal matrix of the capacitances and inductances of the corresponding currents and
voltages. J and the vector function G(x) gives the interconnection, and R the dissipation
in the system. G(x) is a function of un, the switch position of the corresponding buck-
type inverters in the ring configuration. E , the input matrix is a column matrix of the
input voltages to the respective inverters. H is the Hamiltonian, which, in this case, is
the total energy of the system.

Here, D, R, J and G are ((m× 3)× (m× 3)) matrices, E is a (m× 3)× 1 matrix.

D =


D0 0 . . . 0
0 D1 . . . 0
...

... . . . ...
0 0 . . . Dm

where , Dn

Ln 0 0
0 Cn 0
0 0 LTn

 , and x =

x0
...

xm

where , xn =

 iLn

vCn

iTn

 .
(4.8)

42



J =



A0 −BT 0 . . . 0 B
B A1 −BT 0 . . . 0

0 B . . . . . . . . . ...
... 0

. . . . . . . . . 0

0
... . . . . . . . . . −BT

−BT 0 . . . 0 B Am


where, An =

0 −1 0
1 0 −1
0 1 0

 ,B =

0 0 0
0 0 1
0 0 0

 .

(4.9)

R =


R0 0 . . . 0
0 R1 . . . 0
...

... . . . ...
0 0 . . . Rm

 , where Rn =


0 0 0

0
1

R2Tn

0

0 0 R1Tn

 . (4.10)

G =


G0 0 . . . 0
0 G1 . . . 0
...

... . . . ...
0 0 . . . Gm

 , where Gn =

µn 0 0
0 0 0
0 0 0

 , and E =

E0
...

Em

where , En =

En

0
0

 .
(4.11)

Looking at the adjacency matrix of the interconnection matrix (J), the ring coupled
structure is clearly verified. It is seen that D is a diagonal matrix and R is a symmetric
matrix for m inverters. The matrix J is the interconnection matrix, and shows the coupling
between neighbouring inverters through dissipation. From Eq.(4.9), it can be verified that
J is a skew-symmetric matrix, with keeping the PCHM structure [47].

4.4 Steady State Analysis : Open loop system
As it was shown in Chapter 3, steady state analysis is provided to obtain the open
loop system. In the case of the AC system described above, the steady state values
are sinusoidal. A sinusoidal duty ratio can be implemented to obtain the desired output
voltage for the open loop system. It is analogous to setting a constant average duty ratio
for the switching for DC/DC converters. This constitues the open loop system, without
a feedback control.

For the #n buck-type inverter in the, the desired voltage is a AC waveform in the form
v̄Cn = sin(2πfnt) = An sin(Φn). Φn = 2πfnt+ θin with angular frequency ωdn = 2πfn. For
steady state analysis, θin is a constant, i.e the angular frequency does not change with
time.

Eqs.(4.2)-(4.4) give the mathematical description of the system for any #n buck-type
inverter system. Steady sate analysis is employed to formulate the equilibrium values for
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the desired inductor current (̄iLn) and the desired disspiation current (̄iTn) for a given
desired voltage vCn = v̄Cn. Then, it will be possible to formulate the sinusoidal duty ratio
U .

It is possible to analytically solve the linear differential equation Eq.(4.4), by employing
the known values of vCn = v̄Cn, vCn+1 = v̄Cn+1. The solution to the equation is given by
Eq.(4.14).

īTn =
R1nAn

R2
1n + L2

Tnωdn

(sin Φn −
ωnLTn

R1n

cos Φn)

+
R1nAn+1

R2
1n + L2

Tnωdn+1

(sin Φn+1 −
ωdn+1LTn

R1n

cos Φn+1) + ke−(R1n/Ln)t (4.12)

Here, k is the constant of integration. The value of k is obtained by applying the initial
condition iTd(0) = 0.

k =
AnωnLTn

R2
1n + L2

nωdn

− An+1ωdn+1LTn

R2
1n + L2

nωdn+1

(4.13)

The equilibrium value of iLn can be obtained by solving Eq.(4.2) with iTn = īTn.

īLn = Cn ˙̄vC − īTn + īTn−1 +
v̄C

R2Tn−1

(4.14)

Finally, the open loop duty ratio Unto obtain from Eq.(4.3) by substituting iLn = īLnand
given in (5.17).

Un =
Ln

En

[Cn ¨̄vCn − i̇Tdn + ˙̄iTn−1 +
˙̄vC

R2Tn−1

]
+
v̄C
En

(4.15)

Here, x̄ denotes the desired averaged value, ẋ denotes dx
dt
, and ẍ denotes d2x

dt2
.

4.5 Energy Shaping in PBC
We investigate whether it is possible for PBC to be applied to a system of multiple
inverters coupled with dissipation. The stored energy of a circuit is the sum of the energy
in the passive elements, that is the inductors and capacitors. The energy of the multiple
inverter system is given by Eq.(4.16).

H =
1

2
xTDx (4.16)

x and D are as given in Eqs.(4.8). H, which is the total energy, is also considered to be
the Hamiltonian of the system.

The modified energy function is based on the Hamiltonian. The formulation is taken
to be the quadratic function of errors. It is given by Eq.(4.17).

Hd =
1

2
eTDe, e = x− xd (4.17)
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Here, xd is the desired trajectory of the state. It was proven in Chapter 2 that Lyapunov’s
Theorem is satisfied for this desired storage function. That is, the equilibrium state
xd is asymptotically stable with the control rule given in Eq.(5.24), and exponentially
asymptotically stable with the damping injection. RI is given in Eq.(4.18).

RI =


RI0 0 . . . 0

0 RI1 . . . 0
...

... . . . ...
0 0 . . . RIn

 , where RIn =

Rαn 0 0
0 0 0
0 0 0

 . (4.18)

For a buck-type inverter system, an indirect output stabilization is ensured by setting
the current (̄iL) to a constant sinusoidal value, depending on the desired output voltage
amplitude and frequency. The zero dynamics of the buck-type inverter with respect to
the output capacitor voltage being unstable, a feedback control is considered through
current (indirect stabilization) as was shown in Chapter.3 [22]. Thus, we set a constant
desired current, and then formulate the desired state values for the output voltage and
dissipation current. The desired current (̄iLn) is obtained from the steady state analysis
given by Eq.(4.14). The control equations are formulated based on the PBC equation
Eq.(4.19)-(4.21).

µn = [Ln
˙̄iLn + ṽCn −Rα(iLn − īLn)] (4.19)

Cn
˙̃vCn = īLn − ĩTn + ĩTn−1 −

[ ṽCn

R2n−1

]
(4.20)

LTn
˙̃iTn = ṽCn − ṽCn+1 −R1nĩTn (4.21)

Here, xd = [̄iL ṽC ĩLT ]T is the desired dynamic state vector for the controller, and µ is
the feedback duty ratio.

For the feedback control through PBC, value of the duty ratio µ is evaluated atevery
instant t depending on the input, the parameters, and the desired output of the system.
That is, µ depends on time and the state. Hereafter, when PBC is applied to the system,
µ is considered as a function of time and state of the system.

To synchronize the phase of the output voltages of ring coupled buck-type inverter
systems, the #p inverter is taken as a reference. The sinusoidal reference for the #p
inverter is used as the input signal for the PLL, the output of which is used as the
external frequency input for the sinusoidal reference of the #p− 1 and #p + 1 inverter.
The sinusoidal reference of #p− 1 and #p + 1 is in turn used as the input to PLL, the
output of which is used as the external frequency to #p− 2 and #p + 2 respectively. For
odd number of inverters in the system, it ensures minimun time delay in synchronising
the phase and frequency of all the inverters in the ring. The connection of the PLL to
the system is shown in Fig.4.4.
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Figure 4.5: Time evolution of original AC grid system without control. Here, v̄Cn is set
with parameters An = 13, fn = 60 Hz.

Figure 4.6: Time evolution of AC grid with PBC. Here, v̄Cn is set with parameters
An = 13, fn = 60 Hz.
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4.6 Numerical Simulations
The simulation results are obtained for five inverters coupled in a ring form are given
in this section. The numerical simulations were carried out on ode45 solver Simulink
(Version 8.7 R2016a). The numerical simulations are performed in three cases depending
on the phase angle and frequency of the inverters in the ring.

4.6.1 Case I: ∆ωn = 0, θn = 0

In Case I we test the effectiveness of the original open loop system as well as the system
with feedback through PBC under balance and unbalanced conditions. There is no phase
diference between the output of the inverter systems and the desired frequency remains
constant at the centre frequency of the VCO. Thus ωin = ωdn = ωd. This implies the
output frequency of all inverters stays constant at a particular value. The simulations
were proceeded for a ring-coupled system consisting of 5 buck-type inverters to enhance
the asymmetry in the system. Firstly, we investigate the effectiveness of the application
of a sinusoidal averaged duty cycle to the switches through PWM to achieve AC voltage
for the open loop system. Fig.4.5 shows system behaviour with the steady state analysis
as given in Eq.(5.17). The steady state analysis is applied to a balanced ring coupled
inverter system. A balanced system implies that the parameters of all inverter systems
are set to be the equal. The parameters are given in Fig.4.3.

It is seen in Fig.4.5 that AC output voltage is generated in all five inverters for the
open loop system, and due to the condition of balance, all inverters synchronize with each
other. The energy of the entire system is the sum of the energy in the inductors (analogous
to kinetic energy in mechanical systems) and the energy in the capacitors (analogous to
the potential energy in mechanical systems). The energy of the system depends on the
inductor currents and capacitor voltage, it oscillates with twice the frequency as the
output voltage frequency. As all the inverter system and the dissipation between them is
balanced, there is no flow of energy between the coupled inverters.

Next, the system behaviour with the application of feedback through PBC is shown in
Fig.4.6. The results show a marked improvement in the transient period of the dynamic
behaviour, with a smaller transient peak amplitude and a faster convergence to the desired
state. The behaviour of the designed energy function (Hd) is also shown. The system
achieves control when the value of the energy function drops down to zero. As the system
output is not constant with time, the energy function oscillates around the zero value.
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Figure 4.7: Variation of the input voltage with respect to time

Figure 4.8: Behaviour of unbalanced open loop AC-grid with varying input voltages
without PBC

Figure 4.9: Behaviour of unbalanced AC-grid with varying input voltages with PBC
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Figure 4.10: Variation of the load resistances with respect to time

Figure 4.11: Behaviour of unbalanced open loop AC-grid with varying load resistances
without PBC

Figure 4.12: Behaviour of unbalanced AC-grid with varying load resistances under PBC
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Imbalance appears in the system by setting different parameters for the coupled invert-
ers. For practical cases where the input comes from PV arrays, imbalance occurs at the
change of input voltage for each inverter system, depending on the irradiation. Therefore,
next, we check the effectiveness of PBC by applying extreme noise to the input voltage.
Fig.4.7 shows the change in the input voltages for all the inputs. This will create high
imbalance conditions, as the input voltage for each inverter will change separately from
the others. The parameters other than the input voltage are balanced. First, the results
without PBC (i.e open loop system) are shown in Fig.4.8. Here, at every transient change,
the output shows deviation from the desired sinusoidal wave. The application of PBC
to such an unbalanced system is shown in Fig.4.9. It can be seen that despite extreme
variation of the input voltage from the balanced voltage, the output is fairly sinusoidal.
he transient expected at the sudden change in the input voltage is dampened and the
output is kept fairly constant at the desired sinusoidal voltage. The second case with
imbalance is when the load resistances are varied as shown in Fig.4.10. The open loop
system output without PBC is shown in Fig.4.11 and with the application of PBC in
Fig.4.12. Even though both outputs are fairly similar, the application of PBC helps to
dampen the transient to obtain a smoother output voltage.For both cases, frequency as
well as the phase is maintained. Imbalance occurring in the ring coupled inverter system
creates a difference in the output voltage of the inverters, inducing the flow of dissipation
current between the inverters.

4.6.2 Case II: ∆ω = 0, θin = constant

In the numerical simulations shown in Sec.4.6.1, the frequency and phase of the output
voltages was same for all the inverters. It was assumed that the sinusoidal reference for the
PWM for all the inverters has the same frequency and is switched ON at the same time,
resulting in zero phase difference between the outputs. Even though all the sinusoidal
references can be provided with an external frequency, it is not fair to assume that all
the sinusoidal references will start at the exact same moment. Thus, it is possible that
there might be a phase difference between the sinusoidal references, and as a consequence,
between the output voltages themselves. The sinusoidal inputs to the switches, shown by
xn, for the five converters are given in Fig.4.13.

Figures 4.14 and 4.15 show the output voltage and input currents of all 5 inverter
systems for the open loop system and with PBC respectively. The origin of the temporal
axis is when all the input voltages are switched ON. For the numerical simulations #0
is used as the reference inverter. The proportional gain (Kp) of the PLL is set at 180.
To emulate a practical case, all the sinusoidal signals start at different times. Without
PLL, it would create a constant phase difference in the outputs, leading to an undesirable
output voltage. Here, # 0 is considered as the reference inverter. The phase of this
reference is as Φ = ωdt + 0.6, with an arbitarary constant phase angle θi = 0.6 rad. It is
observed that until all the sinusoidal references are switched ON, the output in unstable.
As the reference signals are switched ON, the PLL achieves the lock-in condition and the
system output settles down to the desired state. The centre frequency is ωd = 377rad/sec
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Figure 4.13: Inverter input when the switches start at different times.

Figure 4.14: Phase synchronization with PLL applied to autonomous AC grid of ring
coupled buck-type inverter without PBC.

(60 Hz).
Comparing the two figures, it is seen that the inverter output is more synchronized

when PBC is applied, which is indicated by the dissipation current(iTn) flowing between
the inverters. The dissipation current for the original open loop system is almost three
times higher than when PBC is applied. The output settles down to the desired state
faster with PBC, and the dissipation current goes to zero for all inverters. With PBC, the
duty ratio governing the output voltage dynamically changes to drive the energy function
to the minimum value. The dynamic change in the duty ratio ensures a smaller deviation
from the desired state due to the thorough consideration of the energy characteristics of
the system through PBC. In both cases, the PLL shows the phase synchronization of all
the inverters to that of the reference inverter.

Effect of Ripple and Harmonics

As mentioned before, the ripple and the harmonics have been considered negligible. To
obtain negligible ripple, the inductor values have been chosen as specified in [61]. Reducing
the harmonic effects of the AC output port is recognized as one of the most difficult
challenges in a DC/AD inverter design. The ratio of the switching frequency to the
output frequency is finite, as opposed to infinite for the DC/DC converters. For low
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Figure 4.15: Phase synchronization with PLL applied to autonomous AC grid of ring
coupled buck-type inverter with PBC.

Figure 4.16: THD variations for results in Fig.4.15 for PWM frequency 3 kHz and 10
kHz respectively

frequency switching, methods like harmonic elimination and harmonic cancellation are
employed citekassakian2000principles. In this research we employ PWM, rendering the
harmonics to higher frequencies, and thus, easy to eliminate with smaller components.
Total harmonic distortion is the measure of the harmonic distortion present in the signal.
The higher the frequency of switching, the lower is the THD. The variation of the current
THD for the system with PBC in Figs.4.15 is shown in Fig.4.16. For a switching frequency
of 3 kHz the THD settles on 0.3 and settles to as low as 0.1 for PWM switching frequency
10 kHz.
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Figure 4.17: Linear change in the frequency of the sinusoidal PWM reference.

Figure 4.18: Sinusoidal change in the frequency of the sinusoidal PWM reference.

4.6.3 Case III: ∆ω 6= 0, θin = f (t)

Next we vary the desired frequency from the centre frequency of the oscillator frequency
creating an error frequency ∆ω = ωi−ωd. The tracking of the PLL is observed for changes
in frequency. The frequency is varied in two ways. First, the frequency of this input is
set to be different than the centre frequency of the VCO. For a VCO centre frequency of
377 rad/sec, we set the initial input frequency to be 396 rad/sec. Then, the frequency
is varied linearly as a function of time with ∆ω = 10t. The results for these two cases
is shown in Fig.4.17 . Here, ∆α is the difference between the sinusoidal signal of the
reference inverter and the other inverters in the ring. Thus, ∆α indicates the deviation of
the PLL output from the desired sinusoidal reference. Note that ve = 0 for the purpose
of numerical simulations.

The PLL achieves a phase lock in when the frequency is set at a different value from
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the centre frequency. After initial transient oscillations of different phase, the output
steadies at the input frequency. For the linear change in frequency, the PLL is able to
keep the locked-in conditions even when the frequency is slowly increasing. The PLL
maintains the hold-in conditions for the linearly increasing input frequency and retains
all inverter systems at the input frequency. Thus, the PLL is successful in tracking the
input successfully for these two cases of frequency change.

For cases where the frequency changes sinusoidally, the output shows an interference
effect and the PLL may not be able to synchronize all the inverter outputs at the desired
frequency. The results for this case are shown in Fig.4.18. Thus a sinusoidal change in
the frequency poses as a limitation of the synchronization with PLL.

4.7 Conclusion
In this chapter we introduced an autonomous distributed generation AC grid to harness
renewable DC sources of electricity. System stabilization for the grid to the desired output
voltage is achieved through PBC. PBC with its energy shaping and damping injection
techniques was discussed through a modified energy function based on the quadratic func-
tion of errors. The modified function approaches zero as the system reaches equilibrium.

A buck-type inverter was introduced to obtain a AC voltage with the desired amplitude
and frequency by alternating the polarity of the DC input with the help of power electronic
switches. Analysing the steady state behaviour for the open loop system, the necessary
switching is determined via the sinusoidal duty ratio. The control of the output voltage in
a ring coupled inverter system was attained with the focus on the energy characteristics of
the system with the application of PBC. The control equations were obtained by proving
the desired energy function as a Lyapunov function. The convergence to the desired
steady state were verified by numerical simulations as well as the effectiveness of PBC.
The system was studied under conditions of imbalance. Numerical simulations indicate
that PBC proves to remain an effective method of control under imbalance conditions.

It was found that phase differences between the output voltage of different inverter
systems leads to unstable output voltage for the entire system. PBC causes the system
to converge to a desired state, but even small inconsistencies in frequency can prove to
be detrimental. In order to avoid such instabilities we implemented frequency and phase
angle synchronization to the entire system through PLL. Application of PLL was achieved
through mathematical modelling, and then studied through numerical simulations. It was
seen that the PLL successfully tracks the input reference for frequencies other than the
centre frequency for the VCO as well as a linear change in the input frequency. Thus, a
PLL, along with PBC, proves to be an efficient method to attain phase synchronization
in an autonomous grid with ring coupled buck-type inverters.
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Chapter 5

Design Framework for Hybrid Systems

In this chapter we propose a model for a stand-alone hybrid distributed generation sys-
tem. In this model, the input sources are distributed DC sources like solar panels or
batteries. The idea behind this network framework is to introduce a hybrid DC-AC net-
work feasible for small, remotely located areas with stand-alone DC grids, in the vicinity
of larger towns requiring a functional single-phase AC connection. The open loop sys-
tem is obtained by providing the open loop duty ratio through the steady state analysis.
The network is mathematically represented with port-controlled Hamiltonian modelling.
Network stabilization to the desired voltage, both AC as well as DC, is attained with non-
linear passivity-based control taking into consideration not only the energy characteristics
but also the inherent physical structure.

5.1 Network Design
Distributed generation is defined as the decentralized generation of electricity through
small generators located near the end user or the consumer [10, 11]. It is an emerging
concept wherein the generation of electricity is moved away from centralized power plants
and towards individual generator units scattered over towns and villages [62]. Distributed
generation has been discussed widely as an alternative to solve the electrification problem
of rural and remote areas by constructing small stand-alone power grids by installing re-
newable energy generators in multiple households [63]. Such projects have been developing
under the umbrellas of local governments as well as the private sector [64–67].

Of late, several ideas for stand-alone renewable energy grids have been previously
proposed for rural areas [68–71]. In this chapter we introduce a hybrid stand-alone, off-
grid distributed generation network aimed at employing solar panels or other DC sources
as the primary inputs. The control of the DC stand alone grid with passivity-based control
was proposed in Chapter 3 and the AC grid in Chapter 4. In other research works various
designs of DC as well as hybrid microgrids have been proposed. A theoretical resut for
the DC stand alone microgrid has been proposed in [72, 73]. A passivity-based approach
for a hybrid DC/AC grid-tied microgird has been porposed in [74] where a well-defined
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hybrid network connected to the grid is considered and the control is porposed through
PBC. The network presented in this chapter, in contrast, is a stand-alone network, and
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Figure 5.2: Schematic diagram of connection of AC and DC ring
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the application of the open loop system as well as the system with PBC is proposed
for a generalized system with multiple inverters for the AC network, and multiple DC
links. The structure of the proposed hybrid DC-AC network is as described by Fig.5.1.
The network configuration shows multiple connected rings, with the α ring comprising of
multiple DC inputs accompanied with buck-type inverters to obtain an AC output. The
α ring is connected to multiple DC rings (β and γ), with DC inputs which are conditioned
with multiple DC/DC boost converters. The idea behind this network framework is to
introduce a hybrid DC-AC network feasible for small, remotely located areas with stand-
alone DC grids, in the vicinity of larger towns requiring a functional AC connection.

To achieve the stable operation of the entire network, we implement nonlinear passivity-
based control. Here, the goal is to attain the desired output voltage by rendering the entire
network passive along with its AC as well as DC components. For ring-coupled convert-
ers, it is confirmed that the converters keep the property of passivity individually as well
as in the entire ring by minimizing an energy function [75]. In the context of a hybrid
network, consideration has to be given to coupled converters as well as inverters oper-
ating concurrently. We define an energy function such that its minimum corresponds to
the desired equilibrium of the entire network. The energy transfer between individual
converter/inverter units in a particular ring, as well as that between the rings themselves,
governs the the dynamic behaviour of the hybrid dispersed generation network.

Figure 5.2 shows a schematic diagram for the connection of the α-β rings. The connec-
tion of the α-γ ring is assumed to be similar. The coupled converter/inverter units in the
ring are responsible for keeping the constant voltage in the ring. The system equations are
given below and are divided into three parts. First, for the α ring, subscription n denotes
the #n inverter in the ring. The equations for the α ring are given by Eqs.(5.1)-(5.3). The
control task is to regulate the average output voltage for all the converters/inverters. As
the output voltages are either DC, or AC with frequency (usually 50 or 60 Hz) much lower
then the switching frequency of the power electronic switches, it is desirable to consider
the averaged circuit variables rather than the instantaneous ones. It is assumed that the
ripples and harmonics are sufficiently small. Then, the instantaneous switch position will
be replaced by a modulating function µ. The averaged circuit variables will be replaced
by their instantaneous values.

Lαn
diLαn

dt
=− vCαn + µαnEαn (5.1)

Cαn
dvCαn

dt
=iLαn − iTαn + iTαn−1 −

vCαn
R2αn−1

+ ηiαβ + ζiαγ (5.2)

LTαn
diTαn

dt
=vCαn − vCαn+1 −R1αniTαn (5.3)

Here, η = 1 for the inverter #n of which the output is connected to the DC ring β and
ζ = 1 for the inverter connected to the DC ring γ. iαβ and iαγ are the currents flowing in
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the dissipation between the α-β rings and α-γ rings respectively.

Equations for the connecting inverter between the rings α and β and the dissipation
current between these rings are given by Eqs.(5.4)-(5.6).

Linvβ
diinvβ

dt
= −vinvβ + µinvβvCβq (5.4)

Cinvβ
dvinvβ

dt
= iinvβ −

vinvβ

Rinvβ

− iαβ (5.5)

Lαβ
diαβ
dt

= vinvβ − vCαη −Rαβiαβ (5.6)

Here #q is the converter where the DC ring β is connected to the AC ring α. The
equations for the inverter connecting the α-γ rings assume a similar form. Let #s be the
converter of the DC ring γ connected to the α ring. µinvβ is the duty ratio of the inverter
between β and α ring.

For the DC Rings β and γ the format of the equations is the same. Eq.5.7-5.9 give
the system equations for the β ring. The subscription p denotes the #p converter in the
β ring.

Lβp
diLβp

dt
=− (1− uβp)vCβp + Eβp (5.7)

Cβp
vCβp

dt
=(1− uβp)iβp − iTβp + iTβ(p−1) −

vCβp

R2Tβp

− νµinvβiinvβ (5.8)

LTβpi̇Tβp =vCβp − vCβ(p+1) −R1TβpiTβp (5.9)

Here, ν = 1 for the converter #p which is connected to the AC ring α.

5.2 Open Loop Controller
This section will explore the design of the open loop system by applying the steady state
analysis to the AC ring, the DC ring as well as the connecting inverters. The open loop
duty ratio can be obtained by fixing the desired output voltages for the α ring, the β, γ
rings and the connecting inverters. The application of the open loop duty ratio, gives the
behaviour of the system without feedback through the nonlinear PBC.

5.2.1 Steady state analysis for AC Ring
For the #n buck-type inverter in the α ring, the desired voltage is a AC waveform in the
form v̄Cαn = Aαn sin(2πfαnt) Here, the angular frequency ωαn = 2πfαn.
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Eqs.(5.1)-(5.3) give the mathematical description of the system for any #n buck-type
inverter system. Steady sate analysis is employed to formulate the equilibrium values for
the desired inductor current (̄iLαn) and the desired disspiation current (̄iTαn) for a given
desired voltage vCαn = v̄Cαn. Then, it will be possible to formulate the sinusoidal duty
ratio Uαn.

It is possible to analytically solve the linear differential equation Eq.(5.3), by employing
the known values of vCαn = v̄Cαn, vCαn+1 = v̄Cαn+1. The solution is given by Eq.(5.10).

īTαn =
R1αnAαn

R2
1αn + L2

Tαnωdαn

(sin(ωαnt)−
ωαnLTαn

R1αn

cos(ωαnt))

+
R1αnAαn+1

R2
1αn + L2

Tαnωαn+1

(sin(ωαn+1t)−
ωαn+1LTαn

R1αn

cos(ωαn+1t)) + kαe
−(R1αn/Lαn)t

(5.10)

Here, kα is the constant of integration. The value of kα is obtained by applying the initial
condition iTd(0) = 0.

kα =
AαnωαnLTαn

R2
1αn + L2

αnωαn

− Aαn+1ωαn+1LTαn

R2
1αn + L2

αnωαn+1

(5.11)

Then, the equilibrium value of iLαn can be obtained by solving Eq.(5.1) with iTαn = īTαn.

īLαn = Cαn ˙̄vCαn − īTαn + īTαn−1 +
v̄Cαn

R2αn−1

+ ηīαβ + νīαγ (5.12)

Finally, the open loop duty ratio Uαn is obtained from Eq.(5.2) by substituting iLαn = īLαn

and given in Eq.(5.17).

Uαn =
Lαn

Eαn

[Cαn ¨̄vCαn − ˙̄iTαn + ˙̄iTαn−1 +
˙̄vCαn

R2αn−1

]
+
v̄Cαn

En

+ η¨̄iαβ + ν¨̄iαγ (5.13)

5.2.2 Steady state analysis for connection inverters
As the setting for the AC ring, the steady state analysis can be applied to the inverters
between the rings. The desired voltage is set to be the same as the instantaneous desired
voltage of the AC ring: vinvβ = Aβ sin(ωβt). Then, by analytically solving Eq.(5.6), we
can get the following.

īαβ =
RαβAβ

R2
αβ + L2

αβωβ
(sin(ωβt)−

ωβLαβ
Rαβ

cos(ωβt))−
RαβAα0

R2
αβ + L2

αβωα0

(sin(ωα0)

− ωα0Lαβ
Rαβ

cos(ωα0)) + kαβe
−(Rαβ/Lαβ)t (5.14)

kαβ =
AβωβLαβ

R2
αβ + L2

αβωβ
− Aα0ωα0Lαβ
R2
αβ + L2

αβωα0

(5.15)
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The other state variables are given as follows.

īinvβ = Cαβ ˙̄vinvβ − īαβ +
v̄invβ

Rinvβ

(5.16)

Uαβ =
Lαβ
v̄Cβq

[Cαβ ¨̄vinvβ + ˙̄iαβ +
˙̄vinvβ

Rinvβ

]
+
v̄invβ

v̄Cβq

(5.17)

5.2.3 Steady state analysis of DC rings
The desired steady state of the DC outputs is constant, thus the derivative of the state
variables become zero. Thus, the steady state variables for the β ring are given as below.
Here the open loop duty ratio (Uβp) can be easily obtained from Eq.5.19.

īLβp =
Eβp

R2Tβp−1
(1− Uβp)2

+
1

R1Tβp

[
Eβp

(1− Uβp)2
− Eβp+1

(1− Uβp+1)(1− Uβp)

]

− 1

R1Tβp−1

[
Eβp−1

(1− Uβp−1)(1− Uβp)
− Eβp

(1− Uβp)2

]
(5.18)

v̄Cβp =
Eβp

(1− Uβp)
(5.19)

īTβp =
1

R1Tβp

[
Eβp

(1− Uβp)
− Eβp+1

(1− Uβp+1)

]
(5.20)

The steady state analysis for the γ ring can be obtained similarly.

5.3 Port-Controlled Hamiltonian Modelling
The system model using the PCH framework is given by Eq.(5.22) as in the form given
in [47].

Dẋ(t) = [J−R]
∂H

∂x
+ G(x)E (5.21)

y = GT (x)
∂H

∂x
(5.22)

For total m inverters/converters in the ring network, x, the state of the system, is
a ((m × 3) × 1) column matrix of all the inductance currents and capacitance voltages.
The matrix D is a diagonal matrix of the capacitance and inductance values of the cor-
responding currents and voltages. The structure matrix, J, is a ((m × 3) × (m × 3))
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Figure 5.3: Structure matrix as a function of time: µinvβ, µinvγ = −0.7.

Figure 5.4: Structure matrix as a function of time: µinvβ, µinvγ = 0.

skew-symmetric matrix. As the input voltage to the connecting inverters is the output
voltage of inverter #q of ring β and converter #r of ring γ, the structure matrix J is a
function of µinvβ and µinvγ as well as the DC-DC converter duty ratios µβp and µγs . A
((m × 3) × (m × 3)) diagonal matrix, G, is a function of µαn. J and G are determined
from the structure as per Kirchoff’s law. E is a ((m× 3)× 1) matrix of the external DC
inputs to the corresponding inverters. R, the dissipation martix, is ((m × 3) × (m × 3))
a diagonal matrix, with resistance elements. Finally, H is the Hamiltonian of the system
which, corresponds to the energy of the system.
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Figure 5.5: Structure matrix as a function of time: µinvβ, µinvγ = 0.7.

5.4 Consideration as a network
As the structure matrix, J is the function of the sinusoidal duty ratio of the inverters, it is a
function of time. The structure matrix represents the connection of all the state variables.
It indicates whether a pair of state variables are connected to each other. Figs.5.5-5.3 give
a graphical representation of the structure matrix of the proposed distributed generation
system. It visualizes the structure of the matrix. Here, for Figs.5.5-5.3 µβp and µγs= 0.6.
As µinvβ and µinvγ are sinusoidal, the structure matrix is shown for three values of µinvβ

and µinvγ.

Degree

High

Medium

Low

Figure 5.6: Graph representation with degree centrality analysis
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As the proposed network comprises of multiple converter/inverters units, it is desirable
to know the connection properties to identify the most important units of the entire net-
work. For a smaller system with fewer number of units, the important units are evident,
but for larger systems, not necessarily in ring coupled formulation, such analysis is im-
portant to figure out the weak areas of the network. For the proposed AC-DC distributed
generation system, the centrality of the network is shown in the graph representation
shown in Fig.5.6. Here, the state variables are represented as nodes of the graph. The
size of the nodes is proportional to the degree centrality of the node, indicating that the
biggest nodes are the ones with the highest degree. Failure of the higher degree nodes is
more likely to result in the failure of the network as a whole [76]. Thus, this information
helps to make the network more robust by safeguarding the vulnerable nodes [77].

5.5 Application of Feedback through Passivity-
based Control

We investigate whether it is possible for PBC to be applied to the distributed generation
system with AC and DC voltage output. As shown in Chapters 3 and 4, the quadratic
function of errors, given again for reference in Eq.5.23

Hd =
1

2
eTDe, e = x− xd (5.23)

Then, the control rule with nonlinear PBC can be formulated for the entire network as
given below.

Dẋd(t) = (J−R)xd(t) + E + RI(x− xd(t)) (5.24)

The damping injection, RI has the same properties as stated in Chapter 3 and Chapter 4.
For stabilization through non-linear PBC we take into consideration the zero dynamics of
the system to confirm the structural properties in addition to the mathematical analysis
mentioned above, to apply feedback control. The zero dynamics analysis indicates that
the distributed generation network system is a non-minimum phase system with respect
to the output voltage, but a minimum phase system with respect to the input inductor
current. Thus, the chosen method of feedback is with the inductor current rather than
the output voltage.

The nonlinear control equations are obtained from the exogenous control system given
in Eq.(5.24). They play the role of a reference model with a stronger dissipation structure
than the original system underscored by the added damping. The control equations are
obtained separately for the AC ring, the DC rings and the connecting inverters as was
done for the steady state analysis. The control equations for the AC ring are given in
Eqs. (5.25)-(5.27).
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µαn = [Ln
˙̄iLn + ṽCn −Rαnk(iLn − īLn)]/Eαn (5.25)

Cαn
˙̃vCαn = īLαn − ĩTαn + ĩTαn−1 −

[ ṽCαn

R2αn−1

]
+ ηĩαβ + ζĩαγ (5.26)

LTαn
˙̃iTαn = ṽCαn − ṽCαn+1 −R1αnĩTαn (5.27)

Here xdαn = [̄iL ṽC ĩLT ]T is the desired dynamic state vector of the controller for the
inverters in the AC ring and µαn is the feedback duty cycle. Next, the control equations
for the inverters are obtained as follows.

µinvβ = [Linvβ
˙̄iLinvβ + ṽCinvβ −Rαβk(iLinvβ − īLinvβ)]/v̄Cβq (5.28)

Cinvβ
˙̃vCinvβ = īLinvβ −

[ ṽCinvβ

R2n−1

]
(5.29)

Lαβ
˙̃iTαβ = ṽinvβ − ṽCαn −Rαβ ĩαβ (5.30)

For the connecting inverter control equations, the DC input is given by the steady
state voltage of the corresponding DC/DC converter of the DC ring, in this case given by
#q. The equations for the connecting inverter between γ − α rings can be obtained in a
similar manner. Finally, the control rule for the DC rings is given by Eqs.(5.31)-(5.33).

µβp =
1

ṽCβp

[
Eβp +Rβpk(iLβp − īLβp)

]
+ 1 (5.31)

Cβp
˙̃vCβp = (1− µβp)̄iLβp − ĩTβp + ĩTβp−1 −

[ ṽCβp

R2βp−1

]
− µinvβ īinvβ (5.32)

LTβp
˙̃iTβp = ṽCβp − ṽCβp+1 −R1βpĩTβp (5.33)

The constant desired inductor current īLαn, īLinvβ, īLinvγ, īLβp and īLγs are obtained
from the steady state analysis. The state inductor current for all converter/inverter units
is used for feedback control with corresponding damping Rαnk, Rinvβk, Rinvγk, Rβpk and
Rγsk.

With the application of nonlinear PBC, the value of the duty ratio µ is evaluated at
every instant t depending on the input, the system parameters, and the desired output of
the system. That is, µ depends on time and the state.
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Table 5.1: Parameters for α-ring

Parameter Value Unit
Parameter Value Unit
Eαn 36 V
Lαn 46 mH
Cαn 100 µF
LTαn 15 mH
R1αn 50 Ω
R2αn 100 Ω
v̄Cαn (An = 13) 13sin(376 ∗ t) V

Table 5.2: Connecting Inverters

Parameter Value Unit
Parameter Value Unit
Linvβ 16 mH
Cinvβ 100 µF
Rinvβ 100 Ω
Rαβ 10 Ω
Lαβ 16 mH

Table 5.3: Parameters for β, γ-ring
Parameter Value Unit
Eβp 18 V
Lβp 46 mH
Cβp 100 µF
LTβp 15 mH
R1βp 50 Ω
R2βp 100 Ω
ṽCβp 40 V

5.6 Numerical Simulations
The simulation results are obtained for five converters coupled in a ring form are given
in this section. The numerical simulations were carried out on ode45 solver Simulink
(Version 8.7 R2016a).

5.6.1 Simulation results for a balanced system
In this section, results are presented for numerical simulations performed first, for the open
loop balanced system and then for the balanced system with feedback through PBC. A
balanced state is when the parameters for all converters/inverters in each ring are set at the
same values respectively. Additionally, the dissipation between the converters/inverters
(LT ) and the input voltage (E) are also set at the same value for each ring respectively.
This creates a natural balance within each ring, but not necessarily between the rings.
These values are set as given in Table. 5.1-5.3 for α, β, γ rings and the connecting
inverters.
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Figure 5.7: Numerical Simulation for balanced open loop system without the applicaiton
of PBC.

Figure 5.8: Numerical Simulation for balanced open loop system system without the
applicaiton of PBC.
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Figure 5.9: Numerical Simulation for balanced system with the applicaiton of feedback
control through PBC.

Figure 5.10: Numerical Simulation for balanced system with the applicaiton of feedback
control throughPBC.
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Figure 5.7 gives the result of numerical simulation for the distributed generation system
without the application of PBC (open loop system). Here, the duty ratios for the rings
Uαn, Uinvβ, Uinvγ, Uβp and Uγs are set at a constant value estimated at the steady state
analysis. Any unforeseeable disturbance in the system will not be acted on but may affect
the system output adversely. It is seen that all three rings settle on the desired output
voltage after the transient.

The parameters for the β and γ ring have been set to be the same, creating symmetry
and resulting in the output for the two DC rings to exactly equal. The duty ratio for
the DC rings is constant, and sinusoidal for the α ring and the inverters as shown in
Fig.5.7. The connection parameters for the inverters are given by Fig.5.8. Even beyond
the transient, it is seen that current flows between the converter/inverter units in the
rings (iTαn, iTβp, iTγs) as well as between the α-β and α-γ rings as indicated by iαβ and
iαγ given by Fig.5.8.

Next we look at simulations results when feedback control is applied through PBC.
PBC results in an output dynamic feedback controller which induces a shaped closed
loop energy and enhances the closed loop damping of the system. The damping has the
condition R+RI > 0. Then it was set and kept at Rk = 20 for all the converter/inverter
units. It is clearly seen that now the duty ratio is not constant, but a function of time, this
confirms the application of feedback control through passivity. The output voltage shows
a faster convergence to the desired value with damped oscillations for the transient as
shown by Fig.5.9. The flow of current through the rings (iT ) as well as between the rings
(iαβ, iαγ) is reduced, allowing the system to attain stability by maintaining the passivity
of entire network. The parameters for the connecting inverters are as shown in Fig.5.10

5.6.2 Simulations for system with disturbance
Imbalance occurs in the ring coupled system when converters in the ring and/or the
dissipation between two neighbouring converters have different parameter values. In the
following simulations we consider imbalance by varying input voltage values for the β
and γ DC rings. Practically, as the DC rings represent a distributed network in remote
villages, it is assumed that the input voltage from the solar arrays might change depending
on the weather conditions. The simulated change in input voltage and the corresponding
output of the open loop network is shown in Fig.5.11. Here, PBC is not applied, and
the output is based on the open loop duty ratio calculated by the steady state analysis.
Fig.5.12 shows the connection parameters for the same. As the input varies, the system
shows the transient from one state to another creating imbalance, and a noticeable flow
of current between the rings. The inverter output voltage for the β and γ rings varies
according to the transient created by the changing input.
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Input voltage

Change in the input voltage

Change in the input voltage

Figure 5.11: Numerical Simulation for varying inputs for the open loop system.

Figure 5.12: Numerical Simulation for varying inputs for the open loop system.
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For the same change in input voltage, the application of PBC is as shown in Fig.5.13.
The output voltage is seen to be devoid transient disturbances. The DC as well as the
AC outputs are seen to be much closer to the desired values as compared to the original
system. Fig.5.14 shows the duty ratio of connecting inverters, the output voltage and
the flow of current between the rings as PBC is applied. As passivity is invariant under
negative feedback interconnection, the connection of two passive systems is a passive
system. Thus, PBC is applied to the entire network by ensuring the passivity of individual
converter/inverter units, ensuring the passivation of the whole network. The results allude
to this fact. The flow of the line current through the ring, at any point of time is zero,
indicating that the entire system retains passivity. This is true even when there is flow of
energy between individual converters/inverters.

5.7 Discussions
The engineering of a hybrid distributed generation system has to be consistent with a
suitable and affordable extension of the network on the same portability grade. For this
reason, the addition of different generation units as integral part of the system needs to be
an undemanding and straightforward task [10, 78]. In the hybrid distributed generation
network presented in this chapter, the numerical simulations have been carried out for a
limited number of generation units per ring and limited number of DC rings connected to
the main AC ring. The extension of this model to a practical system applicable to small
villages must be discussed. As is shown in Eqs.(5.1)-(5.3), Eq.(5.4)-(5.6) and Eq.(5.7)-
(5.9), the mathematical design facilitates the inclusion of further generator units. The
same goes for the number of DC rings connected to the ‘main’ ring. The system design
presented does not cause a loss of generality. The control equations have also been laid
out to include an arbitrary number of units as well as DC rings.

The structure matrix J of the PCH modelling presents two highly desirable outcomes:
not only is it necessary for system control but can also act as an adjacency matrix for
analysis of vital system components and performances. The adjacency matrix (given
by Figs.5.3-5.5) reveals the dynamic connection between all nodes of the network at a
glance. For expansion it will be able to incorporate new node connections in the ring as
well as jump connections between rings. Thus, the adjacency matrix provides valuable
indicators of the distributed generation grid when expanded by adding a large number of
units. Within this network representation framework, further analysis can be conducted
to understand the robustness properties [79,80]. Here, robustness implies the ability of the
distributed generation grid to be resilient to external disturbances one of which is failure
to operate smoothly subject to expansion [81]. The vulnerable nodes in the network
can be detected, thus making expansion achievable with keeping the safety. Here, the
numerical results are in congruence with the centrality analysis presented in Sec. 5.3. The
degree centrality graph presented in Fig. 5.6 predicted the most significant nodes to be the
voltages to be vCα0, vCα2, vCβ0, and vCγ0. This is confirmed from the numerical results
of the original system (without control) when the input voltage is varied as shown in
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Figure 5.13: Numerical Simulation for varying inputs system with applicaiton of PBC.

Fig. 5.11. For an unbalanced system, the states of the connecting converters α0, α2, β0,
and γ0 are the only ones that vary from the desired trajectory. For the same conditions,
PBC exhibits accelerated convergence to the desired state.

The aim of the network is to have multiple consumers connected together, with all

Figure 5.14: Numerical Simulation for varying inputs system with applicaiton of PBC.
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units operating synchronously with equal output voltages. It is assumed that the con-
sumers are scattered over a large area with varying distances between each other. The
proposed hybrid network design considers the dissipation with a transmission line model.
It enables incorporation of variable dissipation parameters potentially determined by the
distance between the units. PCHM with its well ordered matrix structure allows effortless
modification in the system parameters. It is well known that discrepancy in the output
phase or frequency of the inverters in the AC-ring can cause undersirable interference
effects throughout the AC-ring with rippling effects through the DC-rings as well. The
issue of grid synchronization for the AC-ring, though not explored in this chapter, can
be considered with the same strategy as presented in Chapter 4, with the application
of PLLs in congruence with PBC. The synchronization of the outputs of the connecting
inverters to that of the inverters in the AC-ring has to be underlined.

Based on the numerical simulations, it is clear that the AC as well as DC output with
nonlinear PBC shows improved convergence time during transient operation. Nonlinear
PBC takes into account the energy dynamics, and the physical structure of the original
converter/inverter as well as its closed loop formulation. In Sec. 5.5 it was mathematically
proven that the entire network achieves Lyapunov stability with the application of non-
linear PBC. Moreover, the system converges exponentially to the desired state with the
addition of damping. The numerical results show coherence with the analytical solutions.
For same input inductor and output capacitor values, the original system produces an
under-damped transient response as opposed to the system with PBC, which shows a
damped response.

Nonlinear controllers have shown to be exceptionally good at trajectory tracking as
compared to their linear counterparts [82, 83]. It has been shown in comparitive studies
that dependance on linearization objective renders the system fragile, making it less at-
tractive in applications [82]. With the nonlinear PBC, the exogenous system described in
Eqs.( 5.25)-(5.33) is responsible for tracking the error based on the desired energy func-
tion. The controller anticipates the energy dynamics as well as the physical structure
of the system, enhancing robustness and resilience to fluctuations during transient. The
controller follows a time variant desired state-trajectory created by the exogenous system
forcing the duty ratio of each of the converter/inverter to change as a function of time
and is significant for the systems transient response. As the nonlinear exogenous system
modifies the duty ratio based on the dynamic energy structure to track the desired state
trajectory, the system rapidly converges to the steady state as shown in Fig. 5.9.

5.8 Conclusion
In this chapter we introduced a hybrid DC-AC distributed generation network, presented
its mathematical formulation and proposed a method to stabilize the entire network based
on the energy characteristics of its individual components with passivity-based control.
PBC, with energy shaping and damping injection was discussed for the quadratic function
of errors as the desired storage function. It was shown that with nonlinear passivity-based
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control it was possible to stabilize a distributed generation system with DC as well as AC
network components.

The application of passivity-based control was confirmed with numerical simulations.
It was shown that by minimizing the desired storage function, it was possible to attain the
user-defined desired output voltage by regulation of the duty cycle through feedback of
the inductor current of the multiple power electronic inverters/converters in the network.
Comparison to the dynamic behaviour of the original system suggests the successful ap-
plication of PBC during transient operation. Numerical simulations were performed for
a balanced case as well as under varying input to the network. The state variables of
inductor current and capacitor output voltage as well as the current through the dissi-
pation within each ring component of the network were obtained. The flow of current
between the rings and the operation of the connecting inverters was investigated for both
the original system as well as feedback control through PBC. The results indicate that
the application of PBC significantly improves the system response time and drives the
system to a stable equilibrium in an exponential time.
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Chapter 6

Application of PBC for Multiple
Equilibria

This chapter discusses the current-voltage (IV) characteristics of a solar array-DC/DC
converter system. It is seen that systems consisting of power electronic devices and solar
arrays show instabilities as well as chaotic behaviour [84, 85]. The energy function is
modified to resonate the nonlinear properties shown by the system consisting of solar
array and DC/DC converters [86]. PBC is applied with this modified energy function, by
proving the function to be a Lyapunov function. Numerical simulations are performed
to show the implementation of PBC for a ring coupled converter system with an energy
function with multiple equilibria. The multiple equlibria can alter the state of the system
within the nature of the system characteristics with a small perturbation.

6.1 Dual Equilibrium Storage Function

6.1.1 Solar Array-DC/DC Converter systems
For power generation using solar arrays, dispersed generation systems will have in-

put power from solar cells. DC/DC converters are employed to convert the solar power
into desirable DC voltage [87]. Thus, the system will comprise of both solar arrays and
DC/DC converters. Considering the ring coupled converter system discussed in Chap.3,
and focusing on solar arrays as the DC inputs (En) to this system, it is necessary to look
at the characteristics of a solar array-DC/DC converter system.

Here, we consider the simplified model of a stand-alone generation system, i.e solar
arrays as inputs connected to DC/DC converters neglecting the connection of batteries,
further regulators etc for studying the dynamic behaviour of the system. For application
in DC stand-alone grid systems, the point-of-load converters, i.e converters near the loads,
when regulated tightly act as constant power loads when receiving sufficient input [85,88].
These CPL characteristics of the DC/DC converters connected in stand-alone systems
combined with the well known characteristics of solar arrays, give rise to some interesting
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Figure 6.1: Bifurcation occurs if intensity of illumination is changed

non-linear behaviour [89].
We assume that the DC/DC converter is lossless and operating in a continuous con-

duction mode, and has a constant resistance as the load. As the solar array voltage input
varies, the DC/DC converter operates in two separate regions. For sufficient voltage from
the solar array, the characteristics are that of a constant-power hyperbola. If the out-
put voltage from the solar array is insufficient, the output of the DC/DC converter will
become unregulated to show constant resistance characteristics [30, 90, 91]. The current-
voltage (I-V) characteristics of a DC/DC converter connected to a solar array are given
by Fig.6.1 [30,92]. The position of these equilibrium points depends on the load resistance
of the converter (Fig.6.2) or the intensity of illumination for the array (Fig.6.1) [30].

Figure 6.2: Bifurcation occurs with change in load resistance
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When the load resistance is varied, the characteristics of the solar array- DC/DC
converter system are given by Fig.6.2. The system shows bifurcation as the load resistance
is changed, creating three equilibria under certain load resistances. Here, it can be seen
that for lower loads the system exhibits one stable equilibrium which lies in the desirable
region, and for higher loads a stable equilibrium in the undesirable part. For Fig.6.1, the
three equilibria have been analysed as two stable equilibria and one unstable equilibrium
in between them [92]. As the solar output voltage varies, the input to the converter varies
and the DC/DC converter operates in two modes: desirable and undesirable. Desirable
mode is denoted by V > vref . In the region where V < vref is undesirable with insufficient
output from the solar array. The first equilibrium is in the region where V < vref and
falls in the undesirable mode. The second equilibrium is unstable. The third equilibrium
is in the region where V > vref , i.e. the desirable mode. This is a stable equilibrium and
also corresponds to the equilibrium at which maximum power can be extracted from the
system [92].

The Figure 6.1 also shows IV characteristics with respect to the intensity of illumina-
tion on the solar array. When the coefficient of illumination (α) decreases to a certain
value, there exists an equilibrium point. The stability of this equilibrium point (A1) is
determined by examining the eigenvalues of the jacobian matrix. For lower values of α,
the real part of the eigen values is negative, thus making this a stable point. As the
intensity of illumination is increased, for a particular value of α, this equilibrium point
diverges into three equilibrium points (B1, B2, B3). The stability analysis shows that B1

and B3 are stable but B2 is an unstable equilibrium point [30]. The change in the number
of equilibria by changing α is a stationary bifurcation. (A bifurcation is a qualitative
change in the system behavior as a particular parameter of the system is varied [93].)

Passivity-based control is a method of control which brings the system to the desired
equilibrium by manipulating the energy characteristics of the system. It employs energy
shaping, and damping injection to achieve asymptotic stability. Energy shaping implies
the introduction of a new energy function with a minimum at the desired equilibrium.
This principle can be extended by modifying the energy function to take into consideration
the stability characteristics of the system of solar arrays and DC/DC converters. PBC
employing a storage function which is altered to have multiple equilibria is used for the
control of such a system. The use of PBC compels us to focus on the energy characteristics
of the system, and analyze the dynamic behavior in light of the new storage function.

6.2 Design of Multistable Storage Function
The IV characteristics of a solar array-DC/DC converter system were given in Section
6.1.1. The bifurcation characteristics are a fatal demerit to the system. However, on the
other hand, the multiple equilibria can alter the state of the system within the nature of the
system characteristics with a small perturbation. For such a system, the energy function
for the application of PBC can be designed to have similar characteristics. Conventionally,
PBC has always seen the energy function to have a unique equilibrium as was done for
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the control of stand-alone power systems in the previous chapters. This method can be
extended by designing the energy function to have multiple equilibria depending on the
system in question. This method can enable the energy function to adapt to the natural
characteristics of the system within the framework of PBC.

Such behavior is modeled by using a new storage function, Hd2, represented by Fig 6.3.
This function has structure similar to Fig. 6.1 with two stable and one unstable equilib-
rium. PBC can shape the energy function to keep the structure with three equilibria.
The shaping physically implies addition of a damping term. The new storage function is
given by Eq. (6.1).

Hd2 =
1

2
((x− xd1)TD(x− xd2))2 (6.1)

The modified function is represented by Fig. 6.3. Qualitively the function has structure
similar to Fig. 6.1 with two stable and one unstable equilibrium. This function with its
multiple equilibria, as opposed to the previous single equilibrium function, can be referred
as a multistable function. The application of PBC with this dual equilibrium function
will help to retain the system of solar array and DC/DC converter within its natural
characteristics.

Here xd1 and xd2 are the two stable equilibria corresponding to B1 and B3 respectively.
D as given in Eq. (3.5) is a diagonal matrix of the inductances and capacitances in the
system, x is a column matrix of the states of the system.

6.3 PBC for Multistable function
In the case for a solar array-DC/DC converter system, where the the input voltage

from the solar array is sufficient, it is desirable that the system settles on the equilibrium
point B3. The system will retain the constant power load condition and it is possible to
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draw an increased amount of power. In this section, firstly, we demonstrate the application
of PBC with a multistorage function to a stand-alone ring coupled system. Secondly, we
compare the results of the open loop system to the one where feedback nonlinear control
with PBC is applied to numerically examine the choice of the equilibrium for different
conditions of changing load and input voltage within the bifurcation range.

In Chap. 3, for the application of PBC, it was shown that the function is Lyapunov
stable. We will proceed to do the same for the multistable storage function. To prove the
function is Lyapunov stable, the derivative of the function must be given, and it should
be shown that it is negative. Then, PCHM will be employed to confirm passivity of the
system. Lastly, the design of control equations will allow the application of PBC.

6.3.1 Lyapunov Stability of Multistable Storage Func-
tion

Recalling equations for a ring coupled converter system with PCHM from Chap. 3 the
system is represented as Eq. (6.2).

Dẋ(t) = [J(µ)−R]
∂H

∂x
+ E (6.2)

The energy of the system is the sum of energy of all the storage elements present in
the system. This represents the Hamiltonian for the system. It is given by Eq. (6.3)
considering x and D as defined in Chap. 3.

H =
1

2
xTDx (6.3)

To show that a function is Lyapunov stable, it needs to be shown that the derivative of
that function is negative. Confirming Ḣd2 ≤ −kHd2 for the function Hd2, it is proved to
be a candidate of Lyapunov function. Eq. (6.4) gives the derivative of the multistorage
function.

Ḣd2 = ((x− xd1)TD(x− xd2))× d

dt
((x− xd1)TD(x− xd2)) (6.4)

Let,

A =
d

dt
((x− xd1)TD(x− xd2)). (6.5)

Here, consider (x−xd1) = e1 and (x−xd2) = e2. The derivative of A is given in Eq. (6.6).
Thus, Eq. (6.7) equation holds.

A =
d

dt
(eT1 De2) (6.6)

A = eT
1 Dė2 + eT2 Dė1 (6.7)

79



Let xd be the center between xd1 and xd2, such that if e = (x − xd) then e1 = (e − a)
and e2 = (e+a). Then, Eq. (6.7) is rewritten in terms of e and a and given by Eq.(6.8).

A = 2(eTDė− aTDȧ) (6.8)

Consider the substitution given in Eqs. (6.9) and (6.10).

Dẋd = Jxd −Rxd + E + RI(x− xd) (6.9)

Dȧ = Ja− (R + RI)a (6.10)

From PCHM it is known that J is a skew symmetric matrix. Thus, eTJe = 0 and
aTJa = 0. Substituting Eqs. (6.9) and (6.10) in Eq. (6.8), the final expression for A is
obtained.

A = −2(eT(R + RI)e− aT(R + RI)a)

A = −2((e− a)T(R + RI)(e + a)) (6.11)

Substituting the values of e and a back in this equation and writing it in terms of (x−xd1)
and (x− xd2) it is written as Eq. (6.12).

A = −((x− xd1)T2(R+RI)(x− xd2)) (6.12)

Substituting Eq. (6.12) into the original equation for Ḣd2 (Eq. (6.4)), we obtain Eq. (6.13).

Ḣd2 = −((x− xd1)T
√

2D(R + RI)(x− xd2))2 (6.13)

Eq. (6.13) definitely implies that Ḣd2 ≤ −kHd2 with k > 0. As a sufficient condition,
the dissipation matching condition R + RI > 0 is requested. With these conditions, it is
confirmed that Ḣd2 ≤ −kHd2 with k > 0. Thus Hd2 becomes a candidate of Lyapunov
function.

6.3.2 Control Equations
From the above discussions, the conditions given in Eqs. (6.10) and (6.9) are necessary

for the function to be a candidate of Lyapunov function. The control equations for PBC
are formulated from these equations. Two conditions, one for xd1 and one for xd2 are
constructed. Adding Eqs. (6.9) and (6.10), we obtain Eq. (6.14).

D(ẋd + ȧ) = J(xd − a)−R(xd + a)− E + RI(x− (xd + a)) (6.14)

Taking xd1 = xd + a into consideration, Eq. (6.15) holds.

Dẋd1(t) = (J + R)xd1(t) + E + RI(x− xd1(t)) (6.15)
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Figure 6.4: Two ways to apply control: (a) Each converter follows its own desired energy
function (b) All the converters settle on the same equilibrium point corresponding to the
energy of the whole system

Similarly subtracting Eq. (6.10) from Eq. (6.9), we obtain Eq. (6.16).

D(ẋd − ȧ) = J(xd − a)−R(xd − a)− E + RI(x− (xd − a)) (6.16)

Taking into consideration that xd2 = xd − a, Eq. (6.17) holds.

Dẋd2(t) = (J−R)xd2(t) + E + RI(x− xd2(t)) (6.17)

Thus, the control equations for the multi storage function are obtained by Eqs. (6.15) and
(6.17).

6.3.3 Application of Control
The control equations obtained in Eqs. (6.15) and (6.17) denote the control rule. Imple-

menting this control rule, the system recovers stability according to the function shown in
Fig. 6.3. As was in Chap. 3, PBC is a feedback technique. Feedback is applied by solving
the control equations for µn. As the control is applied, µn becomes a function of time
and thus for all purposes should be considered as µn here on. Due to the zero dynamics
discussed in Sec. 2.2, the feedback is acquired by measuring the current iLn.

Feedback to the duty cycle is obtained in two ways. One way is by setting each
converter to follow its own desired energy function as shown in Fig. 6.4 (a). This individual
energy function given by Eq.(6.18) is for converter #0. Here, x0 is the state vector, and
xd10 , xd20 the desired stable equilibria for converter #0. This implies that each converter
has the freedom to chose either stable equilibrium at xd1 or xd2 without influence from
neighbours.

Hd20 =
1

2
((x0 − xd10)

TD0(x0 − xd20))
2 (6.18)
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Figure 6.5: Control applied based on energy of whole system This case shows where
converters are forced to settle at same equilibrium. Initial conditions: E0 = 24 V, E1 = 21
V, E2 = 18 V, E3 = 15 V, and E4 = 12 V

The second way is by considering the energy of the whole system. Here, the storage
function (Hd2) is minimized to attain stability as shown in Fig. 6.4 (b). It is ensured that
the output voltage in the ring is constant, and all the converters in the system settle on

E
n
e
rg
y

Figure 6.6: Control applied based on energy of single system Converters settle on different
equilibrium according to individual energy. Initial conditions: E0 = 24 V, E1 = 21 V,
E2 = 18 V, E3 = 15 V, and E4 = 12 V
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the same equilibrium without regard to the individual energy.

6.4 Numerical Simulations
The control equations given by Eqs. (6.15) and (6.17) were solved using a ode45 solver in
MATLAB. As PBC is applied, the choice of the equilibrium corresponds to the energy
of the system. The ring coupled converter system described in Chap. 3 and shown in
Fig. 3.2 is considered. The parameters other than mentioned in the figure are according
to Table. 3.1 For the following simulations xd1 was set at 20 V and xd2 was set at 24 V.

6.4.1 Flow of Energy through the Ring
Figures 6.5 and 6.6 show the flow of energy between the converters in the transient. In

Fig. 6.5 the control was performed on the energy of the whole system. Fig. 6.6 shows the
case in which the control is applied individually depending on the energy of each converter
given by Eq. (6.18). For ease of visibility, the plot starts after the initial peak at 0.03 sec.
In Fig. 6.5 all the converters settle at xd1 = 39 V. Converter #0 has the highest input
in the ring and thus the highest energy. It shows a peak transient first then converter
#1 and so on. The energy flows through the ring until all the converters have the same
energy and thus the same output voltage. Fig. 6.6 shows the dynamic behaviour for the
same inputs as Fig. 6.5. The converters do not settle at the same equilibrium. Converter
#0 and converter #1 settle at xd1 = 39 V while the other three settle at xd2 = 41 V.
The final energy of all the converters is not the same, and thus a constant current flows
through the dissipation.

These simulations show that given different inputs for the converters, the flow of energy
occurs in the ring until all converters have same energy levels. This gives us an insight
into the energy characteristics of coupled converters. We were also able to show that the
energy of the converters remains different when they settle at different equilibria. The
difference in the energy, and the constant flow of dissipation beyond the transient are an
interesting observation for PBC.

6.4.2 Application of PBC
The application of PBC is applied as described by Fig.6.4 (b.).

Numerical results were obtained for conditions of varying input voltage and load re-
sistance. Comparison between the simulation results of the open loop system and the
system where PBC has been applied shows that with PBC, the system output voltage
consistently equilibriates at a higher value than without PBC. These results are shown
in Fig.6.7. First, keeping the output resistance constant at R2n = 50 V, the input is
varied from En = 12 V to En = 20 V. Here, the final output voltage of the system is
plotted on the y-axis. Then, keeping the input constant at En = 14 V and En = 14 V
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Figure 6.7: Comparison of open loop system to system with PBC for changing conditions
of input voltage and load resistance. The other parameters are: Ln = 16 mH Cn = 50 µF
R1n = 10 Ω LTn = 5 mH

respectively, the load resistance is varied. When PBC is applied, the system settles on a
higher equilibrium as the load resistance increases. The same trend is seen in the open
loop system but then, if the resistance is increased further, the system moves back to the
lower equilibrium. This suggests unpredictability of the system output without the appli-
cation of PBC. Therefore, the application of PBC,in addition, allows for more consistent
predictability of the system’s output voltage which is an important design consideration
for systems with bifurcation properties like the solar array-DC/DC converter system.

The transient behaviour of the system, for both with and without PBC, is shown in
Fig.6.8. Here the input inductor current and output voltage are plotted on the energy
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Figure 6.8: Transient behaviour of the system: (a) Without control (b) With PBC. System
parameters are same as shown in Fig.6.7 with En = 15 V and R2n = 50 Ω

Figure 6.9: The system: (a) Without control (b) With PBC. System parameters are
same as shown in Fig.6.7 with En = 15 V and R2n = 50 Ω. Here, H is the energy of the
system and

plots of the multistable energy function with two stable equilibria. It can be seen that
the system oscillates in the transient while finally settling on the lower equilibrium for
the open loop system without control. With dampened transient oscillations, the system
quickly settles at 24 V. The energy of the system can be seen with respect to time in
Fig.6.9. In Fig.6.9 (a) it is seen that the energy corresponding to the two equilibria are
constant with respect to time. Thus, as the energy of the system also oscillates and settles
on one equilibrium. For the same parameters, the energy corresponding to the equilibria
is a function of time. This minimizes the unpredictability and makes it possible to drive
the system to the higher equilibrium point for a variety of cases.

6.5 Conclusion
In this chapter the energy shaping properties of PBC were taken a step further by de-
signing the energy function to suit the physical characteristics of the system. The solar
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array-DC/DC converter system shows bifurcation characteristics with respect to the in-
put voltage and load resistance. Studying the nature of the solar array-DC/DC converter
system, the desired energy function, which is usually a paraboloid with a single equilib-
rium point to a quartic function with three equilibria. In the new double well potential
function, there are two stable equilibria and an unstable equilibrium between them, corre-
sponding to the characteristics of the solar array-DC/DC converter system. It was proved
that this function is a candidate of Lyapunov function. This implies that PBC can be
applied and consequently control equations were obtained.

Firstly, the method of application of control was discussed. It was shown that PBC
can be applied to the stand-alone distributed generation system in two distinct ways.
The first one is where the control is applied so that the converters follow their own energy
function and thus possess the freedom to choose either of the stable equilibrium without
influence from its neighbours. If the coupled converters in the system settle on different
equilibria, it causes a flow of energy in the system. The second method is when the
control is applied by considering the energy function of the entire system. It causes all
the converters to choose the same equilibrium point corresponding to the energy of the
entire system. The simulation results for the different methods of application of PBC give
an insight in the behaviour of the stand-alone distributed system with solar array and
DC/DC converters.

Finally, it was shown with numerical simulations that for different conditions of varying
input voltage and load resistance, PBC helps the system to choose the equilibrium with
higher power. It is thus possible to maintain the system on the higher equilibrium,
and thus showing constant power characteristics. The transient behaviour is studied by
plotting the current and voltage on the energy curves of the newly designed multiple
equilibrium system.
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Chapter 7

Conclusion

7.1 Conclusion
The aim of this thesis is to give a detailed design framework for stand-alone systems with
DC inputs, stabilized with PBC. For this purpose, three types of dispersed generation
stand alone power systems were designed, modelled and their behaviour was analysed
with numerical simulations. Passivity-based control was employed to stabilize the entire
network to the desired state, including the output voltage and inductor currents by con-
sideration for the energy characteristics of the system. The method of the control rule
was adjusted to suit the design of the stand-alone network under consideration.

Chapter 2 explained the basics of the operation and modelling of DC/DC converters.
Port-controlled Hamilton modelling was applied to the simple case of a DC/DC boost
converter. After consideration of the structural dynamics, it was found that the feedback
applied through the input inductor retains the stability of the DC/DC boost converter.
Finally, the application of nonlinear PBC was discussed by proving Lyapunov stability of
the newly designed storage function.

Chapter 3 introduced the design of a DC stand alone system posessing individual units
of DC inputs with a boost converter and a load, which were connected in a ring formu-
lation. Here, PBC was achieved for coupled converters after successful modelling of the
network as a PCHS. Numerical analysis of the structure resulted in the recognition of the
different equilibria of the system for feedback through voltage and current. The stability
of the feedback through current is determined with numerical analysis and was used in
the following chapters to apply PBC to ring-connected converter/inverter systems. The
numerical simulations of the DC output network were carried out to show the success-
ful application of PBC. The results showed an improved transient response, and a faster
convergence in conditions of disturbance.

Chapter 4 focussed on a practical approach of having AC outputs with DC inputs in
the stand-alone generation system described in Chapter 3. Here, the steady state of the
output is sinusoidal and had to be analysed analytically. After successful application of
PBC to get a sinusoidal output voltage for all inverters, the synchronization was tackled. It
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was shown that the any phase difference between the coupled inverters causes interference
in the output voltage and renders the system unstable. PLLs were employed along with
PBC to maintain the phase and frequency synchronization of the output voltage for all
cases of phase difference between the inverters. It was also shown that the synchronization
is maintained for a linear change in the frequency of the output voltage.

Chapter 5 combined the strategies implemented in Chapters 3 and 4 to construct a
network with both DC and AC outputs. The idea of this design comes from the emerging
concept of stand-alone power systems for remote rural areas. The design incorporates
DC stand-alone grid for small villages, connected to larger remote towns requiring a
functional AC connection. Inverters are employed to connect the DC-grids to a main
AC-grid. Network modelling is carried out for all elements considered as one big system.
Instead of attempting to control several individual rings separately, this allows for the
control and stability of all the elements through the energy exchange between them. PBC
was shown to stabilize the hybrid system to the desired DC and AC output voltages
through rigorous numerical simulations.

Finally, Chapter 6 looks considers a reshaping of the conventional energy shaping-
damping injection PBC. This chapter aimed at modifying the traditional storage function
for PBC from the quadratic parabola to a quartic double well function. The double well
storage function was chosen to suit the bifurcation characteristics of the stand-alone solar
array-DC/DC converter system. The application of PBC through this quartic function
is verified. The results showed that PBC is able to maintain the entire ring coupled
converter network at an equilibrium with higher power compared with the original system
for conditions of varying inputs and load resistances.

7.2 Future Directions
The discussion in this dissertation gave a basic design framework for the dispersed genera-
tion stand-alone power system. Chapter 5 gave a detailed design for a dispersed generation
system particularly suited for remote rural areas in developing countries. Towards the
actual realization of this design, a few more steps need to be performed after obtaining
the mathematical model and numerical simulation results given in Chapter 5. Firstly, the
energy storage elements have been neglected in this dissertation to obtain the basic model
of the network for the application of PBC. Consideration of the energy storage system
is an important next step towards the all round development of the dispersed generation
described in this dissertation.

One of the main obstacles for the realization of successful dispersed generation systems
is that of scalability. As the number of DER are increasing, the question of scaling and
integration of these numerous DER has been underlined. The scalability of stand-alone
systems and the integration of these systems to the utility grid is an important topic
for discussion. In Chapter 5, a preliminary network analysis of the AC-DC network
with multiple rings was performed to recognize and evaluate the vulnerable areas in the
network. The adjacency matrix is a useful tool for making the network more scalable.

88



Further exploration of the network features of the stand alone system is necessary to
obtain a better assessment of the system scalability. For grid integration, along with
scalability, the role of PBC must be examined.

This dissertation provided the necessary numerical simulations performed on MAT-
LAB. The simulations were performed using the PWM techniques provided the SIMULINK
environment in MATLAB. For the further development of the stand-alone network de-
scribed in this dissertation, it is desirable to have an experimental set up to analyse the
control method.

Chapter 5 explored the possibility of the application of PBC with a storage func-
tion corresponding to the systems natural characteristics rather than the conventional
quadratic parabolic energy function. Preliminary analysis and complementing numerical
simulations were provided for a limited number of cases. It is an interesting aspect that
demands to be explored further. Furthermore, it is desirable to provide a theoretical
justification for the results provided in Chapter 5. The energy function can be further
modified to align to the system characteristics of various other systems as well.
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Appendix A

An inconsistency in the frequency or phase of the output voltages causes an interference
effect. This effect is not desirable as the output voltage amplitude becomes unstable,
instead of a pure sinusoidal waveform. Frequency as well as phase synchronization can be
achieved with the help of a phase locked loop.

Input

Output
VCO

LPFComparator

+

+

Figure 7.1: Block diagram of a phase locked loop

A phase locked loop is a circuit that generates an output signal, whose phase is the
same as that of the input signal [58]. A PLL generally consists of a phase detector or
a comparator, a VCO and a low pass filter [59, 60]. The phase detector(PD) produces
an error signal that is proportional to the phase error between the input signal and the
output of the VCO. The low pass filter supresses noise and the unwanted PD outputs,
thus determining the dynamics of the PLL. The VCO produces a signal with frequency
proportional to the control voltage (vVCO). The closed loop forces the VCO to lock the
phase of the output to that of the input signal. The output of the VCO is the output of
the PLL. The block diagram of a phase locked loop is shown in Fig.7.1.

The input signal to the PLL is the sinusoidal signal for the PWM of the reference
inverter. Let the input signal be given by s(t,Φ) = A sin(ωdt + θi(t)), where A is the
amplitude and φ = ωdt+ θi(t) is the phase of the input signal. ωd is the centre frequency
of the VCO. θi(t) incorporates the error in the input frequency, δω = ωi − ωd from the
centre frequency of the VCO. Let the output of the VCO be r(t, Φ̃) = V0 cos(ωdt+ θo(t)),
with V0 as the amplitude and Φ̃ = ωdt+ θo(t) as the phase.

With s(t,Φ) and r(t, Φ̃) as the inputs to the PD, the output voltage of the PD can be
given by Eq.(7.1).

vcomp = KpA sin(θe) (7.1)

Here, Kp is the gain from the PD and θe = θi − θo is the phase error. vcomp is the input
of the LPF. If the transfer function of the LPF in the frequency domain is given as F (s),
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then the output voltage of the filter can be obtained by Eq.(7.2). The LPF is considered
ideal without any harmonics.

vfilter = L−1[F (s)Vcomp(s)] (7.2)

Here, L−1 denotes the Laplace inverse and Vcomp(s) is the Laplace transform of vcomp.
The instantaneous output frequency of the VCO, given by ωVCO(t), is proportional to the
control input of the VCO. Then, Eq.7.3 can be obtained.

ωVCO(t) = ωd +KCvVCO (7.3)

The instantaneous frequency of of the output of the VCO is given by the derivative of Φ̃.
Thus, the following set of equations hold, where ve is the external control voltage.

ωVCO(t) =
dΦ̃

dt
(7.4)

dθo
dt

= KCvVCO (7.5)

vVCO = vfilter + ve (7.6)

Thus, the phase of the output voltage, Φ̃ is locked with the phase of the input, and the
output signal can be used as a sinusoidal reference to the PWM of the adjoining inverter.
The loop equation for θo(t) is given by Eq.(7.7)

dθo
dt

= KC [L−1[F (s)Vcomp(s)]KpA sin(θe) + ve] (7.7)
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