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ABSTRACT 

 

Climate change has become one among the global concerns and is currently affecting the 

resilience of aquatic ecosystem worldwide. Through the increase of greenhouse gas 

emission and global mean temperature, climate change is able to alter the spatiotemporal 

patterns of rainfall which poses a great impact on river flow and flood inundation. In the 

Mekong River Basin (MRB), annual flooding, being an important hydrological 

characteristic, drives the high productivity of the ecosystem and biodiversity in the Tonle 

Sap Lake as well as the Mekong Delta. Therefore, changing the annual river flow and flood 

inundation in the MRB seriously affects the biodiversity production and people’s daily lives.  

 

This thesis aims to provide more understanding of the characteristics of flood inundation 

and estimate the effects of climate change on flood inundation in the MRB by considering 

various sources of climate outputs. The main focuses of this thesis are explained as the 

following. 

 

Firstly, prior to the study on climatic impacts, the validated long-term historical 

precipitation in the MRB is importantly required, and the gauged observation is currently 

not available enough for the climate change study in this thesis. Therefore, the performance 

of five gridded precipitation datasets including APHRODITE, GPCC, PERSIANN-CDR, 

GSMaP, and TRMM were evaluated with the available gauged rainfall (2000–2007). The 

results showed that GPCC and TRMM performed satisfactorily in simulating river 

discharge in the MRB. Since the GPCC dataset is available for longer periods (1982–2016), 

it is used for reference precipitation and historical discharge simulation for climate change 

study in the followings. 

 

Secondly, the large ensemble climate dataset (d4PDF), which consists of 100 ensemble 

members in the historical (1951–2010) and 90 members in the future (2051–2110) 

projections, was used to calculate the frequency changes of extreme flood inundation in the 

Lower Mekong Basin (LMB). Under 4 K increasing scenario, the results of extreme flood 
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events showed an increase in peak discharge by 25%, 33%, and 40%; inundation extent by 

19%, 29%, and 36%; and inundation volume by 23%, 34%, and 37% for 50-year, 100-year, 

and 1000-year return periods, respectively.  

 

In addition, the effects of climate change in the LMB were estimated from the present 

climate (1979–2003) to future climate (2075–2099) using high- (MRI-AGCM3.2H) and 

super-high-resolution (MRI-AGCM-3.2S) datasets. By applying with linear scaling bias 

correction method, the results of climate change suggested that flood magnitude in the LMB 

will be severer by the end of twenty-first century. The increment of precipitation of 6.6–

14.2% was able to lead an increase of river flow exceeding 5% of time (Q5) 13–30%, annual 

peak inundation extent 19–43%, and peak inundation volume 24–55% in the LMB for 

ranging of four Representative Concentration Pathways (RCPs) and four sea surface 

temperature (SST) scenarios.  

 

Moreover, the performance of the new Coupled Model Intercomparison Project Phase 6 

(CMIP6) for flood estimation was evaluated by comparing with the previous CMIP5. 

According to the performance analysis based on Taylor diagrams, the results indicated an 

improvement of 8 CMIP6 GCMs in terms of precipitation and flood simulation with higher 

correlation and less error values than the same models in CMIP5. The projection of future 

flood inundation in the MRB from 8 CMIP6 GCMs showed an increase of annual peak 

discharge at Kratie between 10.1–17.9% and 9.9–28.9% for SSP2-4.5 and SSP5-8.5 

scenarios, respectively during three projection periods in the near future (2026–2050), mid 

future (2051–2075), and far future (2076–2100).  

 

Last but not least, this thesis analyzed various sources of climate change outputs to assess 

the possible impacts of climate change on flood inundation in the MRB. Generally, the 

results from the large ensemble dataset (d4PDF), high- and super-high-resolution AGCM 

(MRI-AGCM3.2H and MRI-AGCM3.2S), and the most recent CMIP6 GCMs were 

consistent to reveal the significant increase of the severity and magnitude of future flood 

inundation in the MRB under the effect of climate change. However, the extreme flood 

events would vary their increasing magnitude depending on future projection scenarios. In 
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order to reduce the forthcoming possibility of flood damages, it requires efficient long-term 

water resources planning and management, flood adaptation and mitigation strategies, 

flood prevention infrastructure, and effective flood early warning and forecasting systems.  
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CHAPTER 1 General Introduction  

 

1.1 Background 

Flooding is one of the major natural disasters which disturb the prosperity, safety, and 

amenity of human settlements (Jha et al., 2012). Flood risk is defined as the synthesis of 

hazardous phenomenon flooding and vulnerable system of loss which carries together with 

natural, human, social, economic, and environmental aspects. Nowadays, the flood risk is 

a damaging natural hazard in the world. The studies of flood phenomena and consequences 

are useful for flood control, risk reduction, improvement of resilience, and flood 

management. Moreover, flood forecasting and early warning are important to evacuate the 

residents from the likely damage. The necessary states to understand the flood phenomenon 

are the characteristics of hydrology, hydraulics, geography, the sensitivity of the assets, and 

environmental economics.  

 

Flood risk management is extremely complex, involving public and private interests, 

confronting society, economy, politics, environment, religion, and nature. The economic 

evaluation of flood damage plays an important role in decision making. Economic analyses 

of flood risk are also crucial for budget determination and planning. Flood risk analysis is 

an indispensable tool to support land-use policy, flood management projects, including 

financial determination.  

 

Complexity arises when it comes to selecting the comprehensive method and models in 

implementing flood damage estimations because different approaches may have different 

influence on estimation accuracy. Data availability is the main challenge that many 

researchers are facing in real practice (Messner, 2007). It is requisite to understand the 

impacts of data and methods used for flood damage evaluation.  
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Figure 1.1 Global average surface temperature change from 2006 to 2100 from the multi-

model simulation in CMIP5 relative to 1986–2005 (IPCC, 2014). 

 

Climate change has become a global issue that attracts worldwide attention. Climate change 

is the major factor in changing precipitation and evapotranspiration (Wang et al., 2019), 

affecting the variation of river flow and flood characteristics. The changes in 

spatiotemporal patterns of precipitation would lead to altering the frequency and intensity 

of flooding in the river basin. The impacts of climate change on flooding are complicated 

which causes results in agricultural damages, people’s life losses, economic damages, and 

other critical ecosystem vulnerabilities. Southeast Asia is one of the most vulnerable 

regions to the impact of climate change. The impacts of climate change on flooding in the 

Mekong River Basin (MRB), the mainland of Southeast Asia, would affect the food 

production, domestic water supply, transportation, and culture (MRC, 2005).  

 

According to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC AR5), the evidence of observed climate change impacts is the strongest and 

most comprehensive for the natural system. The changing of precipitation and the melting 

of snow and ice are altering the global hydrological system. The increase of global mean 

surface temperature by the end of the 21st century (2081–2100) relative to 1986–2005 is 
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likely between 0.3°C to 1.7°C under the RCP2.6 scenario and 2.6°C to 4.8°C under the 

RCP8.5 scenario (Figure 1.1). 

 

The changes in average surface temperature and average precipitation are not uniform in 

each region around the globe (Figure 1.2). The extreme precipitation events over the wet 

tropical regions will be likely more intense and frequent. The risk of climate-related impacts 

will increase as well as the interaction of climate-related hazards with vulnerability and 

exposure to human and natural systems (IPCC, 2014). Hence, it is crucial to evaluate the 

risk assessment from the possible range of impacts from the low greenhouse gas emission 

scenario (e.g. RCP2.6 in CMIP5 models) to the high emission scenario (e.g. RCP8.5). This 

information could increase the awareness and ability for climate change adaptation and 

possible risk reduction and mitigation.  

 

Figure 1.2 Change in average surface temperature (a) and change in average precipitation 

(b) based on multi-model mean projection for 2081–2100 relative to 1986–2005 under the 

RCP2.6 (left) and RCP8.5 (right) scenarios (IPCC, 2014).  
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1.2 Objectives  

This thesis aims to provide the analysis on the determination of the impacts of climate 

change on flood inundation in the MRB by considering various sources of climate outputs. 

The detailed principle objectives are as the following. 

 To evaluate the performance of satellite-based precipitation products for flood 

inundation modeling in the MRB. 

 To determine the effective duration of precipitation which is highly correlated to 

peak flood inundation in the LMB. 

 To examine the changes in effective duration from the present to the future 

projection climate in the MRB.  

 To address the changes in flood characteristics of extreme events from the present 

to the future climate projections. 

 To investigate the changes in flood characteristics from the present to the future 

climate by considering various emission scenarios and sea surface temperature 

scenarios.  

 To evaluate the performance of the recent climate dataset CMIP6 by comparing to 

the previous CMIP5 for the projections of future flood inundation in the MRB.  

 

1.3 Outline of Thesis 

This thesis attempts to deal with multiple sources of climate datasets for climate change 

assessment on flood inundation in the MRB. This thesis consists of seven chapters which 

can be seen in Figure 1.3. Chapter 1 presents a general introduction, and Chapter 2 describes 

the study site and rainfall-runoff-inundation modeling used in this study. Chapter 3 explains 

the evaluation of the performance of satellite-based precipitation products for rainfall-

runoff and flood inundation modeling in the MRB where gauged observed availability is 

quite limited. Chapter 4 focuses on the investigation of projection of future extreme flood 

inundation events by using a large ensemble climate dataset. Chapter 5 shows assessing the 

effects of climate change on flood inundation using high resolutions AGCM outputs by 

considering various future projected scenarios. Then, Chapter 6 presents the performance 
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evaluation of CMIP5 and CMIP6 climate projection GCMs for flood inundation in the 

MRB. 

 

 

Figure 1.3 Roadmap of this thesis. 

 

Chapter 1 presents the background of the study on flood inundation modeling, climate 

change impacts, the principle objectives, and the key contents implemented in this thesis.  

 

Chapter 2 describes the basic information and characteristics of the study area of the MRB, 

including climate, situation of flood characteristics, and the rainfall-runoff-inundation (RRI) 

model mainly used as a modeling tool in this dissertation.  

 

Chapter 3 addresses the performance of satellite-based precipitation products (namely as 

APHRODITE, GPCC, PERSIANN, GSMaP, and TRMM) for flood inundation modeling 

in the MRB by comparing their performance with the available gauged observation period 

(2000–2007). The best performing gridded precipitation (high accuracy and less error) 

dataset is used for reference and long-term historical simulation of the RRI model in climate 

change study in the following chapters. 
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Chapter 4 firstly defines the effective duration of precipitation prior to peak flood 

inundation and assesses the changes of effective precipitation and extreme flood inundation 

events (i.e. 50-year, 100-year, and 1000-year return periods) from the present to future 

projections in the MRB. This study used a large ensemble climate dataset (d4PDF) which 

consists of 6000-year (60-year: 1950-2010 × 100-ensemble) in the present and 5400-year 

(60-year: 2050–2110 × 90-ensemble) in the future. The changes in peak river discharge, 

inundation extent, and inundation volume from present to future climate were evaluated.  

 

Chapter 5 provides the impact assessment of climate change from the present (1979–2003) 

to the future (2075–2099) climate, considering four greenhouse gas emission scenarios 

(RCP2.6, RCP4.5, RCP4.5, and RCP8.5) and four different sea surface temperature 

patterns (SSTs). The changes in annual precipitation, Q5 (high flow exceeding 5% of the 

time), peak inundation area, and peak inundation volume were figured out from present to 

future.  

 

Chapter 6 shows the performance evaluation of the most recent climate dataset CMIP6 

from the Intergovernmental Panel on Climate Change (IPCC) by comparing with CMIP5. 

The temporal and spatial distribution of 8 general circulation models (GCMs) from the 

same institution in CMIP5 and CMIP6 were evaluated. 

 

Finally, Chapter 7 summarizes the thesis with concluding remarks, research limitations, 

and further perspective of this dissertation. 
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CHAPTER 2 Study Area and Flood Inundation 

Modeling 

 

2.1 The Study Area 

2.1.1 The Mekong River Basin 

The Mekong River is one of the largest river basins in the world. Its drainage area, 795,000 

km2, lies in China, Myanmar, Lao PDR, Thailand, Cambodia, and Vietnam (Figure 2.1; 

Table 2.1). Annual flooding is an important hydrological characteristic of the MRB where 

it drives the high productivity of ecosystems and biodiversity (Lamberts and Koponen, 

2008), particularly the Tonle Sap floodplain and the Mekong Delta (Kummu et al., 2006). 

The population is approximately 69 million (Varis et al., 2012). The mean annual discharge 

of the basin was 14,500 m3/s (MRC, 2005). The annual hydrological regimes in the MRB 

had a strong seasonal change. The MRB is located in the tropical monsoon climate with 

two seasons: rainy season (May–October) and dry season (November–April) (MRC, 2005). 

The flood season, accounting for 80–90% of annual flow, is exclusively essential for 

maintaining the aquatic ecosystem in the basin (MRC, 2010).  

 

The annual flood pulse drives benefits in the environmental, social, and economic sectors 

in the LMB greater than any other river basins in the world. For example, flood deposited 

the sediments, improving the natural soil fertilizers for agriculture across the LMB 

floodplains. The flood can flush and transport the polluted water out of the basin. Moreover, 

the river system supports many sectors including fisheries, navigation, and hydropower. 

The annual flooding significantly contributes to recharging the groundwater table and 

maintaining the river morphology. In the dry season, the floodwater, stored from flood 

season, is used for agricultural irrigation. 
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Most areas in the LMB are prone to flooding (Try et al., 2019) with significant annual flood 

economic damages of approximately US$ 60–70 million (MRC, 2011). Flood damage in 

the Mekong region has increased dramatically from 1984 to 2017 (Try et al., 2018a), and 

the frequency and severity of extreme flood events have also increased in the LMB (Oddo 

et al., 2018). 

 

 

Figure 2.1 The location of the Mekong River Basin.  
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The MRB is located in the various physiographic regions, including the Tibetan Plateau, 

Three Rivers Area, Lacang Basin, Northern Highlands, Khorat Plateau, Tonle Sap Basin, 

and the Mekong Delta. The geographical distribution of high elevated mountainous area in 

the upstream of the MRB links to significant flood hazards in the LMB. Figure 2.2 shows 

the whole basin profile of elevation and upstream drainage area along with the distance 

from the headwaters to the river mouth in the Mekong Delta. The flow form the catchment 

area 24% of the total size in the Lancang River (Upper Mekong River in China and 

Myanmar) contributes to only 18% of the basin annual flow, of which Lao PDR, Thailand, 

Cambodia, and Vietnam drains 35%, 18%, 18%, and 11% (Table 2.1), respectively.  

 

 

Figure 2.2 Longitudinal river profile of the Mekong River from the headwaters to the 

river mouth. 
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Table 2.1 The distribution of catchment size and flow of the MRB in each country. 

 

2.1.2 The Tonle Sap Lake  

The Tonle Sap Lake, the heart of the MRB, is the largest freshwater body in Southeast Asia 

located in the flood plain of Cambodia (Figure 2.3). This lake supports the people living in 

and around its floodplain (Kummu, 2009; Siev et al., 2018; Uk et al., 2018). The Tonle Sap 

River connects Phnom Penh, the intersection of the Mekong’s mainstream, the Tonle Sap 

River, and the Bassac River, to the Tonle Sap Lake. The Tonle Sap Lake in the LMB has a 

unique hydrologic system of two-directional flows. In the dry season, the water flows from 

the Tonle Sap Lake to the Mekong River, while the water level of the river is higher than 

the water level in the lake causing the water flowing backward to the Tonle Sap Lake in the 

rainy season. The surface area of the lake expands from 2,600km2 in the dry season to 

12,000km2 in the wet season resulting in the inundation from the floodplain (Oeurng et al., 

2019). 

 

The huge seasonal inundations during flood season are the predominant ecosystem driver 

as an interaction between the main lake and the Mekong River. This natural phenomenon 

maintains high productivity and biodiversity (Arias et al., 2013; Keskinen et al., 2013; 

Sarkkula et al., 2003; Uk et al., 2018). The floodplain of the Tonle Sap Lake can be 

categorized into five types: open water body, forest, seasonally flooded habitat, transitional 

habitat, and rain-fed habitat (Arias et al., 2012). More than one million people who are 

living on and around the Tonle Sap Lake are directly depending on its ecosystem services 

(Kummu et al., 2008).  

Description China 
Myan-

mar 

Lao 

PDR 

Thai-

land 

Cambo-

dia 

Viet-

nam 

Total 

MRB 

Area  

(1000 km2) 
165 24 202 184 155 65 795 

Catchment 

as % of MRB 
21 3 25 23 20 8 100 

Flow as % of 

MRB 
16 2 35 18 18 11 100 
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Figure 2.3 Location of the Tonle Sap Lake in the Lower Mekong Basin of Cambodia (Uk 

et al., 2018). 

 

The Tonle Sap Lake and its floodplain are vulnerable to hydrological changes mainly due 

to the development of water infrastructure (Arias et al., 2012; Baran et al., 2001; Johnstone 

et al., 2013; Kite, 2001; Lamverts, 2008; Lamberts and Koponen, 2008; Uk et al., 2018), 

climate change effect (Burnett et al., 2013; Chadwick et al., 2008; Hoang et al., 2016; 

Johnstone et al., 2013; Keskinen et al., 2013), water quality degradation (Chea et al., 2016; 

Sarkkula et al., 2003), and land use/land cover change (Senevirathne et al., 2010). The 

natural resources and biodiversity are prone to be affected by altering the hydrological cycle 

in the Tonle Sap Lake the Mekong river systems (Arias et al., 2012; Uk et al., 2018).  
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2.1.3 Flood Situation in the Mekong Region 

Flood has become one of the most widespread and frequent natural disasters causing losses 

of people’s lives and properties (Yilmaz et al., 2010). There were 8,835 global disasters 

from 1970 to 2012, accounting for 1.94 million deaths and US$ 2.4 trillion in economic 

damages (WMO, 2014). In the Lower Mekong Basin, the average annual cost of floods is 

between US$ 60 and 70 million (MRC, 2010). Figures 2.4 and 2.5 illustrate the flood 

economic damage and the number of flood events in the Mekong sub-region (i.e. Cambodia, 

China, Lao PDR, Myanmar, Thailand, and Vietnam). These figures were plotted based on 

the EM-DAT database (http://www.emdat.be/database). Both flood economic damages and 

the number of flood events significantly increased from 1984 to 2017. The increase of flood 

economic damages might be due to the country’s economic development. Try et al. (2018a) 

found a significant increase in satellite nightlight values, representing the economic 

activities from 1992 to 2013 in the Mekong region. In addition, the escalation of extreme 

flood events in the MRB might be mainly caused by climate change effects (Lauri et al., 

2012; Perera et al., 2017; Try et al., 2020a; 2020b; Västilä et al., 2010).  

 

 

Figure 2.4 Flood economic damages of the greater Mekong sub-region. The data was 

retrieved from EM-DAT database.  
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Figure 2.5 Flood event number in the greater Mekong sub-region. The data was retrieved 

from EM-DAT database. 

 

Figure 2.6 Scatter plots of the distribution of annual maximum flood discharge and the 

volume of the annual flood hydrograph at Kratie between 1924 and 2006. The darker 

boxes indicate one and two standard deviations for each variable above and below their 

respective means (MRC, 2007). 
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The mean annual peak discharge and mean annual flood volume flowing through Kratie 

station for 83 years (1924–2006) were 52,000 m3/s and 335 km3 with standard deviations 

of 8,300 m3/s and 70 km3 respectively. Figures 2.6 and 2.7 provide significant insight into 

historical floods in the Mekong River. The 2000 flood covered the inundated area of 45,000 

km2 in the Tonle Sap floodplain and the Mekong Delta. This extreme flood event killed 

more than 800 people (MRC, 2005) and caused economic damages of more than US$ 282 

million (MRC, 2014). It was the most extreme flood event in terms of flood volume of 

approximately 480 km3 at Kratie while its annual peak discharge was only marginally 

above the average. The estimated recurrence interval of exceptionally high flood volume 

of 2000 flood lay between 20 and 50 years in Figure 2.7.  

 

Figure 2.7 The statistical distribution of the annual flood peak and volume at Kratie. The 

points located outside the 1% line correspond to a recurrence interval in excess of 1:100 

year; the points located outside the 2% line have a recurrence interval greater than 50 

years, and so forth (MRC, 2007). 
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The application of a distributed rainfall-runoff-inundation (RRI, Sayama et al., 2015a; 

2015b) model and a Time-Space Accounting Scheme (T-SAS, Sayama and McDonnel, 

2009) is able to track and identify the source of flow from the spatial zone of the upstream 

area. Their application to the MRB during a large historical flood event in 2011 indicated 

that the Upper Mekong Basin from China and Myanmar (pink), northern Lao PDR (blue), 

southern Lao PDR and eastern Thailand (green), and floodplain of the MRB in Cambodia 

and Vietnam (red) contributed by 18%, 28%, 39%, and 15% to flow at Kratie; and 16%, 

25%, 35%, and 24% to the total basin flow (Figure 2.8). 

 

Figure 2.8 Hydrograph separation for spatial zone from the upstream of the MRB for 

2011 flood event. The color represents the spatial zone identities which are the sources of 

flow at Kratie and the total basin.   



18 

 

2.1.4 Climate of the Mekong Basin 

The climate in the Mekong River Basin is dominantly covered by tropical monsoon with a 

seasonal change between the rainy season (May – October) and dry season (November – 

April) period (MRC, 2005). The south-west monsoon brings heavy rains and high humidity 

from mid-May to early October, and drier and cooler air (lower temperature) is from north-

east from early November to March (Table 2.2). Tropical cyclones occur in most areas of 

the basin in the wettest periods in August, September, and early October. In the Upper 

Mekong Basin, there is a similar monsoon climate with the LMB in Yunnan province of 

China, even though the topographic conditions are considerable variation. However, the 

climate changes from tropical and subtropical monsoons in the southern Yunnan to 

temperate monsoon in the headwaters at the elevation of approximately 4,500 above mean 

sea level (m.a.s.l.) in the Tibetan Plateau.  

Table 2.2 Seasonal climate in the Mekong River Basin. 

Cool/Cold Hot/Dry Wet  Cool/Cold 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

NE Monsoon Transition SW Monsoon  NE Monsoon 

 

Figure 2.9 shows the spatial distribution of average annual precipitation for the entire 

Mekong region from Asian Precipitation Highly-Resolved Observational Data Integration 

Towards Evaluation of Water Resources (APHRODITE) (Yasutomi et al., 2011; Yatagai 

et al., 2012). In general, the annual precipitation in the LMB is much higher compared to 

the Upper Mekong Basin (Lancang River) in Myanmar and China. The map clearly 

indicates the high precipitation Lao PDR while the low precipitation was observed in the 

Plateau in Thailand comparing to the other parts in the LMB. According to the gauged 

observation, the annual basin average precipitation in the entire MRB is approximately 

1,480 mm (Try et al., 2020c). In the Upper Mekong Basin, the precipitation is quite a little 

amount comparing to the LMB. For instance, the annual precipitation at Deqen in the 

Tibetan Plateau is only around 600 mm. Snow is rare in the valleys of the Upper Mekong, 

but it is more significant in the higher altitudes and the source of water in the dry season 

and spring (April and May) for the flow in the mainstream of the Lancang River.  
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Figure 2.9 Annual precipitation from APHRODITE dataset. 
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Figure 2.10 Average temperature from APHRODITE dataset. 

 

The seasonal range of mean temperature in the lowlands and river valleys of the LMB is 

not relatively large. However, there are significant changes between the dry and rainy 

seasons and from day to night (MRC, 2005). Mean summer temperatures from March to 

October are similarly within the LMB from Phnom Penh in Cambodia (28 – 30°C) to Luang 

Prabang (26 – 28°C) in Lao PDR and Chiang Rai (26 – 29°C) in Thailand (MRC, 2005). 

Figure 2.10 shows the average distribution of temperature for the entire MRB from the 

APHRODITE dataset (Yasutomi et al., 2011). At the high elevation area in the Upper Se 
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San in Vietnam with 2,500 m.a.s.l., the temperature is only 2 – 3°C lower than the lowlands. 

Winter mean temperatures decrease to 26 – 27°C in Phnom Penh and 21 – 23°C in Chiang 

Rai (MRC, 2005). The temperature is cooler in the Upper Basin in Yunnan, China. The 

average temperatures at Jinhong station are lower than temperatures in Chiang Rain only 2 

– 3°C in summer and 5 – 6°C in winter. At the high elevation of 4,000 m.a.s.l. in the Plateau 

of Tibet in Deqen, the temperatures can reach below zero in winter and 13°C in summer.  

 

Figure 2.11 Annual evapotranspiration (ET) from JRA-55 dataset. 
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The annual rates of evapotranspiration in the MRB vary with little variability from year to 

year but high relative humidity. The Korat Plateau in north-east Thailand is one of the driest 

in the region. For example, the observed mean annual rainfall at Khon Kaen is about 1,200 

mm comparing to the annual rate of evapotranspiration of up to 1,900 mm (MRC, 2005). 

Generally, within the LMB, the evapotranspiration rate does not reach below 1000 mm. 

The evapotranspiration in the Upper Basin in Yunnan is much lower than the LMB due to 

lower temperature and large variation of altitude and slope. Figure 2.11 displays the 

distribution of evapotranspiration extracted from the Japanese 55-year Reanalysis (JRA-55) 

dataset (Kobayashi et al., 2015).  

 

2.2 Rainfall-Runoff-Inundation Model 

2.2.1 Model Overview 

This study used the Rainfall-Runoff-Inundation (RRI) model which is a 2D distributed 

model capable of simulating rainfall-runoff and flood inundation simultaneously (Sayama 

et al., 2012). The model has been applied in various basins to simulate large-scale flooding, 

to conduct hazard mapping and real-time inundation prediction. It is also used to elucidate 

flooding characteristics as well as to assess flood risk at a river basin scale (Bhagabati and 

Kawasaki, 2017; Kuribayashi et al., 2016; Perera et al., 2017; Sayama et al., 2015a; 2015b; 

Try el at., 2020a; 2020b; 2020c).  

 

At the stream network cell level, the model assumes that both river channel and surrounding 

slopes are located in the same grid. The model slope grid cells receive rainfall and flow 

based on the 2D diffusive wave equations, while the in-channel flow is calculated with the 

1D diffusive equations. The RRI model simulation deals with surface and subsurface flow 

in the mountainous area and the Green-Ampt infiltration method in the floodplain 

separately. The flow interaction between the river channel and the slope is computed at a 

running time step interval based on different overflowing formulae, which depends on 

water-level and levee-height conditions. The RRI model provides the output of river 

discharge, river water level, inundation extent, and inundation depth at the same time. The 
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model was integrated into the global optimization algorithm of the Shuffled Complex 

Evolution (SCE-UA) tool (Duan et al., 1994) for calibration of its sensitive parameters. 

 

Rainfall-Runoff-Inundation (RRI) model is a two-dimensional distributed model dealing 

with slopes and river channels separately (Sayama et al., 2012; Sayama et al., 2015a; 

2015b). The RRI model calculates flow on slopes and rivers based on 2D and 1D diffusive 

wave equations which are able to consider reversed flow (Figure 2.12). At the river grid 

cell, the model considers slope and river are located in the same grid cell. To represent the 

rainfall-runoff-inundation processes, the RRI model simulates lateral subsurface flow, 

vertical infiltration, and surface flow. The lateral surface flow is important for mountainous 

regions accounting for saturated subsurface and surface flows (Figure 2.13.a). The vertical 

infiltration flow is calculated by the Green-Ampt model (Figure 2.13.b). The flow 

interaction between slope and river channel depends on differences in water level and 

levee-height.  

 

 

Figure 2.12 Schematic diagram of the RRI model (Sayama et al., 2015a). 
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Figure 2.13 Graphical representation of (a) surface and subsurface flow for hill slope 

region and (b) Green-Ampt infiltration model for floodplain 

 

The RRI model has been widely used for different purposes in various study areas, 

confirming its good performance and ability to simulate flood inundation. For instance, the 

RRI model was used to study the characteristics of the 2011 flood (Sayama et al., 2015a) 

and hydrologic sensitivity of rainfall-runoff and inundation (Sayama et al., 2015b) in the 

Chao Phraya River Basin, Thailand. Try et al. (2018b) used the RRI model for reproducing 

a historical large flood event in 2000 in the MRB, and Try et al. (2020a) evaluated the 

performance of satellite-based precipitation products. Perera et al. (2017) and Try et al. 

(2020b) used the RRI model to evaluate the effects of climate change in the LMB by 

considering various Representative Concentration Pathways (RCPs) and sea surface 

temperature (SST) scenarios. Moreover, Try et al. (2020c) used the RRI model for the 

projection of extreme flood inundation events in the MRB. Additionally, the RRI model 

has been successfully applied in other river basins, including Nyaungdon Area (Khaing et 

(a) 

(b) 
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al., 2019) and Bogo River Basin (Bhagabati and Kawasaki, 2017) in Myanmar, Solo River 

Basin (Kudo et al., 2016) and Batanghari River Basin (Yamamoto et al., 2020) in Indonesia, 

Kabul River Basin in Afghanistan (Sayama et al., 2012), Kalu and Mundeni River Basins 

in Sri Lanka (Rasmy et al., 2019), Kelantan River Basin in Malaysia (Chong et al., 2017), 

and several other river basins in Japan (Sayama et al., 2019). 

 

2.2.2 Model Structure 

A storage cell-based inundation model is used to calculate lateral flow in grid cells (Hunter 

et al., 2007). The governing equations of the RRI model are derived according to the 

following mass balance equation (2.1) and momentum equation (2.2) and (2.3) for 

gradually varied unsteady flow. 

 

 𝜕ℎ
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= −𝑔ℎ

𝜕𝐻
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−
𝜏𝑦
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where ℎ is the height of the water from the local surface, 𝑞𝑥  and 𝑞𝑦  are the unit width 

discharges in 𝑥 and 𝑦 directions, 𝑢 and 𝜈 are the flow velocities in 𝑥 and 𝑦 directions, 𝑟 is 

the rainfall intensity, 𝐻 is the height of the water from the datum, 𝜌𝑤 is the density of water, 

𝑔 is the gravitational acceleration, and 𝜏𝑥 and 𝜏𝑦 are the shear stresses in 𝑥 and 𝑦 directions. 

The second terms of the right-hand side of equations (2.2) and (2.3) are calculated with 

Manning’s equation: 

 

 𝜏𝑥
𝜌𝑤

=
𝑔𝑛2𝑢√𝑢2 + 𝜈2

ℎ1/3
 (2.4) 
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 𝜏𝑦

𝜌𝑤
=
𝑔𝑛2𝜈√𝑢2 + 𝜈2

ℎ1/3
 (2.5) 

   

where 𝑛  is Manning’s roughness parameter. According to the approximation of the 

diffusion wave approach, inertia terms (the left side terms of equations (2.2) and (2.3)) are 

neglected. On the other hand, by dividing 𝑥 and 𝑦 directions (i.e. 𝑢 and 𝜈 are neglected in 

equations (2.2) and (2.3)), we obtain as the following: 

 

𝑞𝑥 = −
1

𝑛
ℎ5/3√|

𝜕𝐻

𝜕𝑥
| sgn (

𝜕𝐻

𝜕𝑥
) (2.6) 

   

 

𝑞𝑦 = −
1

𝑛
ℎ5/3√|

𝜕𝐻

𝜕𝑦
| sgn (

𝜕𝐻

𝜕𝑦
) (2.7) 

   

where sgn is the signum function. 

 

The RRI model spatially discretized mass balance equation (2.1) as follows: 

 

 𝑑ℎ𝑖,𝑗

𝑑𝑡
+
𝑞𝑥
𝑖,𝑗−1

− 𝑞𝑥
𝑖,𝑗

𝛥𝑥
+
𝑞𝑦
𝑖−1,𝑗

− 𝑞𝑦
𝑖,𝑗

𝛥𝑦
= 𝑟𝑖,𝑗 − 𝑓𝑖,𝑗 (2.8) 

   

where 𝑞𝑥
𝑖,𝑗

 and 𝑞𝑦
𝑖,𝑗

 are 𝑥 and 𝑦 direction discharges from a grid cell at (𝑖, 𝑗).  

 

In this study, we considered the effect of unsaturated and saturated subsurface flow and 

surface flow with single variable of ℎ (Sayama and McDonnell, 2009). 

 

𝑞𝑥 =

{
 
 

 
 −𝑘𝑚𝑑𝑚 (

ℎ

𝑑𝑚
)
𝛽 𝜕𝐻

𝜕𝑥
,                                                                                (ℎ ≤ 𝑑𝑚)

−𝑘𝑎(ℎ − 𝑑𝑚)
𝜕𝐻

𝜕𝑥
− 𝑘𝑚𝑑𝑚

𝜕𝐻

𝜕𝑥
,                                                 (𝑑𝑚 < ℎ ≤ 𝑑𝑎)

−
1

𝑛
(ℎ − 𝑑𝑎)

5

3√|
𝜕𝐻

𝜕𝑥
| sgn (

𝜕𝐻

𝜕𝑥
) − 𝑘𝑎(ℎ − 𝑑𝑚)

𝜕𝐻

𝜕𝑥
− 𝑘𝑚𝑑𝑚

𝜕𝐻

𝜕𝑥
,     (𝑑𝑎 < ℎ)

     (2.9) 
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𝑞𝑦 =

{
 
 

 
 −𝑘𝑚𝑑𝑚 (

ℎ

𝑑𝑚
)
𝛽 𝜕𝐻

𝜕𝑦
,                                                                              (ℎ ≤ 𝑑𝑚)

−𝑘𝑎(ℎ − 𝑑𝑚)
𝜕𝐻

𝜕𝑦
− 𝑘𝑚𝑑𝑚

𝜕𝐻

𝜕𝑥
,                                                (𝑑𝑚 < ℎ ≤ 𝑑𝑎)

−
1

𝑛
(ℎ − 𝑑𝑎)

5

3√|
𝜕𝐻

𝜕𝑦
| sgn (

𝜕𝐻

𝜕𝑦
) − 𝑘𝑎(ℎ − 𝑑𝑚)

𝜕𝐻

𝜕𝑦
− 𝑘𝑚𝑑𝑚

𝜕𝐻

𝜕𝑦
,    (𝑑𝑎 < ℎ)

   (2.10) 

 

where: 

- 𝑘𝑎 is the hydraulic conductivity of the lateral saturated soil layer 

- 𝑘𝑚 𝑖𝑠 𝑢𝑛saturated hydraulic conductivity (𝑘𝑚 = 𝑘𝑎/𝛽 )  

- 𝑑𝑚 is the soil depth of unsaturated layer 

- 𝑑𝑎 is the total soil depth of the effective porosity. 

 

Infiltration loss can be calculated using the Green-Ampt infiltration model (Rawls et al., 

1992) as shown in the following equation: 

 

 
𝑓 = 𝑘𝑣 [1 +

(𝜙 − 𝜃𝑖)𝑆𝑓

𝐹
] (2.11) 

   

where 𝑘𝑣 is the vertical saturated hydraulic conductivity, 𝜙 is the soil porosity, 𝜃𝑖 is the 

initial water content, 𝑆𝑓 is the suction at the vertical wetting front, and 𝐹 is the cumulative 

infiltration depth.  

 

The RRI model calculates stream flow at river grid cells with one-dimensional diffusive 

wave. The river geometry is assumed to be rectangle, whose shapes are noted by width 𝑊 

(m) and depth 𝐷 (m) as the following equations: 

 

 𝑊 = 𝐶𝑊𝐴
𝑆𝑊  (2.12) 

 

 𝐷 = 𝐶𝐷𝐴
𝑆𝐷  (2.13) 

where 𝐶𝑊, 𝑆𝑊, 𝐶𝐷 and 𝑆𝐷 are river geometry parameters, and 𝐴 is upstream contributing 

area (km2). 



28 

 

2.2.3 Modeling Procedure 

The procedure of RRI modeling is shown in Figure 2.14. The required input datasets are 

precipitation, topography (digital elevation model, flow direction, and flow accumulation), 

land use, evapotranspiration (ET), and river geometry. The RRI model was integrated with 

a global optimization called shuffled complex evolution developed at the University of 

Arizona (SCE-UA, Duan et al., 1994) to calibrate the sensitive parameters. The SCE-UA 

algorithm continues adjusting the values of parameters until obtaining the satisfactory 

results by comparing with observed river discharge and satellite-based inundation extent. 

After that, the calibrated RRI model will be used to simulate another period of flood 

inundation performance by reserving the same parameter values. The RRI model provides 

the outputs as river discharge, river water level, flood extents, and inundation depths. 

 

Figure 2.14 Integration of RRI model with SCE-UA Optimization. 
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The SCE-UA optimization algorithm (Duan et al., 1992; 1993; 1994) is an effective and 

efficient technique for calibration of a non-linear hydrological model. This computer-based 

automatic algorithm has been widely used by numerous researchers (Gan and Biftu, 1996; 

Lee et al., 2006; 2007; Kim et al., 2008; Lee and Kang, 2015; Try et al., 2018b; 2020a), 

and it has been found to be a practical method influenced by the choice of parameters. The 

concepts of this approach follow three of the following: (1) the combination of the simplex 

procedure by applying a controlled random searching approach; (2) competitive evolution; 

and (3) complex shuffling (Figure 2.15. This automatic calibration aims to search for the 

proper values of the parameters of the RRI model by optimizing the value of the objective 

function. More detail of the algorithm of SCE-UA is available in Appendix B. 

 

 

Figure 2.15 Illustration of Shuffled complex evolution (SCE-UA) method (Duan et al., 

1994). 
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2.3 Summary 

This chapter presented the study area of the Mekong River Basin, the focused area for this 

thesis. The basic information of the hydrological system, flood characteristics, and climate 

condition were introduced. On the other hand, the rainfall-runoff-inundation (RRI) model, 

a two-dimensional diffusive wave model, was described in details of its governing equation 

and simulation characteristics and. The RRI model was used as the main hydrological tool 

and flood inundation modeling in this thesis by integrating with a global optimization 

algorithm SCE-UA for the calibration of sensitive parameters. Chapter 3 used the RRI 

model for comparison of the performance of gridded precipitation for flood inundation 

modeling in the MRB. Chapter 4 employed the RRI model for the future projection of 

extreme flood inundation in the MRB using a large ensemble climate dataset under 4 K 

increasing scenario. Chapter 5 applied the RRI model with a high- and super-high-

resolution climate dataset to evaluate the effects of climate change under different sea 

surface temperature (SST) and RCP scenarios. Finally, Chapter 6 utilized the RRI model 

to compare the performance of the most recent CMIP6 models with the previous CMIP5 

models.  
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CHAPTER 3: Comparison of gridded 

precipitation datasets for rainfall-runoff 

and inundation modeling in the Mekong 

River Basin 

 

3.1 Introduction 

Annual flooding is an important hydrological characteristic of the Mekong River Basin 

(MRB), especially in the Lower Mekong River (LMB) in which flooding is a way of life. 

On the one hand, prolonged floods challenge the survival and sustainability of the local 

community, causing huge socio-economic damages. The annual average cost of the flood 

damages in the LMB ranges between 60 and 70 million USD (MRC, 2011; Try et al., 

2018a). The flood in 2011 caused more than 430 million USD and the death toll reached 

396 (MRC, 2015). On the other hand, flooding drives the high productivity of the 

ecosystem and biodiversity in the downstream floodplains (Lu et al., 2014; Try et al., 2019). 

It is critically essential to understand the characteristics of the hydrological regime in the 

MRB for sustainable development and flood management. 

 

Hydrological modeling is an effective approach to extrapolate and interpolate missing 

information over time and space between observations for hydrological assessment (Hu et 

al., 2019). Oeurng et al. (2019) studied the Tonle Sap sub-basin of MRB using the SWAT 

model. Try et al. (2018b) applied the RRI model for a single flood event in the LMB. 

Tanaka et al. (2018) investigated the flood characteristics in the Tonle Sap floodplain using 

an integrated hydrological-hydraulic model. However, the study of the hydrological regime 

over the whole MRB using a reliable model and related input is still lacking and needs to 

be fully addressed.  
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Precipitation is useful for understanding the mechanism of the hydrological system and is 

the most necessary input data in hydrological and hydraulic modeling (Hu et al., 2017). 

Therefore, accurate precipitation data is required for effective hydrological studies. The 

available ground precipitation data at the country level in the MRB is limited (Ono et al., 

2013). Thus, it is necessary to evaluate the gridded rainfall products which are widely and 

freely available. To date, the evaluation of gridded precipitation has been conducted in 

several sub-basins of the MRB (Luo et al., 2019; Phoeurn and Ly, 2018; Thom et al., 2017). 

However, the performance evaluation of gridded precipitation for flood-inundation 

modeling in the whole MRB has not been reported yet.  

 

Therefore, this study aims 1) to evaluate the performance of a rainfall-runoff-inundation 

model in the whole MRB for river discharge and flood inundation prediction; 2) to assess 

the performances of different gridded precipitation datasets in simulating the river 

discharge in the whole MRB and flood inundation in the LMB. 

 

3.2 Methodology 

3.2.1 Rainfall-Runoff-Inundation Model 

This study used the Rainfall-Runoff-Inundation (RRI) with a spatial resolution of 2.5 arc 

minutes to understand the hydrological system for the whole MRB (Figure 3.1.a) and 1.5 

arc minutes for the LMB (Figure 3.1.b) for more accurate inundation estimation. The time 

series of the river discharge at Stung Treng station was used as the boundary condition 

during the LMB simulation. The topography data including digital elevation model (DEM), 

flow direction (DIR), and flow accumulation (ACC) were obtained from the Multi-Error-

Removed-Improved-Terrain (MERIT DEM) at the original resolution of 3 arc seconds 

(approx. 90 m at the equator) (Yamazaki et al., 2017). A topographic data scale-up 

algorithm in the RRI model was applied to transform the topography data to 1.5 and 2.5 arc 

minutes for LMB and MRB respectively. The land use data were obtained from the MODIS 

Land Cover Type Product (MCD12Q1) (Friedl et al., 2010). The surface evaporation was 

from the Japanese 55-year Reanalysis dataset (JRA-55) with a spatial resolution of 0.5625° 

and 3-hour temporal resolution (Kobayashi et al., 2015). 
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Figure 3.1 Location of the Mekong River Basin (a) and the Lower Mekong Basin (b) 

(Try et al., 2020). 

 

3.2.2 Precipitation Datasets 

This study used five gridded precipitation datasets including APHRODITE, GPCC, 

PERSIANN-CDR, GSMaP-RNL, and TRMM-3B42V7. Those datasets were chosen as a 

wide range of precipitation datasets at different spatial and temporal resolutions that should 

be explored for an informative assessment. Brief information on the gridded rainfall 

products used in this study is illustrated in Table 3.1. The basin average annual precipitation 

recorded by the rain gauge is 1,488 mm/year, APHRODITE 1,349 mm/year, GPCC 1,588 

mm/year, PERSIANN-CDR 1,720 mm/year, GSMaP-RNL 1,145 mm/year, and TRMM-

3B42V7 1,393 mm/year. 
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Table 3.1 Description of the gridded precipitation datasets used in this study. 

Dataset Version 
Spatial/temporal 

resolution 
Period Source 

APHRODITE V1801R1 0.25/daily 1998–2015 Yatagai et al. (2012) 

GPCC V.2018 (V2) 1/daily 1982–2016 Ziese et al. (2018) 

PERSIANN CDR 0.25/daily 1983–present Ashouri et al. (2015) 

GSMaP  RNL 0.1/hourly 2000–present Kubuta et al. (2007) 

TRMM 3B42V7 0.25/3-hourly 1998–present Huffman et al. (2007) 

 

3.2.2.1 APHRODITE dataset 

The APHRODITE rainfall product is created by collecting and analyzing data from the 

gauged rainfall from 5,000–12,000 stations across Asia (Yasutomi et al., 2011). This 

product was produced by a joint project from the Research Institute for Humanity and 

Nature and Meteorological Research Institute covering 1951 to 2007 for Version V1101 

and 1998-2015 for Version V1801R1. This study used APHRODITE Version V1801R1 

with the daily temporal resolution and the spatial resolution of 0.25° (Yatagai et al., 2012). 

 

3.2.4.2 GPCC dataset 

The Global Precipitation Climatology Center (GPCC) Full Data Daily Version 2018 is 

based on the gauged precipitation from 67,200 stations worldwide provided by national 

meteorological and hydrological services, regional and global data collection organizations 

such as the World Meteorological Organization (Ziese et al., 2018). This product contains 

daily precipitation from 1982–2016 with the spatial resolution of 1° covering latitude: -90° 

to 90° and longitude: -180° to 180°. 

 

3.2.4.3 PERSIANN dataset 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks–Climate Data Record (PERSIANN-CDR) is developed by the Center for 
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Hydrometeorology and Remote Sensing measures rainfall using infrared (IR) brightness 

temperature data from geostationary satellites (Ashouri et al., 2015). The PERSIANN-CDR 

dataset is daily and 0.25° in space covering 60°S to 60°N from 1983 to the present. 

 

3.2.4.4 TRMM dataset 

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis 

(TMPA) is a product resulting from the combination of precipitation from multiple 

satellites and rain gauges (Huffman et al., 2007). The data covers the latitude from 50°S to 

50°N from 1998 to the present. TRMM 3B42 algorithm version 7 (TRMM-3B42V7) at fine 

spatial and temporal scales (0.25°×0.25° and 3-hourly) were used in this study.  

 

3.2.4.5 GSMaP dataset 

The Global Satellite Mapping of Precipitation (GSMaP) is derived from Precipitation Radar 

(PR), statistical classification, and scattering algorithms (Kubota et al., 2007). This study 

used GSMaP reanalysis version (GSMaP-RNL) precipitation available hourly from 2000 

to date with a fine resolution of 0.1° covering 60°S to 60°N. 

 

3.2.3 Evaluation Approach of Gridded Precipitation Datasets  

The present study focused on the period from 2000 to 2007, due to the existence of the 

largest number of rainfall gauged stations and a few missing data during this period. The 

RRI model was calibrated and validated using the gauged rainfall during 2000–2007 as the 

gauged data from 2000 to 2007 used in this study showed good quality and density.  Gauged 

rainfall has been commonly used for hydrological model calibration (Luo et al., 2019). 

Meanwhile, it is reported that model calibration using gridded data would produce 

unrealistic parameters (Thom et al., 2017; Habib et al., 2010). The calibrated model was 

used to simulate river flow and flood inundation using the gridded precipitation datasets. 

To evaluate the performance of streamflow simulation, we used three indicators including 

Nash-Sutcliffe model efficiency (NSE), coefficient of determination (R2), and relative 

volume error (VE), as follows: 
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 NSE = 1 −
∑(𝑄𝑠𝑖𝑚(𝑡) − 𝑄𝑜𝑏𝑠(𝑡))

2

∑(𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2
 (3.1) 

 

 
R2 =

∑((𝑄𝑠𝑖𝑚(𝑡) − 𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )(𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ))2

∑(𝑄𝑠𝑖𝑚(𝑡) − 𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )2∑(𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2
 (3.2) 

 

VE =
∑𝑄𝑠𝑖𝑚(𝑡) − ∑𝑄𝑜𝑏𝑠(𝑡)

∑𝑄𝑜𝑏𝑠(𝑡)
 (3.3) 

 

where 𝑄𝑠𝑖𝑚(𝑡) and 𝑄𝑜𝑏𝑠(𝑡) are the simulated and observed discharges at time step 𝑡, and 

𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅  and 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅  are the simulated and observed average discharges. To evaluate the 

performance of inundation simulation, we used three indices including true ratio (TR), hit 

ratio (HR), and normalized error (NE), as follows: 

 

TR = 
ICobs∩ICsim

ICsim

 (3.4) 

 

HR = 
ICobs∩ICsim

IAobs

 (3.5) 

 

NE = 
ICsim –  ICobs

ICobs

 (3.6) 

 

where ICsim and ICobs are the number of inundated cells from the model simulation and 

MODIS observation data. 

 

3.3 Result and Discussion 

3.3.1 RRI Model Calibration and Validation 

3.3.1.1 River Discharge 

The model calibration and validation were carried out using the gauged precipitation 

between 2000–2003 and 2004–2007, respectively. The RRI model was calibrated using an 
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automatic global optimization algorithm called the Shuffled Complex Evolution (SCE-UA) 

at Stung Treng to evaluate the characteristics of the upstream area. Then, the daily discharge 

at this station was extracted as the input for the boundary condition to simulate the flood 

inundation performance at downstream of the Mekong River. The calibration was done 

using gauged rainfall with 500 simulations by changing the values of fives parameters: 

roughness coeficient for river (n_river), effective porosity (gamm_a),  lateral saturated 

hydaulic conductivity (ka), porosity for subsurface soil (gamma_m), and parameter for 

unsaturated hydraulic conductivity (β).  

 

The comparison of the simulated and observed river discharges in Luang Prabang, Pakse, 

Stung Treng, and Prek Kdam is shown in Figure 3.2. It was found that there is a good 

agreement between the observation and simulation. The Stung Treng station provided the 

highest statistical performance indices with NSE = 0.94, R2 = 0.94, VE = 0.05 in the 

calibration and NSE = 0.89, R2 = 0.92, VE = 0.09 in the validation (Table 3.2). The statistics 

at Pakse were NSE = 0.90 and 0.89, R2 = 0.94 and 0.91, VE = 0.14 and 0.09 during 

calibration and validation, respectively. For the upstream located areas at Luang Prabang, 

the evaluation indicators were NSE = 0.81, R2 = 0.83 and -0.13 in the calibration and NSE 

= 0.77, R2 = 0.78, VE = 0.06 in the validation. NSE and R2 at Prek Kdam were 0.75 and 

0.84 in the calibration and 0.69 and 0.77 in the validation. The coefficients of relative 

volume error VE = -0.27 and -0.31 in Prek Kdam were calculated by the assumption of the 

absolute value of inflow and outflow.  

 

Table 3.2 Model performance of the river discharge evaluation at the gauging stations 

during calibration (2000–2003) and validation (2004–2007) periods. 

Dataset NSE R2 VE 

Luang Prabang 
Calibration 0.81 0.83 -0.13 

Validation 0.77 0.78 -0.06 

Pakse 
Calibration 0.90 0.94 0.14 

Validation 0.89 0.91 0.09 
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Stung Treng 
Calibration 0.94 0.94 0.05 

Validation 0.89 0.92 0.09 

Prek Kdam 
Calibration 0.75 0.84 -0.27 

Validation 0.69 0.77 -0.31 

 

Figure 3.2 Simulated (blue) and observed (red) discharge during the calibration and 

validation periods at Luang Prabang (a), Pakse (b), Stung Treng (c), and Prek Kdam (d). 

(Note: The positive value at Prek Kdam represents the flow from Phnom Penh to the 

Tonle Sap Great Lake; the negative value indicates the reversed flow from the Tonle Sap 

lake to Phnom Penh). 

 

3.3.1.2 Flood Inundation  

For inundation estimation, the annual peak flood extent in the LMB during 2000–2007 was 

compared with the MODIS flood observation dataset (Figure 3.3). This study selected the 
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threshold value 0.5 m of water depth to distinguish between the flood and non-flood areas. 

Previous studies (Perera et al., 2017; Sayama et al., 2015a; 2015b; Try et al., 2018b; 2020) 

have chosen this threshold value since the water level is related to severe flood damage in 

the floodplain where the agricultural area is dominant land use type (Okada et al., 2011). 

According to the performance indices of the spatial inundation extent in Table 3.3, the RRI 

model simulated the flood extent with a good agreement of 84% accuracy (i.e. the hit ratio 

in 2000 was 0.84). On the other hand, the hit ratio in 2006 was 0.89 corresponding to the 

accuracy of 89% of the simulated inundation area. The average values are TR = 0.68, HR 

= 0.81, and NE = 0.23; and TR = 0.56, HR = 0.80, and NE = 0.43 during calibration (2000–

2003) and validation (2004–2007) respectively. The flood inundation simulation in this 

study was better than the previous study by Sayama et al. (2015a) in Chao Phraya River 

Basin in terms of true ratio and hit ratio (i.e. their average values during 2005–2011 were 

TR = 0.41 and HR = 0.30). However, the normalized error value in the Chao Phraya case 

study was lower than that of this study (NE = -0.18). 

 

Table 3.3 Model performance of the flood inundation extent compared with the remote 

sensing dataset. 

 Year IC_obs IC_sim IC_obs∩IC_sim TR HR NE 

Calibration 

2000 5177 5011 4187 0.84 0.81 -0.03 

2001 4731 5610 3973 0.71 0.84 0.19 

2002 3860 4697 3257 0.69 0.84 0.22 

2003 2093 3280 1596 0.49 0.76 0.57 

    Avg. 0.68 0.81 0.23 

Validation 

2004 2597 3307 1972 0.60 0.76 0.27 

2005 2204 2915 1590 0.55 0.72 0.32 

2006 2955 4562 2627 0.58 0.89 0.54 

2007 2526 3942 2125 0.54 0.84 0.56 

    Avg. 0.56 0.80 0.43 
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Figure 3.3 Model simulation and MODIS flood observation of the annual maximum 

flood extent from 2000 to 2007. 

  



49 

 

3.3.2 Performances of Gridded Precipitation Datasets  

After model calibration and validation, the same parameter setting was used to simulate 

river discharge and flood inundation using the five gridded precipitation datasets during 

2000–2007. Figure 3.4 illustrated the observed and simulated discharge from all the 

precipitation datasets at Stung Treng. The performance indices include NSE from 0.42 to 

0.92; R2 from 0.73 to 0.93; and VE from -0.46 to 0.21 (Table 3.4). The results of the river 

discharge indicated that APHRODITE, TRMM and GPCC datasets performed better with 

NSE =0.81, 0.85, 0.84; R2 = 0.90, 0.89, 0.88; and VE = -0.19, 0.12, 0.13 at Stung Treng 

station followed by PERSIANN, and GSMaP. In addition, the extreme flow of the highest 

5% of flow (Q5) from the flow duration curve was evaluated (Figure 3.5). The ratio of Q5 

from the simulated discharges using the individual precipitation datasets were 1.00, 0.82, 

1.09, 1.12, 0.53, 1.10 for rain-gauge, APHRODITE, GPCC, PERSIANN, GSMaP, and 

TRMM respectively.  

 

Table 3.4 Performance indices for individual precipitation datasets. 

Dataset NSE R2 VE 

Rain gauge 0.92 0.93 0.07 

APHRODITE 0.81 0.90 -0.19 

GPCC 0.84 0.88 0.13 

PERSIANN 0.80 0.88 0.21 

GSMaP 0.42 0.73 -0.46 

TRMM 0.85 0.89 0.12 
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Figure 3.4 Observed (red) and simulated discharge (blue) from individual precipitation 

datasets at Stung Treng. 
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Figure 3.5 Flow Duration Curve of the simulated discharge. 

 

The results of the average annual maximum flood extents in the simulation period (2000–

2007) indicated that APHRODITE performed at the highest true ratio TR = 0.69 while the 

hit ratio indices of GPCC, PERSIANN, and TRMM were among the best (Table 3.5). The 

error indicators of APHRODITE and GSMaP were NE = -0.06 and 0.20 respectively 

followed by GPCC (NE = 0.58), TRMM (NE = 0.62), and PERSIANN (NE = 0.80). 

 

Table 3.5 Statistical performance indices of the average annual maximum flood extents 

of the gridded precipitation datasets of 2000–2007. 

Index Gauge APHRODITE GPCC PERSIANN GSMaP TRMM 

TR 0.62 0.69 0.58 0.53 0.65 0.57 

HR 0.81 0.62 0.86 0.91 0.69 0.86 

NE 0.33 -0.06 0.58 0.80 0.20 0.62 

 

GPCC and TRMM and APHRODITE were found to be suitable rainfall product to be used 

in hydrological modeling in the MRB. The GSMaP product underestimated the amount of 
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rainfall while PERSIANN-CDR overestimated the rainfall in the MRB. This result agreed 

with the previous study by Try et al. (2018b) which validated and used the APHRODITE 

product for modeling a single flood event in the LMB. Guo et al. (2015) found out that 

GSMaP and TRMM performed better while PERSIANN could not achieve good 

correlation coefficients in the Central Asia region. Tan et al. (2015) mentioned that TRMM 

(3B42V7) and APHRODITE performed the best over Malaysia while PERSIANN-CDR 

had the worst performance. However, PERSIANN-CDR was found to underestimate the 

rainfall over the Luanhe River Basin, China, and the bias-corrected version of TRMM 

(3B42) had the smallest error and highest correlation coefficient compared with the real-

time version of TRMM (3B42RT) and PERSIANN-CDR.  

 

Results from this study were in line with those of Thom et al. (2017), indicating that the 

TRMM and APHRODITE datasets had good performances as input data to a hydrological 

model in the Srepok River Catchment, a tributary of the MRB. However, the GPCC dataset 

was not evaluated in the above study (Thom et al., 2017). Findings from the present study 

showed that the high-resolution dataset did not always perform better in comparison with 

the coarse resolution datasets. For instance, GPCC at the coarsest resolution (1) performed 

better than the other products while GSMaP (resolution 0.1) did not perform well for a 

large-scale basin such as the MRB. A similar conclusion was found by Vu et al. (2012) 

where the GPCP rainfall product (i.e. resolution of 1) was proved to be the second accurate 

dataset in the Dak Bla river basin, Vietnam.  

 

3.4 Summary  

This chapter investigated the performance of the five gridded precipitation datasets for 

rainfall-runoff modeling and flood inundation simulation in the MRB. The results indicated 

that the RRI model performed well for prediction of river discharge and flood inundation 

in the MRB. In addition, TRMM, GPCC, and APHRODITE had a better performance 

compared to GSMaP and PERSIANN-CDR for rainfall-runoff and inundation modeling in 

the whole MRB. GPCC and APHRODITE were found suitable for climate change studies 

and hydrological extreme event analysis in this region since these datasets provide long-
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term availability. Additionally, the TRMM dataset is available with 3-hour and daily 

temporal resolutions up to date, so it could be a useful data source for the flood event and 

real-time flood modeling. This study provides useful guidance for applications of the 

gridded precipitation for the hydrological modeling and assessing annual maximum 

inundated extents.  
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CHAPTER 4 Projection of extreme flood 

inundation in the Mekong River Basin 

under 4 K increasing scenario using large 

ensemble climate data 

 

4.1 Introduction 

Climate change has a profound impact on hydrological processes through changes in 

precipitation and evaporation (Wang et al., 2019). It plays a significant role in altering river 

flow, flood characteristics, and water availability, particularly their extreme values (Hu et 

al., 2017). The changes in the frequency and intensity of future precipitation and flooding 

influence adaptation strategies of social infrastructure development and water resources 

management (Hu et al., 2019).  

 

The impacts of climate change on flood risk are complicated and important for our society. 

Even if climate change increases rainfall intensity, the flood risk and its frequency may not 

always increase (Sharma et al., 2018). The possible impacts of climate change on the flow 

regime in the MRB may be spread into the fields of food production, water supply, 

transportation, and culture (MRC, 2005). Uk et al. (2018) suggested that it is necessary to 

study the impacts of climate change in the Tonle Sap Lake as it interacts with the main 

Mekong River. 

 

Previous studies of climate change impacts on the MRB generally depended on individual 

General Circulation Model (GCM) or mean of GCM ensembles. Kiem et al. (2008) used a 

single output from the high-resolution Japanese Meteorological Agency Atmospheric 

General Circulation Model (JMA-AGCM) to investigate variations of temperature and 

precipitation in 2080–2099 in the MRB. Perera et al. (2017) used a combined method of 

super-high-resolution AGCM output with a physical-based hydrological model to project 
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future changes of flood inundation in the Lower Mekong Basin (LMB). Lauri et al. (2012) 

selected five GCMs to assess the impacts of climate change on the hydrology of the MRB 

in 2032–2040. Their results showed that climate change increased basin precipitation while 

the range between GCMs was relatively large.  

 

Typically, a GCM reproduces a single climate scenario or a few scenarios based on some 

ensemble members. However, it would not be sufficient to predict quantiles for return 

periods of 100 years or more (Tanaka et al., 2018). Simulation with large ensemble 

members is necessary to reduce the uncertainty in the estimation of the probability of 

extreme events. Duan et al. (2019) pointed out that increasing ensemble size could improve 

the estimation of the mean and standard deviation values of regional precipitation events.  

 

It is important to study the possibility of future changes in flood inundation characteristics 

in the LMB under climate change impact. The peak flood in the large river basin is generally 

related to the precipitation prior to the timing of flood peaks. For example, Sayama et al. 

(2015) found that 6-month precipitation showed the highest correlation to peak inundation 

in the Chao Phraya River Basin in Thailand. In the MRB, the information on the 

contribution of antecedent precipitation to peak inundation is not available up to now. So 

far, there has been no study focusing on the effective duration to evaluate the relative 

changes in precipitation using large ensemble datasets under climate change in the MRB. 

 

The goal of this study is to address the following questions. (1) What is the duration of 

effective precipitation contributing to peak flood inundation in the LMB? (2) What is the 

possible change in the effective precipitation under the future climate condition? (3) What 

are the projected extreme floods in the future with respect to the peak discharge, the flood 

extent, and the inundation volume in the LMB using a large ensemble climate dataset? 
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4.2 Methodology 

4.2.1 Flood Inundation Modeling 

The river discharge and inundation were simulated using the rainfall-runoff-inundation 

(RRI) model with a diffusive wave approximation (Sayama et al., 2012; 2015). The 

topographic information was derived from the MERIT DEM (Yamazaki et al., 2017) by 

scaling up from 3-arc second (~90 m) to 5-arc minute (~10 km) for the whole MRB 

simulation and 60-arc second (~2 km) for the LMB. Try et al. (2020) suggested that the 

Global Precipitation Climatology Centre (GPCC) product is suitable for long-term 

hydrological modeling in the MRB. Therefore, GPCC precipitation was used for long-term 

verification in this study. Surface evapotranspiration was obtained from the Japanese 55-

year Reanalysis dataset (JRA-55, Kobayashi et al., 2015), and land use was available from 

MODIS (product: MCD12Q1, year: 2000, Friedl et al., 2010). The river cross-section 

parameters, river width 𝑊 (m) and depth 𝐷 (m), were calculated from equations (4.1) and 

(4.2) validated by Try et al. (2018) as a function of upstream area 𝐴 (km2). Try et al. (2020) 

have calibrated and validated the RRI model for 8 years (2000–2007) in the MRB. This 

study used the validated RRI model for flood inundation simulation (1983–2010) to 

confirm the capability of the model for long-term simulation. Table 4.1 shows the 

parameter setting used for long-term simulation.  

 

𝐷 = 0.0015 × 𝐴0.7491 (4.1) 

 

𝑊 = 0.0520 × 𝐴0.7596 (4.2) 
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Table 4.1 The values of parameter setting of the RRI model used in the study.  

 

Parameters Mountains Plains 

Manning’s coefficient for slope n (m-1/3s) 0.4 0.015 

Soil depth d (m) 2.0 - 

Lateral saturated hydraulic 

conductivity 

ka (m/s) 0.1 - 

Parameter of unsaturated 

hydraulic conductivity 

β - 9.0 - 

Vertical hydraulic conductivity kv (cm/h) - 0.06 

Soil porosity φ - - 0.6 

Wetting front soil suction head Sf - - 0.273 

Manning’s coefficient for river nriver (m-1/3s) 0.03 

 

4.2.2 Model Performance Indices 

The statistical indicators of Nash-Sutcliffe Efficiency (NSE) and Peak Discharge Ratio 

(PDR) were used for evaluating discharge simulation. 

 

NSE = 1 −
∑(𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑜𝑏𝑠(𝑡))

2

∑(𝑄𝑜𝑏𝑠(𝑡)−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2
  (4.3) 

 

PDR = 𝑄𝑠𝑖𝑚
𝑝𝑒𝑎𝑘

/𝑄𝑜𝑏𝑠
𝑝𝑒𝑎𝑘

  (4.4) 

 

where 𝑄𝑠𝑖𝑚(𝑡) and 𝑄𝑜𝑏𝑠(𝑡) are the simulated and observed discharge at a daily time step 𝑡.  

𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is mean of observed discharge. 𝑄𝑠𝑖𝑚
𝑝𝑒𝑎𝑘

 and 𝑄𝑜𝑏𝑠
𝑝𝑒𝑎𝑘

 are simulated and observed annual 

peak discharge.  

 

To evaluate the performance of modelled flood extent, the true ratio (TR) and hit ratio (HR) 

were used: 
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TR=
ICobs∩ICsim

ICsim
  (4.5) 

 

HR=
ICobs∩ICsim

IAobs

 (4.6) 

 

where ICsim and ICobs are the number of inundated cells from simulation and observation. 

The observed inundation maps were available from NASA MODIS near-real-time global 

flood mapping product (https://floodmap.modaps.eosdis.nasa.gov/) whose spatial and 

temporal resolutions are 250 m and 3 days at global scale (Nigro et al., 2014). 

 

4.2.3 d4PDF Dataset 

This study used present and future climate variables (precipitation and evapotranspiration) 

extracted from the d4PDF dataset. The d4PDF is a large number of ensemble climate 

experiments available with 60 km resolution on the global scale (Mizuta et al., 2017). The 

present climate simulation (1951–2010) has 100 ensemble members, and the future climate 

simulation (2051–2110) has 90 ensemble members including six sea surface temperature 

(SST) patterns and 15 members for each SST. The future climate was projected under the 

global mean surface air temperature 4 K warmer than the pre-industrial climate, 

corresponding to the representative concentration pathway 8.5 (RCP8.5) of CMIP5 models. 

The d4PDF dataset considered SST patterns obtained from the six CMIP5 model outputs: 

CCSM4, GFDL-CM3, HadGEM2-AO, MIROC5, MPI-ESM-MR, and MRI-CGCM3 

denoted as CC, GF, HA, MI, MP, and MR, respectively.  

 

4.2.4 The Generalized Extreme Value (GEV) Distribution  

The GEV is a well-known three-parameter distribution for flood extreme fitting from a 

generalization of three extreme value distributions: Fréchet, Weibull, and Gumbel. The 

cumulative distribution function (CDF) and probability density function (PDF) of the GEV 

with variable 𝑥 are given by the following equations: 

 

https://floodmap.modaps.eosdis.nasa.gov/
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𝐹(𝑥) = exp {− [1 + (
𝑥−𝜇

𝜎
)]
−
1


}  (4.7) 

 

𝑓(𝑥) =  
1

𝜎
[1 + (

𝑥−𝜇

𝜎
)]
−1−

1

 exp {− [1 + (
𝑥−𝜇

𝜎
)]
−
1


}   (4.8) 

 

where 𝜇, 𝜎, and  are the location, scale, and shape parameters, respectively. 

 

4.2.5 Statistical Testing 

The Kolmogorov-Smirnov (K–S) test is a non-parametric test to check the variation of the 

CDF of two samples. The maximum difference between two CDFs ranges from 0 to 1 

defined by: 

 

𝐷𝑛,𝑚 = sup
𝑥
|𝐹𝑛(𝑥) − 𝐹𝑚(𝑥)|   (4.9) 

 

where 𝐹𝑛 and 𝐹𝑚 are the empirical distribution functions of the two samples, and sup is 

supremum function. The null hypothesis, H0 , assumes that the two samples have no 

significant difference in CDF. When the likelihood of the different distribution of the two 

samples exceeds a significance level, the null hypothesis is rejected. Two samples have 

different distribution if 

 

𝐷𝑛,𝑚  > 𝑐(𝛼)√
𝑛+𝑚

𝑛𝑚
   (4.10) 

 

where 𝑛 and 𝑚 are the sample sizes. At the 5% significance level, 𝑐(𝛼) is equal to 1.36. 

The K-S test of two samples was used to test the variability of annual peak discharge from 

SST patterns. Each SST pattern covered the period of 60 years with 15 ensemble members 

(900 years for serial simulation); the rejection of the null hypothesis corresponded to K-S 

statistics exceeding 0.0641.  
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This study used the Kullback-Leibler (K-L) divergence to evaluate the difference of 

probability distribution functions 𝑝1 and 𝑝2 for present and future precipitations of d4PDF 

as shown in the following: 

 

DKL (𝑝1 ∥ 𝑝2) = ∑ 𝑝1𝑖𝑙𝑜𝑔2 (
𝑝1𝑖

𝑝2𝑖
)

𝐿

𝑖=1
 (4.11) 

 

The probability of 𝑖-th value is from set of 𝐿 elements. 

 

4.2.6 Analysis Procedure 

Figure 4.1 shows the flowchart of this study. First, the RRI model was validated from 1983 

to 2010. The same parameter setting was used to simulate the present and future discharge 

and flood inundation. Next, different intervals of precipitation (1-month to 6-month) were 

calculated counting backward from the day of peak flood to determine the correlation of 

effective precipitation and peak flood inundation. Their correlation coefficients were 

determined in comparison to peak discharge and inundation volume. Then, the changes in 

the most effective precipitation from the present to the future were evaluated. The validated 

RRI model was used to simulate the whole period and ensemble members of the present 

(60-year: 1951–2010  100-member) and future (60-year: 2051–2110  90-member) 

climate experiments of d4PDF. The flood probability of the present simulation of d4PDF 

was checked with observed discharge. The simulated peak discharges of the present and 

future extreme flood events were investigated using GEV fitting. Moreover, the K–S test 

of two samples was used to check and discuss the variability of different SSTs. Finally, 

changes in extreme flood events (50-year, 100-year, and 1000-year return periods) were 

investigated between the present and future climate experiments. 
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Figure 4.1 Flowchart of this study. 

 

4.3 Results 

4.3.1 Long-term Model Validation 

The RRI model was validated for 1983 to 2010. The simulation of discharge (Figure 4.2) 

at the daily time step performed satisfactorily with NSE of 0.71, 0.86, and 0.88 at the 

stations of Luang Prabang, Pakse, and Kratie, respectively. The coefficient of PDR varied 

for each year and the station location (Table 4.2). At the Luang Prabang station, most of 

the years showed an underestimation of model performance with the average PDR = 

0.67±0.13. The performances of the RRI model were more satisfactory with PDR = 
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0.96±0.17 and 0.98±0.16 at Pakse and Kratie. This study mainly focuses on peak flood 

inundation in the LMB in which the Kratie station is located; therefore, the RRI model is 

suitable for further analysis in the next section. 

 

Figure 4.2 Comparison of daily observed and simulated discharge at Luang Prabang, 

Pakse, and Kratie. 
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Table 4.2 The Peak Discharge Ratio (PDR) values of simulation over observed discharge.  

year Luang Prabang Pakse Kratie 

1983 0.64 0.75 0.87 

1984 0.57 0.77 0.85 

1985 0.65 0.78 0.81 

1986 0.66 1.09 1.08 

1987 0.82 0.81 0.91 

1988 0.56 0.64 0.74 

1989 0.69 0.73 0.81 

1990 0.61 1.05 0.98 

1991 0.50 0.78 0.97 

1992 0.83 0.99 0.88 

1993 0.72 1.12 1.14 

1994 0.87 1.28 1.22 

1995 0.61 1.12 0.98 

1996 0.48 0.97 0.90 

1997 0.51 0.78 0.77 

1998 0.62 0.82 0.99 

1999 0.59 1.04 0.88 

2000 0.65 0.93 1.04 

2001 0.58 1.00 1.08 

2002 0.58 1.13 1.10 

2003 0.75 1.13 1.17 

2004 0.97 1.02 1.07 

2005 0.67 0.92 1.16 

2006 0.93 1.24 1.30 

2007 0.88 1.02 1.08 

2008 0.61 1.10 1.16 

2009 0.54 0.72 0.63 

2010 0.69 1.03 0.98 

mean ± STD 0.67±0.13 0.96±0.17 0.98±0.16 



69 

 

To evaluate the performance of annual maximum inundation, the threshold of inundation 

depth of 0.5 m was selected following previous studies (Sayama et al., 2012; 2015; Try et 

al., 2018; 2020) to identify the flooded and non-flooded areas. The statistic indices of 

observation and model prediction flood extent for 8 years (2000–2007) were calculated (see 

Figure 4.3 for the comparison map of simulation and observation). The spatial performance 

index TR ranged from 0.42 to 0.82 where average accuracy was 58% (avg. TR = 0.58). The 

indicator HR varied from 0.76 to 0.94 (Table 4.3), and its mean value was 0.86. However, 

there was a difference between simulated and satellite observed flood extent at the lowest 

part of the Mekong delta where the simulation could not identify the inundated area. The 

factors which reduced inundation accuracy would come from two main sources. First, the 

satellite observation would not be able to detect flooded area at the mangrove forests on the 

banks of the Tonle Sap Lake while the simulation might correctly identify the area under 

inundation. Secondly, the simulation was not able to detect the inundated area in some low 

parts of the Mekong delta where might be influenced by saltwater intrusion. This effect was 

not considered in this study due to unavailability of observed information. 

 

Table 4.3 The statistical indices of model performance of flood extent: TR and HR. 

 2000 2001 2002 2003 2004 2005 2006 2007 avg. 

TR 0.82 0.74 0.65 0.42 0.58 0.46 0.49 0.47 0.58 

HR 0.85 0.80 0.87 0.89 0.76 0.88 0.94 0.89 0.86 

 

 

Figure 4.4 shows the relationship between precipitation amounts of different intervals 

(horizontal axis) and peak discharge (left vertical axis) and peak inundation volume (right 

vertical axis). The basin-averaged precipitation upstream of the Kratie station was 

calculated and plotted with peak discharge while the whole basin-averaged precipitation 

was plotted with peak inundation in the LMB. The results revealed that 3-month 

precipitation (90 days) had the highest correlation (R2 = 0.81) for both peak discharge and 

inundation volume. Consequently, the 90-day precipitation was hereafter used for further 

analysis of the projected future precipitation change. 
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Figure 4.3 Comparison of flood extent from simulation result (top) and MODIS flood 

observation (bottom). 
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Figure 4.4 Relationship between annual peak discharge at Kratie (black dots and lines) 

and peak inundation volume (red dots and lines) with precipitation extracted from 

different durations. 
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4.3.2 Simulation of d4PDF Dataset  

Prior to simulation using the d4PDF dataset, the performance of 90-day precipitation was 

compared with GPCC precipitation. Figure 4.5 shows the histogram and boxplot of 

maximum 90-day precipitation from the two datasets. The present d4PDF mean (777 mm) 

showed an underestimation of 15 mm compared to GPCC precipitation (792 mm). The 

d4PDF precipitation ranges from 588 mm to 1053 mm while the GPCC product ranges 

between 544 and 937 mm.  

 

 

 

Figure 4.5 Comparison of histogram and boxplot of annual maximum 90-day 

precipitation from GPCC and d4PDF. 
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Figure 4.6 Comparison of probability plot of annual peak discharge at Kratie. 

 

Next, the validated RRI model simulated the present experiment of d4PDF (6000 years: 60 

years  100 ensembles). The annual peak discharge at Kratie in the LMB was selected for 

flood frequency analysis. Then, the non-exceedance probability of discharge from d4PDF 

was compared with the observed discharge which was available from 1934 to 2011 from 

the Mekong River Commission. The non-exceedance probability in Figure 4.6 was 
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determined by the empirical value. The red dots are observed discharge, the blue lines are 

d4PDF ensemble members of all 60 years and the black dots represent all ensemble 

members from the present experiment of d4PDF. The large observed flood events were 

successfully reproduced by the d4PDF ensemble members. Overall, there was a good 

agreement of flood magnitude between all ensemble members of d4PDF and gauged 

observation for the large extreme events (e.g. large recurrence interval greater than 10 years) 

while underestimation was seen in lower return period events (e.g. return period of 2 or 5 

years). Since this study investigated large extreme events (return period of 50, 100, and 

1000 years), the prediction of d4PDF ensemble was acceptable in this study. 

 

4.3.3 Kolmogorov-Smirnov Test of Two Samples 

To investigate the effect of different SST patterns in future climate experiments on the 

probability distribution, annual peak discharge from each SST (each sample size: 900 years) 

was carried out with the K-S test for all combinations of the six SST pattern distributions 

(CC, GF, HA, MI, MP, and MR). At 5% significance level, the results of the K-S test of 

annual peak discharge showed significant differences (rejection of null hypothesis) in 14 

out of 15 cases (CC-GF, CC-HA, CC-MI, CC-MP, CC-MR, GF-HA, GF-MI, GF-MP, GF-

MR, HA-MI, HA-MP, HA-MR, MI-MP, MI-MR, and MP-MR) while null hypothesis of 

only one case (CC-HA) was accepted (Table 4.4). 

 

Table 4.4 K-S statistics evaluation of the null hypothesis test of peak discharge at Kratie 

(is acceptance of the null hypothesis, and  is rejection of the null hypothesis). 

 

SST GF HA MI MP MR 

CC      

GF -     

HA - -    

MI - - -   

MP - - - -  
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4.3.4 Projection of Future Extreme Flood 

Since the annual 90-day precipitation had the best correlation with peak discharge and 

inundation in the LMB, the changes of maximum 90-day precipitation between the present 

and future climates were assessed. Figure 4.7 shows the shifted probability density of 

annual maximum 90-day precipitation from present to future climates in the MRB. The 

Kullback-Leibler divergence was tested to evaluate the shifted distance of probability 

density from the present (𝑝1) to future precipitation (𝑝2) with DKL (𝑝1 ∥ 𝑝2) = 0.01 bits. The 

probability density of 90-day precipitation shifted from the present to future climate 

experiments with changes of mean from 777 mm to 900 mm (ratio: 1.16) and standard 

deviation from 57 mm to 96 mm (ratio: 1.67). 

 

 

Figure 4.7 Change of probability density of present and future experiments of 90-day 

precipitation of d4PDF dataset. 

 

This study investigated the magnitude of variation of 1:50, 1:100, and 1:1000 year flood 

events from present to future. The fitting performance of annual maximum series (AMS) 

and block maxima of annual peak discharge at Kratie in the LMB was compared. Dealing 

with the 20-year block maxima approach, we can have 300 and 270 blocks for present and 
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future climates. Figure 4.8 showed that 20-year block maxima had better performance 

compared to the AMS fitted curve for the whole dataset simulation (6000 and 5400-year 

for present and future). The fitted curve of the AMS curve showed an overestimation of 

empirical values for future projection, particularly when the return period is greater than 50 

years. The GEV fitted curve of block maxima showed a good simulation of d4PDF with a 

greater variation for future projection. In general, there was a clear shift of flood magnitude 

from the present to future climate projections. The fitted curve from the 20-year block 

maxima was considered for the projection of extreme events in this study.  

 

Figure 4.8 Comparison of fitting curves of discharge from annual maximum series 

(upper) and 20-year block maxima (lower) for present (GEV HPB) and future (GEV 

HFB) projections including their confidence interval (CI) 95%. 
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The magnitude of flood inundation of 1:50, 1:100, and 1:1000 year flood events increased 

from present to future climate experiments (Figure 4.9). The peak discharge at Kratie in the 

present was 61,588 m3/s, 67,400 m3/s, and 84,762 m3/s for 1:50, 1:100, and 1:1000 year 

events; these values drastically rose to 77,103 m3/s (+25%), 89,331 m3/s (+33%), and 

118,912 m3/s (+40%) in the future (Table 4.5). Moreover, the magnitudes of the extreme 

events in 50, 100, and 1000 years would increase by +19%, +29%, +36% for inundation 

extent and +23%, +34%, +37% in terms of inundation volume in the future, respectively. 

 

Figure 4.9 Comparison of extreme flood events (50-year, 100-year, and 1000-year return 

period) for present and future climate experiments. 
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Table 4.5 Changes of extreme flood events in the LMB from present to future. The bold 

italic number is relative change values. 

 

Extreme Event 
Peak Discharge 

(m3/s) 

Peak Area 

(km2) 

Peak Volume 

(km3) 

1:50 Year Flood 

Present 61,588 31,636 114 

Future 77,103 (+25%) 37,677 (+19%) 140 (+23%) 

1:100 Year Flood 

Present 67,400 33,938 124 

Future 89,331 (+33%) 43,870 (+29%) 166 (+34%) 

1:1000 Year Flood 

Present 84,762 40,812 156 

Future 118,912 (+40%) 55,438 (+36%) 214 (+37%) 

 

4.4 Discussion 

4.4.1 Impact of Ensemble Members on Uncertainties 

Figure 4.10 shows the deviation of precipitation and peak discharge selected from random 

ensemble members of the present d4PDF dataset comparing with the observations. The 

increasing number of ensemble members (from 2 to 100 members) can improve both the 

mean and tail of the distribution for both 90-day precipitation and peak discharge. The mean 

of deviation (central red lines in Figure 4.10) improved from -29 mm and -2,443 m3/s (2 

members) to -16 mm and -1,095 m3/s (100 members) for precipitation and discharge, 

respectively. Overall, the deviation of 90-day precipitation over the MRB ranged from -

171 mm to +102 mm for 2 members, and it reduced to between -131 mm and +95 mm for 

100 members. The peak discharge deviation at 2 ensemble members was between -20,593 

m3/s and 16,108 m3/s while it changed to -16,593 − 12,807 m3/s for 100 members. 

Furthermore, the peak discharge changed its range from the present climate from 27,013 − 

60,664 m3/s to 35,000 − 78,169 m3/s in the future. The uncertainty boundary of flood 

inundation extent was assessed for the present and future experiments as shown in Figure 
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4.11. The range between lower and upper tails of the inundated area shifted from 17,154 − 

38,622 km2 to 18,458 − 43,131 km2 for present and future climates, respectively. 

 

Figure 4.10 The boxplot of the deviation of ensemble number for 90-day precipitation 

(left) and peak discharge at Kratie (right). The values represent the deviation from the 

mean of observation. Samples of 2, 10, and 50 members were randomly selected from a 

total size of 100 members. The central red lines represent mean values. 
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Figure 4.11 Uncertainty boundary of flood extent for the lower tail, mean, and upper tail 

for the total ensemble for present (left) and future projection (right) in the LMB. 

 

4.4.2 Impact of Mainstream Dams 

During the study period (1983–2010), the construction of four dams along the mainstream 

of the upper Mekong River in China (Binh et al., 2017) was completed (Manwan in 1993, 

Dachaoshan in 2001, Jinhong in 2008, and Xiaowan in 2009), and two more dams operated 

in 2012 (Gongguoqiao and Nouzhadu). The Xayaburi dam in Lao PDR was operated in 

2019 while other several dams were under construction. To check the impact of Chinese 

cascade dams on hydrology in the MRB, the simulation period (2012–2016) was conducted 

by considering six dams operated from 2012. Since there was no available information on 

dam operation rules, the simulation assumed that the dams were operated to maximize 

water storage in the reservoirs in flood season and minimize storage in the dry season. 

Figure 4.12 indicated that these six dams had obvious impacts (i.e. PDR of simulation with 

and without dams = 0.90) in Chiang Saen, the direct outlet from the Upper Mekong in 

China. The impacts on peak flooding were gradually weakening at the lower hydrological 

stations of the basin (PDR = 0.96, 0.99, and 0.99 at Vientiane, Pakse, and Kratie, 
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respectively). Hence, we could conclude that the impacts of dams are limited by the 

downstream distance, and the impacts could be neglected at Kratie during peak flooding in 

the floodplain area of the MRB. 

 

Figure 4.12 The simulation with and without dam at hydrological stations along the 

mainstream of the MRB. 
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4.4.3 Implementation of Future Changes 

This study investigated the changes in extreme flood inundation events between the present 

and the future using a large ensemble dataset (d4PDF). The flood probability from all 

ensemble members in the present d4PDF had a good agreement with observation in the 

MRB. Similarly, Tanaka (2019) found a very strong relationship between 100-year return 

level and ensemble mean of block maxima over six river basins in Japan. The application 

of a large ensemble dataset was able to predict extreme flood events in spite of the absence 

of bias correction of climate data in this study.  

 

The K-S test showed a significant difference in future SST patterns (14 out of 15 SST 

combination cases). Duan et al. (2019) also found that the boundary condition input of the 

SST pattern was a major source of uncertainty in future precipitation projection in southern 

China. The different patterns of SST play a critical role in extreme precipitation and flood 

inundation. As a result, ensuring realistic SST patterns is essential when improving the 

performance of atmospheric models for further climate projection. 

 

The impacts and severity of climate change differ for each sub-basin of the MRB. Oeurng 

et al. (2019) found that it is likely to decrease in extreme flows in both high and low flow 

seasons in 11 sub-basins of the Tonle Sap Lake in the LMB. Shrestha et al. (2016) 

investigated flow change in the Sekong, Sesan, and Srepok (3S), a large sub-basin of the 

MRB, and revealed a huge growth from 54.1 to 78.9% for the RCP2.6 to RCP8.5 scenarios. 

However, the studies of climate change effects on river flow for the whole MRB found a 

similar increase with this study. For instance, Perera et al. (2017) identified an increase of 

discharge volume at Kratie of 25% from the present (1979–2003) to future climate (2075–

2099) under the RCP8.5 scenario. In addition, Lauri et al. (2012) found increases of 13.4% 

and 8.1% at Kratie in 2032 to 2049 under the A1B and B1 scenarios (comparable to RCP6.0 

and RCP4.5, respectively). 
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4.4.4 Limitations 

The potential impacts of climate change on extreme flood inundation in the LMB were 

conducted under a 4 K warming scenario (comparable to RCP8.5) for future climate 

projection in the MRB. Other scenarios such as RCP2.6, RCP4.5, and RCP6.0 for future 

projection were not taken into account in this study. It would require huge and expensive 

calculation resources because the climate dataset (d4PDF) has large ensemble members (i.e. 

90 ensemble members for only the +4K future scenario). This study used projected climate 

data based on only one GCM (MRI-AGCM) by considering other six GCM in SST setting, 

but the projection of future flood inundation is also dependent on different GCMs of which 

direction and model structure may deviate from each other. Due to different of 

evapotranspiration is quite small between each ensemble member in the climate projection; 

therefore, this study assumed the same evapotranspiration for each ensemble member. 

 

The simulation uncertainty in this study might be due to some important sources. First, land 

use was assumed to be static during the simulation period for model verification (1983–

2010). Additionally, the influence of model structure and parameters was not investigated. 

The observation data (e.g. gauged precipitation and river discharge) were insufficient to 

permit comparison with the baseline simulation. Plus, the future simulation did not include 

impacts of human activities, which could be addressed by land-use change and water 

infrastructures such as hydropower dams and irrigation reservoirs in the basin. The 

uncertainty of climate data in this study is probably due to the absence of bias correction of 

the d4PDF dataset. Further research will consider bias correction before conducting the 

simulation. 

 

4.5 Summary 

This chapter analyzed the changes in flood frequency under the impacts of climate change 

using present and future 4 K increasing experiments of the d4PDF dataset. The extreme 

flood events of the present climate experiment of d4PDF were confirmed by observed 

discharge. Maximum 90-day precipitation prior to peak flood was found to have the highest 

correlation with peak discharge and inundation in the LMB. The probability density of 90-
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day precipitation significantly shifted from present to future climates in the MRB. The 

different patterns of SST are an important factor that significantly influences the changes 

in future precipitation and flood inundation in the LMB. The projection of future climate 

under 4 K rising experiments reveals a great increase in the severity of flood extreme events 

in the LMB. To reduce the forthcoming flood damages, it requires an efficient method of 

water resources planning and management, an effective flood warning and forecasting 

system, and flood mitigation techniques. 
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CHAPTER 5: Assessing the Effects of Climate 

Change on Flood Inundation in the Lower 

Mekong Basin Using High Resolution 

AGCM Outputs 

 

5.1 Introduction 

The impacts of climate change became one among the global concerns threatening the 

environment and natural resources. The fifth assessment report (AR5) of the 

Intergovernmental Panel on Climate Change (IPCC) reported the increase of global average 

temperature from 1.0°C in the lowest emission scenario to 3.7°C in the highest emission 

scenario by 2100 (IPCC, 2014). Climate change has an impact on the hydrological system 

by altering the hydrological cycle and precipitation patterns (Wang et al., 2013). The spatial 

and temporal patterns of precipitation are the main factors affecting flow regimes and 

climate conditions (Beyene et al., 2010; Wu et al., 2016). The variation of precipitation 

patterns would disturb the water system in the entire catchment. In Southeast Asia, the 

precipitation was projected to increase from 1% to 8% at the end of the 21st century (Oeurng 

et al., 2019). The future hydrologic system will be severely affected by climate change in 

the Mekong River Basin (MRB) (Lauri et al., 2012; Perera et al., 2017) and its sub-basins: 

the Tonle Sap Lake (Oeurng et al., 2019) and the Sekong, Sesan, and Srepok Rivers 

(Oeurng et al., 2016; Shrestha et al., 2016). The increment of river discharge is expected 

during flood season, while severe droughts are plausible to happen in the dry season 

(Oeurng et al., 2019). The seasonal inundation and water interchange between the Mekong 

River and Tonle Sap Lake of Cambodia produce high productive biodiversity, agriculture, 

and fisheries (Arias et al., 2013; Uk et al., 2018). The Mekong River supports about 70 

million people from four countries (Cambodia, Laos PDR, Thailand, and Vietnam) in the 

Lower Mekong Basin (LMB) where most of the areas are prone to flooding (Try et al., 
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2019). The ecosystem of the lake and its floodplain are prone to be affected by altering the 

hydrological cycle in the Mekong River (Arias et al., 2012).  

 

It is a challenge to predict the change of flow regime (Bates et al., 2008). The IPCC AR5 

published climate change scenarios known as the Representative Concentration Pathways 

(RCP) (IPCC, 2014). The RCP scenarios incorporate four emission scenarios of greenhouse 

gas: a stringent mitigation scenario (RCP2.6), two intermediate scenarios (RCP4.5 and 

RCP6.0), and one very high GHG emission scenario (RCP8.5). The future projections 

given by IPCC reports were based on general circulation models (GCMs) outputs. GCMs 

are generally capable to produce a coarse resolution that might consist of large uncertainty. 

Overall, downscaling approaches were taken by statistical downscaling and dynamical 

downscaling to produce the regional climate condition. The uncertainties of GCMs were 

dominantly caused by coarse resolution (Li et al., 2012). To overcome this uncertainty, this 

study used the outputs from two high-resolution atmospheric general circulation models 

(AGCMs) namely as MRI-AGCM3.2S and MRI-AGCM3.2H with 20km and 60km spatial 

resolution, respectively. The model performed a historical climate experiment using 

observed sea surface temperature, and they showed the improvement in heavy monthly-

mean precipitation around the tropical pacific region confirmed by numerical skill score 

(Mizuta et al., 2012).  

 

A hydrological model is an effective tool that can simulate hydrological characteristics 

under different scenarios. Various hydrological models were developed and applied to 

investigate the hydrological processes in the MRB and its tributaries: Soil and Water 

Assessment Tool (SWAT) model (Arnold et al., 1998), Vmod model (Koponen et al., 2010), 

2-D Local Inertial Equation (2-D LIE) model (Tanaka et al., 2018), and Rainfall-Runoff-

Inundation (RRI) model (Sayama et al., 2012; 2015). Try et al. (2020) used the RRI model 

for comparison of gridded precipitation products for flood inundation modeling in the MRB. 

Perera et al. (2017) applied the same model to assess the climate change impacts on 

hydrological analysis in the MRB using outputs from atmospheric general circulation 

models (AGCM) based on RCP8.5 scenario considering different sea surface temperature 
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(SST) boundary condition; however, their study did not consider different emission of 

greenhouse gas scenarios.  

 

To further the understanding of the hydrological study of climate change impacts in the 

MRB, this study aims to predict the changes in extreme river discharge in the MRB and 

aspects of flood inundation such as inundation area, inundation volume, peak inundation 

duration and time, and inundation probability in the LMB by using present climate (1979–

2003) and future projected climate (2075–2099) from high- and super-high-resolution 

AGCM models under different future projection scenarios. 

 

5.2 Materials and Methods 

5.2.1 Climate Change Datasets 

The Meteorological Research Institute (MRI) developed a high-resolution (MRI-

AGCM3.2H, 60km) (Mizuta et al., 2012) and a super-high-resolution atmospheric climate 

model (MRI-AGCM3.2S, 20km) (Kitoh and Endo, 2016; Mizuta et al., 2014) with hourly 

temporal scale. The climate parameters (precipitation and evapotranspiration) were used as 

input for the RRI model for two 25-year periods: present climate covering of 1979–2003 

and the future climate (2075–2099). The MRI-AGCM3.2H model was projected from 

present (HPA_m01) to future climate based on the degree of GHG emission ranking from 

low emission (RCP2.6) to high emission (RCP8.5) namely as HFA_rcp26, HFA_rcp45, 

HFA_rcp60, and HFA_rcp85, respectively. The MRI-AGCM3.2S model was simulated for 

the present climate (1979–2003) using the observed boundary condition of SST 

(SPA_m01). The different SST patterns for future projection under the RCP8.5 scenario 

were characterized by using SST as output from 28 GCMs in Coupled Model Inter-

comparison Project Phase 5 (CMIP5) (Taylor et al., 2012). The future climate experiments 

(2075–2099) were grouped with SST distributions into four clusters: 8-model average 

(uniform warming in the northern and southern hemispheres), 14-model average (El Nino-

like pattern with a larger warming belt in the central equatorial Pacific), 6-model average 

(larger warming in the northern hemisphere than in the southern hemisphere), and total 28-

model average labeled as SFA_rcp85_c1, SFA_rcp85_c2, SFA_rcp85_c3, and SFA_rcp85, 
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respectively. GPCC was determined to be an accurate precipitation product in the MRB 

region (Try et al., 2020). Therefore, this precipitation was used as a reference for bias 

correction as the following linear scaling method: 

 

𝑃ℎ𝑟
𝐵𝐶 =   

𝑃𝑚𝑜𝑛
𝑜𝑏𝑠

𝑃𝑚𝑜𝑛
𝑎𝑔𝑐𝑚 × 𝑃ℎ𝑟

𝑎𝑔𝑐𝑚
 (5.1) 

 

where  𝑃𝑚𝑜𝑛
𝑜𝑏𝑠 : average monthly GPCC precipitation, 𝑃𝑚𝑜𝑛

𝑎𝑔𝑐𝑚
: average monthly AGCM 

precipitation, 𝑃ℎ𝑟
𝑎𝑔𝑐𝑚

: hourly AGCM precipitation, and 𝑃ℎ𝑟
𝐵𝐶: hourly bias-corrected AGCM 

precipitation. The correction factor calculated from the present climate was applied to 

future climate experiments.  

 

The different climate change scenarios would lead to generating different 

evapotranspiration (ET) in the future. For example, when precipitation increases in the 

future, and ET may also increase due to the increase in temperature increase. In this case, 

the surface runoff might not change following only precipitation change. In order to 

eliminate this uncertainty for future projection, the correction of future ET was calculated 

by extracting ET from present and future climates of AGCMs as the following equation.  

 

ET𝑓𝑢𝑡 = ET𝐽𝑅𝐴−55 + ∆ET𝑓𝑢𝑡    (5.2) 

 

where ET𝑓𝑢𝑡 is ET for each future scenario; ET𝐽𝑅𝐴−55 is evapotranspiration from JRA–55 

dataset; and ∆ET𝑓𝑢𝑡is the change of ET for each future scenario comparing to their present 

climates. 

 

5.2.2 RRI Model Simulation 

The Rainfall-Runoff-Inundation (RRI) model was used to simulate runoff and flood 

inundation for the MRB. The RRI model is a two-dimensional distributed hydrodynamic 

model that is able to simulate rainfall-runoff and inundation processes simultaneously 

(Sayama et al., 2012; 2015). The slope grid cells receive rainfall and flow based on 2D 

diffusive wave equations, while the in-channel flow is calculated with 1D diffusive 
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equations. Digital elevation model (DEM), flow direction (DIR), and flow accumulation 

(ACC) were obtained from the Multi-Error-Removed-Improved-Terrain (MERIT DEM, 

Yamazaki et al., 2017) and used as input to the RRI model. The river geometry was 

available from the Mekong River Commission, and land use was from MODIS (product: 

MCD12Q1) for 2000 (Friedl et al., 2010). The simulation setting was separated into two 

parts. First, the model was set up with 2.5 resolution (approx. 5 km) for the whole MRB 

for assessing river discharge. Then, the model was set up with 1.5 resolution (approx. 2.7 

km) for the LMB for predicting more accurate flood inundation. Try et al. (2020) evaluated 

the performance of five various gridded precipitation datasets for rainfall-runoff and 

inundation modeling over the MRB. The result showed that the Global Precipitation 

Climatology Centre (GPCC) product was suitable for long-term hydrological modeling in 

the MRB comparing to other precipitation products: APHRODITE, TRMM-3B42V7, 

PERSIANN-CDR, and GSMaP. Based on a retrospective experiment, this study conducted 

a simulation of 25 years (1982–2007) using GPCC precipitation for model verification. The 

surface evapotranspiration was available from the Japanese 55-year Reanalysis dataset 

(JRA-55) with 3-hourly and 0.5625° resolution (Kobayashi et al., 2015). The calibrated 

RRI model and its parameter setting (Table 5.1) were retrieved from Try et al. (2020). The 

performance of river discharge and flood inundation were compared between the 

observation and simulation results. After verification of the hydrodynamic model, the same 

parameter setting was used to simulate river discharge and flood inundation using the 

climate change dataset. 
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Table 5.1 The values of parameter setting of the RRI model used in the study.  

 

Parameters Mountains Plains 

Manning’s coefficient for 

slope 
n (m-1/3s) 0.4 0.015 

Soil depth d (m) 2.0 - 

Lateral saturated hydraulic 

conductivity 
ka (m/s) 0.1 - 

Parameter of unsaturated 

hydraulic conductivity 
β - 9.0 - 

Vertical hydraulic conductivity kv (cm/h) - 0.06 

Soil porosity φ - - 0.6 

Wetting front soil suction head Sf - - 0.273 

Manning’s coefficient for river nriver (m-1/3s) 0.03 

 

 

To evaluate the performance of the model, we used statistical indicators: Nash-Sutcliffe 

model efficiency (NSE), coefficient of determination (R2), and root mean square error 

(RMSE): 

 

NSE = 1 −
∑(𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑜𝑏𝑠(𝑡))

2

∑(𝑄𝑜𝑏𝑠(𝑡)−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2
    (5.3) 

 

R2 =
∑((𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅)(𝑄𝑜𝑏𝑠(𝑡)−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅))2

∑(𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅)2∑(𝑄𝑜𝑏𝑠(𝑡)−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2
    (5.4) 

 

RMSE = √
∑(𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑜𝑏𝑠(𝑡))

2

𝑛
    (5.5) 

 

where 𝑄𝑠𝑖𝑚(𝑡) and 𝑄𝑜𝑏𝑠(𝑡) are the simulated and observed discharge at time step 𝑡.  𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅  

and 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅  are the simulated and observed average discharge, and 𝑛 is the number of data. 
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5.2.3 Assessing Climate Change Impacts 

In addition to assessing the impacts of climate change on extreme river flow and flood 

inundation in the MRB, the change of precipitation was also examined. The monthly 

precipitation of the projected future climate was compared with that of the present climate 

for the entire MRB. Next, the mean annual flow (Qm) and the high flow exceeded 5% of 

the time (Q5) were calculated. Further, the changes of inundation area and volume, flood 

probability, and inundation peak time and duration were also evaluated from the present 

period (1979–2003) to the future period (2075–2099). Moreover, the statistical 

Kolmogorov-Smirnov (K-S) test, a non-parametric test of two samples, was used to check 

the variation of flood inundation between the present and future climates. The maximum 

difference of the cumulative distribution function of the two samples is defined by: 

 

𝐷𝑛,𝑚 = sup
𝑥
|𝐹𝑛(𝑥) − 𝐹𝑚(𝑥)|    (5.6) 

 

where 𝐹𝑛 and 𝐹𝑚 are the empirical distribution functions of the two samples, and sup is the 

supremum function. The null hypothesis, H0, assumes that two samples have no significant 

difference in CDF. When the likelihood of the different distribution of the two samples 

exceeds a significance level, the null hypothesis is rejected. Two samples have different 

distribution if 

 

𝐷𝑛,𝑚  > 𝑐(𝛼)√
𝑛+𝑚

𝑛𝑚
    (5.7) 

 

where 𝑛 and 𝑚 are the sample sizes. At the significance level 5% used in this study, 𝑐(𝛼) 

is equal to 1.36. 
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5.3 Results 

5.3.1 Performance of the Long-Term Model Simulation 

The RRI model simulated for 1982–2007, the model verification period, and the 

performance indices of NSE, R2, and RMSE were calculated at three stations along the 

mainstream of the MRB: Luang Prabang, Pakse, and Stung Treng. These three stations 

were selected according to the availability of observed river discharge, and their locations 

vary in the upper part of the LMB (i.e. Luang Prang is located near the outlet from the 

Upper Mekong in China), middle part (Pakse), and downstream of the LMRB (Stung 

Treng). Figure 5.1 showed the simulated and observed monthly discharge at the three 

locations. In general, the hydrographs of observation and simulation had a similar pattern 

for three stations; however, the model predicted underestimation in the low flow season in 

Luang Prabang. The evaluation statistics were NSE = 0.79. R2 = 0.85, and RMSE = 1,371 

m3/s. At Pakse, the performance indices were NSE = 0.90, R2 = 0.92, and RMSE = 3,433 

m3/s. The prediction at Stung Treng was high performance (NSE = 0.91, R2 = 0.92); 

however, large flow at this location produced more error value (RMSE = 3,990 m3/s) than 

other locations. 

 

The performance of annual maximum flood inundation was determined using true ratio 

(TR) and hit ratio (HR). The observed flood extent was obtained from the NASA MODIS 

flood observation dataset (Nigro et al., 2014) for the period of 2000–2007. The threshold 

of inundation depth of 0.5 m was selected following the previous studies (Sayama et al., 

2012; 2015; Try et al., 2018) to identify the flood and non-flood areas. The spatial 

performance index TR ranged from 0.42 to 0.82 during 2000–2007 where the average 

accuracy was 58% (avg. TR = 0.58). The HR indicator varied from 0.76 to 0.94, and its 

mean accuracy was 86% (avg. HR = 0.86). The uncertainty in inundation accuracy was 

discussed in Chapter 4 (Section 4.3.1. Long-term model validation). 
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Figure 5.1 Monthly simulated and observed discharges at Luang Prabang, Pakse, and 

Stung Treng for the period of 1982–2007. Model performance for river discharge was 

evaluated by Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and root 

mean square error (RMSE). 
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5.3.2 Precipitation Changes 

The bias correction performance was checked by comparing the precipitation and simulated 

discharge of historical AGCMs before and after bias correction. Figure 5.2 shows average 

daily precipitation and simulated discharge comparing between GPCC and AGCMs before 

and after bias correction. The raw precipitation and discharge had seasonal bias (i.e. 

overestimation) at the beginning of the wet season. The performance of average daily 

AGCM precipitation before and after bias correction was improved with R2 from 0.85 to 

0.94 for SPA_m01 and from 0.87 to 0.93 for HPA_m01, respectively. Moreover, the 

performance discharge was improved from R2 = 0.89 and 0.96 to R2 = 0.99 and 0.98 for 

SPA_m01 and HPA_m01, respectively. 

 

 

Figure 5.2 Comparison of raw and bias-corrected average daily precipitation and 

discharge at Stung Treng for historical AGCMs (SPA_m01 and HPA_m01) with GPCC 

simulation. 

 

Figure 5.3 showed the bias-corrected monthly precipitation from MRI-AGCM3.2H and 

MRI-AGCM3.2S datasets in the present (1979–2003) and future (2075–2099) climates. 
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The basin average precipitation was expected to increase for RCP and SST scenarios during 

the rainy season (May–October). During the late rainy season in September, the 

precipitation of future scenarios of HFA_rcp45, HFA_60, and HFA_rcp85 significantly 

raised up while less increase could be observed in HFA_rcp26. Three future SST patterns 

(SFA_rcp85, SFA_c2, and SFA_c3) provided a higher increase of precipitation than 

SFA_rcp85_c1 in the rainy season compared to their present climate SPA_m01. The annual 

precipitation would increase by 6.6%, 8.0%, 9.5%, and 14.2% for four RCP scenarios 

(RCP2.6–RCP8.5), and four SST pattern scenarios had less diversified increasing (9.9–

12.5%). 

 

 

Figure 5.3  Bias corrected monthly precipitation in the present and future climate 

experiments of MRI-AGCM3.2H and MRI-AGCM3.2S models. The bottom and top of 
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the box show first and third quartiles, and the flat line inside the box is the median. The 

whiskers represent the minimum and maximum values. 

 

5.3.3 Effects of Climate Change on River Flow 

The future changes in river discharge were assessed by simulation of RRI model using 

precipitation and evapotranspiration projected by MRI-AGCM3.2H and MRI-AGCM3.2S 

models from present climate (1979–2003) to the future climate (2075–2099) for four 

greenhouse gas emission scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) and four SST 

scenarios (Figure 5.4). The flow change was examined at four locations along the 

mainstream of the MRB. Table 5.2 showed the mean annual discharge (Qm) and extreme 

river flow exceeding 5% of the time (Q5). Overall, Qm and Q5 increased for all future 

scenarios. The Qm of the upstream stations (Chiang Saen and Vientiane) was predicted to 

increase by 5–10% while the downstream stations (Pakse and Kratie) raised up a higher 

increment of 10–15% for three climate change scenarios (RCP2.6, RCP4.5, and RCP6.0). 

The Qm for all stations significantly escalated for RCP8.5 (23–26%) and SST scenarios 

(10±3% – 29±3%). At the end of the 21st century, high flow (Q5) showed increases of 5–

14% at Chiang Saen and Vientiane and 11–18% at Pakse and Kratie for the three low 

emission scenarios (RCP2.6, RCP4.5, and RCP6.0). The Q5 momentously stepped up to 

21–30% for four observing stations for RCP8.5 while it ranged between 10±4% and 18±3% 

for the SST scenario. The peak discharge took place in September (Figure 5.4), and this 

remained the same for all future scenarios at Vientiane, Pakse, and Kratie except Chiang 

Saen where the peak discharge from SST somehow happened earlier in August. 
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Table 5.2 Changes (%) of annual mean discharge (Qm) and flow exceeded 5% of the time 

(Q5) for RCP and SST scenarios compared to the present climate. The values for SST 

scenarios show mean () ± standard deviation (σ). 

 

Station Scenario Qm Q5 

Chiang Saen 

RCP2.6 +6% +9% 

RCP4.5 +9% +10% 

RCP6.0 +5% +14% 

RCP8.5 +23% +27% 

SST (±σ) +10±3% +10±4% 

Vientiane 

RCP2.6 +7% +5% 

RCP4.5 +10% +8% 

RCP6.0 +7% +10% 

RCP8.5 +23% +21% 

SST (±σ) +11±2% +10±4% 

Pakse 

RCP2.6 +10% +11% 

RCP4.5 +13% +11% 

RCP6.0 +13% +17% 

RCP8.5 +26% +29% 

SST (±σ) +25±3% +16±4% 

Kratie 

RCP2.6 +12% +14% 

RCP4.5 +13% +13% 

RCP6.0 +15% +18% 

RCP8.5 +25% +30% 

SST (±σ) +29±3% +18±3% 
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Figure 5.4 Monthly flow for present climate (HPA) comparing with each projected future 

climate RCP scenarios (HFA) and different sea surface temperature scenarios (SST). 

 

5.3.4 Effect of Climate Change on Flood Inundation 

The flood plain and agricultural land are the majority in the LMB, so the threshold was 

selected at 0.5 m of water depth to classify the inundated and non-inundated area. 

According to the simulation results, flood magnitudes were expected to increase for all 

future scenarios. Figure 5.5 showed the 25-year average inundation extent in the present 

and future climatic conditions. The ratios of mean and variance of the inundation extent of 

the future and present were 1.19–1.43 and 2.08–3.92 for MRI-AGCM3.2H and 1.26–1.32 

and 1.12–2.13 for MRI-AGCM3.2S (Table 5.3), respectively. Figure 5.6 showed boxplot 

comparison of peak inundation time (days of the year, DOY) and inundation volume in the 

LMB. There was no significant change of peak flood time of future climate compared to 

the present climate (i.e. the variation of the median was within ±5 days). The K-S test 

showed result of no significant difference for all future scenarios (RCP and SST) at 

significant level 5% (p-value = 0.2370–0.8774). The peak inundation volume took place in 



103 

 

October for the present climate and all projected future scenarios. However, there was a 

huge variability in peak inundation volume. The first quartile values of the LMB peak 

inundation volume (the boxplot in the lower row of Figure 5.6) for all future scenarios 

(100–124km3 for HFA and 99–118km3 for SFA) were greater than the third quartile value 

of their present climates (99 km3 and 98 km3 for HPA and SPA). Median of peak inundation 

volume for HFA increased between 15% for RCP2.6 to 42% for RCP8.5 and 28–41% for 

SST. The relative ratio of the mean of inundation volume varied between 1.24–1.55 and 

1.29–1.41, and the relative ratio of inundation volume variance changed from 2.30 to 4.60 

and from 1.66 to 2.09 (Table 5.3) for RCP and SST scenarios, respectively. The result of 

K-S test of peak inundation volume revealed a significant difference for all RCP and SST 

scenarios (i.e. null hypothesis was rejected at a significant level of 5% with p-value less 

than 0.002). 

 

Table 5.3 The ratio (F) of mean () and variance (σ²) of inundation area and volume for 

future climates comparing their present climate. 

 

Model Scenario 

Inundation area Inundation volume 

F() F(σ²) F() F(σ²) 

MRI-

AGCM3.2H 

HFA_rcp26 1.19 2.28 1.24 2.68 

HFA_rcp45 1.26 2.08 1.32 2.30 

HFA_rcp60 1.32 3.92 1.41 4.60 

HFA_rcp85 1.43 3.37 1.55 3.96 

avg. 1.30 2.91 1.38 3.38 

MRI-

AGCM3.2S 

SFA_rcp85 1.32 1.12 1.41 1.66 

SFA_ rcp85_c1 1.26 2.13 1.29 1.98 

SFA_ rcp85_c2 1.32 1.67 1.38 2.09 

SFA_ rcp85_c3 1.27 2.08 1.30 1.89 

avg. 1.29 1.75 1.34 1.90 
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Figure 5.5 25-year average of annual maximum inundation extent for the present and the 

future climate experiments.  

 

Figure 5.6 Peak inundation time (upper row) and peak inundation volume (lower row) in 

the LMB resulted from MRI-AGCM3.2H model (left column) and MRI-AGCM3.2S 

model (right column). The boxplot explanation is the same as Figure 5.3. 
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Figures 5.7 and 5.8 showed the flood inundation probability, the difference of probability 

of flood inundation from the present to future (dP), and the K-S test result for each climate 

model. The dP clearly indicated the positive value for all projected future scenarios. For 

MRI-AGCM3.2H, the dP ranged within one less increase (HFA_rcp26), two medium 

increases (HFA_rcp45 and HFA_rcp60), and one large increase (HFA_rcp85). Among the 

area of significant difference of inundation probability (dP ≥ 0.05 in Figures 5.7 and 5.8), 

the proportion for area dP ≥ 0.3 was only 12% (i.e. area of proportion 0.05 ≤ dP < 0.03 was 

88%) for RCP2.6, and this proportion raised up to 48%, 40%, 56% for HFA_rcp45, 

HFA_rcp60, and HFA_rcp85. On the other hand, the same proportion value of dP ≥ 0.3 

had less diversification (i.e. 54–62%) for ranges of SST scenarios. The spatial K-S test 

indicated almost no significance in HFA_rcp26 and partial significant in HFA_rcp45 and 

HFA_rcp60 while large area was found significance in HFA_rcp85. The K-S test for SST 

patterns determined significance at the most area in SFA_rcp85 following by 

SFA_rcp85_c3, and SFA_rcp85_c2 and SFA_rcp85_c1 had less area of significance. 

 

The inundation duration, change of duration, and its spatial K-S test results were illustrated 

in Figures 5.9 and 5.10 for MRI-AGCM3.2H and MRI-AGCM3.2S, respectively. The 

variation of inundation duration per 25-year in the present and future between -1 and 1 day 

was considered as no change in this study. Overall, the longer durations of inundation were 

observed for the LMB for both RCP and SST scenarios. The area with high flood inundation 

probability commonly experienced long flood durations while the low probability place 

corresponded with a shorter duration of inundation. Similarly, the spatial K-S test showed 

significance in most areas regardless of RCP and SST scenarios. The increase of flood 

duration was observed at the floodplain except inside the Tonle Sap Lake where the water 

exists for the whole year.
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Figure 5.7 Spatial distribution of inundation probability (upper row), difference between present and future RCP scenarios (middle 

row), and K-S test (lower row) for MRI-AGCM3.2H model. 
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Figure 5.8 Spatial distribution of inundation probability (upper row), difference between present and future SST scenarios (middle 

row), and K-S test (lower row) for MRI-AGCM3.2S model. 
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Figure 5.9 Spatial distribution of inundation duration (upper row), difference between present and future RCP scenarios (middle row), 

and K-S test (lower row) for MRI-AGCM3.2H model. 
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Figure 5.10 Spatial distribution of inundation duration (upper row), difference between present and future SST scenarios (middle 

row), and K-S test (lower row) for MRI-AGCM3.2S model.
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5.4 Discussion 

5.4.1 Benefits of High-resolution Data 

This study used two high-resolution models MRI-AGCM3.2H and MRI-AGCM3.2S with 

a spatial resolution of 60 km and 20 km. To see the benefits of fine spatial-scale, two other 

coarse-resolution GCMs (MRI-CGCM3 and MRI-ESM1) from the CMIP5 were examined 

to compare their performance without bias correction for 25-year in the historical climate 

(1979–2003). The grid resolutions of MRI-CGCM3 and MRI-ESM1 are 125 km × 125 km. 

Figure 5.11 showed the comparison of the spatial distribution of annual average 

precipitation of GPCC and the four models over the MRB region. The two high-resolution 

AGCMs (MRI-AGCM3.2H and MRI-AGCM3.2S) used in this showed a similar 

distribution while the two coarse resolution models (MRI-CGCM3 and MRI-ESM1) 

indicated a large error, particularly in the area close to the coast. This was the advantage of 

using observed SST as a boundary condition in AGCM; however, GCMs were not able to 

consider this effect. 

 

In addition, basin monthly precipitation was also compared between GPCC and four 

climate models without bias correction. Figure 5.12 showed the similarity of violin shapes 

between GPCC and two high-resolution AGCMs (MRI-AGCM3.2H and MRI-

AGCM3.2S). The mean values range between 131–137 mm for AGCMs and 119–113 mm 

for GCMs comparing to 126 mm of GPCC. The MRI-CGCM3 and MRI-ESM1 models 

produced precipitation at more spread density (i.e. their median is at a very low value, and 

top height of violin is overestimated) comparing to GPCC. Overall, two high-resolution 

AGCMs used in this study performed better than two GCMs in CMIP5 in terms of spatial 

and monthly precipitation in the MRB region. 
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Figure 5.11 Spatial distribution of annual precipitation of GPCC and four climate models 

(MRI-AGCM-3.2S, MRI-AGCM3.2H, MRI-CGCM3, and MRI-ESM1). 
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Figure 5.12 Violin plot and boxplot of monthly basin average precipitation of GPCC and 

four AGCM and GCM models. The red circle and black dots represent mean and median. 

The side of violin shows the density distribution of data samples.  

 

5.4.2 Implementation of Climate Change Impacts  

The results from this study clearly indicated that the river discharge and flood inundation 

in the MRB were significantly affected by climate change impacts. The simulation results 

of climate change revealed that flood inundation magnitude in the future in the LMB would 

be severer than the present climate. The increasing of annual precipitation (6.6–14.2%) 

could force to enlarge the extreme high flow (Q5) at the LMB (increasing 13–30% at Kratie) 

and lead to increase excessive inundation in the LMB up to 19–43% for inundation area 

and 24–55% for inundation volume. Lauri et al. (2012) determined the change in discharge 

at Kratie from -10.6 to +13.4% for A1B scenario (comparable to RCP6.0) and between -

6.9 and +8.1% for B1 scenario (comparable to RCP4.5) using five GCMs from baseline 

(1982–1992) to projected period (2032–2042). Västilä et al. (2010) projected annual 

maximum flooded area in the LMB flood pulse for 2010–2049 by changing between -3% 

and 14% in for A2 emission scenario (comparable to RCP8.5). Perera et al. (2017) found 
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out the increasing discharge volume of 25% at Kratie in RCP8.5 scenario. Shrestha et al. 

(2016) analyzed the uncertainty sources of climate change on river flow in the Sekong, 

Sesan, and Srepok (3S) Rivers, one of the main tributary of the MRB, using three GCMs 

(GISS, GFDL, and IPSL) and revealed the results that peak flow was likely to increase 

ranging from 54.1% for RCP2.6 to 78.9% for RCP8.5 for the 2060s. The assessment results 

of climate change impacts on hydrological extreme flows in 11 sub-basins of the Tonle Sap 

Lake by Oeurng et al. (2019) using three GCM models (GFDL-CM3, GISS-E2-R-CC, and 

IPSL-CM5A-MR) for three projected time horizons (2030s, 2060s, and 2090s) under 

RCP6.0 scenario revealed that most sub-basins of the Tonle Sap basin would face more 

extreme drought than flooding.  

 

In addition to the findings of Perera et al. (2017) studied flood inundation under SST 

patterns in the LMB, this study found the significant increment of flood inundation area 

and volume on various projected future climate change including 4 RCP scenarios and 4 

different SST patterns scenarios. More importantly, further analysis of increasing changes 

in flood inundation duration and probability was significantly determined in this study 

while the flood peak time would be no substantial variation. 

 

5.4.3 Limitations 

However, the limitation of this study was assessing only output from MRI-AGCM3.2H and 

MRI-AGCM3.2S. Considering more high-resolution GCMs would provide more reliability 

for future prediction of flood inundation. Plus, due to the limited capacity of long-term and 

large-scale simulation, the spatial resolution of the inundation simulation in this study was 

taken 1.5 (approx. 2.7 km); therefore, the finer resolution was able to provide more 

accurate results. Furthermore, the water for urban water supply, irrigation, and power 

generation purposes was not carried out in this study. The land-use map was taken from 

MODIS (year: 2000) considered as static from the present to the future. The rapid 

development would affect the uncertainty in the prediction. The potential effect of land-use 

change should be considered in future studies in the MRB. 
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5.5 Summary 

This chapter presented the effects of climate change on flow in the MRB and inundation in 

the LMB from the present period (1979–2003) to the future period (2075–2099). This study 

compared the extreme river flow, peak inundation area, peak inundation time and volume, 

flood probability, and inundation duration. The analysis was conducted based on bias-

corrected precipitation and evapotranspiration which were outputs from two high-

resolution atmospheric models (MRI-AGCM3.2H 60km and MRI-AGCM3.2S 20km). The 

result indicated that the extreme river flow and extreme flood inundation will be severer 

and higher magnitude at the end of the 21st century for all future scenarios (RCP and SST). 

However, flood peak time was observed with no significant variation. The area with a long 

flood duration corresponded with a high probability of flood inundation. This study 

provided additional information about climate change impacts on flood inundation for 

further understanding and preparing for climate change adaptation as well as flood damage 

reduction strategies in the LMB. 

  



115 

 

References 

 

Arias, M. E., Cochrane, T. A., Piman, T., Kummu, M., Caruso, B.S, and Killeen, T.J. (2012). 

Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused 

by water infrastructure development and climate change in the Mekong Basin. Journal 

of Environmental Management, 112: 53-66. doi: 10.1016/j.jenvman.2012.07.003. 

Arias, M. E., Cochrane, T. A., Norton, D., Killeen, T. J., and Khon, P. (2013). The flood 

pulse as the underlying driver of vegetation in the largest wetland and fishery of the 

Mekong Basin. Ambio. 42(7): 864-76. doi: 10.1007/s13280-013-0424-4. 

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). Large area 

hydrologic modeling and assessment part I: model development. Journal of the 

American Water Resources Association, 34(1): 73-89. doi: 10.1111/j.1752- 

1688.1998.tb05961.x. 

Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P. (2008). Climate Change and 

Water. IPCC Technical Paper IV. Intergovernmental Panel on Climate Change, Geneva. 

Beyene, T., Lettenmaier, D. P., and Kabat, P. (2010). Hydrologic impacts of climate change 

on the Nile River Basin: implications of the 2007 IPCC scenarios. Climatic change, 

100(3-4): 433-461. doi: 10.1007/s10584-009-9693-0. 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and 

Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and 

characterization of new datasets. Remote sensing of Environment, 114(1): 168-182. doi: 

10.1016/j.rse.2009.08.016. 

Intergovernmental Panel on Climate Change (IPCC) (2014). Sythesis Report. Contribution 

of Working Groups I, II and III to the Fifth Assessment Report of the IPCC, Geneva, 

Switzerland. 



116 

 

Kitoh, A., and Endo, H. (2016). Changes in precipitation extremes projected by a 20-km 

mesh global atmospheric model. Weather and Climate Extremes, 11: 41-52. doi: 

10.1016/j.wace.2015.09.001. 

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, 

H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K. (2015). The JRA-55 

Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93: 

5-48. doi: 10.2151/jmsj.2015-001. 

Koponen, J., Lauri, H., Veijalainen, N., and Sarkkula, J. (2010). HBV and IWRM 

watershed modelling user guide. MRC Information and Knowledge Management 

Programme, DMS—Detailed Modelling Support for the MRC Project. 

Lauri, H., Moel, H. D., Ward, P., Räsänen, T., Keskinen, M., and Kummu, M. (2012). 

Future changes in Mekong River hydrology: impact of climate change and reservoir 

operation on discharge. Hydrology and Earth System Sciences, 16: 4603-4619. doi: 

10.5194/hess-16-4603-2012. 

Li, G., Zhang, X., Zwiers, F., and Wen, Q. H. (2012). Quantification of uncertainty in 

highresolution temperature scenarios for North America. Journal of Climate, 25(9): 

3373-3389. doi: 10.1175/JCLI-D-11-00217.1. 

Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., Kamiguchi, 

K., Hosaka, M., Sugi, M., Yukimoto, S., Kusunoki, S., and Kitoh, A. (2012). Climate 

simulations using MRI-AGCM3.2 with 20-km grid. Journal of the Meteorological 

Society of Japan. 90: 233-258. doi: 10.2151/jmsj.2012-A12. 

Mizuta, R., Arakawa, O., Ose, T., Kusunoki, S., Endo, H., and Kitoh, A. (2014). 

Classification of CMIP5 future climate responses by the tropical sea surface 

temperature changes. Sola, 10: 167-71. doi: 10.2151/sola.2014-035. 

Nigro, J., Slayback, D., Policelli, F., and Brakenridge, G. R. (2014). NASA/DFO MODIS 

near real-time (NRT) global flood mapping product evaluation of flood and permanent 

water detection. Evaluation, Greenbelt, MD. 



117 

 

Oeurng, C., Cochrane, T. A., Arias, M. E., Shrestha, B., and Piman, T. (2016). Assessment 

of changes in riverine nitrate in the Sesan, Srepok and Sekong tributaries of the Lower 

Mekong River Basin. Journal of Hydrology: Regional Studies, 8: 95-111. doi: 

10.1016/j.ejrh.2016.07.004. 

Oeurng, C., Cochrane, T. A., Chung, S., Kondolf, M. G., Piman, T., Arias, M. E. (2019). 

Assessing Climate Change Impacts on River Flows in the Tonle Sap Lake Basin, 

Cambodia. Water, 11(3): 618. doi: 10.3390/w11030618. 

Perera, E., Sayama, T., Magome, J., Hasegawa, A., and Iwami, Y. (2017). RCP8.5-Based 

future flood hazard analysis for the lower Mekong river Basin. Hydrology, 4(4): 55. 

doi: 10.3390/hydrology4040055. 

Sayama, T., Ozawa, G., Kawakami, T., Nabesaka, S., and Fukami, K. (2012). Rainfall– 

runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. 

Hydrological Sciences Journal, 57(2): 298-312. doi: 10.1080/02626667.2011.644245. 

Sayama, T., Tatebe, Y., Iwami, Y., and Tanaka, S. (2015). Hydrologic sensitivity of flood 

runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin. Nat. 

Hazards Earth Syst. Sci., 15: 1617–1630. doi: 10.5194/nhess-15-1617-2015. 

Shrestha, B., Cochrane, T. A., Caruso, B. S., Arias, M. E., Piman, T. (2016). Uncertainty 

in flow and sediment projections due to future climate scenarios for the 3S Rivers in 

the Mekong Basin. Journal of Hydrology, 540: 1088-1104. doi: 

10.1016/j.jhydrol.2016.07.019. 

Tanaka, T., Yoshioka, H., Siev, S., Fujii, H., Fujihara, Y., Hoshikawa, K., Ly, S., and 

Yoshimura, C. (2018). An Integrated Hydrological-Hydraulic Model for Simulating 

Surface Water Flows of a Shallow Lake Surrounded by Large Floodplains. Water, 

10(9): 1213. doi: 10.3390/w10091213. 

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the 

experiment design. Bulletin of the American Meteorological Society, 93(4):485-98. 



118 

 

Try, S., Lee, G., Yu, W., Oeurng, C., and Jang, C. (2018). Large-Scale Flood-Inundation 

Modeling in the Mekong River Basin. Journal of Hydrologic Engineering, 23(7): 

05018011. doi: 10.1061/(ASCE)HE.1943-5584.0001664. 

Try, S., Lee, G., Yu, W., and Oeurng, C. (2019). Delineation of flood-prone areas using 

geomorphological approach in the Mekong River Basin. Quaternary International, 503: 

79-86. doi: 10.1016/j.quaint.2018.06.026. 

Try, S., Tanaka, S., Tanaka, K., Sayama, T., Oeurng, C., Uk, S., Takara, K., Hu, M., and 

Han, D. (2020). Comparison of Various Gridded Precipitation Datasets for 

RainfallRunoff and Inundation Modeling in the Mekong River Basin. Plos One, 15(1). 

doi: 10.1371/journal.pone.0226814. 

Uk, S., Yoshimura, C., Siev, S., Try, S., Yang, H., Oeurng, C., Li, S., and Hul, S. (2018). 

Tonle Sap Lake: Current status and important research directions for environmental 

management. Lakes & Reservoirs: Research & Management, 23(3): 177-189. doi: 

10.1111/lre.12222. 

Västilä, K., Kummu, M., Sangmanee, C., and Chinvanno, S. (2010). Modelling climate 

change impacts on the flood pulse in the Lower Mekong floodplains. Journal of Water 

and Climate Change, 1(1): 67-86. doi: 10.2166/wcc.2010.008. 

Wang, S., Jiao, S., and Xin, H. (2013). Spatio-temporal characteristics of temperature and 

precipitation in Sichuan Province, Southwestern China, 1960–2009. Quaternary 

International, 286: 103-115. doi: 10.1016/j.quaint.2012.04.030. 

Wu, F., Wang, X., Cai, Y., and Li, C. (2016). Spatiotemporal analysis of precipitation 

trends under climate change in the upper reach of Mekong River basin. Quaternary 

international, 392: 137-146. doi: 10.1016/j.quaint.2013.05.049. 

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., 

Sampson, C. C., Kanae, S., Bates, P. D. (2017). A high accuracy map of global terrain 

elevations. Geophysical Research Letters, 44: 5844-5853. doi: 

10.1002/2017GL072874. 



119 

 

CHAPTER 6 Evaluation of Performance of 

CMIP5 and CMIP6 GCMs for Flood 

Projection in the Mekong River Basin 

 

6.1 Introduction 

The Mekong River Basin (MRB) is one of the largest international rivers with a drainage 

area of 795,000 km2 in China, Myanmar, Thailand, Lao PDR, Cambodia, and Vietnam. The 

annual flood damages range approximately US$ 60–70 million (MRC, 2011). The flood-

related damages dramatically increase from 1984 to 2017 (Try et al., 2018a), and the 

frequency and severity of extreme flood events have also raised in the MRB (Oddo et al., 

2018). Try et al. (2018a) found a significant increase in the trend of population settlement 

close to the river network and floodplain in the Lower Mekong Basin (LMB) in which most 

areas are prone to flooding (Try et al., 2019). Climate change was projected to affect the 

hydrological and ecological system in the LMB, particularly in the Tonle Sap Lake (Burnett 

et al., 2013; Chadwick et al., 2008; Hoang et al., 2016; Johnstone et al., 2013; Keskinen et 

al., 2013; Uk et al., 2018) as the interaction from the Mekong River. The natural 

phenomenon of huge seasonal changes of flood inundation is the home to more than 370 

plant species, 197 phytoplankton species, and more than 225 bird species (MRC, 2010).  

The annual flood deposited the sediment as natural fertilizers as benefits for high 

agricultural productivity and biodiversity.  

 

Climate models are generated from different research groups worldwide. The research 

groups update their modeling results according to the schedule of the assessment report of 

the Intergovernmental Panel on Climate Change (IPCC). The IPCC fifth assessment report 

(AR5) addressed the Coupled Model Intercomparison Project Phase 5 (CMIP5) in 2013 

while the CMIP6 is being launched. The climate projections are scenario-dependent. The 

IPCC AR5 examined different possible future greenhouse gas emissions addressing by four 

Representative Concentration Pathways (RCPs). These scenarios were RCP2.6, RCP4.5, 

https://www.ipcc.ch/
https://www.carbonbrief.org/qa-how-do-climate-models-work#cmip
https://www.skepticalscience.com/rcp.php
https://link.springer.com/article/10.1007/s10584-011-0152-3
https://link.springer.com/article/10.1007/s10584-011-0151-4
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RCP6.0, and RCP8.5 (IPCC, 2014). The new Coupled Model Intercomparison Project 

Phase 6 (CMIP6) has designed new scenarios called Shared Socioeconomic Pathway (SSP) 

namely SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5 (Eyring et al., 2016; O’Neill et al., 

2016). The improvement of CMIP6 scenarios was increasing equilibrium climate 

sensitivity (ECS). CMIP5’s ECS ranges between 1.5C–4.5C which means that 66% chance 

of true value falls in that range. However, around 34% extra values of ECS was considered 

in CMIP6 models. The models in CMIP6 generally have a finer spatial resolution which 

can raise their capability and reduce uncertainty (Chen et al., 2020).  

 

Generally, the information on climate change effects on a river basin is urgently important 

to policymakers to prepare the mitigation and adaptation activities. The use of the general 

circulation model (GCM) in climate change projections usually includes uncertainties from 

different sources identified as assumptions of greenhouse gas (GHG) emission scenario, 

model configuration, climate downscaling, and unforced variability of the climate system 

(Giorgi, 2010). Hoang et al. (2016) marked that uncertainty of hydrological extremes under 

climate change in the MRB was reduced in CMIP5, compared to the previous CMIP3. 

 

Ruan et al. (2018) evaluated the ranking scores of precipitations from CMIP5 GCMs over 

the LMB. Chhin and Yoden (2018) proposed a framework for model ensemble selection 

based on historical simulations of CMIP5 GCMs in the Indochina region, and Chhin et al. 

(2020) used their optimal ensemble subset for future drought projection. Try et al. (2020b) 

assessed future climate change impacts on flood inundation in the LMB through high-

resolution Atmospheric General Circulation Model from Meteorological Research Institute 

(MRI-AGCM) in which sea surface temperature from 28 CMIP5 GCMs were used as a 

boundary condition. Try et al. (2020c) projected the extreme flood inundation in the MRB 

from a large ensemble database for policy decision making for future climate change 

(d4PDF) using MRI-AGCM with sea surface temperature boundary condition for six 

CMIP5 GCMs including CCSM4, GFDL-CM3, HadGEM2, MIROC5, MPI-ESM-MR, and 

CGCM3. Overall, the previous studies of future projections of flooding in the MRB were 

based on only previous CMIP3 and CMIP5 GCMs while the performance of CMIP6 over 

CMIP5 is necessarily required in this area.  

https://link.springer.com/article/10.1007/s10584-011-0150-5
https://link.springer.com/article/10.1007/s10584-011-0149-y
https://www.carbonbrief.org/qa-how-do-climate-models-work#cmip
https://www.carbonbrief.org/explainer-how-scientists-estimate-climate-sensitivity
https://www.carbonbrief.org/explainer-how-scientists-estimate-climate-sensitivity
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To overcome this limitation and to explore more information on the possibility of future 

flood inundation in the MRB, this paper aims to examine the hypothesis stating that the 

improving performances of CMIP6 over CMIP5 are expected for flood inundation 

simulation in the MRB. Then, we are going to investigate the effects of climate change on 

flood inundation in the MRB using designed scenarios in the near future, mid future, and 

far future at the end of the 21st century. 

 

6.2 Methodology 

6.2.1 Flood Modeling 

This study used an integrated model of rainfall-runoff and flood inundation (RRI model, 

Sayama et al., 2012; 2015a; 2015b). The RRI model is a two-dimensional distributed model 

dealing with slopes and river channels separately. The RRI model calculates flow on slopes 

and rivers based on 2D and 1D diffusive wave equations which are able to consider reversed 

flow. To represent the rainfall-runoff-inundation processes, the RRI model simulates lateral 

subsurface flow, vertical infiltration, and surface flow. The river geometry is assumed to 

be rectangular with width 𝑊 [m] and depth 𝐷 [m] as equations (6.1) and (6.2) in function 

upstream drainage area 𝐴 [km2]. Try et al. (2018b) calculated the geometry coefficients 𝐶𝑊, 

𝑆𝑊, 𝐶𝐷, and 𝑆𝐷 with values of 0.0015, 0.7491, 0.0520, and 0.7596, respectively for the 

MRB.  

 

𝑊 = 𝐶𝑊𝐴
𝑆𝑊    (6.1) 

 

𝐷 = 𝐶𝐷𝐴
𝑆𝐷    (6.2) 

 

The RRI model has been previously used for several purposes that confirms its good 

performance and ability to simulate flood inundation in the MRB. Try et al. (2018b) used 

the RRI model for reproducing a historical flood event in 2000, and Try et al. (2020a) 

evaluated the performance of satellite-based precipitation products. Perera et al. (2017) and 

Try et al. (2020b) used the RRI model to evaluate the effects of climate change in the LMB 
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by considering various Representative Concentration Pathways (RCPs) and sea surface 

temperature (SST) scenarios. Moreover, Try et al. (2020c) validated the RRI model for 

long-term simulation (1983–2010) before using for the projection of extreme flood 

inundation events in the MRB. Therefore, the validated RRI model is used in this study. 

 

6.2.2 Climate Change Dataset 

Daily precipitation and evapotranspiration were obtained from https://esgf-

node.llnl.gov/search/cmip6/ and https://esgf-node.llnl.gov/search/cmip5/ for CMIP6 and 

CMIP5, respectively. This study selected eight GCMs from CMIP5, and the updated 

version of the same GCM was also selected in CMIP6 produced by the same institution 

with CMIP5. Table 6.1 presents the institution, model name, and spatial resolution of each 

model. Six GCMs (no. 1 to no. 6 in Table 6.1) have the same spatial resolution in both 

CMIP5 and CMIP6; however, the other two GCMs (no. 7 and no. 8) have gridded resolution 

double finer in longitude and latitude in CMIP6 compared to CMIP5.  

 

The reference observed-based precipitation used in this study is the Global Precipitation 

Climatology Center (GPCC, Ziese et al., 2018) which is available at http://gpcc.dwd.de/. 

GPCC precipitation was confirmed for its higher accuracy than other four gridded 

precipitation productions (APHRODITE, PERSIANN-CDR, GSMaP, and TRMM) in the 

MRB by comparing with gauged precipitation (Try et al., 2020a), and this product was 

validated for long-term flood inundation modeling in the MRB during 1982–2007 (Try et 

al., 2020b) and 1983–2010 (Try et al., 2020c). Therefore, GPCC is used as a reference to 

evaluate the performance of GCMs from CMIP5 and CMIP6. 

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip5/
http://gpcc.dwd.de/
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Table 6.1 Description of CMIP5 and CMIP6 models. 

  

*Note: the values describe CMIP6 while their spatial resolution in CMIP5 in both longitude and latitude are double coarser than CMIP6. 

No. 
Model Name Resolution 

Modeling Agency References 
CMIP5 CMIP6 Lon.  Lat. 

1 CNRM-CM5 CNRM-CM6-1 1.40625  1.40625 Centre National de Recherches 
Meteorologiques, France 

Voldoire et al. (2013) 

2 IPSL-CM5A-LR IPSL-CM6A-LR 2.5  1.25874 Institut Pierre-Simon Laplace, France Dufresne et al. (2013) 

3 MIROC5 MIROC6 1.40625  1.40625 Atmosphere and Ocean Research Institute, 
National Institute for Environmental 

Studies, Japan Agency for Marine-Earth 
Science and Technology, Japan 

Watanabe et al. (2011) 

4 MPI-ESM-LR MPI-ESM1-2-LR 1.875  1.875 Max Planck Institute for 
Meteorology,Germany 

Giorgetta et al. (2013) 

5 MRI-ESM1 MRI-ESM2.0 1.125  1.125 Meteorological Research Institute, Japan Yukimoto et al. (2012) 

6 ACCESS1-3 ACCESS-CM2 1.875  1.25 Commonwealth Scientific and Industrial 
Research Organization and Bureau of 

Meteorology, Australia 

Bi et al. (2013) 

7 GFDL-CM3 GFDL-CM4 1.25  1.0* Geophysical Fluid Dynamics Laboratory, 
USA 

Donner et al. (2011) 

8 NorESM1-M NorESM2 1.25  0.9375* Norwegian Climate Centre, Norway Bentsen et al. (2013) 
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6.2.3 Performance Assessment 

Taylor (2001) proposed a diagram to provide a concise statistical summary of model 

performance in a single diagram. This study used the Taylor diagram to quantify the pattern 

similarity from two variables (i.e., monthly precipitation from observation and GCMs). The 

correlation coefficient 𝑅 between two discrete variables 𝑓 and 𝑟 of is determined by: 

 

𝑅 = 
1

𝑁
∑ (𝑓𝑓−𝑓̅)(𝑟𝑛−𝑟̅)
𝑁
𝑛=1

𝜎𝑓𝜎𝑟 
   (6.3) 

 

where 𝑓̅  and 𝑟̅  are the mean values; 𝜎𝑓  and 𝜎𝑟  are the standard deviation of 𝑓  and 𝑟 , 

respectively. 𝑁 is the number of data that are both temporal and spatial patterns in this study. 

The statistical indicator, root mean square difference (𝑅𝑀𝑆𝐷), was used to quantify the 

difference between the two variables 𝑓 and 𝑟: 

 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ (𝑓𝑓 − 𝑓̅)(𝑟𝑛 − 𝑟̅)

2𝑁
𝑛=1    (6.4) 

 

Taylor diagram is used to evaluate the performance of precipitation over the entire MRB. 

Moreover, the precipitation in three main zones inside the MRB (i.e., the Upper Mekong 

Basin in China, middle of MRB in Thailand and Lao PDR, and LMB in Cambodia and 

Vietnam in Figure 6.1) was also examined. The simulated discharge from the RRI model 

from CMIP5 and CMIP6 was figured out in terms of monthly and annual peak discharge, 

compared with gauged observation. Finally, the best performance GCMs are selected for 

future projection to check out the possibility of change of flood characteristics in the MRB 

in the near future, mid future, and far future. 
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Figure 6.1 Study area of the Mekong River Basin: a) digital elevation model (DEM) and 

b) three zone for precipitation evaluation. 

 

6.3 Results 

6.3.1 Performance of Precipitation 

The historical experiments were available for the periods of 1950–2005 and 1950–2014 for 

CMIP5 and CMIP6, respectively. The results of monthly precipitation based on grid by 

grid distribution and basin average basin from each GCMs from CMIP5 and CMIP6 were 

displayed in the Taylor diagram in Figures 6.2 and 6.3, respectively. It is clearly seen that 

basin average precipitation had higher accuracy in the correlation coefficient (R), root mean 

square difference (RMSD), and standard deviation (STD). For grid by grid precipitation, 
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the improvement from the average of eight CMIP5 GCMs with R = 0.48, RMSD = 79.11 

mm, and STD = 61.81 mm (STD of GPCC = 87.89 mm) to CMIP6 GCMs with R = 0.58, 

RMSD = 72.82 mm, and STD = 67.10 mm (Table 6.2). For basin average precipitation, the 

performance improvement from CMIP5 to CMIP6 was 0.97 to 0.99 for the correlation 

coefficient, 27.20 mm to 24.67 mm for bias index. However, the standard deviation seems 

to be larger in CMIP6 110.46 mm comparing to 102.0 mm (STD of GPCC = 101.18).  

 

Table 6.2 Comparison of correlation coefficient (R), root mean square difference (RMSD), 

and standard deviation (STD) between grid by grid and basin average precipitation from 

CMIP5 and CMIP6 GCMs. 

GCMs 
R  

[-] 

RMSD 

[mm] 

STD 

[mm] 
  

 R 

[-] 

 RMSD 

[mm]  

STD  

[mm] 

G
ri

d
 b

y
 G

ri
d
 

GPCC - - 87.89  - - 87.89 

C
M

IP
5
 

0.55 75.87 67.41 

C
M

IP
6
 

0.55 78.21 75.69 

0.54 73.93 53.18 0.46 81.69 64.95 

0.62 70.53 67.84 0.64 68.34 65.24 

0.46 82.52 66.92 0.38 86.78 63.39 

0.52 75.84 55.73 0.58 72.28 59.12 

0.63 72.21 79.04 0.71 65.67 85.26 

0.40 80.84 43.28 0.62 69.30 60.87 

0.11 101.11 61.08 0.73 60.27 62.24 

avg. 0.48 79.11 61.81 0.58 72.82 67.10 

B
as

in
 A

v
er

ag
e 

GPCC - - 101.18  - - 101.18 

C
M

IP
5
 

0.99 17.94 86.95 

C
M

IP
6
 

0.99 20.94 88.01 

0.98 22.74 88.54 0.99 17.79 92.00 

0.96 28.66 94.09 0.99 15.17 94.98 

0.99 19.26 90.10 0.99 16.73 102.33 

0.96 34.67 114.04 0.98 34.26 127.57 

0.93 49.55 126.30 0.98 34.02 127.89 

0.98 20.06 98.84 0.98 41.00 136.52 
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0.99 24.74 117.18 0.99 17.46 114.35 

 avg. 0.97 27.20 102.00 0.99 24.67 110.46 

 

Figure 6.2 Taylor diagram of average monthly precipitation for grid by grid distribution 

from CMIP5 (left) and CMIP6 (right). 

 

Figure 6.3 Taylor diagram of average monthly precipitation for basin average for CMIP5 

(left) and CMIP6 (right). 
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Figure 6.4 Taylor diagram of average monthly precipitation for each zone (I, II, and III) 

for CMIP5 (left column) and CMIP6 (right column). 
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Table 6.3 Comparison of monthly precipitation from CMIP5 and CMIP6 GCMs based on 

each zone: Zone I (upper basin), Zone II (middle basin), and Zone III (lower basin) of the 

MRB. 

GCMs 
R 

[-] 

RMSD 

[mm] 

STD 

[mm] 
  

R 

[-] 

 RMSD 

[mm]  

STD  

[mm] 

Z
o
n
e 

I 

GPCC - - 109.90  - - 109.90 

C
M

IP
5
 

0.99 23.85 93.07 

C
M

IP
6
 

0.97 25.22 106.37 

0.97 29.76 116.60 0.95 34.87 97.93 

0.91 46.44 95.79 0.97 28.28 105.05 

0.98 21.57 103.48 0.97 40.29 135.15 

0.92 57.71 141.12 0.97 58.90 158.20 

0.92 63.57 148.83 0.97 54.38 155.66 

0.99 19.19 99.99 0.97 68.93 168.94 

0.94 45.27 127.65 0.99 22.62 123.06 

 avg. 0.95 38.42 115.82 0.97 41.69 131.29 

Z
o
n
e 

II
 

GPCC - - 118.55  - - 118.55 

C
M

IP
5
 

0.99 38.59 82.32 

C
M

IP
6
 

0.96 46.88 80.50 

0.98 32.63 91.83 0.99 21.23 105.65 

0.93 45.44 102.82 0.98 33.20 94.50 

0.99 32.60 90.51 0.99 24.91 100.25 

0.95 37.54 113.28 0.98 22.33 122.02 

0.90 53.02 120.34 0.97 38.17 137.18 

0.96 32.69 111.96 0.98 39.10 147.16 

0.99 18.76 122.88 0.99 20.10 127.21 

 avg. 0.96 36.41 104.49 0.98 30.74 114.31 

Z
o
n
e 

II
I 

GPCC - - 63.97  - - 63.97 

C
M

IP
5
 

0.98 34.58 95.40 

C
M

IP
6
 

0.98 33.09 92.58 

0.94 21.39 61.50 0.99 10.80 70.93 

0.99 38.87 100.70 0.95 47.87 104.92 

0.97 24.14 81.27 0.98 19.42 76.75 
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0.98 30.80 90.11 0.97 52.11 112.00 

0.97 27.82 84.60 0.98 26.73 86.13 

0.99 23.44 85.19 1.00 21.84 84.55 

0.98 50.60 111.39 0.98 31.51 91.94 

 avg. 0.97 31.46 88.77 0.98 30.42 89.97 

 

In addition to precipitation evaluation based on grid by grid and entire basin average, we 

also investigated three zones displayed in Figure 6.1.b. In general, both CMIP5 and CMIP6 

were observed higher performance in Zone III in the LMB (floodplain and delta), following 

by Zone II (central of the MRB) and Zone I (the Upper Mekong Basin). The tendency of 

each model distribution in the Taylor plot in Figure 6.4 can be distinguished by an increase 

of correlation coefficient and reduction of bias index RMSD from CMIP5 to CMIP6. Table 

6.3 provides a summary of information on all model performance. For Zone III, the average 

performance indices among eight GCMs were R = 0.97, RMSD = 31.46 mm, and STD = 

88.77 mm (reference to GPCC STD = 63.97 mm) for CMIP5 and R = 0.98, RMSD = 30.42 

mm, and STD = 89.97 mm for CMIP6. Similarly, the advancement from CMIP5 to CMIP6 

performed by R = 0.96 to 0.98, RMSD = 36.41 mm to 30.74 mm, and STD = 104.49 mm 

to 114.31 mm (STD of GPCC = 118.55 mm). Among the three zones, Zone I had poor 

accuracy with R = 0.95 and 0.97, RMSD = 38.42 mm and 41.69 mm, and STD = 115.82 

mm and 131.29 mm for CMIP5 and CMIP6, respectively. 

 

6.3.2 Performance of Discharge Simulation 

In addition to the evaluation of precipitation, the daily precipitation from all GCMs was 

used as input to the RRI model to check the ability for simulation of river flow as well as 

annual peak flood discharge. Figure 6.5 showed a comparison of gauged observation and 

simulated discharge at Kratie located in the floodplain of the LMB (Try et al., 2020c). 

During flood season from June to November, the CMIP5 underestimated the river discharge 

by mean and even though error bar (i.e. mean ± standard deviation), especially, the 

observation discharge is outside the range of error bar of CMIP5 in July and August. 

However, its mean results became closer to observation in the late flood period in October-

December. The overall performance of CMIP6 was improved during flood season 
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compared to CMIP5. Particularly, during the peak flood period in September, the mean of 

CMIP6 was close to the observation while the mean of CMIP5 was an underestimation. 

 

Similar to precipitation and monthly discharge, the performance in terms of annual peak 

discharge (Figure 6.6) showed a similarity of the performance improvement in CMIP6 

compared to CMIP5. While the CMIP5 showed an underestimation of annual peak 

discharge, the mean from CMIP6 had a good agreement with observation. However, the 

ranges from lower to upper error bars of CMIP6 was larger than CMIP5 and observation 

peak discharges. 

 

This study considered wet and dry years as their discharge is higher or less than the average 

as the threshold. From the observation discharge during 1950–2014, we classified wet and 

dry years with 31 years (48%) and 34 years (52%). Among the 8 CMIP5 GCMs for the 

historical experiment (1950–2005), wet years accounted for 137 years (31%), and the 

remained 311 years (69%) were dry years. The better proportion of CMIP6 GCMs during 

1950–2014 was seen by 230 years (44%) and 290 years (56%) for wet and dry years, 

respectively.  

 

Last but not least, the overall performance from historical experiments from CMIP6 GCMs 

was better compared to the previous version of CMIP5 for precipitation and flood 

prediction in the MRB. Therefore, CMIP6 GCMs were used for possible future projection 

of flood in the MRB as the following section. 
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Figure 6.5 Comparison of observed and simulated monthly discharge at Kratie from 

CMIP5 and CMIP6 GCMs. The central point represents mean, and its lower and upper 

bars display mean ± standard deviation from model ensembles. 

 

 

Figure 6.6 Comparison of annual peak discharge at Kratie between observation and 

simulation from CMIP5 and CMIP6 GCMs. The central point represents mean, and its 

lower and upper bars display mean plus and minus standard deviation. 
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6.3.2 Projection of Future Floods 

Try et al. (2020c) determined the effective duration of precipitation of 90-day in the MRB 

correlated with the peak discharge and inundation. For a better representation of 

precipitation affected on flooding, we, therefore, evaluated the changes of annual maximum 

90-day precipitation for the MRB. Figure 6.7 showed 90-day precipitation from the baseline 

period (1980–2014) to the projected periods in the near future (2026–2050), mid future 

(2051–2075), and far future (2076–2100) derived from CMIP6 GCMs. Overall, the results 

indicated that the precipitation would increase for all the future projected periods for both 

scenarios SSP2-4.5 and SSP5-8.5. According to 8 ensembles from CMIP6 GCMs, the 

effective precipitation would increase by 4.2 ±5.1%, 6.7±7.2%, and 8.9±11.2% for SSP2-

4.5; and 4.0±5.5%, 6.6±7.4%, and 11.6±12.3% for SSP5-8.5 in near, mid, and far futures, 

respectively. 

 

In addition to the evaluation of the precipitation, the peak flood was also evaluated for the 

changes for the future projections. The annual peak discharge in Kratie of the LMB was 

used for the representation of the flooding in the LMB. Generally, the flooding raises up 

for all considered periods (Figure 6.8). For the SSP2-4.5 scenario, the peak discharge 

enlarges its magnitude by 10.1±11.8%, 16.4±15.1%, and 17.2±17.9% during the near future, 

mid future, far future, respectively. Additionally, the peak discharge for SSP5-8.5 sharply 

increases by 9.9±11.1%, 17.6±14.4%, and 28.9±27.9% for the three periods in the future 

projection. 

 

The peak discharge in baseline (1980–2014) from the 8 CMIP6 GCMs shows wet years 46% 

(128/280) and dry years 54% (152/280). This proportion of wet years for the SSP2-4.5 

scenario constantly augments to 55% (109/200), 60% (119/200), and 61% (122/200), while 

the dry years decrease to 46% (91/200), 41% (81/200), and 39% (78/200) for near, mid, 

and far futures. For the SSP5-8.5 scenario, the ratio for wet years sharply steps up to 56% 

(44% for dry years), 64% (36%), and 75% (25%), for three projection periods, respectively. 
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Figure 6.7 Annual maximum 90-day precipitation from baseline to projections in near 

future, mid future, and far future for SSP2-4.5 and SSP5-8.5. The horizontal straight lines 

represent mean in baseline period. The central bold lines are mean of model ensembles. 
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Figure 6.8 Annual peak discharge at Kratie from baseline to projections in near future, 

mid future, and far future for SSP2-4.5 and SSP5-8.5. The horizontal straight lines 

represent mean in baseline period. The central bold lines are mean of model ensembles. 
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6.4 Discussion 

The most recent CMIP6 GCMs are expected to improve their characteristics and have better 

performance for climate simulation over their previous CMIP5. This study analyzed the 

characteristics of precipitation and flood from 8 CMIP6 GCMs in the MRB by comparing 

with their sample model from CMIP5According to the Taylor diagram analysis of 

precipitation based on grid by grid, basin average, and three-zone divisions, the results 

significantly confirmed the improvement of precipitation from CMIP6 GCMs in term of 

their correlation and bias values compared with the observation. Similarly, the monthly and 

annual peak discharge was also ameliorated. Especially, the model ensemble means from 

CMIP5 expressed an underestimation the values from CMIP6 are close to the observation.  

 

In addition, the projections of future climate in the MRB using the CMIP6 GCMs indicate 

an increase of both effective precipitation and annual peak discharge in the near (2026–

2050), mid (2051–2075), and far (2076–2100) futures by comparing with the baseline 

period (1980–2014). The increases in peak discharge at Kratie range between 10.1–17.9% 

and 9.9–28.9% during the three future projected periods for SSP2-4.5 and SSP5-8.5, 

respectively. These results had a similar agreement with previous studies on the impacts 

and severity of future climate change in the MRB. For instance, Try et al. (2020b) 

determined the increase of extreme flow exceeding 5% of times (Q5) by 13–30% in the 

projection period in 2075–2099 by comparing to 1979–2003 for ranges of RCP and sea 

surface temperature scenarios. Similarly, Perera et al. (2017) found the increase of 

discharge volume in Kratie around 25% for RCP8.5 scenario (comparable to SSP5-8.5 in 

CMIP6). Vastila et al. (2010) projected annual maximum flood in the LMB for the period 

of 2010–2049 by changes between -3–14% for A2 scenario in CMIP3 (comparable to 

RCP8.5 in CMIP5 and SSP5-8.5 in CMIP6).  

 

However, this study used the raw GCMs from CMIP6 without bias correction or 

downscaling to regional climate yet, the model uncertainties could involve in the result 

analysis. This study mainly focuses on the evaluation of historical simulation from the 

climate datasets and the future projection under climate change impact only. To be more 
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realistic, the cumulative impacts from other sources should be also considered. For example, 

the land use was assumed to be constant from the baseline to the projected periods. Changes 

of topography due to soil erosion and deposition were not taken into account. On the other 

hand, the hydropower and irrigation reservoirs would influence seasonal hydrology and 

river flow of the river basin. However, the future projections of flooding in this study focus 

only on annual peak discharge. Try et al. (2020c) found that six mainstream dams in the 

Upper Mekong River in China during had impact in reduction of annual peak discharge in 

Kratie only 1% during the period of 2012–2016; therefore, dam reservoirs were neglected 

in this study. Further studies are needed to assess the cumulative impacts of climate change 

associated with these land-use changes and water infrastructure development impacts. 

 

6.5 Summary 

This study focused on the assessment of the performance of CMIP5 and CMIP6 GCMs in 

terms of precipitation and discharge simulation in the MRB. The results indicated an 

improvement of raw CMIP6 GCMs compared to the previous CMIP5 GCMs. Therefore, 

the studies on climate change impacts on hydrology changes such as floods and droughts 

using CMIP6 GCMs in the MRB should be more reliable and be carried out as additional 

information to the results from the previous CMIP3 or CMIP5 GCMs. Moreover, further 

study should focus on bias correction and downscaling of CMIP6 GCMs to catch up with 

regional climate and observation and to get finer grid resolution, which is more suitable for 

spatial distribution, particularly for the studies in the sub-catchments of the MRB. The 

future projections of flooding in the MRB from 8 CMIP6 GCMs showed a significant 

increase of effective precipitation as well as annual peak discharge in the near future, mid 

future, and far future in both SSP2-4.5 and SSP5-8.5 scenarios.  
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CHAPTER 7 Concluding Remarks and Future 

Perspectives 

 

7.1 Summary and Conclusion 

Climate change impacts on river hydrology and flood inundation have become a global 

issue attracting the public attention. Climate change drives the spatiotemporal variation of 

precipitation resulting in changes in frequency and intensity of flooding. The studies of 

climate change impact on flood phenomena and consequences are important for future 

control, hazard risk reduction, and improvement of flood resilience and management. The 

Mekong River Basin (MRB) is located in a zone vulnerable to climate change impact which 

would affect the local food production, water supply, biodiversity, and environment.  

 

This study focused to provide more detailed information on the possibility of the effects of 

climate change on flood inundation in the MRB. This research mainly addressed the 

outcomes as the following. Firstly, the performance of gridded precipitation products was 

evaluated based on their ability to simulate runoff and flood inundation processes. Next, 

the possible impacts of climate change were assessed by considering a large ensemble 

climate dataset (d4PDF), high- and super-high-resolution AGCM outputs (MRI-

AGCM3.2S and MRI-AGCM3.2H), and the most recent CMIP6 GCMs.  

 

Five gridded precipitation products were evaluated for their performance for flood 

inundation in the MRB.  The results indicated that GPCC and TRMM had better 

performance in simulating river discharge and flood inundation than the other three 

products (PERSIANN-CDR, APHRODITE, and GSMaP). Since GPCC had longer 

available periods (1982–2016) than TRMM (1998–present) for daily precipitation. 

Therefore, GPCC is suitable for long-term simulation of hydrological characteristics in the 

MRB, particularly for the study of climate change impacts on hydrology and flood 

inundation. In addition, GPCC precipitation is appropriate for use as a reference for bias 

correction of climate datasets. Its monthly precipitation is available from 1891 to 2016 
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(version Full Data Monthly Version 2018) at various spatial resolutions of 0.25°, 0.5°, 1.0°, 

and 2.5° at a global scale.  

 

Next, the effective duration of precipitation which has the highest correlation to peak flood 

inundation was determined, and this duration was used to observe the changes of future 

precipitation under climate change impact. 90-day precipitation counting backward from 

the day of peak flooding had the highest correlation with peak discharge and inundation 

(both R2 = 0.81). According to a large ensemble climate dataset (d4PDF), the changes in 

future effective precipitation from present climate (60-year: 1951–2010  100 ensemble 

members) to future climate under 4 K increasing scenario (60-year: 2050–2110  90 

ensemble members) showed a large variation of mean 777–900 mm and standard deviation 

57–96 mm. The statistical Kolmogorov-Smirnov (K-S) test identified a significant 

difference in future sea surface temperature (SST) scenarios (6 future SST scenarios  15 

ensemble members). The extreme flood inundation events of 50-year, 100-year, and 1000-

year return periods in the LMB demonstrate an increase of annual peak discharge, 

inundation extent, and inundation volume by 25–40%, 19–36%, and 23–37%, respectively. 

The benefits of the application of a large ensemble climate dataset would reduce qualitative 

uncertainty of future projection of flood inundation.  

 

Additionally, the climate change effects under different RCP and SST scenarios were 

assessed by using high- and super-high-resolution AGCM output from MRI-AGCM3.2H 

and MRI-AGCM3.2S models. The results of climate change from the present climate 

(1979–2003) to the future climate (2075–2099) suggested that the increment of 

precipitation between 6.6–14.2% could lead to an increase in extreme river flow exceeding 

5% of time (Q5) 13–30%, annual peak inundation extent 19–43%, and annual peak 

inundation volume 24–55% in the LMB for ranging of RCP and SST scenarios. The 

statistical K-S test of the spatial distribution of probability and duration of flood inundation 

showed significance in most areas regardless of RCP and SST scenarios.  

 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) has just been launched as 

the updated version of the previous CMIP5 GCMs. The performance of the 8 CMIP6 GCMs 
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was evaluated by comparing their previous CMIP5 GCMs. The Taylor diagram showed 

results improvement of correlation and error coefficients of precipitation and discharge 

simulation of the 8 GCMs from CMIP5 to CMIP6. Moreover, there was an improvement 

of annual peak discharge from mean of CMIP6 GCM ensembles with the observation while 

the underestimation was seen in CMIP5 GCMs. The projection of future flooding in the 

LMB using 8 CMIP6 GCMs pointed out an increase of annual peak discharge at Kratie by 

10.1 ± 11.8%, 16.4 ± 15.1%, 17.2 ± 17.9% for SSP2-4.5 scenario and 9.9 ± 11.1%, 17.6 ± 

14.4%, 28.9 ± 27.9% for SSP5-8.5 scenario, respectively during three projection periods in 

the near future (2026–2050), mid future (2051–2075), and far future (2076–2100). 

 

This dissertation has analyzed climate change impact on flood inundation in the LMB using 

various sources of climate outputs including large ensemble climate dataset (d4PDF), high- 

and super-high-resolution AGCM (MRI-AGCM3.2H and MRI-AGCM3.2S), and the most 

recent CMIP6 GCMs (Table 7.1). Their performance showed an agreement to reveal the 

significant increase of the magnitude of extreme flood and inundation in the LMB under 

future climate projection.  

 

Different climate outputs may have different benefits. The coarse resolution of climate 

datasets would have less impact on the accuracy of the study for climate change impact on 

flood inundation in the large-scale river basin (e.g., LMB), but their data quality might be 

more significant to influence the reduction of uncertainty for future climate projection. The 

large ensemble members of the climate projection would definitely reduce the qualitative 

uncertainty of climate projection.  However, the climate projection in the tributaries of the 

MRB or any other small river basin might be still mainly influenced by the resolution of 

the climate dataset.  
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Table 7.1 Summary of change of flood inundation in the LMB under different future climate projection  

 

Climate Model Flood Event Scenario Baseline Period Projection Period Magnitude Change 

d4PDF 

50-year return period 

+4K 

1951-2010 2051-2110 +25% 

100-year return period 1951-2010 2051-2110 +33% 

1000-year return period 1951-2010 2051-2110 +40% 

MRI-AGCM3.2H 
high flow exceeding 5% 

of time (Q5) 

RCP2.6 
1979-2003 

1979-2003 

1979-2003 

1979-2003 

2075-2099 +14% 

RCP4.5 2075-2099 +13% 

RCP6.0 2075-2099 +18% 

RCP8.5 2075-2099 +30% 

MRI-AGCM3.2S Q5 SST 1979-2003 2075-2099 +18±3% 

CMIP6 GCMs Annual Peak Discharge 

SSP2-4.5 1980-2014 

2026-2050 +10.1±11.8% 

2051-2075 +16.4±15.1% 

2076-2100 +17.2±17.9% 

SSP5-8.5 1980-2014 

2026-2050 +9.9±11.1% 

2051-2075 +17.6±14.4% 

2076-2100 +28.9±27.9% 
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7.2 Limitations and Future Work 

The potential impacts of climate change on flood inundation in the MRB were assessed by 

using various sources of climate outputs including the d4PDF dataset, MRI-AGCM3.2S, 

MRI-AGCM3.2H, and CMIP6 GCMs. However, there are some limitations to this study. 

Firstly, the land use was assumed to be static during the simulation periods to facilitate the 

simulation condition while the actual land use may change from year to year. The 

uncertainty sources due to model structure and parameters were not considered. Moreover, 

the river bed and topography changes were not taken into account in the simulation; in fact, 

it would vary for the long-term due to soil erosion and deposition. Plus, the impact of water 

infrastructures such as hydropower and irrigation reservoir were not yet examined in the 

future projection. Therefore, the future research direction should pay more attention to the 

study of integrated impacts of climate change, land-use change, and human activities which 

would provide further understanding and represent more realistic for future characteristics 

of flood inundation in the MRB. The application of a large ensemble dataset (d4PDF) could 

reduce the qualitative uncertainty of future projection of flood inundation. However, the 

future projection of flood inundation was conducted under only one scenario (+4 K 

increasing) due to the limitation of simulation resources and data availability. Further 

research needs to consider more scenarios and include bias correction of large ensemble 

climate data. Even though the CMIP6 GCMs were found to be an improvement of their 

performance, this study did not apply the bias correction and downscaling of climate data 

from the global scale to regional climate conditions as well as to get the higher spatial 

resolution dataset. This would also contain the uncertainty of the projection of future flood 

inundation.  
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Appendix B: Shuffled Complex Evolution 

Algorithm 

 

Shuffled Complex Evolution (SCE-UA) Algorithm 

 

SCE-UA method is a global optimization technique for broad class of problems including 

hydrological optimization trials. It combines the strengths of Controlled Random Search 

(CRS) algorithms with the concept of competitive evolution and complex shuffling. The 

steps of the SCE-UA algorithm are as the following.  

 

Step 1 

Initialize. Select 𝑝 ≥ 1  and  𝑚 ≥ 𝑛 + 1 , where 𝑝 =  number of complexes and 𝑚 = 

number of points in each complex. Compute the sample size 𝑠 = 𝑝 ×𝑚. 

 

Step 2 

Generate sample. Sample 𝑠 points 𝑥1,⋯ , 𝑥𝑠 in the feasible space Ω ⊂ ℝ𝑛. Compute the 

function value 𝑓𝑖  at each point 𝑥𝑖 . In the absence of prior information, use a uniform 

sampling distribution.  

 

Step 3 

Rang points. Sort the 𝑠 points in the order of increasing function value. Store them in an 

array 𝐷 = {𝑥𝑖, 𝑓𝑖, 𝑖 = 1,⋯ , 𝑠}, so that 𝑖 = 1 represents the point with the smallest value.  

 

Step 4 

Partition into complexes. Partition 𝐷  into 𝑝  complexes, 𝐴1, ⋯ , 𝐴𝑝 , each containing 𝑚 

points, such that 𝐴𝑘 = {𝑥𝑗
𝑘, 𝑓𝑗

𝑘|𝑥𝑗
𝑘 = 𝑥𝑘+𝑝(𝑗−1), 𝑗 = 1,⋯ ,𝑚}. 

 

Step 5 
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Evolve each complex. Evolve each complex 𝐴𝑘 , 𝑘 = 1,⋯ , 𝑝 according to the competitive 

complex evolution algorithm outline as below: 

1. Initialize. Select 𝑞, 𝛼, and 𝛽, where 2 ≤ 𝑞 ≤ 𝑚, 𝛼 ≥ 1, and 𝛽 ≥ 1. 

2. Assign weight. Assign a triangular probability distribution to 𝐴𝑘, i.e., 

𝜌𝑖 =
2(𝑚 + 1 − 𝑖)

𝑚(𝑚 + 1)
, 𝑖 = 1,⋯ ,𝑚  

The point 𝑥1
𝑘 has the highest probability, 𝜌1 = 2/(𝑚 + 1). The point  𝑥𝑚

𝑘  has the 

lowest probability, 𝜌𝑚 = 2/𝑚(𝑚 + 1). 

 

3. Select parents. Randomly choose 𝑞 distinct points 𝑢1, ⋯ , 𝑢𝑞 from 𝐴𝑘 according to 

the probability distribution specified above (the 𝑞 points define a sub-complex). 

Store them in array 𝐵 = {𝑢𝑖, 𝑣𝑖, 𝑖 = 1,⋯ , 𝑞}, where 𝑣𝑖  is the function value of 

point 𝑢𝑖. Store in 𝐿 the locations of 𝐴𝑘 which are used to construct 𝐵.  

4. Generate offspring 

(a) Sort 𝐵 and 𝐿 so that the 𝑞 points are arranged in order of increasing function 

value. Compute the centroid 𝑔 using the following equation: 

𝑔 = [
1

𝑞 − 1
]∑𝑢𝑗

𝑞−1

𝑗

 

(b) Compute the new point 𝑟 = 2𝑔 − 𝑢𝑞 (reflection step). 

(c) If 𝑟 is within Ω, compute the function value 𝑓, and go to step (d); else, compute 

the smallest hypercube H ⊂ ℝ𝑛 that contains 𝐴𝑘, randomly generate a point 𝑧 

within  H, compute 𝑓𝑧, set 𝑓𝑟 = 𝑓𝑧 (mutation step). 

(d) If 𝑓𝑟 < 𝑓𝑧, replace 𝑢𝑞 by 𝑟 go to Step (f); else, compute 𝑐 = (𝑞 + 𝑢𝑞)/2 and 

𝑓𝑐 (contraction step). 

5. Replace parents by offspring.  Replace 𝐵 into 𝐴𝑘 using the original locations stored 

in 𝐿. Sort 𝐴𝑘 in order of increasing function value. 

6. Iterate. Repeat Steps 1) through 4) 𝛽  times, where 𝛽 ≥ 1  is a user-specified 

parameter which determines how many offspring should be generate.  

 

Step 6 
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Shuffle complexes. Replace 𝐴1,⋯ , 𝐴𝑝 into 𝐷, such that 𝐷 = {𝐴𝑘 , 𝑘 = 1,⋯ , 𝑝}. Sort 𝐷 in 

order of increasing function value. 

 

Step 7 

Check convergence. If the convergence criteria are satisfied, stop; otherwise, return to Step 

4.  


