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Abstract

This thesis describes a unified statistical approach to joint multichannel source
separation and dereverberation. This technique is useful as a front end of various
audio applications including smart speakers, conversational robots, and hearing
aid systems because recorded signals usually consist of utterances of target and
non-target speakers that often overlap, environmental noise, and reverberation.
The objective of source (speech) separation is to recover multiple source (speech)
signals from observed multichannel mixture signals. Speech enhancement is
one important type of speech separation that aims to extract only utterances of
a particular speaker from noisy mixture signals. In addition, it is necessary to
recover anechoic (dry) speech signals for improving the speech intelligibility and
the performance of automatic speech recognition.

A typical approach to multichannel source separation is to formulate and
optimize a unified probabilistic model consisting of a source model representing
the power spectral densities (PSDs) of sources and a spatial model representing
their spatial covariance matrices (SCMs). Assuming that the PSDs of all sources
have low-rank structures in the time-frequency domain, nonnegative matrix
factorization (NMF) has often been used for formulating a source model. One
of the most successful examples of this approach is multichannel nonnegative
matrix factorization (MNMF) consisting of a low-rank source model based on NMF
and a full-rank spatial model assuming the full-rankness of the SCMs for dealing
with reverberation longer than a window size. Although MNMF is a versatile
blind source separation method that has a tuning-free convergence-guaranteed
iterative optimization algorithm, it has four major problems. 1) The low-rankness
of the source PSDs does not always hold in reality, especially for speech sources
having complicated dynamics. 2) MNMF tends to easily get stuck in a local
optimum because of a high degree of freedom of the spatial model. 3) The
optimization algorithm is too computationally expensive. 4) The performance of
MNMF is severely degraded under a realistic echoic condition.

To solve the problems 1) and 2), in Chapter 3, we propose a semi-blind speech
enhancement method called MNMF-DSP that uses a conventional low-rank
model and a deep generative model as noise and speech models (source models),
respectively. While the noise model is learned on the fly from observed noisy
speech signals in an unsupervisedmanner, the speechmodel is learned in advance
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from clean speech signals in an unsupervisedmanner and used as a prior of clean
speech spectrogram. We experimentally show that MNMF-DSP outperformed
MNMF and alleviates the initialization sensitivity.

To solve the problems 2) and 3), in Chapter 4, we propose a computationally-
efficient variant ofMNMFcalled FastMNMFbased on a jointly-diagonalizable full-
rank spatial model. Assuming the SCMs of all sources to be jointly diagonalizable,
computationally-expensive MNMF dealing with the inter-channel covariance can
be converted to light-weight nonnegative tensor factorization (NTF) based on the
inter-channel independence. To explicitly consider the directivity or diffuseness
of each source, we also propose rank-constrained FastMNMF that enables us to
individually specify the ranks of SCMs. We experimentally show the superiority
of FastMNMF over MNMF and the effectiveness of the rank constraint.

To solve the problem 4), in Chapter 5, we propose an extension of FastMNMF
based on an autoregressive-moving average (ARMA) model called ARMA-
FastMNMF for joint blind source separation and dereverberation. The early
part of the reverberation is represented by the MA model, and the late part
is mainly represented by the AR model, which is suitable for representing
long reverberations. To derive efficient update rules, we introduce the joint-
diagonalization constraint on the MA model. We experimentally show that
ARMA-FastMNMF outperforms conventional methods in many situations.

In Chapter 6, we conclude this thesis with a brief look at future work for
real-time joint separation and dereverberation of a varying number of sources.
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