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from a Knowledge-Based Perspective∗

Yiling Dai

Abstract

With the development of open and online education, students have easier access to
a larger amount of learning materials. One of such resources, Massive Open Online
Courses (MOOCs) make it possible for students to select courses based on their own
learning goals. On the other hand, the one-fits-all curriculumpolicy in traditional higher
education cannot prepare students for the competitive and segmented job market. To
this end, adapting learning experience according to the rapidly-changing job market is
essential to achieve fruitful learning and successful career development. We envision a
picture of higher education in which the students are encouraged to select courses and
design a personalized curriculum for various learning goals. Facilitating the integration
and adoption of online courses motivates this thesis.
With diversified learning goals and heterogeneous courses, it is challenging for

students to discover appropriate courses. In this thesis, we tackle the problems of
course content analysis and course ordering from a knowledge-based perspective. In
other words, we put emphasis on the matching and analysis of learning goals and
courses at the level of knowledge. Considering different types of learning goals and
scales of courses, we address the following three tasks:

• Course content modeling. This task models the knowledge taught in a sin-
gle course, helping understand and evaluate the course content. A curriculum
guideline is utilized as the domain knowledge categorization to indicate what
categories of knowledge are contained in the course. Specifically, we propose a
Wikipedia structure-based method to capture the implicit relatedness of a course
syllabus and the descriptions of the domain knowledge categories.

∗Doctoral Thesis, Department of Social Informatics, Graduate School of Informatics, Kyoto Univer-
sity, KU-I-DT6960-27-1468, February 2021.
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• Knowledge coverage estimation. In this task, we assume that the student has a
specific learning goal, and estimate how much of the target knowledge is covered
in a single course. We define a concept of knowledge category coverage as the
proportion of the knowledge taught in the course to the knowledge required in
the category. We then model the knowledge category and the course as a set of
concepts, and utilize the centrality upon a taxonomy to quantify the importance
of concepts for the computation of the coverage.

• Course ordering. This task identifies the optimal order to take related courses
for a given learning goal. We focus on “technical terminologies” which are
frequently required in the job market. Given a technical terminology, we aim
at identifying an order of courses which contributes to the acquisition of the
terminology and also follows the prerequisite relationships among courses. We
develop a two-step approach in which course-terminology relatedness is firstly
estimated and then courses are ordered based on the prerequisite relationships
and the estimated relatedness. In addition to an information retrieval-oriented
evaluation metric, we explore whether the order is effective from pedagogical
perspectives.

This thesis has advantages over existing works as it a) supports direct learning
goals represented as domain knowledge categories and job opportunities, b) provides a
systematic view on course content by utilizing the domain knowledge categorization, c)
quantifies knowledge coverage to provide a helpful criterion in course selection, and d)
models a rank-sensitive ordering problem where the information gain of every position
is optimized. Furthermore, promising results were obtained to show that the proposed
methods are effective.

Keywords: Course content analysis, Knowledge coverage, Course ordering,
Curriculum guideline, Job opportunity
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CHAPTER 1

Introduction

In this chapter, we first introduce the background and motivation of this thesis. Then,
we state the challenges and research tasks. After that, a differentiation with related
works follow. At last, we outline the thesis structure.

1.1 Background and Motivation

1.1.1 Cutting across the institutional boundaries

As the printing press changed the spread of textbooks, and the television brought the
Open University into being, the Internet is reshaping higher education [1]. Among var-
ious educational innovations which are powered by information technologies, Massive
Open Online Courses (MOOCs) have earned growing popularity and triggered discus-
sions since 2012. Rather than merely digitalizing the course materials or transiting
the in-class activities into a closed online learning system, MOOCs aim at providing
high-quality education to anyone with Internet access.
Here, we highlight a core characteristic of the MOOC environment— the courses

and students are large at scale and rich in diversity.

• Courses. As one of the biggest MOOC platforms Edx reports, it has built
partnerships with more than 140 institutions and succeeded in providing more

1



1. Introduction

than 2,500 courses.1 These courses cover across various subjects including
computer science, math, chemistry, business, humanities, and so on.

• Students. Belanger and Thornton [2] reported that their first MOOC reached
around 12,000 students, more than half of whom actually interacted with the
course materials. Although only 313 students completed the course successfully,
it is noteworthy that those students represented at least 37 different countries.

The massiveness and openness make MOOC a learning environment with consid-
erably more freedom than traditional higher education. Instead of completing the
prescribed curriculum and achieving a degree from the university, MOOC students
demonstrate a wide range of motivations. Acquiring knowledge of the subject, up-
dating skills in the current job position, gaining opportunities for career changes, and
having fun by learning new things are some frequently observed motivations to take
MOOCs [3]. In other words, the students demonstrate more diversified learning goals
when they have access to a larger amount of learning materials. Therefore, it is neces-
sary to discover the courses that meet various learning goals.

1.1.2 Bridging the gap between academia and industries

The gap between academia and industries has been a long-standing problem. Taking the
domain of computer science for example, many research works have investigated what
knowledge is perceived important by different parties such as educators, graduates,
workers, and recruiters [4, 5, 6, 7, 8, 9]. Here, we highlight some interesting findings.
Lethbridge’s survey [5] found that the knowledge taught in a computer science program,
such as digital electronics and formal languages, are not actually applied in the software
professionals’ work, thus, tends to be forgotten after students’ graduation. For specific
software (e.g., educational software) designers, they reflected that knowledge about user
experience and interface design was extremely important in their jobs but under-taught
in their formal education [7]. Exter et al. [8] reported that acquiring an understanding of
the underlying concepts of programming languageswas perceivedmuchmore beneficial
than learning the most recent programming languages. To this end, a predefined
curriculum cannot serve the ever-changing and segmented job requirements.
To bridge the gap between academia offerings and industrial demands, activities

which combine learning and working were suggested to be integrated into the curric-
1https://www.edx.org/, accessed November 25, 2020.
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1. Introduction

Figure 1.1: Envisioning higher education.

ular [7, 10]. Such activities could be internships, realistic and complex projects, or
even special talks given by industrial professionals. These activities were expected to
strengthen students’ motivations to pursue their majors in the future [11] and demon-
strated a relation with the improvement of students’ engagement in learning [12]. To
sum up, there is a need to modify the students’ learning experiences according to their
career demands at flexible time points.

1.1.3 Envisioning future higher education

As described in Sections 1.1.1 and 1.1.2, we envision a picture of higher education
in which the “spatial walls” between educational institutions and the “temporal walls”
between learning and working are lowered or even disappear. In Figure 1.1, we map
possible types of higher education into a spectrum according to the degree of strictness
of the admission, curriculum, and diploma policies. As you can see, the traditional
higher education locates at the left extreme of the spectrum. With a strictly prescribed
curriculum, the students are deprived of the opportunities to consider what to learn
by themselves. At the other extreme of this spectrum, we imagine a completely
free environment where the students can decide whatever courses to take whenever
necessary.

3



1. Introduction

Actually, it is still under debate whether such a free environment of higher education
can empower the society better and how many endeavors and collaborations are neces-
sary to achieve such a revolution. However, we do observe the higher education shifting
to the right extreme gradually. Initiatives of using and adopting open courseware and
MOOCs at the institutional or governmental level have been established across the
world, including Europe [13], Arab [14], India [15], China [16], and so on. Although
the development of open and online education is at different stages in these regions,
a commonly underlined motivation is to create accessible and flexible learning oppor-
tunities for the students. As a result, we consider the higher education in the coming
decades as a hybrid one in which open learning materials (e.g., MOOCs) are integrated
on demand into the students’ formal curriculum, to fulfill their personal or career de-
velopment. Facilitating the integration and adoption of online courses motivates this
thesis.

1.2 Challenges and Tasks

In a hybrid environment in which the formal learning in traditional institutions and
the personalized learning on the Internet mix, many stakeholders including students,
educators, recruiters, and policy makers will face the following challenges:

Challenge 1 Expanded and diversified learning goals.

In addition to the completion of a prescribed curriculum, the students take courses
to enrich their knowledge or prepare for a future career. Commonly, the curricula
in traditional higher education institutions put more emphasis on the theoretical
construction of the knowledge in the domain, while job-oriented programs focus
on how the knowledge is applied in the real world. Besides, for the learning goal
such as personal interests towards a subject, the goal is inherently unclear and
difficult to be converted into a specific set of learning outcomes. We suppose that
students have these learning goals contextually, thoughwith different frequencies.
Therefore, it is helpful to understand how the courses serve different types of
learning goals. Furthermore, it is important to encourage the students to explore
and learn beyond their original learning goals.

Challenge 2 A large and heterogeneous collection of courses.

It is beneficial that the students havemore choices of courses provided by different
institutions. However, these courses are designed under different educational

4



1. Introduction

purposes and have different focuses even on a same topic, which makes it difficult
to identify the contents of the courses. Understanding how the courses are similar
or different to others and how they could be combined is important in planning a
successful learning.

Facing the above challenges, this thesis addresses the content analysis and the order-
ing of courses from a knowledge-based perspective. A knowledge-based perspective
means that we discuss both the courses and the learning goals at the level of knowledge.
In other words, we put emphasis on the intrinsic aspects of the courses rather than
extrinsic aspects, such as the popularity of the courses, the reviews of the courses, the
media used in the courses, and the in-class activities conducted in the courses. The
whole course materials such as lecture notes, slides, and video clips are considered as
rich resources to represent the knowledge being taught. However, they also contain
extrinsic aspects indicating how the knowledge is conveyed, such as the layout of the
slides and the use of images and figures. Separating the intrinsic and extrinsic aspects of
the courses is an orthogonal research area and beyond the scope of this thesis. Instead,
we utilize the course syllabus as a cleaner information source to capture the knowledge
that is taught in the courses.
More specifically, we approach by considering different types of learning goals and

different scales of courses as follows:

• Non-specific and specific learning goals. In some situations, the students
have a vague interest towards a subject or just want to explore the content of
world-class courses. We name this type of learning goals as non-specific and
understanding the course content is a vital step. In contrast, the students may
hold specific learning goals such as “working as a web developer in the future”
and “mastering the knowledge of database at the level of a university graduate”.
For such learning goals, identifying the courses that teaches the target knowledge
is our major interest.

• A single course and multiple courses. When examining on a single course,
we aim at understanding what knowledge and how much of it is taught in the
course. For multiple courses, we need to take into account more aspects other
than the knowledge contained in individual courses. For example, we need to
answer questions including but not limited to: Which course is preferable of
these two similar courses? What combination of courses is the most efficient way
to acquire the target knowledge? In what order should I take the courses?

5



1. Introduction

Figure 1.2: Thesis framework.

We then define three essential tasks from the above dimensions as shown in Figure 1.2:

Task 1 Course content modeling. This task models the knowledge taught in the course
by projecting it to a predefined knowledge categorization, which helps identify,
understand, and evaluate the content of a single course.

Task 2 Knowledge coverage estimation. This task assumes that the student has a
specific learning goal and estimates how much of the target knowledge is cov-
ered in a single course. The estimated knowledge coverage can be used as a
straightforward criterion to select the course that meets the goal most.

Task 3 Course ordering. This task identifies the optimal order to take multiple courses
for a given learning goal while paying attention to the dependency relationships
between courses.

There are no apparent priorities of the three tasks as they are important in different
senses. From the perspective of learning goals, tasks that support specific learning
goals should be prioritized as they provide direct benefit to the end users. Besides,
converting non-specific learning goals into specific ones is important for making an
informed learning decision. While from the perspective of courses, the techniques
developed in the tasks that dealing with a single course can enhance the performance

6



1. Introduction

of tasks dealing with multiple courses. Besides, to avoid unnecessary pipelines in one
task, we address these tasks independently in this thesis. In the following sections, we
introduce the three tasks in detail.

1.2.1 Course content modeling

Modeling the content of a course in a straightforward manner is crucial in the process of
choosing an appropriate course for a student. To model the course content, we address
the extraction of the knowledge distribution of a course over a domain knowledge
categorization in this work. A curriculum guideline is utilized as the domain knowledge
categorization, which helps to cast light upon how courses are related to each other
and positioned in this domain. Specifically, we propose a Wikipedia structure-based
method to capture the implicit relatedness of a course syllabus and the descriptions of
the domain knowledge categories.

1.2.2 Knowledge coverage estimation

In this work, we assume a situation in which the student has targeted on the knowledge
defined by some category. Then, knowing how much of the knowledge in the category
is covered by the courses will be helpful in the course selection. We define a concept
of knowledge category coverage and estimate it in a semi-automatic manner. We first
model the knowledge category and the course as a set of concepts, and then utilize a
taxonomy and the idea of centrality to differentiate the importance of concepts. Finally,
we obtain the coverage value by calculating the proportion of the concepts taught in the
course to the ones required in a knowledge category.

1.2.3 Course ordering

As described in Section 1.1.2, obtaining job opportunities is an important purpose of
learning. In this work, we focus on “technical terminologies” which are frequently
required in the job market. Given a technical terminology, we aim at identifying
an order of courses which contributes to the acquisition of the terminology and also
follows the prerequisite relationships between courses. To solve the course ordering
problem, we develop a two-step approach in which course-terminology relatedness is
firstly estimated and then courses are ordered based on the prerequisite relationships
and the estimated relatedness. Putting emphasis on the second step, we propose a
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method based on Markov decision process and compare it with three other methods.
In addition to an information retrieval-oriented evaluation metric, we explore whether
the order is effective from pedagogical perspectives.

1.3 Advantages over Related Work

In this section, we summarize the main advantages of this thesis over related works.
Differentiation with related works in a more specified context will be introduced in the
corresponding chapter of each task.

1.3.1 Supporting direct learning goals

Learning goals indicate why the students want to learn. Strong and clear goals lead to
successful learning experiences. We define direct learning goals as clear statements of
what the students are able to understand or do after learning, such as “understanding re-
lational database” and “being able to design the database schema of a course enrollment
system”. On the other hand, indirect learning goals are not relevant to the knowledge
itself, but the secondary outcomes of learning such as the reward of succeeding or the
punishment of failing the learning. “Passing the final exam of this course” counts as an
example of indirect learning goals.
A bunch of previous works have attempted to recommend learning materials for

indirect learning goals, such as recommending the quiz questions that are highly prob-
able to be answered correctly by the students [17, 18, 19], recommending courses for
obtaining high grades [20, 21], graduating early [20], and fulfilling implicit interest
towards the courses [22, 23, 24, 25]. There exist two drawbacks in these works: a)
These works greatly depend on the past learning data and assume that frequently learnt
materials are preferable, which are actually not necessarily suitable to every student;
b) Although indirect learning goals may improve students’ motivations, direct learning
goals, in other words, the sheer curiosity towards the knowledge, are expected to trigger
students’ deeper engagement in learning [26].
In this thesis, we model two types of direct learning goals: the domain knowledge

categories and the knowledge required in the job market. The domain knowledge
categories represent the domain knowledge in an easy-to-understandmanner, which can
be utilized as a reference by both expert and novice students. Task 1 and Task 2 aim at
identifying how the courses cover the knowledge defined in the knowledge categories.

8
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On the other hand, the job market is a major usage of the knowledge the students
have learnt. To this end, using job opportunities to model the learning goals provides
the students clearer images of the learning outcomes, resulting in stronger learning
motivations. Task 3 attempts to order multiple courses towards getting relevant job
opportunities.

1.3.2 Providing a systematic view on course content

Regarding the analysis of course content, a line of research attempted to extract and
build concept maps from learning materials [27, 28, 29], or expand the concepts to
complement the original course content [30]. To encourage the retrieval and reuse of
learning materials, another line of research tried to annotate the learning materials with
metadata [31] or external standards [32].
These works focused on the retrieval and organization of detailed concepts, which

results in an over-exposure of the content and a lack of systematic view. Suppose that
a student is interested in learning “sorting algorithm”, then previous research works
well in identifying a sequence of learning materials teaching related concepts such as
“selection sort”, “insertion sort”, “quicksort”, and “mergesort”. However, we encourage
the student to take a step back and look from a bigger picture. In other words, we want
to provide answers to questions such as “What problems are usually associated with
sorting algorithms?”, “Are there any other algorithms?”, “How do sorting algorithms
relate to data structures and specific programming languages?”, and so on.
Task 1 attempts to solve this problemby utilizing a domain knowledge categorization.

Understanding how the courses contain knowledge over different categories enables the
students to explore and compare courses, which also contributes to the refinement of
their learning goals.

1.3.3 Quantifying knowledge coverage

For specific learning goals such as acquiring the knowledge in predefined categories, a
quantitative estimation of knowledge coverage helps select relevant courses and reveal
knowledge gaps. Some works attempted to discover whether the knowledge category
of interest is covered or not by academic programs or courses [33, 32]. While other
works took a further step to inspect the extent to which knowledge categories are
covered [34, 35, 36]. To the best of our knowledge, Task 2 is the first work to provide
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a rigorous definition of coverage and estimate it in a semi-automatic manner. The
estimated coverage can be used as an effective criterion to select appropriate courses.

1.3.4 Modeling a rank-sensitive ordering problem

When recommending learning materials, many aspects need to be considered such as
the underlying dependency relationships, the availability, and the importance/relevancy
of the materials. Therefore, the core of such problems is to balance the trade-off among
different aspects. Some works have attempted to recommend a set of courses with
constraints [37, 20], and recommend learning paths of concepts given the start and end
ones [38, 39]. Unlike these works, Task 3 aims at identifying a rank-sensitive ordering
of courses while paying attention to the prerequisite relationships. In other words,
our work ensures that the information gain at every position of the order is optimized,
which is practically helpful for maintaining students’ motivations.

1.4 Thesis Structure

The remainder of this thesis is organized as follows: In Chapter 2, we model the
course content by matching it to a domain knowledge categorization. Specifically, we
propose a Wikipedia structure-based method to capture the implicit relatedness of a
course and a domain knowledge category. In Chapter 3, we estimate the knowledge
coverage of a knowledge category by the courses based on a taxonomy and the idea of
centrality. In Chapter 4, we order the courses toward getting relevant job opportunities
while following the prerequisite relationships among the courses. We then conclude
the thesis in Chapter 5.

10



CHAPTER 2

Course Content Modeling

As described in Chapter 1, it is difficult for the students to understand the course content
given the existing techniques such as course concepts and course metadata, especially
when they do not have a specific learning goal. In this chapter, we approach this
problem by leveraging the domain knowledge categorization, which demonstrates the
overall structure of the knowledge in the domain. Identifying how courses teach the
knowledge over those categories can help refine the unclear learning goals and make a
comparison between different courses.

2.1 Introduction

In traditional higher education, the courses that students can receive over their life-
time are significantly constrained by their regional, religious and economic status.
Fortunately, the appearance of Massive Open Online Courses (MOOCs) provides op-
portunities to those who are longing for knowledge. According to Dillahunt et al.’s
survey [40] on sixMOOCs offered by theUniversity ofMichigan from fall 2012 through
winter 2013, the majority of their MOOC users possessed at least one higher education
degree, which means that MOOCs are actually utilized as a supplement to traditional
educational programs. In addition, among the users who completed any one of those
MOOCs, the users without access to traditional education demonstrated a higher rate
of completion with distinction performances than those with access to traditional edu-
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2. Course Content Modeling

(a) Course I (b) Course II

Figure 2.1: Two syllabi of courses related to “database”.

cation. This indicates the potential of empowering the under-educated population with
open educational resources such as MOOCs.
TheMOOCenvironment brings changes to both students and educators. For students,

elaborately designed curricula are forced upon them in traditional higher education,
whereas MOOC environments allow them to be more active in choosing courses for
their own learning purposes. For educators, the competition that usually occurs at the
level of the institution, program or curriculum in traditional higher education switches
to the level of an individual course. Therefore, it will be of paramount importance
for both students and educators to identify the contents of massive courses in an agile
manner.
At this moment, one of the largest MOOC platforms—Edx provides more than 2,500

courses in cooperation with more than 140 educational institutions worldwide.2 Since
these courses are neither designed for a unified educational purpose nor presented using
a controlled vocabulary, it is difficult to recognize the commonalities and differences
among these courses. Figure 2.1 shows two syllabi of courses related to the subject
“database”. Resemblances such as “SQL” and “data warehousing” can be captured
solely from the textual information of two syllabi. However, these shallow resemblances
are not sufficient to answer questions thatmay be raised by students such as “Do I need to
take both of them?”, “In which order should I take them?”, and “Are these two courses
enough if I want to be a database professional?”. To better understand the implicit

2https://www.edx.org/, accessed November 25, 2020.
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Table 2.1: Instances of KA, KU and Topic in CS2013.

KA KU Topic

Information
Management

Database Systems

Approaches to and evolution of
database systems

Components of database systems

...

Data Modeling
Data Modeling

...

... ...

... ... ...

relationships among courses and the relative positions of courses in the domain, we
consider a standard categorization of domain knowledge as being necessary.
“Computer Science Curricula 2013” (CS2013) [41], published by the joint task force

of the Association for Computing Machinery (ACM) and IEEE Computer Society,
provides an example of a standard categorization of knowledge in the domain of
computer science. This curricular guideline has a history of more than 40 years and
aims at guiding diverse educational institutions on what knowledge should be covered
in an undergraduate program in computer science. In CS2013, the domain knowledge
is presented as a set of Topics, grouped into 163 Knowledge Units (KUs). These KUs
are further grouped into 18 Knowledge Areas (KAs). As a result, we can observe broad
subjects, median topics and detailed concepts of this domain from this KA-KU-Topic
structure. Table 2.1 shows partial content of KA:Information Management and its KUs,
Topics.
If we succeed in identifying which domain knowledge categories and to what extent

they are taught in each course, the underlying differences and compatibility between
courses will become apparent. Taking the courses in Figure 2.1 for example, suppose
that we have successfully inferred how Course I and Course II cover the knowledge
in each domain knowledge category. In Figure 2.2, we can observe that Course I
briefly but widely covers some basic knowledge in information management such as
“Database Systems”, “Data Modeling”, “Relational Database” and “Query Language”.
Meanwhile, Course II puts greater emphasis on “Query Language” and “Physical

13
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Figure 2.2: Knowledge distribution of course content. The vertical axis refers to the
KUs in KA:Information Management and the horizontal axis represents the lecture
hours spent on each KU.

Database Design”, which demonstrates a special interest in database design. Such
knowledge distribution information is instructive when judging which course better
accommodates a student’s interest. Therefore, we establish the task of extracting course
knowledge distribution over the domain knowledge categories defined in CS2013 as
the main goal of this work.
In the literature that aims at supporting online learning, some works [42, 43, 44,

27, 28, 29] attempted to generate a concept map as a representation of course content.
Since their primary concern is to support course learning or course design, the concept
map presents many detailed concepts within a course. This is not suitable for implying
course content from a macro perspective of this domain. Other works put emphasis
on the reuse and retrieval of learning materials, and they attempted to annotate a piece
of learning material with some external standards. One example of such standards is
“IEEE Learning Object Metadata Standards” [31]. Although this metadata standard
contains several educational items (e.g., interactivity type and intended end user role),
it does not dig into the content of the learning materials, which makes it insufficient
for the identification of course content. Other works [35, 45, 32, 36] have attempted
to match course materials with domain knowledge standards for curriculum or course
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content analysis. Our problem setting is more difficult than their settings from several
aspects, as will be discussed in Section 2.2.2.
To extract the knowledge distribution of a course over the domain knowledge cate-

gories, we utilize the course syllabus as the description of the course content and the
text in CS2013 as the description of the domain knowledge category KU. Then, we
address this problem as estimating the relatedness of the syllabus and the description
of a domain knowledge category. Intuitively, we employ a bag-of-words method—
Labeled Latent Dirichlet Allocation (LLDA) to infer the probabilities that a syllabus
is related to the domain knowledge categories. Nonetheless, the lack of contextual
information in the bag-of-words method may be intensified by the fact that both the
syllabus and the description of the domain knowledge category are written in short
texts. To solve this problem, we devise a Wikipedia structure-based method to capture
the implicit relatedness of a syllabus and the description of the domain knowledge
category by bridging them under the Wikipedia article and category structure. Several
previous works [46, 47, 48, 49, 50] exploitedWikipedia article and category structure to
estimate the relatedness of two concepts or two documents. However, such methods are
not suitable for our problem setting, which drives us to propose an original Wikipedia
structure-based method in this work.
In our experiment, we utilize the Topics of KU in CS2013 as the description of the

domain knowledge category, and the syllabi of 131 CS-related courses as the reflection
of the course content. The information provided by course instructors consisting of
how many lecture hours are spent on each KU is used as the ground truth. We evaluate
the proposed method at two levels according to task difficulty: 1) whether a syllabus
teaches a domain knowledge category and 2) to what degree a syllabus teaches the
domain knowledge categories. For the latter, the result shows that we can estimate the
KU distribution of a course at an accuracy rate of 0.537 in terms of cosine similarity.
For the more challenging task, i.e., estimating the KU distribution of a course, the
Wikipedia structure-based method achieves a better performance than the baseline
method.
The contributions of this work are twofold:

• We utilize the domain knowledge categorization defined in a curricular guide-
line to model the knowledge distribution of a course, which is more readable
in pedagogical terms compared with the concept maps. In addition, a stan-
dard domain knowledge categorization enables the comparison of heterogeneous
courses, which is otherwise difficult to achieve using concept maps extracted
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from individual courses.

• When matching a syllabus and the descriptions of domain knowledge categories,
the leverage of the Wikipedia article and category structure can prevent the loss
of contextual information under the bag-of-words method and increase accuracy.

2.2 Related Work

We divide the related works into three categories according to how they are related to
our work. In Section 2.2.1, we introduce the works that attempt to generate a concept
map from the educational content and explain why their approach is not applicable to
our problem setting. In Section 2.2.2, a detailed comparison between the works that
share similar research goals and ours is conducted. Finally, we summarize relatedness
estimation methods that utilize the Wikipedia category system in Section 2.2.3.

2.2.1 Generating concept maps

A concept map is a visualization tool for organizing and representing knowledge [51].
In some works regarding adaptive learning systems, a concept map was used as a means
to organize the knowledge of course materials and to provide cues for navigating the
student to the “concept” that should be learned next based on theirmastery conditions on
previous “concepts” [42, 43, 44]. A visually straightforward concept map is considered
to be of enormous help when demonstrated to the students during the process of
learning. A stream of research [27, 28, 29] aimed at automatically extracting concepts
and the relationships between them from course materials. Because the basic intention
of such conceptmaps is to facilitate course design or course learningwithin a course, the
conceptmap presentsmanydetailed concepts in a course and highlights the relationships
among these concepts. If presented in the process of searching a course, this type of
concept map may confuse the student, who has not even begun to learn about this
course. Instead, a systematic categorization of domain knowledge is desirable to help
students identify the content of a course without a comprehensive understanding of the
course content. In addition, the concepts extracted from different courses tend to have
different representations of the same knowledge due to the diversity in the word choices
of the instructors, which leads to difficulties in comparing the content of heterogeneous
courses at one time.
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Aside from from facilitating course learning and course design, concept maps can be
generated for various purposes, including as an intermediate result of certain learning
supporting tasks. Agrawal et al. [52] attempted to automatically group and sequence
a given set of concepts for supporting course design. As an intermediate output of
their research, a prerequisite relationship embedded concept map was constructed and
further used in synthesizing a study sequence. Given that their main concern is to
form a final study sequence of concepts, their concept map cannot be utilized as an
indicator of course content. Yang et al. [53] held a view that a universal concept graph
is instrumental in reasoning the course content overlap and dependency, especially in
a MOOC environment where the courses are offered by different universities. They
adopted an approach for inferring unobserved course dependencies from existing course
dependencies. The fact that only course dependencies within a university are available
means that their model cannot infer the course dependencies across different univer-
sities. Although they mentioned that the intermediate product of their research—the
universal concept graph—is suggestive and useful to both students and instructors, the
graph’s validity lacked a thorough evaluation.

2.2.2 Annotating learning materials

Learning Object Metadata Standards

A “learning object” is defined as any digital material that can be used for educational
purposes [31]. To make learning objects much easier to retrieve, use, evaluate, and
manage by students, educators and automated software processes, “IEEE Learning
Object Metadata Standards” has been published [31]. In this standard, a systematic
data scheme for learning objects is presented. In addition to some basic items, such
as identifier, title, language, and keyword, education-specific items are also included.
However, rather than factors concerning the content of learning objects, only factors that
are related to learning styles are discussed in that standard. For instance, “interactivity
type” identifies the learning mode supported by the learning object, and “intended end
user role” specifies the principal users for who the learning object is designed. These
items will not be able to discriminate between two similar courses at the knowledge
level.
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Mapping Learning Materials with Curricular Guidelines

To the best of our knowledge, academia has not begun to map learning materials with
the domain knowledge, such as curricular guidelines, until recently. On one hand,
some works [35, 45, 36] utilized curricular guidelines to observe the overall knowledge
distribution of curricula from different educational institutions. On the other hand,
Contractor et al. [32] attempted to label educational content with a learning standard
(a file that specifies the learning outcomes that a student is expected to acquire after
completing a course) that works similarly to a curricular guideline such as CS2013.
Because Ishihata et al. [35] addressed this problem in a manual manner, their work
will be omitted in the following discussion. To highlight the originality of our work,
we compare the works of Sekiya et al. [45], Contractor et al. [32] and Kawintirannon
et al. [36] with our work from the aspects listed in Table 2.2. In detail, our work
distinguishes itself from the related works as follows:

• The works of Sekiya et al. [45] and Kawintirannon et al. [36] emphasized ob-
servations on the whole curriculum, whereas our interest lies in the analysis on
individual courses, especially on their positions in this domain and their rela-
tionships with each other. Their methods can possibly be applied to analyzing
learning materials at the level of the individual course, but the accuracy of the
result remains unknown.

• Regarding the data used in analysis, we use course syllabus to infer the knowledge
distribution of a course, which raises the task difficulty comparedwith usingmore
course materials [32, 36].

• With respect to the evaluation method, our ground truth is assigned by the
course instructors, which is more reliable. Furthermore, we divide the evaluation
difficulty into two stages: 1) whether a knowledge category (i.e., KU) is detected
by our method and 2) whether the relatedness of the knowledge categories to
a course estimated by our method agrees with the true knowledge distribution.
With such an evaluation framework, a more robust method can be expected.

• We devise a Wikipedia-structure based method to raise the accuracy of mapping
course content to domain knowledge categories, which is an innovative attempt
in this problem setting.
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2.2.3 Utilizing the Wikipedia category system to estimate related-
ness

Wikipedia is an online encyclopedia that can be edited by anyone and is the largest
knowledge repository in existence. As a knowledge resource, Wikipedia possesses the
following advantages, especially for natural language processing tasks:

• Wikipedia is balanced with respect to the quantity and quality of informa-
tion.

Compared to general websites, Wikipedia includes more technical and aca-
demic information. In addition, compared to ontologies such as WordNet,
Wikipedia possesses broader and more up-to-date information [47]. In other
words, Wikipedia achieves a balance between the quantity and quality of infor-
mation as a knowledge resource.

• Wikipedia assigns unique article pages to different meanings of a polysemic
word.

In Wikipedia, a unique article page is established for a concept or an entity.
Furthermore, different meanings of a polysemic word will have their own corre-
sponding article pages. For example, “NP” is separated into several Wikipedia
articles, NP_(complexity) and Noun_phrase, to name a few, to distinguish
between different meanings. This characteristic is helpful when addressing dis-
ambiguation [54].

• Wikipedia article pages are managed in a category system.

To help manage Wikipedia articles, a category system is utilized. A unique
page is established for a category, which only contains links to related categories
and articles but does not include any content for itself. Authors can assign an
article to categories according to its content or create a new category if necessary.
Figure 2.3 illustrates thisWikipedia article and category structure. When utilizing
Wikipedia to estimate the relatedness of concepts (terms), this category system
provides considerable indications that two concepts may be somewhat related.

Gabrilovich and Markovitch [46] attempted to represent a term or a document as
a vector in the space of Wikipedia articles, which was further used in estimating the
relatedness of terms or documents. Similarly, Hu et al. [47] attempted to cluster
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Figure 2.3: Wikipedia article and category structure.

documents by representing them as vectors in the space of Wikipedia categories. In
their approach, documents were represented as high-dimensional vectors because a
substantial amount of Wikipedia articles (e.g. more than 240,000 Wikipedia articles
were used in [46]) and categories were used. As a result, the document vectors tend
to be sparse, which produces difficulty in relatedness estimation and increases the
computation time.
Genc et al. [48] utilized the Wikipedia article and category structure to estimate

distances between tweet messages in a classification task. Despite the fact that our
technique is similar to their technique, it is applied to a different end. First, the
correctness of the distances between tweets is evaluated with respect to the degree
to which they can separate tweets from different classes. Given that they test their
method using tweets from three distinctive classes, business news, environment news,
and culture news, it is supposed to be relatively simpler than estimating the relatedness
of a syllabus and domain knowledge categories. Second, in their distance estimation,
only one Wikipedia article is assigned to each tweet. In our case, a syllabus may cover
multiple concepts that cannot be represented by only oneWikipedia article. Thus, their
method is not suited to our problem.
Strube et al. [49] explored theWikipedia category structure more intensively. In their

research, two terms were first mapped to Wikipedia articles; then, their relatedness was
estimated by computing the distances between their associated Wikipedia categories.
Treating theWikipedia category structure as a hierarchy, the semantic distance between
two categories is captured based on their positions in that hierarchy. Motivated by a
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similar task, a generalized flow-based method was proposed by Zhang et al. [50].
Given two Wikipedia articles, they first constructed a network of Wikipedia articles
that have page links to these two articles. Then, the strength of the relationship
between these two articles was estimated as the maximum information flowing along
the paths connecting the articles. The Wikipedia category system was also used to
group Wikipedia articles in the network, which helps to discriminate the information
gain of the edges of Wikipedia articles from different groups. Despite the fact that
these works utilized the Wikipedia category system to estimate the semantic distance
between two concepts (i.e., Wikipedia articles), their methods can only be applied to
the relatedness estimation of two Wikipedia articles. In our problem setting, a course
or a domain knowledge category is supposed to be associated with multiple Wikipedia
articles, which makes it unfeasible to adopt their methods.

2.3 Problem Definition

In this work, we address the matching between course content and the domain knowl-
edge categories. Regarding domain knowledge categorization, CS2013 is utilized as a
standard categorization of knowledge in the domain of CS. As described in Section 2.1,
the knowledge of this domain is represented in a KA-KU-Topic structure. Note that
the predominant formats of Topic are concise sentences or even unstructured sentences
(phrases). This derives from the fact that a curriculum guideline essentially functions
as a reference of what knowledge is to be included in a curriculum instead of how
specifically to deliver the knowledge.
Course content is presented in diverse formats, such as textbooks, slides, videos,

and audios. Even for the same subject, different formats can be adopted based on the
preferences of instructors. However, regardless of how the instructors present their
course content, a syllabus is always created to summarize and introduce the course
content to potential course takers. Despite the fact that the information in the syllabus
does not represent the course content in full, we view the syllabus as a more subjective
reflection of course content and the task of inferring the knowledge distribution of a
course solely from the syllabus as a challenge.
Considering the fact that the construction of a syllabus is not always a precise

reflection of the actual lecture hour distribution over different knowledge categories
(e.g., topics that are addressed over different numbers of lecture hours may be discussed
in the same amount of text in a syllabus), we divide our target into two levels according
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Figure 2.4: Framework of Wikipedia structure-based method.

to task difficulty:

1. Detecting whether a course covers a specific knowledge category KU.

2. Estimating to what extent a course covers a set of knowledge categories KUs
relatively.

2.4 Methodology

The task of extracting the knowledge distribution of a course can be addressed by
estimating the relatedness of a syllabus and the descriptions of domain knowledge
categories. As the baseline method, we adopt a mature bag-of-words method— LLDA
to infer the probabilities that a syllabus is related to domain knowledge categories.
Nonetheless, the defect brought about by the lack of contextual information in the
bag-of-words method may be intensified by the fact that both the syllabus and the
description of the domain knowledge category are written with a limited number of
sentences. Thus, we devise a Wikipedia structure-based method to capture the implicit
relatedness of a syllabus and the descriptions of domain knowledge categories by
bridging them via the Wikipedia article and category structure. Figure 2.4 shows the
framework of the Wikipedia structure-based method.
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2.4.1 The baseline method—Labeled Latent Dirichlet Allocation
(LLDA)

In the bag-of-words method, a document is captured as a vector in the space of its
constituting terms, and each entry indicates the frequency of a term in the given
document. LLDA [55] is one of the bag-of-words methods that address topics in
documents. In LLDA, the topic of a text is called the “label” of the document. LLDA
learns term-label correspondences from a set of labeled documents and infers the
probabilities that how likely an unlabeled document is related to those labels. In our
setting, the description of the domain knowledge category with its title is viewed as a
labeled document to be used in the training set. A syllabus is viewed as a document
whose labels await to be inferred.

2.4.2 Wikipedia structure-based method

Intuition

The bag-of-words method emphasizes the frequency of terms in a document while
ignoring their contexts. This ignorance of contextual information causes two problems,
which can be addressed by leveraging the Wikipedia article and category structure:

• Term variation.

Related concepts may be presented in completely different terms. Figure 2.5a
uses a course related to algorithm and KU:Algorithm and Complexity/Basic
Analysis as examples. It is desirable for these two documents to be recognized
as related. However, as shown in the upper part of Figure 2.5a, they will be
considered as unrelated since they share no common terms. In comparison,
as shown in the lower part of Figure 2.5a, if we bridge the two documents by
extracting their associated Wikipedia articles and Wikipedia categories, their
implicit relatedness can be captured and quantified by computing their distance
in theWikipedia-structure (the detailed computation will be discussed in the next
section).

• Term ambiguity.

A term may have different meanings and emphasis in different contexts. Fig-
ure 2.5b uses a course related to computer network andKU:InformationManage-
ment/Distributed Databases as examples. Clearly, this course is not supposed to
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(a) Address term variation.

(b) Address term ambiguity.

Figure 2.5: Intuition of Wikipedia structure-based method.
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be related to a database KU. However, as shown in the upper part of Figure 2.5b,
they are prone to being recognized as related under the bag-of-words method
simply because they include a common term—“distributed”. The associated
Wikipedia article detection helps to reduce the effect of a single term. As il-
lustrated in the lower part of Figure 2.5b, “distributed” alone does not have a
corresponding Wikipedia article, whereas “distributed data storage” is related to
a database-relatedWikipedia article (the detailedWikipedia article detection will
be discussed in the next section). As a result, these two documents possess dif-
ferent associated Wikipedia articles, which results in being correctly recognized
as unrelated.

Procedure

To estimate the relatedness of two documents based on the Wikipedia article and
category structure, we perform the following steps.

Step 1: Detect associated Wikipedia articles. For a given document, we use two
methods to extract the Wikipedia articles that are associated with the content of
this document.

1. Use DBpedia Spotlight [56], a tool that automatically detects the terms
or phrases that have a corresponding Wikipedia article and returns the
article URLs for a given text. For each term or phrase, only one associated
Wikipedia article will be selected. Based on our empirical observation, this
tool achieves a relatively high precision and low recall in retrieving target
Wikipedia articles.

2. Query the noun phrases of the document in a search engine with the URL
limited to “Wikipedia.org”. We utilize the Natural Language Toolkit3 to
extract noun phrases in the document and search the associated Wikipedia
articles for them using the Bing search API4. Similar to DBpedia Spotlight,
we only choose the first Wikipedia article returned by the search engine
for each phrase. For the noun phrases in the description of the domain
knowledge category, we add the title of KU to it to complement some
contextual information before submitting it to the search engine.

3http://www.nltk.org/
4https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-

search-api/
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(a) Computing 2>=(0, B). E.g., ) B
01 = {C1, C2},

2>=(01, B) = 2/6.
(b) Computing A4;1 (B, :D). E.g., A4;1 (B, :D) =
2>=(01, B)+2>=(02, B)+2>=(01, :D)+2>=(02, :D) =
2/6 + 3/6 + 2/10 + 1/10.

(c) Computing A4;2 (B, :D). E.g., A4;2 (B, :D) =
2>=(21, 0:D1 ) + 2>=(21, 0

B
1) + . . . + 2>=(24, 0

:D
4 ) +

2>=(24, 0B3) = 1/10 + 1/6 + . . . + 2/10 + 1/12.

(d) Computing A4;3 (B, :D). E.g., A4;3 (B, :D) =
2>=(21, :D) × 2>=(21, B) + . . . + 2>=(24, :D) ×
2>=(24, B) = 0.13 × 1 + . . . + 0.28 × 1.

Figure 2.6: Computing the relatedness of two documents only using the Wikipedia
article and category structure.

Note that a discussion of the information retrieval techniques embedded in the
above two methods is beyond the scope of this paper. Briefly, these two methods
are based on a framework that retrieves a Wikipedia article if its content shares
information with the query.

Step 2: Compute the relatedness of two documents. As illustrated in Figure 2.3, a
Wikipedia category can be assigned as a parent or child category of another
Wikipedia category without constraints, which leads to loops and a complex
network of Wikipedia categories. To reduce noise, we only consider the level of
the Wikipedia article, the first level of the Wikipedia category, and the article-
category relationship between these two levels. Then, we apply three patterns to
compute the relatedness of two documents. Let B be a course syllabus, :D be a
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KU, and A4;8 (B, :D) be the relatedness of B and :D computed in Pattern 8.

(Pattern 1) Only consider the level of the Wikipedia article.
We suppose that if two documents have many associated Wikipedia articles
in common, they are highly related. Then we compute A4;1(B, :D) as

A4;1(B, :D) = U × (
∑

0∈�B∩�:D

2>=(0, B) + 2>=(0, :D)) , (2.1)

where U is an amplifier and will be discussed in Step 3. �B and �:D denote
the set of Wikipedia articles that are associated with B and :D, respectively.
2>=(0, ·) denotes the contribution of a Wikipedia article 0 to the document.
We then compute 2>=(0, B) and 2>=(0, :D) as

2>=(0, B) =
|) B0 |∑

0∈�B |) B0 |
, (2.2a)

2>=(0, :D) =
|) :D0 |∑

0∈�:D
|) :D0 |

, (2.2b)

where ) B0 and ) :D0 denote the set of terms that have the same associated
Wikipedia article in B and :D, respectively. Figure 2.6a illustrates this
computation.
In Equation (2.1), we choose to sum 2>=(0, B) and 2>=(0, :D) rather than to
multiply them for two reasons: 1) Because we conduct completely identical
computations on the contribution of a Wikipedia article toward a syllabus
and KU, it is reasonable to sum up the 2>=(0, B) and 2>=(0, :D) of a com-
mon Wikipedia article. 2) By multiplying 2>=(0, B) and 2>=(0, :D), it is
highly possible that the contributions of 2>=(0, B) or 2>=(0, :D) toward
A4;1(B, :D) will be emphasized if the number of associated Wikipedia arti-
cles of the syllabus orKU varies across different syllabi orKUs, which is not
desirable in our problem setting. We confirm in the preliminary experiment
that summing 2>=(0, B) and 2>=(0, :D) achieves better results than does
multiplying them. Figure 2.6b illustrates the computation of A4;1(B, :D).

(Pattern 2) Consider the level of theWikipedia article and the first level of theWikipedia
category.
Except for the associated Wikipedia articles in common, if two documents
have shared Wikipedia categories via different associated Wikipedia arti-
cles, we suppose that they are also possibly related. As the example shows
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in Figure 2.5a, the syllabus and the description of the domain knowledge
category do not share any commonWikipedia articles, but they are related if
we involve the level of theWikipedia category. However, comparedwith the
associated Wikipedia articles, the shared Wikipedia categories indicate an
indirect relationship between two documents, whose contributions should
be discounted in the computations. Let 0B be a Wikipedia article in �B, and
�0B be the set of Wikipedia categories connected to 0B. Similarly, Let 0:D

be a Wikipedia article in �:D, and �0:D be the set of Wikipedia categories
connected to 0:D. 2>=(2, 0B) and 2>=(2, 0:D) denote the contribution of a
Wikipedia category 2 toward a Wikipedia article 0 that is associated with B
and :D, respectively. We then compute 2>=(2, 0B) and 2>=(2, 0:D) as

2>=(2, 0B) = 2>=(0
B, B)

|�0B |
, (2.3a)

2>=(2, 0:D) = 2>=(0
:D, :D)

|�0:D |
. (2.3b)

Then, we compute A4;2(B, :D) in Equation (2.4). Note that the sum of the
2>=(2, 0B) and 2>=(2, 0:D) of 0 in �B ∩ �:D equals Equation (2.1). The
difference with Pattern 1 lies in the integration of 2>=(2, 0B) or 2>=(2, 0:D)
whose 0 is not in �B ∩ �:D.

A4;2(B, :D) = U × (
∑

2∈�B∩�:D

0B∈�B
0:D∈�:D

2>=(2, 0B) + 2>=(2, 0:D))

�B =
⋃
0B∈�B

�0B

�:D =
⋃

0:D∈�:D

�0:D

(2.4)

We choose to sum 2>=(2, 0B) and 2>=(2, 0:D) rather than to multiply them
for two reasons: 1) Because we conduct completely identical computa-
tions on 2>=(2, 0B) and 2>=(2, 0:D), it is reasonable to add 2>=(2, 0B) and
2>=(2, 0:D) for a common Wikipedia category. 2) Because one Wikipedia
category may be connected to different numbers of Wikipedia articles from
�B and �:D, the asymmetry of connections between Wikipedia categories
and Wikipedia articles makes it unreasonable to multiply 2>=(2, 0B) and
2>=(2, 0:D). Figure 2.6c illustrates this computation.
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(Pattern 3) Only consider the first level of the Wikipedia category.
Let 2>=(2, :D) be the contribution of a Wikipedia category 2 toward :D,
which should be different even via the same Wikipedia article. Therefore,
we adopt the TF-IDF scheme [57] to discriminate 2>=(2, :D), which means
that a Wikipedia category will be considered important for a document
only if it is associated with this document frequently while also being
seldom associated with other documents. First, we generate a KU-C matrix
whose entries represent the frequency at which a Wikipedia category is
associated with a KU. Then, we apply the TF-IDF scheme to transform the
original entries into TF-IDF values that will be regarded as 2>=(2, :D). For
syllabus B, we do not conduct this process because in a real scenario, our
method should be able to estimate knowledge distribution for a syllabus
individually. Thus, we simply use the frequency of a Wikipedia category 2
that is associated with it as 2>=(2, B). Finally, A4;3(B, :D) is computed as

A4;3(B, :D) = U × (
∑

2∈�B∩�:D

2>=(2, B) × 2>=(2, :D)) . (2.5)

Here, we choose to multiply 2>=(2, B) and 2>=(2, :D) because they are
computed in different processes and are not in the same scale, which makes
them unsuitable to being summed up. In the preliminary experiment, we
confirm that multiplying these two elements works better than summing
them with a normalization. Figure 2.6d illustrates this computation.

Step 3: Based on the following two elements, add three types of amplifiers to the
contributions of the Wikipedia articles and Wikipedia categories toward the
documents.

(Element a) We suppose that if two documents share a greater number of associated
Wikipedia articles, they are related at a higher probability. As shown in
Figure 2.7a, the relatedness of B with :D1 is more reliable than that to :D2
because the former is supported by a greater number of associatedWikipedia
articles. We call this factor Element a and quantify it as 4;4<4=C0 =
|�B ∩ �:D |.

(Element b) TheKA-KU structure defined in CS2013 indicates that theKUs belonging to
the same parent KA are intentionally grouped together based on educational
purpose, which supports the assumption that a course may inevitably cover
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(a) Element a (b) Element b

Figure 2.7: Two elements of the amplifier.

KUs belonging to a KA other than the KUs distributed over different KAs.
As shown in Figure 2.7b, the relatedness of B to (:D4, :D5, :D6) belonging to
:02 ismore reliable than that to :D1 because the former is supported bymore
connections with sibling KUs. We call this factor Element b and quantify it
as 4;4<4=C1 =

∑
:D∈ *:0

1{|�B ∩ �:D | > 1}, where  *:0 denotes the set
of KUs that belong to the same parent KA :0. Here, 1{|�B ∩ �:D | > 1}
is an indicator function, which computes whether B and :D have more than
one common Wikipedia articles.
To emphasize the functions of Element a and Element b in the computation
of the relatedness of two documents, we treat them as the exponents in
functions. As a result, the relatedness of a syllabus and a KU will be
amplified if the syllabus shares many associated Wikipedia articles with
this KU. Similarly, the relatedness of a syllabus and a KU will be amplified
if the syllabus is also related to other KUs that belong to the same parent
KA. We form three types of amplifiers and induce them to the coefficient U
as follows:

No amplifier: U = 1
Amplifier 1: U = 24;4<4=C0−2

Amplifier 2: U = 24;4<4=C1−2

Amplifier 3: U = 24;4<4=C0+4;4<4=C1−4
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2.5 Experiment

2.5.1 Dataset

We utilize the text of Topics under a KU as the description of this KU. Regarding the
description of course content, we collect the syllabi of 131 courses whose lecture hours
over each KU are annotated by their instructors. More specifically, 115 of these courses
are from CS2013 and 16 courses are from the bachelor program of computer science
in Thompson Rivers University5. At last, We have the descriptions of 163 KUs and the
syllabi of 131 CS-related courses with their lecture hour distributions over KUs.

2.5.2 The baseline method

As mentioned in Section 2.4.1, we adopt the LLDA model as the baseline method. In
LLDA, the training set used to model the term-label correspondences has a significant
influence on the inferred results. As can be observed in Table 2.1, the domain knowledge
presented in CS2013 is formatted in concise or even incomplete sentences, which leads
to a lack of sufficient discriminating terms for a label. Although we can add external
information to the original text of a label, the added terms cannot guarantee a higher
capability of the model to correctly infer the probabilities that a new document is
related to the label. The reason lies in the fact that the bag-of-words method treats
each term independently and equally. This loss of contextual information produces
difficulties in addressing term variations and term ambiguity. To verify the superiority
of our proposed method, we also resort to Wikipedia to extend the description of the
domain knowledge category for the LLDAmethod. Specifically, for eachKU, we utilize
DBpedia Spotlight [56] to extract associated Wikipedia articles and then append their
abstracts to the original description of this KU. Therefore, we are able to compare the
effectiveness of two methods which both leverage Wikipedia.
In theWikipedia structure-basedmethod, we use Element b to amplify the relatedness

of a syllabus with a KU when the syllabus is also related to many KUs belonging to the
same parent KA. In LLDA, we can achieve this effect by manipulating the documents
in the training set as follows:

1. 1-phase manner
5https://www.tru.ca/science/programs/compsci/programs/cs_bachelor_of_

computing_science.html, accessed January 18, 2021.
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Input the descriptions of all theKUs into the training set and infer the probabilities
that a syllabus is related to these KUs directly.

2. 2-phase manner

In the first phase, we simply concatenate the descriptions of KUs of one KA as
its description. Then, we estimate the probabilities that a syllabus is related to
the KA and choose the top : KAs with the highest probabilities. In the second
phase, we estimate the probabilities that a syllabus is related to the KUs which
belong to the chosen KAs. : is empirically set to 3, which is the average number
of KAs that the courses are associated with.

2.5.3 Evaluation metric

We adopt two evaluation metrics according to the difficulty levels of our task:

1. Area Under the Curve (AUC) for evaluating whether a course is correctly
detected to cover a knowledge category.

AUC is a commonly usedmetric in statistics to evaluate a classifier. It is computed
as the area under a Receiver Operating Characteristics curve (ROC) that plots the
true positive rate against the false positive rate at various threshold values. In a
word, AUC evaluates the ability of a classifier to rank positive instances higher
than negative instances.

2. Cosine Similarity for evaluating to what degree the lecture hour distribution of
a course over domain knowledge categories is correctly estimated.

Let {?A43 and {�C be the estimated vector of relatedness and the annotated lec-
ture hours over the KUs, respectively. Then we evaluate the performance by
computing 2>B_B8<({?A43 , {�C) =

{?A43×{�C
‖{?A43‖×‖{�C ‖ .

2.5.4 Results

For the baseline method, there are two variations, whether one uses the abstracts of the
Wikipedia articles to extend CS2013 and whether one conducts the training process in
a 1-phase manner or 2-phase manner, which leads to four combinations of experiments.
For the Wikipedia structure-based method, there are three variations, two methods

to detect associated Wikipedia articles for a syllabus or the description of the domain
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Table 2.3: Experimental results.

AUC cos_sim
The baseline method (LLDA)
1-phase CS2013 0.746 0.363

CS2013_wikiabs 0.779 0.414
2-phase CS2013 0.803 0.383

CS2013_wikiabs 0.821 0.444
Wikipedia structure-based method

Syllabus (DBpedia Spotlight)- CS2013 (DBpedia Spotlight)
No amplifier Pattern 1 0.744 0.319

Pattern 2 0.834 0.453
Pattern 3 0.833 0.429

Amplifier 1 Pattern 1 0.756 0.432
Pattern 2 0.832 0.481
Pattern 3 0.836 0.463

Amplifier 2 Pattern 1 0.760 0.396
Pattern 2 0.844 0.510*
Pattern 3 0.844 0.478

Amplifier 3 Pattern 1 0.763 0.459
Pattern 2 0.843 0.484
Pattern 3 0.845 0.469

Syllabus (DBpedia Spotlight)- CS2013 (NP+ Bing search)
No amplifier Pattern 1 0.709 0.383

Pattern 2 0.828 0.483
Pattern 3 0.825 0.469

Amplifier 1 Pattern 1 0.712 0.418
Pattern 2 0.829 0.483
Pattern 3 0.829 0.480

Amplifier 2 Pattern 1 0.714 0.420
Pattern 2 0.837 0.537*
Pattern 3 0.835 0.514*

Amplifier 3 Pattern 1 0.714 0.436
Pattern 2 0.837 0.484
Pattern 3 0.836 0.484

The cells colored are selected as the best baseline results.
The values in bold are better results than the best baseline.
* The values are significantly (? ≤ 0.05) greater than the best baseline.

knowledge category, three patterns to compute the relatedness of two documents, and
four types of amplifiers, which generates 48 combinations of experiments in total. Due
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to space limitations, we omit all the experiments of two combinations derived from
the first variation, namely, “Syllabus (NP+Bing search)-CS2013 (DBpedia Spotlight)”
and “Syllabus (NP+Bing search)-CS2013 (NP+Bing search)”, as their performance is
inferior to the other two combinations. Finally, we show 4 experimental results for the
baseline method and 24 experimental results for the Wikipedia structure-based method
in Table 2.3.
As shown in Table 2.3, the best baseline method is the one leveraging Wikipedia

abstracts and estimating probabilities in 2-phase manner, from the perspectives of both
metrics. In the Wikipedia structure-based method, most of the experiments in Patterns
2 and 3 show higher values than the best baseline method. Furthermore, for the stricter
evaluation metric cos_sim which evaluates the detailed knowledge distribution, the
experiments in Patterns 2 and 3with Amplifier 2 achieve significant higher performance
than the best baseline. This indicates that the Wikipedia structure-based method works
better in estimating the knowledge distribution over the domain knowledge categories
from a limited information source, namely, the syllabus.

Regarding the Involvement of Wikipedia

In the baseline method, we extend the original description of a domain knowledge
category with the abstract of the associated Wikipedia article. As can be observed in
Table 2.3, the performance of the baselinemethod using the extended CS2013 increased
substantially compared to the performance using the original CS2013, especially for
estimating knowledge distribution at the level of theKU.We extract the top 20 distinctive
terms of KU:Algorithms and Complexity/Basic Analysis for the original description
and the extended description, respectively. As shown in Table 2.4, the Wikipedia
articles provide many effective terms (underlined) that are not contained in the original
description in CS2013, which explains why an extension with external information
increases the accuracy of estimating knowledge distribution over the domain knowledge
categories from course syllabi.
However, even the baseline method using the extended CS2013 is not as competitive

as the Wikipedia structure-based method. This may be for the following reasons: 1)
Despite the fact that the extension of CS2013 brings many discriminative terms for
the domain knowledge categories, the terms may be too detailed to appear in a course
syllabus. 2) In the bag-of-words method, only completely identical terms will be
captured as related. The extension of CS2013 provides several synonyms for a term,
but it cannot provide an exhaustive list of the synonyms that may potentially appear
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Table 2.4: The top terms for KU:Algorithms and Complexity/Basic Analysis without
and with an extension.

CS2013 CS2013_wikiabs
big notation
notation function
expected asymptotic
complexity complexity
algorithms omega
little big
theta letter
asymptotic algorithm
logarithmic time
bounds growth
constant algorithms
exponential recurrence
best xpx
omega turing
among fn
upper size
master problems
analysis alphabet
worst polynomial
quadratic equation

in a syllabus. 3) For a polysemic term, the Wikipedia structure-based method detects
associated Wikipedia articles based on its surrounding terms, which helps to specify
one meaning of the term in this context.

Regarding the Wikipedia Structure-Based Method

For the experiments of the Wikipedia structure-based method, we discuss the impacts
of the following variations:

• Relatedness computation.

For Step 2, Patterns 2 (Article and category) and 3 (Category alone) achieve
higher performance than Pattern 1 (Article alone). This indicates that the en-
gagement of a deeper Wikipedia-structure can be used to effectively estimate the
implicit relatedness between two documents. Moreover, the highest performance
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is observed in Pattern 2. We consider combining the TF-IDF weighting scheme
in Pattern 3 into Pattern 2 as a direction of future work.

• Amplifier addition.

Experiments with Amplifier 2 demonstrate higher performance than other types
of amplifiers, as Element b strengthens the relatedness of a syllabus and a KU
when the syllabus is also related to KUs belonging to the same parent KA.
This indicates that leveraging the KA-KU structure of the knowledge categories
can effectively exclude the noises from accidentally related KUs. Amplifier 3,
which combines Elements a and b, does not work better than the single-element
amplifiers, which implies an overestimation of the amplifier.

2.6 Error Analysis

To further identifywhich factors induced the above results, we conduct both quantitative
and qualitative analyses on whether a knowledge category is correctly detected from
the syllabus by our proposed method. We utilize the threshold value that leads to the
highest ROC value to transform the relatedness of a syllabus and a domain knowledge
category into Boolean “0-1” variables. Specifically, we define two types of errors as
follows:

False negative error (FN error): For a syllabus, a KU that is assigned by the ground
truth author but is not detected by our method.

False positive error (FP error): For a syllabus, a KU that is not assigned by the
ground truth author but is detected by our method.

2.6.1 Quantitative analysis of errors

We choose the experiments framed in Table 2.3 and plot their average numbers of FN
and FP errors in one figure. We suppose that FN errors are more fatal than FP errors,
since when searching for a course, being unable to find a course containing the target
knowledge is more disappointing than finding courses not containing it. To this end,
the proposed method in Patterns 2 and 3 works well in reducing FN errors. This is
mainly due to the integration of Wikipedia categories which help capture the implicit
relatedness. In addition, Amplifier 2 is helpful in reducing FP errors, resulting in a
balance between FN and FP errors.
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(a) Number of errors.

(b) Number of intolerable errors.

Figure 2.8: Numbers of FN and FP errors generated by the methods.

2.6.2 Qualitative analysis of errors

When investigating on the FN and FP errors by cases, we find that some of the FP errors
are undeniable because the “wrong” KUs found by our method are closely related to
the “correct” KUs assigned by the ground truth author. Moreover, when categoriz-
ing the knowledge of a domain, overlaps between different knowledge categories are
inevitable because they form a common basis for these knowledge categories. It is con-
firmed that the KA-KU structure in CS2013 also contains some overlaps. For example,
KU:Algorithm and Complexity/Algorithmic Strategies is co-related with KU:Software
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Development Foundations/Algorithms and Design. There are 121 pairs of such co-
related KUs across different KAs stated in CS2013. We suppose that there should be
more such co-related KUs because CS2013 is edited collaboratively and it is difficult
for a KU author to recognize all the other co-related KUs in KAs edited by other au-
thors. We call the errors induced by co-relationships between KUs as tolerable errors,
and the remaining errors are considered as intolerable errors. Figure 2.8b shows the
number of intolerable errors generated by the methods. We observe a similar trend with
Figure 2.8a but less FN and FP errors, which suggests that considering the relatedness
among KUs may improve the performance.

2.7 Summary

Our work is built upon the premise that mapping course content with a domain knowl-
edge categorization is instrumental in supporting the identification of course content
in the process of searching courses. To match course content with domain knowledge
categories, we proposed a Wikipedia structure-based method to estimate the related-
ness of a syllabus and domain knowledge category by leveraging the Wikipedia article
and category structure. Compared with the baseline method, LLDA, we found that our
proposed method can effectively capture the implicit relatedness of two short texts. In
our experiment, we utilize the Topic of KA/KU in CS2013 as the descriptions of the
domain knowledge category and the syllabi of 131 CS-related courses as the represen-
tation of the course content. The result shows that we can estimate the KU distribution
of a course at accuracy rates of 0.837 and 0.537 in terms of AUC and cosine similarity,
respectively.
According the the error analyses, we found that our proposed method leveraging

Wikipedia categories and KA-KU structure is balanced at generating FN and FP errors.
Improvement on these factors can be a direction of future work. Besides, we found that
there exist overlaps among the domain knowledge categories, which induces “tolerable“
errors. Consideration on the similarities among knowledge categories is also a future
direction.
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CHAPTER 3

Knowledge Coverage Estimation

In Chapter 2, we mainly utilize the domain knowledge categories to model the course
content, providing a systematic view for the students. In this chapter, we assume a
different scenario, in which the students have targeted on a specific knowledge category.
In this case, knowing how much of the knowledge is covered in the courses can be a
helpful criterion to select courses. We propose a centrality-basedmethod to differentiate
the concept importance in the category, which is further used to compute the coverage.6

3.1 Introduction

The movement of providing Massive Open Online Courses (MOOCs) emerges from
distance education and bursts into popularity in 2012. As is visioned, everyone should
be able to access to the course materials on any subject, anywhere, and anytime.
Albeit with the difficulty to realize this ideal condition, the current MOOC platforms
have brought unprecedented mutual freedom to educators and students. Belanger and
Thornton [2] reported that their first MOOC reached around 12,000 students, more than
half of whom actually interacted with the course materials. Although only 313 students
completed the course successfully, it is noteworthy that those students represented at

6This chapter is based on “Estimating Knowledge Category Coverage by Courses Based on Centrality
in Taxonomy” [58], which appeared in IEICE Transactions on Information and Systems, Copyright
©2020 IEICE.
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Figure 3.1: Knowledge category coverage and course knowledge composition. The
hollow bar indicates the total amount of required knowledge by the category. The
colored bar and the percentage value represent howmuch of the knowledge in a category
is covered by a course.

least 37 different countries. It is hardly ever for an instructor in a brick-and-mortar
university to reach students with such diverse backgrounds. Meanwhile, the students are
faced with various choices of courses offered by different institutions. For example, we
have 56 choices on the subject of database in just one of the current MOOC platforms,7

which are designed and oriented under diverse educational purposes. As a result, it
is undoubtedly a difficult task to select the proper course that satisfies one’s learning
need.
Categorization is an effective way to manage information. Taking “Database” for

example, it is such a broad subject that we normally break it down into topics like
“Relational Database”, “Distributed Database”, and “Data Mining”, to name a few.
With these topics, we can tackle the subject by focusing on one aspect of it at one time.
In this study, we term the topics as knowledge categories. We presume the user of
MOOC has already targeted on some knowledge categories, then it would be helpful
if he/she knows how much the knowledge in the categories is covered by the courses.

7https://www.edx.org/course?search_query=database, accessed June 19, 2019.
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For example, suppose the user is interested in learning “Relational Database”. As
shown in Figure 3.1, we can rank the courses based on the degree to which they cover
the knowledge of “Relational Database”. It is straightforward that Course A serves the
user’s need best since it covers the knowledge of this category with a highest percentage
92%. Additionally, if we are given the absolute amount of knowledge that is required
in each category (i.e., the length of each hollow bar in Figure 3.1), we can compare the
course knowledge compositions as well. As shown in Figure 3.1, we obtain an overall
impression that Course A and B put an emphasis on “Relational Database” and touch
some knowledge of “Distributed Database”. In contrast, Course E teaches intensively
the knowledge of “Distributed Database” and “Data Mining”. In this study, we take the
first step— estimating the knowledge category coverage as our goal.
Analyzing the course content has been a research interest of education-related com-

munities. Researchers [59, 60, 45] have attempted to understand how the course content
distributes over predefined knowledge categories.8 As mentioned before, our goal in
this study— estimating knowledge category coverage— can be extended to acquire
course knowledge composition. Other researchers [33, 34, 32, 35, 36] have endeav-
oured to gauge whether or to what extent a knowledge category is covered by course
materials. However, either they employ a manual method or they don’t define a concept
of coverage. To the best of our knowledge, our study is the first to give a definition of
knowledge category coverage and propose a semi-automatic9 method to estimate it.
To estimate the knowledge coverage of a category by a course, we first model the

knowledge category and the course as sets of concepts. Then, we define the coverage
as the degree to which the concepts required in a knowledge category are also taught
in a course. The key of estimating the coverage is to quantify the importance of
concepts to the set, since the importance of the concepts is influenced by the existence
of other concepts in the set. We resort to a taxonomy to capture the relationships among
concepts and then utilize the idea of centrality to estimate how important a concept is to
a set. When applying centrality to our method, we make a special effort to assign larger
values to more important concepts without undervaluing less important concepts.
Compared with treating all the concept uniformly important, our centrality-based

computation method produces closer coverage values to the ground truth assigned by
8Though it may be called as “topic”, “knowledge”, “academic learning standard”, or “knowledge

area” in previous research, we unify them into the term “knowledge category” for consistency.
9We treat this method as semi-automatic for the reason that one step of the method— the construction

of taxonomy is conducted in a manual process.
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domain experts. The main contributions of this study are two-fold: 1) Our study is
the first one to define a concept of knowledge category coverage and to estimate it in a
semi-automatic manner. 2) We construct a taxonomy and utilize the idea of centrality
to differentiate the importance of concepts in a set. Moreover, our method is elaborated
to weight more important concepts without underestimating other concepts.

3.2 Related Work

3.2.1 Course content analysis

The community of education has a long-standing interest in understanding how knowl-
edge is organized and conveyed in academic programs and courses. Researchers have
investigated whether the academic programs or courses fulfill the requirements estab-
lished by domain experts, regardless of by manual or automatic methods. We separate
these works into two groups based on what types of information they aim to extract.
The first group of research [59, 60, 45] focused on how the course content distributes

on a predefined set of knowledge categories. For instance, Bain et al. [59] manually
scrutinized textbooks and counted the pages spent on the knowledge categories in the
domain of accounting information system. A statistical model was adopted in [45] to
predict the distribution of computer science courses over some predefined knowledge
categories. These works looked at the composition of course content rather than the
coverage of a knowledge category, which is the main difference with our work.
The second group of research attempted to understand whether and to what extent

a knowledge category is covered by academic programs or individual courses. For
example, Lennox and Diggens [33] interviewed the school staffs on whether their
curricula touch on the ideal knowledge summarized by domain experts. Contractor
et al. [32] tackled the problem of detecting the most related knowledge category for
a given piece of course materials in an automatic manner. Both of these works only
evaluated whether the knowledge category of interest is covered or not. Other research
took a further step to inspect the extent to which knowledge categories are covered.
For instance, Macdonald and Fougere [34] used 5-point Likert scale to review how a
textbook covers the categories about the subject of software piracy. Ishihata et al. [35]
conducted a survey on how the informational science and engineering departments
cover the core knowledge categories in this domain. They obtained the teaching hour
of each department spending on each category from the questionnaire and then divided
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it by the required hour of the category to compute the coverage. What they achieved is
close to our goal in this study, however, we address the problem in an semi-automatic
way by processing the texts of courses and knowledge categories. Lastly, Kawintiranon
et al. [36] utilized information retrieval techniques to estimate how a course is associated
with a knowledge category. The association score they extracted is actually the ratio
of how many keywords in the knowledge category also appears in the course content.
In this sense, it is similar to the concept of coverage in our study. However, their
association score gets larger when the keyword appears more frequent in the course
content. As a result, their association score does not strictly fall into the range of [0, 1],
which is different from what we attempt to estimate in this study.

3.2.2 Graph-based document relatedness estimation

Relatedness (or similarity) of documents is an important metric in information retrieval
and it has received continuous attention. One stream of research in this area utilized the
knowledge graph to represent a document, thus the relatedness can be captured from
the graphical perspective. It would seem that our work falls in a branch in this stream
of research. However, our work is independent from those works for two reasons:

• What we aim to estimate, as called “coverage”, is distinct from “relatedness”.
The relatedness of a document 31 and another document 32 derives from the
related and the unrelated information of 31 and 32 (Refer to [61] for a detailed
clarification.). Thus, if any of 31 and 32 contains more unique information, the
relatedness become less. In contrast, the coverage of 31 by 32 is decided by
the common information of 31 and 32, and all the information of 31. In other
words, nomatter howmuch unique information 32 contains, the coverage remains
unchanged unless 31 is unchanged.

• Theoretically, the coverage of 31 by 32 can be approximated by computing the
relatedness of 31 and 31 ∩ 32 (common information of 31 and 32). However,
previous methods [62, 63, 64] lacked the quantification of the total information
contained in a document, which is essential for estimating coverage. For exam-
ple, Schuhmacher and Ponzetto [62] estimated the relatedness of 31 and 32 by
inverting the cost of converting the graph of 31 to the graph of 32. However,
this approach only captures what is unrelated (the cost to edit the differences of
two graphs) but not what is related (the identical part of two graphs). Thus, it is
unsuitable to estimate coverage in this type of approach.
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3.2.3 Centrality in text processing

Centrality has been applied in text processing tasks mainly for document summa-
rization [65, 66, 67, 68] and other tasks such as keyword extraction [69, 66], topic
identification [70], and term weighting [71] etc.
Some of these works used centrality score as a feature in further computation. For

example, Xie [69] utilized centrality measures as the features in a supervised model—
decision tree to predict the noun phrases that should be included in the abstract of a
document. Rousseau and Vazirgiannis [71] adopted centrality scores as term weights to
represent a document, which was then used to retrieve the proper document for a query.
Other works used the centrality score directly to select important sentences/words to
represent a document [65, 70, 66, 67, 68]. All of these works utilized degree centrality,
which results in a sentence being considered important if it has a larger number of
direct neighbors. In this study, we value the indirect connections between vertices as
well. Therefore, we adopt another type of centrality and it will be further explained in
Section 3.4.3.
The construction of the graph used to compute centrality plays a key role in applying

centrality in such tasks. Some of the works [69, 71, 66] added edges based on the co-
occurrences of sentences or phrases. This is built upon the assumption that a sentence
can represent a document better if it appears together with more sentences. While in
other works [65, 66, 67], an edge indicates two sentences are similar to each other.
The meaning of edges was defined more specifically in [70] and [68]. Coursey and
Mihalcea [70] modeled the relationship between two phrases if one is mentioned in the
document of the other one. Rashidghalam et al. [68] adopted the relationships (e.g.,
derive, is-a, part-of, and related etc.) existing in the BabelNet ontology as the meanings
of edges in their graph. Our definition of the edge is closer to the ones in the last two
works and the details will be explained in Section 3.4.2.

3.3 Problem Formalization

3.3.1 Knowledge category

Domain knowledge categorization is used as a reference to manage knowledge. With
the diverse backgrounds of MOOCs, a standard domain knowledge categorization be-
comes especially helpful. According to our preliminary survey, there exist curriculum
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Table 3.1: A part of the knowledge categories in CS2013.

KA KU Topic

In
fo
rm

at
io
n
M
an
ag
em

en
t

Information Management
Concepts

· Information systems as socio-
technical systems...

Database Systems · Approaches to and evolution of
database systems...

Data Modeling · Data modeling...

Indexing · The impact of indices on query
performance...

Relational Databases ·Mapping conceptual
schema to a relational schema...

Query Languages · Overview of database lan-
guages...

Transaction Processing · Transactions...

Distributed Databases · Distributed DBMS...

Physical Database Design · Storage and file structure...

Data Mining · Use of data mining...

Information Storage
and Retrieval

· Digital libraries...

Multimedia Systems · Standards (e.g., audio, graphics,
video)...

guidelines which attempt to categorize the knowledge that an academic program should
include. Some examples are, “Curriculum Guidelines for Undergraduate Programs in
Statistical Science” (by American Statistical Association)10, “ASM Curriculum Guide-
lines for Undergraduate Microbiology” (by American Society for Microbiology)11,

10http://www.amstat.org/asa/education/Curriculum-Guidelines-for-

Undergraduate-Programs-in-Statistical-Science.aspx, accessed June 11, 2019.
11https://www.asm.org/index.php/guidelines/curriculum-guidelines, accessed June

11, 2019.
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“Computer Science Curricula 2013” (by ACM/IEEE-CS) [41], etc. Among these
existing knowledge categorizations, we select “Computer Science Curricula 2013”
(henceforth, CS2013) as an instance of the knowledge categorization for the reasons
that: a) it covers a wide range of knowledge in the domain and organizes it into a
category structure with more than one level; and b) the authors are more familiar with
the domain of computer science. In CS2013, the knowledge is dubbed as Topics, and
then grouped into Knowledge Units (KUs) and Knowledge Areas (KAs). Table 3.1
shows the structure and some instances of knowledge categories in CS2013.

3.3.2 Problem definition

In this study, we adopt the term “concept” to refer to a technical term, denoted as 2.
Since we use the course syllabus as a textual representation of the course content, we
denote a course as B to avoid a duplicate notation with concept. Besides, we denote a
knowledge category as : . Both B and : are defined as a set of concepts. That is to say,
given a syllabus B and a knowledge category : , we aim to estimate the ratio that the
concepts required in : are covered by B, which is denoted as 2>{(: |B).

3.4 Methodology

3.4.1 Intuition

Intuitively, the coverage of : by B can be captured in Equation (3.1). With the de-
nominator being the total knowledge that is required in : and the numerator being the
knowledge that is both required in : and taught in B, the result provides us a ratio that
can be comprehended as the knowledge coverage of : by B. Then, our goal is to estimate
the two items in Equation (3.1), namely, the required knowledge and the required and
taught knowledge.

2>{(: |B) =
The knowledge required in : and also taught in B

The knowledge required in : (3.1)

Since we have already constrained : and B to the form of a concept set, we need to
quantify how important the concepts are to the whole set. Suppose we have a concept
set �1 = {“Relational Model”,“Transaction Processing”,“Concurrency Control”} and
a concept set �2 = {“Relational Model”,“SQL”,“Relational Algebra”}. Although the
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Figure 3.2: An example of the taxonomy of concepts.

concept “Relational Model” is required by both �1 and �2, it is not equally important
to these sets. This is the underlying relationship among concepts that makes them
behave differently when they are combined with different concepts. In this study, we
model the concepts and their relationships as a taxonomy. Figure 3.2 demonstrates an
example of the taxonomy of some database-related concepts. An edge indicates that
the concept being pointed is a part of the other concept. As we can see, both “Rela-
tional Model” and “Transaction Processing” are important and relatively independent
concepts in the domain of database. Therefore, it is likely that �1 requires broader
and shallower knowledge of “Relational Model”. While in �2, “SQL” and “Relational
Algebra”, two sub-concepts of “Relational Model” are also required, which indicates
more concentrated and deeper knowledge of “Relational Model” is required.
Based on the above intuition, we propose a method consisting of three steps— I)

Taxonomy Construction, II) Concept Importance Computation, and III) Concept Im-
portance Aggregation. Firstly, we construct a taxonomywhich embeds the relationships
among concepts. Then, we utilize the idea of centrality in the taxonomy to compute the
importance of concepts to a concept set. When the concept importance is computed,
we then simply aggregate the importance values of the concepts that are contained in :
or B as the amount of required knowledge or taught knowledge, respectively. Figure 3.3
depicts the overall framework of this study and we will explain the main method by
steps in the following sections.
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Figure 3.3: The overall framework of this study. The white circles represent concepts
and the directed edges indicate relationships between concepts. To separate the con-
cepts appearing in different types of documents, filled circles are used for knowledge
categories and dotted circles used for syllabi. 2>{?A43 (: |B) is the knowledge coverage
of : by B estimated by our proposed method while 2>{�C (: |B) is the one assigned by
domain experts.

3.4.2 Taxonomy construction

This step corresponds to step I in Figure 3.3, in which a taxonomy of concepts is
constructed. We denote the taxonomy as a directed acyclic graph � =< +, � >, where
+ is a set of concepts and � = {(28, 2 9 ) |if learning 2 9 is necessary to understand 28} is
a set of directed edges. As mentioned in the example in Figure 3.2, there should be an
edge from “Relational Model” to “SQL”, since it is inevitable to learn the knowledge
of “SQL” to understand “Relational Model”. We define the edge this way deliberately
for the computation of concept importance and the reason will become clearer in the
next section.
The quality of the taxonomy plays a significant role in the computation of the concept

importance. Therefore, we are cautious to construct a taxonomy with reliable edges.
Based on our definition of the edge, we consider the textbook is a valuable recourse
to extract the relationships between two concepts. If we treat the chapter title as the
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concept to be explained, then the concepts being mentioned in the chapter can be
treated as the necessary concepts in understanding the chapter title. When given a set
of concepts and a set of textbooks, we propose Algorithm 1 to establish edges for those
concepts.

Algorithm 1: Establish edges from textbooks
Input: + : set of 2 that is given, � = {11, 12, · · · , 1=}: set of textbooks
Output: �1, �2, · · · , �=

1 �1, �2, · · · , �= ←− ∅
2 for 8 ←− 1 to = do
3 for 2 ∈ + do
4 if 2 shows in the index of 18 then
5 %2 ←− the pages ? where 2 appears
6 for ? ∈ %2 do
7 ) ←− the titles C where ? appears and the corresponding levels

of the titles ;C . // ;C is the level of C in the table

of content of the textbook. A lower level has a

greater ;C value

8 sort ) based on ;C in descending order
9 for C ∈ ) do
10 if C shows as 2′ ∈ � then
11 �8 ←− �8

⋃{(2′, 2)}
12 break

In Algorithm 1, for every concept in the initial set, if it appears as a terminology
in the index of the textbook, we then check whether the titles of the chapters where it
appears are also concepts in the initial set. If so, an edge from the chapter concept to
the index concept is established. Line 7 is a guarantee that when there exist multiple
levels of chapters of a page, only the strongest edge (from the chapter concept at the
lowest level) is included.
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3.4.3 Concept importance computation

This step corresponds to step II in Figure 3.3, where we firstly introduce two ways to
compute the importance of the concepts and then put forward a method to combine the
two ways.

Uniform Computation Method

A naive way to compute the importance of the concepts in a set is to treat them
uniformly important. We denote the importance of a concept 2 in a knowledge category
: computed by the uniform computation method as �<?* (2 |:), and it is generated as
�<?* (2 |:) = 1.

Centrality-based Computation Method

As we have discussed before, the concepts in a set are not uniformly important since
they represent knowledge of different depths and widths. For instance, in the concept
set � = {“Relational Model”, “SQL”,“Relational Algebra”}, the knowledge of “SQL”
and “Relational Algebra” contributes to the understanding of “Relational Model”.
Thus, it is possible that � requires profound knowledge of “Relational Model” with
special interests in the knowledge of “SQL” and “Relational Algebra”. How can we
differentiate the importance of concepts? Recall our definition of the edges in the
taxonomy— a concept has an edge to another concept if it can be better understood by
learning the other concept. Therefore, we consider the concepts that have more access
to other concepts in the taxonomy are more important in a set. This attribute is called
“centrality” and used to find out the most “central” member in the context of social
network analysis. The meaning of “central” depends on how it is defined in specific
applications and different graph properties are used to compute centrality.
Based on our assumption that the importance of a concept is decided by the extend

to which it could be understood by learning other concepts in the set, more important
concepts should have more and intimate access to other concepts. Closeness central-
ity [72] serves our need in the sense that it treats a vertex as more central if it is closer
to all the other vertices. A shorter total distance indicates more direct paths towards
other concepts, thus, better understood and more important.

The original closeness centrality. A general equation used to compute the closeness
centrality of {, � ({), is shown in Equation (3.2), where 38B({, D) is the length of the
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shortest path from { to D, and = − 1 is the possible smallest total distance of { to other
vertices. Thus, � ({) presents the inverse average distance of { towards other vertices,
which is normalized to the range [0, 1].

� ({) = (
∑
D≠{ 38B({, D)
= − 1 )−1

=
= − 1∑

D≠{ 38B({, D)
(3.2)

Dealing with disconnected graphs. The original equation for computing closeness
centrality is meaningless if the graph is not connected. Since all the total distance of
a vertex towards other vertices becomes infinity even if there is only one vertex not
connected to any vertices. This results in all the vertices having a centrality of zero,
which underestimates the importance of the connected vertices. In the following, we
explain some variants [73, 74, 75, 76] to deal with disconnected graphs and how we
choose the proper one to solve our problem.

(a) Large-value-replaced closeness centrality [73]. In this model, the distance to
unreachable vertices are replaced by a large value instead of infinity. In Equa-
tion (3.3), < in the second item in the denominator is the number of unreachable
vertices of { and V is a parameter to modify this value (which is commonly set
to the diameter of the graph). Note that the first item in the denominator only
counts the distance to reachable vertices of {.

�!+ ({) =
= − 1∑

D≠{ 38B({, D) + <V
(3.3)

(b) Harmonic closeness centrality [74, 75]. As shown in Equation (3.4), this model
computes the centrality of a vertex by summing up its inverse shortest distance to
other vertices, which is then normalized by the possible maximum total inverse
distance (= − 1). When there is no path from { to D, 38B({, D) = ∞, which results
in a zero in the summation.

�� ({) =
1

= − 1
∑
D≠{

1
38B({, D) (3.4)

(c) Components-based closeness centrality [76]. In this model, the centrality of
vertices are computed independently inside each connected components, and
then normalized by the relative size of this component to the whole graph.
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Table 3.2: An example of using variants of closeness centrality for disconnected graphs.

Concept { �!+ (V = 6) ��

“Relational Model” 1 0.31 0.50
“SQL” 2 0.25 0.40
“Database Shema” 3 0.17 0.00
“Relational Algebra” 4 0.17 0.00
“Transaction Processing” 5 0.20 0.20
“Concurrency Control” 6 0.17 0.00

However, in each connected component, this model cannot cope with directed
graphs that may still have disconnected pairs of vertices. For this reason, we
exclude this variant from the candidate models to compute concept centrality.

Table 3.2 shows the closeness centrality values of the exemplar taxonomy (in Fig-
ure 3.2) by using different models explained in (a) and (b). As we can see the dis-
tributions of two models, large-value-replaced closeness centrality tends to generate
closer values for all vertices. In this example, we set V to the possible smallest large
value, namely the number of vertices in the graph, as the replacement of infinity. If we
enlarge the value of V, the values of all the vertices will get closer and closer, which
is not desirable in our problem setting. On the contrary, harmonic closeness centrality
succeeds to differentiate more important vertices (i.e., 1, 2, and 5) and less important
vertices (i.e., 3, 4 etc.). Therefore, we adopt harmonic closeness centrality as our
centrality-based method to compute the importance of concepts in a set.

Combined Computation Method

Since our taxonomy is directed, the leaf verticeswill be underestimated during centrality
computation (see the last column in Table 3.2). Although we consider leaf concepts
are less important than the concepts in the upper levels, they should not be ignored
completely. Thus, it is effective to combine the uniform computation method and
centrality-based computation method to achieve a balanced importance of the concepts.
We introduce a parameter to modify the trade-off between the differentiation of concept
importance and the preservation of importance of less important concepts. To sum up,
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the importance of a concept to a set is computed by

�<?(2 |:) = U · �� (2 | (:, �)) + (1 − U) · �<?* (2 |:) , (3.5a)

�� (2 | (:, �)) =
1

|: | − 1
∑
2′∈:\2

1
38B(2, 2′) . (3.5b)

Note that, when computing 38B(2, 2′), it may involve other concepts contained in the
whole taxonomy� but not in : . When U = 0, it is identical to use uniform computation
method, which is considered as our baseline. We tuned the value of U from [0, 1] in
the experiment and found that the best performance appears when U is valued between
[0.85, 0.95].

3.4.4 Concept importance aggregation

In step II, we have computed the importance of a concept to a concept set. On one hand,
the required knowledge of : can be obtained by summing up the importance values of
its concepts. On the other hand, the required but also taught knowledge is simplified as
the sum of the importance values of concepts that appear both in : and B. The ultimate
equation used to compute the knowledge coverage of : by B is

2>{(: |B) =
∑
2∈:∩B �<?(2 |:)∑
2∈: �<?(2 |:)

. (3.6)

This step is notated as step III in Figure 3.3.

3.5 Experiment

3.5.1 Dataset

There are 18 KAs in CS2013 and we only pick one KA to test the effectiveness of our
proposed method. The reasons are:

• It is non-trivial to generate a taxonomy of domain knowledge correctly and
automatically. To make sure the emphasis of this study falls on the step of
computing concept importance, we adopt a balanced strategy to generate a reliable
taxonomy which only allows us to implement it on a limited number of KAs.

• It is costy to generate ground truth for the dataset. We resort to domain experts
to assign the knowledge coverage of KUs by courses. This requires the domain
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Table 3.3: Statistics of the documents of : and B.

: B

Number of documents 12 26
Average word count of the documents 50.42 253.96

experts being considerably familiar with a domain. It is practically hard for us to
reach domain experts across the extensive scope of computer science.

Among the 18 KAs defined in CS2013, we then chose “Information Management” as
our preliminary dataset. Firstly, the authors are more familiar with this KA, which leads
to a more insightful result analysis. Secondly, information management is viewed as a
microcosm of computer science [77] and we think it is proper to choose a representative
KA in this domain to try out our proposed method. Then, we collected 26 syllabi of
courses that are related to information management. Among them, 7 courses are online
courses and 19 are courses being provided in brick-and-mortar universities. Table 3.3
gives the basic information of the documents of : and B.
Regarding the ground truth, we asked two domain experts12 to assign the knowledge

coverage of all the pairs of : and B after reading the documents of 12 KUs and 26
courses. In detail, they were required to follow these instructions:

1. Read through the documents of 12 KUs to make sure you understand what
knowledge is required. It may be helpful to form an image and keep in mind of
what sub-topics you will teach and how much time you will spend in order to
teach the required knowledge.

2. Read the course syllabi one by one and assign the percentage values while
referring to your comprehension of the required knowledge. For the syllabi
without explicit indications on how much time is spent on each topic in it, you
may judge from the overall content of the course and estimate the volume of its
content by treating it as a regular one-semester course.

3. Adjust the coverage values you have assigned to make sure they are judged under
the same criterion whenever necessary.

12One of them is the author of this paper, and the other one is not.
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Table 3.4: Statistics of the Wikification results of : and B.

: B

Average number of concepts 25.83 98.54
Total number of concepts 264 1436

Table 3.5: Evaluation on the Wikification results.

KU # of unrelated concepts Average centrality of unrelated concepts

IM01 6 0.000
IM03 2 0.000
IM04 8 0.024
IM06 1 0.000
IM07 3 0.000
IM10 4 0.000

The correlation coefficient of the coverage values collected from two experts is 0.855
(? < 0.0005). Therefore, We consider their assignment as reliable and then took the
average coverage values as the final ground truth.

3.5.2 Concept detection

Our proposed method is based on the assumption that the knowledge categories and
course syllabi are given as sets of concepts. Therefore, the concept detection is a
pre-processing of the documents we have collected. Specifically, we adopt several
existing tools to detect the concepts that are defined in the knowledge base Wikipedia.
Wikipedia is an online encyclopedia that can be edited and updated by massive users. It
has become a valuable knowledge resource for tasks in various fields such as information
retrieval, knowledge engineering, and natural language processing, to name a few. For a
given document, Wikification is a process in which the phrases and their corresponding
Wikipedia articles are detected and extracted. In this study, we treat the titles of
Wikipedia articles as concepts and adopt four Wikifiers to convert documents of : and
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B into concept sets. Among the four Wikifiers, one is our original tool13 and the other
three were developed in previous research [78, 56, 79]. We then took the union of
the detected concepts by all the four Wikifiers as the final concept sets.14 We accept
the detected Wikipedia articles as the given sets of concepts. No special process is
conducted to find potentially missing concepts since it is beyond the scope of this study.
Table 3.4 reports the numbers of concepts detected in the process of Wikification.
There remains a concern that including multiple Wikifiers may increase the noisy

concepts that are not actually related to this document. However, we expect the negative
effect of these concepts can be alleviated when projecting them on the taxonomy. To
verify this, we randomly selected six of the KUs and asked two evaluators (both of
them are PhD candidates and one is the first author.) to check whether the detected
Wikipedia articles are related to the document or not. Three levels were used to rate a
Wikipedia article— related, somewhat related, and not related. We then computed the
average centrality values of the Wikipedia articles that are considered as not related by
at least one of the evaluators. Table 3.5 reports that the noisy Wikipedia articles get
rather low centrality values, which implies that the centrality computation succeeds to
suppress the importance of wrongly detected Wikipedia articles.

3.5.3 Taxonomy construction

In the experiment, we set the union of the concepts detected in all the knowledge
categories as + , and followed Algorithm 1 to extract � = �1 ∪ �2 ∪ �3 manually from
three classic textbooks [77, 80, 81] in the domain of information management. Note
that we include all the edges that can be found in at least one of the textbooks, since the
number of valid edges decreases dramatically if we raise the threshold to two. We also
removed one edge that causes a cycle in the taxonomy.15 Consequently, we obtained a
taxonomy of 264 vertices and 245 edges.

13We first use NLTK package to extract noun phrases from the documents. Then, the noun phrases
are used as query to search related Wikipedia articles in the Bing search engine.

14In preliminary experiments, we tried to use the number of wikifiers by which a concept is detected
as an indicator of the reliability of the concept. However, the performance didn’t improve significantly.
Therefore, we do not include this factor in this study.

15One cycle (Transaction processing
Concurrency control) is found in our dataset. Since coping
with the cycles is not essential in this study, we simply removed the edge from Concurrency control to
Transaction processing to avoid the cycle.
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3.5.4 Evaluation framework

In this study, our main concern is how the coverage values can help a user to make an
informed decision of learning. Therefore, the predicted 2>{(: |B) value should be as
close to the ground truth as possible. We evaluate the result in two scales.

Evaluating all pairs

In this evaluation scale, we require every individual 2>{(: |B) being comparable to each
other. That is to say, we evaluate whether the 2>{(: |B) values of all pairs of KUs and
courses are in consistent with the ones of the ground truth. Two metrics are adopted:

• Pearson Correlation Coefficient (Pearson, thereafter) [82] is used to reflect
whether the predicted coverage values is “propotional” to the ones of the ground
truth. We denote the set of knowledge categories and the set of syllabi as  
and (, respectively. The ground truth of the coverage of the 8Cℎ : by the 9 Cℎ B is
denoted as 2>{(8, 9)�C and the prediction of our proposed method as 2>{(8, 9)

?A43
. Then,

Pearson value is computed as

% =

∑(2>{(8, 9)�C − 2>{�C) (2>{
(8, 9)
?A43
− 2>{?A43)√∑(2>{(8, 9)�C − 2>{�C)2

∑(2>{(8, 9)
?A43
− 2>{?A43)2

, (3.7)

where 2>{�C is the average value of 2>{(8, 9)�C , and 2>{?A43 is the average value of
2>{
(8, 9)
?A43

.

• Mean Squared Error (MSE, thereafter) is used to check whether the predicted
coverage values have a small deviation from the ground truth. As shown in the
following equation, the errors that have a larger difference from the ground truth
get larger penalties.

"(� =

∑(2>{(8, 9)
?A43
− 2>{(8, 9)�C )2

| | |( | (3.8)

Evaluating by course

In this evaluation scale, we focus on the coverage estimation inside every course. This
is driven by the consideration that syllabi may be written in different styles or levels
of detailedness even the courses cover a KU to a similar degree. We treat a syllabus
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Figure 3.4: The results of evaluating all pairs in scatter plots. The x axis represents
the values of U and the y axis represent Pearson and MSE values, respectively. The y
value in the box is the maximum Pearson or minimum MSE value, and x value is its
corresponding U value.

as a vector in the space of its knowledge coverage with the KUs, which is denoted as
−−−−−−→
2>{B ( ) =< 2>{(:1 |B), . . . , 2>{(:= |B) >, where = = | |. Then we compute the cosine
similarity between the predicted

−−−−−−→
2>{B ( ) and the ground truth.

3.5.5 Results

Evaluating all pairs

The only parameter in ourmethod is U, which indicates the extent to which the harmonic
closeness centrality is utilized in the computation of concept importance. Figure 3.4 is
the scatter plot of the U values and their corresponding Pearson and MSE values. U = 0
represents the baseline experiment in which uniform importance values of concepts in :
and B are used to compute the coverage. When inspecting the U values other than zero,
both Pearson and MSE values reach a peak at some relatively high value and then drop
dramatically when U equals 1. In detail, Pearson reaches its peak when U is valued of
0.88, andMSE reaches its peak when U is valued of 0.93. Overall, the method performs

59



3. Knowledge Coverage Estimation

0.0 0.850.860.870.880.89 0.9 0.910.920.930.940.950.960.970.980.99 1.0
alpha

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.5: The result of evaluating by course. The x axis represents the values of U
and the y axis represents the cosine similarity values.

best on both evaluation metrics when U is valued in the range [0.88, 0.93]. This proves
that the idea of using centrality to compute the importance of a concept is valid in the
estimation of knowledge category coverage. Moreover, the combination of uniform
computation method and centrality-based computation method plays a significant role
in applying the idea of centrality to solving our problem.

Evaluating by course

In Figure 3.5, we plot the box-plots of the cosine similarity values of 26 courses for
the experiments with U valued in [0, 0.85 − 0.99, 1]. As can be observed, the mean
value (represented in green triangles in the figure) of cosine similarity has an obvious
rise from the baseline method (U = 0), starts to fall from where U = 0.94, and finally
drops when U = 1. Similar trends can be found on median, the first-quartile, the third-
quartile, the minimum and the maximum values of cosine similarity. We conclude that
our proposed method is valid to estimate the knowledge category coverage for a course
when choosing the appropriate parameter to combine the uniform and centrality-based
computation methods.
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3.6 Discussion

In this section, we investigate on the result in more depth. Specifically, we check over
the most important concepts of each KU and the performance on different KUs. In
Table 3.6, we list the five most important concepts with their importance values when
U = 0.88. Regarding Table 3.7, we treat a KU as a vector in the space of its knowledge
coverage by the syllabi and then compute the cosine similarity of the predicted one and
the ground truth.
First of all, we find the most important concepts are representative of the KUs. A

quick verification is to check whether we can infer the main topic of theKUmerely from
the important concepts without knowing the title of this KU. As shown in Table 3.6,
it is easy to judge that KU5 is about relational database design and KU7 requires the
knowledge of transaction processing.
On the other hand, we find that our method is weak to the knowledge categories that

contain “isolated” or “general” concepts. For example, the proposed method (when
U ≠ 0) is not working for KU12 (see Table 3.7). A potential reason is that this KU
contains relatively new and inter-disciplinary concepts that are underpresent in classic
textbooks. Thus, these concepts get low importance values since they are “isolated” in
the taxonomy. Another example is the comparison of KU1 and KU10. Both of the KUs
contain a very limited number of important concepts (i.e., Database, Computer data
storage in KU1 and Data mining in KU10). However, if we compare the performance
on these twoKUs in Table 3.7, it can be seen that utilizing centrality-based computation
method more is decreasing the accuracy of KU1while increasing the accuracy (when U
is in the range of [0, 0.8]) ofKU10. We analyze this is caused by the different generality
of concepts in the domain. That is to say, Database and Computer data storage tend
to appear in various KUs and they are not that important to KU1, while Data mining is
unique to KU10 and it deserves to be highly valued. Although our method is able to
differentiate the importance of a concept in different concept sets, further consideration
on how to modify the importance values of a “general” concept is needed.

3.7 Summary

In this study, we firstly define the knowledge coverage of a knowledge category by a
course as the extent to which the knowledge required in the category is also taught in
the course. Then, we propose a centrality-based computation method to estimate the
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3. Knowledge Coverage Estimation

concept importance to the knowledge categories, which is then aggregated to estimate
the knowledge coverage. The experiment has shown that ourmethod can generate closer
knowledge coverage values to the ground truth assigned by human experts, compared
to the uniform computation method.
Some future challenges remain. We only experiment on one KA in this study, and

we expect to extend it to other areas in the domain of computer science once we have
upgraded the technique to build a broader taxonomy. In the method, we did not carry
out any technique to deal with general concepts that appears in multiple concept sets.
It is an interesting task to consider how to modify the importance values of a concept
to different sets based on what other concepts are contained in the sets.
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CHAPTER 4

Course Ordering

In Chapters 2 and 3, we focus on learning goals presented in domain knowledge
categories, which are closer to the world of academia. In this chapter, we put emphasis
on other learning goals which relate to job opportunities. Generally, performing tasks
in the industries requires a compound mastery of various knowledge and skills. As
a result, we need to take more courses into consideration and balance the trade-offs
among those courses. In this chapter, we address the course ordering problem for a given
job-oriented goal while considering the prerequisite relationships between courses.

4.1 Introduction

Many college students experience the following when their graduations are approach-
ing: flooded with a large amount of job postings, closely looking at their curriculum
vitae (CV), and struggling to attract recruiters’ attention among a bunch of competitors’
applications. With the development of open and online education, we hold a vision
that, in the near future, the students will be able to freely construct their own curricu-
lum, which is not prescribed by the institutions. In addition, students are encouraged
to accumulate working experience earlier as it is helpful for building the professional
identity [11]. Consequently, it is necessary for students to keep adapting their learning
experience to achieve fruitful learning and successful career development according to
frequent updates in the job market.
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4. Course Ordering

Table 4.1: Example of courses.

ID Courses
21 Computer Programming 1
22 Computer Programming 2
24 Data Structures and Algorithm Analysis
26 Web Site Design and Development
212 Advanced Web Design and Programming

(. . . Students examine advanced topics in Hyper Text Markup Language, Cascade Style Sheet

and JavaScript for . . . )
213 Database Systems
217 Programming Methods

(. . . Students learn a combination of visual programming using C# and scripting language using

Python in this course. . . . )

221 Web-based Information Systems
(. . . Students use a variety of web development tools and programming/scripting languages. . . . )

“Technical terminologies” are important building blocks of job opportunities. For
instance, scripting language is one of such technical terminologies frequently
required in IT job positions. In our work, we address technical terminologies as
students’ learning goals. Given scripting language, what is the best order to take
courses for students? It is a difficult question even if the number of candidate courses
is small. Table 4.1 lists an example of eight courses related to scripting language.
According to the course title and the snippet of the course content, we find that courses
212 and 217 are helpful for learning some scripting languages such as Cascade Style
Sheet, JavaScript, and Python. In addition, course 221 also addresses some scripting
languages though they are not the main topics of the course. As a result, we recommend
courses 212, 217, and 221 to students, in which priority is given to 212 and 217. However,
some of these courses are built on the basis of other courses. For example, before a
student learns advanced knowledge about web design and programming in course 212,
the student should understand the basic knowledge of web design and development in
course 26. Given a course, some courses that students need to learn prior to it are called
the prerequisites of it. Therefore, we need to not only prioritize the courses related to
the target terminology but also pay attention to the prerequisite relationships among
courses when providing an order to take them. Actually, the number of candidate
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4. Course Ordering

courses and the complexity of the course prerequisite relationships are expected to be
much larger than the example shown in Table 4.1, which motivates this study.
Many researchers have been working on recommending learning materials. They

took into consideration various learning needs and constraints such as completion
time of the courses is shortened, course requirements are met, important knowledge is
included [37, 20, 38, 39], and so on. However, these works have not explored the order
among multiple related courses in a prerequisite-based course network. Other works
aimed at recommending job opportunities to students [83, 84, 85, 86] or recommending
learning materials for career demands [22, 25]. While the former works ignored the
course prerequisite relationships and orders [83, 84, 85, 86], the latter ones focused on
short-term learning scenarios in which only one course was recommended [22, 25]. In
contrast, our work is helpful for planning long-term learning in which multiple courses
are involved.
We develop a two-step approach to solve the course ordering problem: The first step

estimates the relatedness of the courses to the technical terminology (hereafter, course-
terminology relatedness). Then the second step determines the order of the courses
based on the estimated relatedness and prerequisite relationships. In these two steps,
we address the first step as a general task of relatedness estimation and put emphasis
on the second step. Specifically, we then propose a method for ordering courses based
on Markov decision process and conduct comparative experiments.
Furthermore, we explore whether the order is relevant from other pedagogical per-

spectives such as whether the very basic course is ranked first, the course is close
to its prerequisites in the order, and so on. Experimental results show our proposed
method can prioritize the related courses and place them closer to their prerequisites.
However, one of the comparative methods demonstrates a similar performance as the
proposed method. We then discuss the difference between our proposed method and
the comparative method in detail.
The contributions of our work are summarized as follows:

• To the best of our knowledge, ourwork is the first that attempts to order the courses
towards a job-oriented learning goal by following the prerequisite constraint.

• Our work is information retrieval-driven and education-aware one. In other
words, we mainly serve the users whose information gain is maximized by
following the order, and also explore whether the generated order is helpful for
students or not from educational perspectives.
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• We construct a fair-scale dataset annotated with three kinds of labels that denote
relatedness between courses and technical terminologies.

4.2 Related work

4.2.1 Recommending learning materials

Recommending learningmaterials has attracted a lot of attention in educational research
communities. These works took into account a variety of elements such as prerequisite
relationships, difficulty, popularity, availability, and importance of the learning mate-
rials to meet different learning needs [37, 20, 38, 39]. In the following, we summarize
their works and highlight the differences between our work and theirs.
Parameswaran and Garcia-Molina [37] addressed the problem of recommending

itemswith prerequisite relationships. They aimed at finding the set of : itemswhich has
the maximum total score and meanwhile meets the prerequisite constraint. Therefore,
the order of the : items does not matter if the total score is maximized. However,
their algorithm can be adapted to solving our problem and the details are explained
in Section 4.4.2. Xu et al. [20] addressed more complex course constraints such as
prerequisite relationships, course availability, and mandatory/elective requirements.
They developed a forward-search backward-induction algorithm to optimize course
sequences with shorter time needed for graduation. In other words, they aimed to
minimize the time of a course sequence if all the mandatory and enough elective
courses are included. Unlike these works, our work determines the detailed order of
related courses rather than whether related courses are included in the order or not.
Zhu et al. [38] and Shi et al. [39] recommended learning paths from a knowledge map

by meeting multiple constraints such as whether the paths contain unlearnt, important
or popular knowledge nodes, and so on. In their problem settings, the start and end
knowledge nodes are given and all the paths connecting the two nodes are treated
individually. In our work, multiple related courses exist in a graph (i.e., multiple end
nodes) and the order of nodes on multiple paths should be considered.

4.2.2 Connecting academia and industries

To fill the gap between the academia and the industries, many works attempted to
recommend job opportunities to students or recommend learning materials for career
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demands.
A common approach can be observed in a category of research works in which the

most “similar” job to the student’s educational background is recommended [83, 84,
85, 86]. Commonly, job postings and student CVs were utilized, and then various
techniques were adopted such as ontology-based skill similarity [83], recurrent neural
network [84], latent Dirichlet allocation [85], and naïve Bayes classifier [86] to estimate
the similarity between them. These works treated the students’ learning experience as
a whole, namely, all the courses are completed and the students’ acquisition level of
those courses influences the recommendation performance. On the other hand, ourwork
puts more emphasis on making a plan for learning, in which the course prerequisite
relationships and orders are more important.
Another category of research works attempted to identify relevant courses or training

program for job positions or demands of career development [22, 25]. Srivastava et
al. [22] inferred a course which a student is most likely to take next by mining from a
large-scale course enrollment data. Wang et al. [25] recommended a course based on
the employee’s current competencies modelled from their skill profiles. For this reason,
their works concentrated on the short-term learning needs, namely, the next one course
is recommended for the student. Our work not only extracts the most necessary courses
but also achieves prerequisite-aware course ordering for long-term learning needs.

4.3 Task Formulation

4.3.1 Awareness of prerequisite relationships

Generally, we need to acquire some knowledge before understanding more advanced
knowledge. For instance, if we do not know “algorithms” at all, it is difficult to under-
stand the “complexity of an algorithm”. In taking courses, following the prerequisite
relationships among courses is essential.
In traditional educational institutions, course prerequisite relationships are defined by

the curriculum designers. In open and online education, massive learning materials are
available. For the latter learning environment, researchworks focusing on the extraction
of prerequisite relationships among concepts [87, 88, 89, 90] are helpful. Works on
prerequisite extraction are orthogonal to our work and we assume the prerequisite
relationships are given in our problem setting.
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Figure 4.1: Prerequisite relationships among courses.

4.3.2 Definition of a “relevant” order

Given a target technical terminology, we address how to effectively acquire the knowl-
edge related to it. Figure 4.1 shows prerequisite relationships among the courses in
Table 4.1 and how these courses are related to scripting language. Then, the
relevant order is generated by highly ranking the courses which are related to the termi-
nology. In other words, 21 → 26 → 212 → 22 → 217 → 24 → 213 → 221 (hereafter,
Order 1) is a relevant order as all the related courses (i.e., 212, 217, and 221) are ranked
in the highest positions where they could appear. The goal of our work is to identify
the most relevant order by taking prerequisite constraint into account.

4.3.3 Observation from pedagogical perspectives

Depending on the complexity of the course network and the number of related courses,
there may exist more than one relevant order of courses for a technical terminology.
Even for the simple course relationships in Figure 4.1, we can find another order,
21 → 22 → 217 → 26 → 212 → 24 → 213 → 221 (hereafter, Order 2), which
is equally effective as Order 1 in terms of prioritizing related courses. However,
Orders 1 and 2 give different effects on a student’s learning experience. For example,
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Order 1 places 212 prior to 217, which is desirable if the student prefers learning a
basic course first and then other advanced courses. In contrast, Order 2, where 212 is
placed closer to 221, is desirable if a student dislikes the time lag between a course and
its prerequisites. Hence, we explore the effectiveness of an order from the following
pedagogical perspectives.

• Specific fundamentality. Specific fundamentality defines how likely a course
will form the basis towards understanding the technical terminology. Prioritizing
such courses makes a student’s basic knowledge solid, helping the learning of
more advanced knowledge.

• General fundamentality. In contrast to specific fundamentality above, general
fundamentality defines how likely a course will form the basis towards under-
standing the whole domain. A general fundamentality-focused order is especially
important in a learning context with high uncertainty. In other words, if students
change their goals during the learning process, they can still benefit from the
courses they have already completed since the courses also contribute to the
understanding of other terminologies.

• Local reference. Local reference refers to placing the prerequisites of a course
closer to it. From a cognitive point of view, to shorten the time lag between
courses with dependency helps reduce the extra cognitive load in learning [91,
52].

Theoretically, our concerns are various aspects that affect a student’s learning expe-
rience. However, it is difficult to satisfy all types of students’ learning preferences at
the same time as some of them are inherently contradictory to each other. Our work
proposes a method for identifying “relevant” orders and explores whether the orders
are effective from the aforementioned perspectives.

4.3.4 Problem definitions

A course set + and the prerequisite relationships � = {(28, 2 9 ) | 28, 2 9 ∈
+, 28 is a prerequisite of 2 9 } forms a course graph � =< +, � >. In our work, when
given a technical terminology C and a course graph �, we aim at identifying an or-
der $A3 (+ |C) = (28, . . . , 2 9 ) subject to the prerequisite relationships and prioritizing
the courses closely related to C. In the following sections, we denote ?>B(2, $A3) and
$A3 [8] as the position of 2 in$A3 and the course at the 8Cℎ position in$A3, respectively.
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4.4 Methodology

To acquire the knowledge of a given technical terminology, we need to not only identify
the related courses but also pay attention to the prerequisites when deciding the order
to take them. Intuitively, our task consists of the following two steps:

(STP1) Estimation of how each course is related to the given technical terminology,
namely, course-terminology relatedness; and

(STP2) Ordering the courses based on their course-terminology relatedness and prereq-
uisite relationships.

Course-terminology relatedness can be estimated by matching the textual information
of courses and terminologies. To this end, STP1 is a general task in the domain of
information retrieval and a variety of existing approaches can help realize it [92]. We
then propose a method for ordering of how to take courses after estimating course-
terminology relatedness.

4.4.1 Proposed method—Markov Decision Process-Based Order-
ing (MDPOrd)

Intuition of adapting Markov decision process

Markov decision process (MDP) is a stochastic sequential decision model, which has
been applied to a wide range of problems such as inventory management, equipment
maintenance, communication systems, and so on [93]. Themain idea behind this model
is to find the best set of decisions that optimizes the long-term goal.
Given a technical terminology, ordering of courses can be viewed as a process in

which we start with the courses without any prerequisites and keep adding them until we
reach the ones that are highly related to the terminology. In this context, how to select
a course in a higher position depends on (1) how likely the course will be related to the
terminology itself and (2) how likely the course will ultimately lead to a highly-related
course in the graph. As a result, every step in the course ordering process should be
based on the expectation of the future gain by taking that step. We employ MDP as it
can model our task well and identify an order of courses that optimizes the information
gain for the technical terminology.
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Formulation of MDPOrd

A general model of MDP consists of decision epochs ) , states (, actions �,
rewards ', transition probabilities %, discount factor W, and policies Π, namely,
denoted as {), (, �, ', %, W,Π}. In this framework, a decision maker follows a
policy to take an action at each epoch and also receives a reward and transition
between states. The main goal is to find a policy which leads to a state with optimal
discounted future gain. We explain how each components are modeled in the following:

Decision Epochs. Let ) be the discrete time steps in the system. In our work, we
adopt infinite horizon ) ≡ {1, 2, . . .} to find the best policy, which assumes the system
does not know how long the process will last at any time step. Infinite horizon assures
a stationary policy for any state regardless at what time step it reaches the state. The
practical meaning of infinite horizon in our work can be explained as follows: the
system will suggest the same course order whenever the students start learning. This is
reasonable if we assume the students always have sufficient time to learn the courses.
States. Let ( be the set of possible states the system occupies at a time step. In our

work, a state B is a set of courses a student has completed. As our work needs to follow
prerequisite relationships, for any state B, if it includes a course 2, it must include the
prerequisites of 2. Therefore, we denote a possible B = {2 9 ∈ + | ∃(28, 2 9 ) ∈ � =⇒
28 ∈ B}. It is time-consuming to exhaust all the possible states, especially, a course is
allowed to have more than one prerequisite in the graph. Table 4.2 demonstrates the
process of generating valid states for the course graph in Figure 4.1 and the followings
detail the process:

1. We add a dummy node to the graph and connect it to the original root nodes (the
value of its in-degree is 0) in the graph. The addition of a dummy node assures
that

(a) all the sub graphs are linked as one graph if more than one root exist, and

(b) the generated states will always include an empty set, which is the start state
to find an order of courses.

2. We traverse the graph in a depth-first way from the dummy node. Whenever we
explore a new node, we generate new states by adding this node to the current
states based on the following two rules:
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Table 4.2: Process of generating valid states for the course graph in Figure 4.1.

Step Node From Parents visited Generating states
1 3D<<~ - True ∅
2 21 3D<<~ True {21}
3 22 21 True {21, 22}
4 24 22 True {21, 22, 24}
5 213 24 True {21, 22, 24, 213}
6 221 213 False -

7 217 22 True
{21, 22, 217}
{21, 22, 24, 217}
{21, 22, 24, 213, 217}

8 26 21 True

{21, 26}
{21, 22, 26}
{21, 22, 24, 26}
{21, 22, 24, 213, 26}
{21, 22, 217, 26}
{21, 22, 24, 217, 26}
{21, 22, 24, 213, 217, 26}

9 212 26 True

{21, 26, 212}
{21, 22, 26, 212}
{21, 22, 24, 26, 212}
{21, 22, 24, 213, 26, 212}
{21, 22, 217, 26, 212}
{21, 22, 24, 217, 26, 212}
{21, 22, 24, 213, 217, 26, 212}

10 221 212 True
{21, 22, 24, 213, 26, 212, 221}
{21, 22, 24, 213, 217, 26, 212, 221}

(RL1) Given a node at exploration, new states must be generated from the states
generated from its parent and other explored descendants. For example,
when we are exploring 217, its parent 22 and other descendants of 22— 24

and 213 are already explored. We generate new states by adding 217 to all
the generated states from 22, 24, and 213 (Steps 3 to 5).
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(RL2) Given nodes with multiple parents, we only generate new states at the last
time we explore it, and new states must contain all of its parents. For
example, when we first explore 221 in Step 6 where the other parent 212 has
not been explored yet, it is skipped. The last time we explore 221 when all
of its parents have been explored, we can generate new states by adding 221
to the states in Step 9 which include both of its parents 212 and 213.

Finally, we take the union of all the states generated alongside the traverse as (.
Actions. � denotes the union of actions that the decision maker is allowed to

take at each state. In this case, an action is the behavior to take a new course at
the current state. Subject to the constraint, the valid action for a state is any course
whose prerequisites (if any exists) are already included in the state. For example, in
Figure 4.1, given B = {21, 22}, the valid actions are 24, 217, and 26.

Rewards. ' = (×� denotes the immediate reward obtained from taking a course 2 at
state B. In our work, the reward comes from the information gain towards understanding
the technical terminology by taking a course. To this end, we use course-terminology
relatedness A4; (2, C) to represent the immediate reward. Equation (4.1) defines how an
immediate reward A (B, 2) is computed from taking 2 at B:

A (B, 2) =

A4; (2, C) 2 ∉ B, B ∪ {2} ∈ (
0 >Cℎ4A|8B4

. (4.1)

Transition Probabilities. % = (×�×( denotes the distributions of the probabilities
that the system transits from states to states by taking courses. ?(B, 2, B′) denotes the
probability that the system transits from B to B′ by taking 2. Note that

∑
B′ ?(B, 2, B′) = 1.

In our work, we simplify the transition probability by considering the system will keep
transiting to the next state if some courses are taken. If the action is invalid, the state
remains unchanged. Equation (4.2) defines this:

?(B, 2, B′) =

1 B ∪ {2} = B′

0 >Cℎ4A|8B4
. (4.2)

Discount Factor. W denotes a parameter ranged in 0 ≤ W < 1 modifying how much
of the future gain values currently. This parameter is mainly set for a mathematical
reason, allowing the decision maker to find an optimal policy. In our experiment, we
set W to 0.96, which is commonly used value in MDP.
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Policy. Π = ( → � denotes the moving pattern of a decision maker at each state.
In MDP model, a policy that maximizes the expected value of all the states is defined
as an optimal policy c∗. The expected value of a state �G?+0; (B) comes from the
immediate reward of taking an action and the expected value of the next state. The best
we can expect from a state �G?+0;∗(B) is the maximum value of all policies and the
optimal policy for B is the action that maximizes �G?+0; (B), defined by Equations (4.3)
and (4.4), respectively:

�G?+0;∗(B) = max
2
(A (B, 2) + W

∑
B′
?A (B, 2, B′)�G?+0; (B′)) , (4.3)

c∗(B) = arg max
2

(A (B, 2) + W
∑
B′
?A (B, 2, B′)�G?+0; (B′)). (4.4)

Equations (4.3) and (4.4) can be solved using dynamic programming algorithms which
find an approximation of the optimal policy until it converges.
Ordering. In this step, we utilize the output of MDP model to provide relevant

course ordering. Once the optimal policy c∗ is found, we start with the empty set and
follow the best actions to move from one state to another state. If all the courses have
a positive reward value, following the optimal policy leads us to a state in which all
courses are included. If not, the state remains unchanged at some point where no more
reward can be obtained by taking a new course. In our work, we sort the remaining
non-rewarded courses topologically and append them to the order.

4.4.2 Comparative methods

We compare MDPOrd with the following three different types of methods:

• Aggregated-Relatedness-Based Ordering (AggRelOrd),

• Personalized-PageRank-Based Topological Sorting (PageRankTS), and

• Greedy-Value-Pickings-Based Ordering (GVPickings).

The intuition behind AggRelOrd and PageRankTS is that the priority of a course in
the order is determined by its direct relatedness to the terminology and how likely it
will be the prerequisite of other related courses. On the other hand, GVPickings selects
the courses as a set of paths, where a highly related course having many prerequisites
still have a chance to be selected at an earlier stage. We compare these three methods
to verify whether our proposed approach works better in ordering the courses. In the
following sections, we explain each of three comparative methods.
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Aggregated-Relatedness-Based Ordering (AggRelOrd)

As described above, a course should be prioritized as it is related to the terminology
itself and it is the basis of other courses. This method simply treats the maximum
relatedness among all the descendants of a course as an aggregated score to indicate
its priority. Let � (2) be the set of courses that have a path from 2 in the course
graph, namely, the descendants of 2 in the graph. Let 0��'4; denote the aggregated
relatedness of a course. Then 0��'4; is computed as:

0��'4; (2 |C, +) = ( max
2′∈2∪� (2)

A4; (2′, C)) + |� (2) |X, (4.5)

where X is a very small value added to assure that the score a course gets is always
larger than its descendants, thus ranked higher in the order. At last, the courses are
sorted in the order of their 0��'4; scores.

Personalized-PageRank-Based Topological Sorting (PageRankTS)

PageRank [94] estimates the probability of a “random walker” who ultimately stops at
each node in the network if it follows the links. Therefore, the probability distribution
shows the linkage of the network. The more incoming links, the higher probability
a node gets. Furthermore, a personalized PageRank [94, 95] enables the model to
estimate a mixed probability distribution of following both the network linkage and a
personalized preference over the nodes. As described at the beginning of Section 4.4.2,
the position of a course in the order should be determined by the relatedness to the
terminology and how likely the course will be the prerequisite of other related courses.
Here, the direct relatedness between the course and the terminology can be represented
in the personalized preference in the PageRank model. In addition, the likelihood of
being a prerequisite of other related courses can be captured in the network links part
in PageRank model.
We follow the matrix-vector notation in [95] to explain how the PageRank-based

score of each course is computed. Let v be the PageRank scores over the courses in the
graph, and u be the course-terminology relatedness. Let M be the transition matrix of
the graph where "8 9 =

1
|8=34�A44(2 9 ) | if 28 is prerequisite of 2 9 and "8 9 = 0 otherwise.

V ∈ [0, 1] is a teleportation constant and modifies the probability that the “random
walker” follows the personalized preference over the nodes.16 Solving Equation (4.6)

16We only report the results obtained by V = 0.2 in Section 4.5.4 as it gives the best performance.
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gives a PageRank-based score v for each course.

v = (1 − V)Mv + Vu (4.6)

Algorithm 2: PageRank-based topological sorting (PageRankTS)
Input : � =< +, � >: the course graph, + : the set of courses,

� = {(28, 2 9 ) | if 28 is prerequisite of 2 9 }: the set of course
prerequisite relationships, ?A8: the PageRank-based score of 28

Output
:

$A3: a queue of courses

1 $A3 ←− ∅
2 while � not empty do
3 '>>C ←− the courses 2 whose indegree is 0
4 Add 2 to $A3 if 2 ∈ '>>C and 2 has the largest ?A
5 + ←− + \ 2
6 �′←− {(2, 2′) | (2, 2′) ∈ �}
7 � ←− �′

Note that the score provided by the PageRank model is not necessarily subject to
our prerequisite constraint. In other words, it is possible that a course which has many
outgoing edges gets a higher score than its parent course who has no other children.
To solve this problem, we rely on topological sorting to reorder the courses based on
their PageRank-based scores. As shown in Algorithm 2, line 2-6 is the basic process
of topological sorting with a modification in line 4, where the course with the highest
PageRank-based score and no any prerequisites is always selected first.

Greedy-Value-Pickings-Based Ordering (GVPickings)

As described in Section 4.2.1, Parameswaran and Garcia-Molina [37] proposed Greedy
Value Pickings which recommends the best set of : items with the maximum total score
and meets the prerequisite constraint. However, their work did not consider the order
of items in the set if the total score is maximized. While Greedy Value Pickings was
not designed for ordering the items at the first place, we adapt it to our work. We
enhance Greedy Value Pickings by utilizing the order that : items are added to the
final set as the order required in our work, which is shown in Algorithm 3. The basic
idea behind this algorithm is to always add the path of courses with the largest average
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Algorithm 3: Greedy-Value-Pickings-Based Ordering (GVPickings)
Input : � =< +, � >: the course graph, + : the set of courses,

� = {(28, 2 9 ) | if 28 is prerequisite of 2 9 }: the set of course
prerequisite relationships

Output
:

$A3: the queue of courses

1 $A3 ←− ∅
2 while � not empty do
3 for 2 ∈ + do
4 �=2(2) ←− ancestors of 2
5 �=2′(2) ←− �=2(2) ∪ {2}
6 {0;D4(2) = ∑

0∈�=2′(2) A4; (0)/|�=2′(2) |

7 2̂ ←− arg max
2∈+

{0;D4(2)

8 Add a topological order of �=2′(2̂) to $A3
9 + ←− + \ �=2′(2)
10 � ←− � \ {(D, {) | D ∈ �=2′(2), (D, {) ∈ �}

score to the order. As our course graph allows multiple parents for a node, all the paths
towards a node should be included if we add a node (lines 4 and 5). Once a path (or
paths) of courses is added to the final order, the average scores of the remaining paths
are recomputed and the picking is conducted again. The process of computation and
picking is repeated until all the courses are correctly ordered.

4.5 Experiment

4.5.1 Dataset

For the convenience of data collection and analysis, we select computer science domain
to verify the effectiveness of our proposed methods.
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Course graph

Wecollected the course syllabi and prerequisite relationships from the bachelor program
of computer science in Thompson Rivers University.17 We select this program as we
can access sufficient course information and prerequisite relationships. As a result, we
obtain 24 courses and 30 prerequisite relationships linked each other (see Table A.1
and Figure A.1 for further details).

Technical terminology

We extract a set of technical terminologies, which are frequently required by the job
postings in a kaggle dataset.18 The dataset consists of 19,000 job postings collected
from the Armenian human resource portal CareerCenter during 2004 to 2015. We use
3,759 of the themwhich are labelled as IT-related. We first remove unnecessary sections
such as “Company location”, “Salary”, “Application procedure”, and so on by utilizing
some basic text processing techniques. We then extract the technical terminologies
from the pre-processed texts by applying entity extraction tool Wikifier, which works
well in detecting abstractive concepts (e.g., “software development”) and is linked to
Wikipedia. More specifically, we employ TAGME [78] andDBpedia Spotlight [56] and
include the union of the terminologies identified by any of them in the terminology set.
Whilewe address the job postings in IT-related domain only, the extracted terminologies
still include general ones such as “knowledge”,“communication”, and so on. As each
of the terminologies has its own Wikipedia page, we filter out irrelevant terminologies
that is greater than six hops distant from theWikipedia category “Computing”. Finally,
we collect 3,803 terminologies and select the 100 most frequent terminologies in the
job postings among them.

Ground truth

It is beyond the cognitive capacity even for an expert to decide the order of taking the
courses with complex prerequisite relationships. In addition, it is difficult to integrate
several orders into one. To avoid this, we first ask several experts what courses are
necessary to take for a given technical terminology without directly collecting the

17https://www.tru.ca/science/programs/compsci/programs/cs_bachelor_of_

computing_science.html, accessed January 18, 2021.
18https://www.kaggle.com/madhab/jobposts/, accessed January 18, 2021.
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order of courses from them. We then evaluate the relatedness of an order with some
traditional information retrieval metrics. We discuss the details in Section 4.5.3.
We invite five domain experts to construct our ground truth. Given a technical

terminology, we first provide them with the graph and the syllabi of the courses, and
then ask them to annotate which courses are necessary or preferable to take for better
understanding the terminology. Note that “necessary” is a higher level of relatedness
than “preferable”. In this annotation task, each pair of a course and a terminology can
be regarded as an item, and the domain experts give either of the following three labels:
“necessary”, “preferable”, or “unnecessary” to the pair. Some technical terminologies
such as computer programming and productivity software are too general or
unrelated to the computer science domain. It is difficult for the domain experts to
annotate a proper label for any of the courses for them. We call this type of terminology
“irrelevant” and exclude the terminologies viewed as irrelevant by at least one domain
expert. Finally, we obtain 67 terminologies in the dataset (see Table B.2 for further
details).
We evaluate the agreement among five domain experts with Fleiss kappa coeffi-

cient [96], resulting in moderate agreement of 0.405. In a majority-vote method, the
five domain experts and the three labels sometimes make it difficult to determine the
final label. Therefore, we adopt DS algorithm [97], which is one of stochastic ap-
proaches, to estimate the probabilities of which label is likely to be given to the pair of
course and terminology. Then, we choose the label with the highest probability as the
ground truth.

4.5.2 Estimation of course-terminology relatedness

As described at the beginning of Section 4.4, our work does not mainly focus on
estimating course-terminology relatedness. Using different techniques in relatedness
estimation and then comparing their impact on the course ordering performance is
beyond the scope of this work. Instead, we use the course-terminology relatedness
annotated by the domain experts in STP1 to explore the best performance that STP2 can
achieve. We discuss the details in Section 4.5.5. Here, we adopt a simple yet effective
method, TF-IDF scheme [57] to estimate course-terminology relatedness in this work.
More specifically, we use course syllabus and the leading section in Wikipedia page for
the term as the course and terminology corpus. We first compute TF-IDF score from
both of the corpus and then take the cosine similarity of the course and terminology
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Figure 4.2: An example of how to compute nDCG.

vectors as the relatedness score.

4.5.3 Evaluation metrics

We adopt normalized discounted cumulative gain (nDCG) [98] to measure the relat-
edness, specific fundamentality, and general fundamentality of an order of courses. In
addition, we propose a distance metric to measure the degree of local reference of an
order of courses.

General model of nDCG

nDCG is a widely used metric in information retrieval, which measures how an order
of items prioritizes the ones with a higher information gain. Figure 4.2 illustrates a
simple example of how to compute nDCG. Firstly, the information gain of each item is
discounted according to its position. The lower in the order, the more information gain
is discounted. Secondly, the cumulative discounted gain is computed by summing up
the discounted gain of all the items. At the same time, we reorder the items based on
their information gain to obtain an “ideal” order of these items. Lastly, we normalize
the cumulative discounted gain of the original order using the one of the ideal order.
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nDCGmeets our need tomeasure how an order prioritizes items that provide informa-
tion of interest such as relatedness, specific fundamentality, and general fundamentality.
Let =���@: ($A3) be the normalized discounted cumulative gain of an order $A3
for items at position : . =���@: ($A3) is computed as follows:

=���@: ($A3) = ���@: ($A3)
���@: ($A38340;)

, (4.7)

���@: ($A3) =
:∑
8=1

�08=($A3 [8])
log2(8 + 1)

, (4.8)

where ���@: ($A3) is the discounted cumulative gain of $A3 at position : ,
$A38340; is the ideal order ranked according to the information gain of the items,
and �08=($A3 [8]) is the information gain of the 8Cℎ item in $A3. By replacing �08=(·)
with the information to be explored, we can adapt nDCG to measure the relatedness,
specific fundamentality or general fundamentality of an order.

Relatedness of an order

We denote '4;0C43=4BB@: to measure how an order prioritizes related courses to
the terminology. Let A4;�C (2, C) be the score defined by the ground truth of course-
terminology relatedness, which is transformed from the domain experts’ annotated
labels as follows:

A4;�C (2, C) =


U if the label for 2 is “necessary”

1 − U if the label for 2 is “preferable”

0 if the label for 2 is “unnecessary”

, (4.9)

where U (0 ≤ U ≤ 1) is a parameter to tune the level of relatedness.19 Then
'4;0C43=4BB@: is computed by replacing �08=(·) in Equations (4.7) and (4.8) with
A4;�C (2, C).

Specific fundamentality of an order

We denote (?42�3<@: to measure how an order prioritizes specifically fundamental
courses to the terminology. Let (?42�3<(2 |C) be the specific fundamentality of a
course for a terminology in the graph. We then define (?42�3<(2 |C) as follows:

(?42�3<(2 |C) =
∑
2′∈� (2) A4;

�C (2′, C)∑
2′∈+\2 A4;�C (2′, C)

, (4.10)

19We set U = 0.7 in this work.
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where � (2) is the set of descendants of 2 in the graph. (?42�3<(2 |C) reflects the
proportion of the related knowledge based on 2 to the total amount of related knowl-
edge for the terminology. Then (?42�3<@: is computed by replacing �08=(·) in
Equations (4.7) and (4.8) with (?42�3<(2 |C).

General fundamentality of an order

We denote �4=�3<@: to measure how an order prioritizes generally fundamental
courses in the domain. Let �4=�3<(2) be the general fundamentatity of a course in
the graph. Then it is computed as:

�4=�3<(2) = |� (2) ||+ | − 1 . (4.11)

�4=�3<(2) reflects the proportion of the knowledge based on 2 to the total knowledge
in the domain. Then �4=�3<@: is computed by replacing �08=(·) in Equations (4.7)
and (4.8) with �4=�3<(2).

Local reference of an order

We propose “Average Reference Distance (ARD)” to inversely measure how likely an
order will place courses close to their prerequisites. We denote �'�@: as the average
distance between the courses and their prerequisites of an order at position : . Let
'4;�8B(2 |$A3) be the reference distance of 2 in$A3. We then define '4;�8B(2 |$A3)
as follows:

'4;�8B(2 |$A3) =

0 %A4(2) = ∅∑

2′∈%A4 (2) ?>B(2,$A3)−?>B(2′,$A3)
|%A4(2) | otherwise

, (4.12)

where %A4(2) is the set of direct prerequisites of 2 in� =< +, � >, i.e., %A4(2) = {2′ |
(2′, 2) ∈ �}. Then �'�@: is computed as:

�'�@: =
∑:
8=1 '4;�8B($A3 [8])

: −∑:
8=1 1{%A4($A3 [8]) = ∅}

. (4.13)

Here, 1{·} is an indicator function which equals 1 if {·} is true, 0 otherwise.
In summary, '4;0C43=4BB@: , (?42�3<@: , and �4=�3<@: range in [0, 1]. In

addition, the larger the scores, the better the performance. On the other hand, �'�@:
ranges from 0 to some positive value based on the size and structure of a graph.
The smaller �'�@: is, the higher the degree of local reference, indicating a better
performance.
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(a) Average '4;0C43=4BB@: , varying position : .

(b) '4;0C43=4BB@11 over the terminologies. The terminolo-
gies are sorted in descending order based on MDPOrd scores.

Figure 4.3: Relatedness obtained byMDPOrd, AggRelOrd, PageRankTS, and GVPick-
ings.

4.5.4 Results

Relatedness

Figure 4.3a shows the average nDCG-based relatedness of the orders obtained by the
four methods (MDPOrd, AggRelOrd, PageRankTS, and GVPickings) described in
Section 4.4 by varying : .
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(a) formal specification.
'4;0C43=4BB@11 obtained by
AggRelOrd, PageRankTS, GVPickings, and MD-
POrd for this terminology is 0, 0.333, 0.431, 0.431,
respectively.

(b) debugging.
'4;0C43=4BB@11 obtained by
AggRelOrd, PageRankTS, GVPickings, and MD-
POrd for this terminology is 0.483, 0.511, 0.543,
0.543, respectively.

Figure 4.4: Examples of orders generated by our proposed methods. In each sub-
figure, the orders for one terminology are presented. The row and cell color denote the
position in the order and the course-term relatedness annotated by the domain experts,
respectively. Only the top 11 courses in the orders are demonstrated to compactly show
the results.

Overall, the '4;0C43=4BB value ranges from 0 to 0.45 as the value of : increases.
We observe that GVPickings and MPDOrd slightly outperform AggRelOrd and PageR-
ankTS, especially when : is larger than 9. To further explore the performance over
different terminologies, Figure 4.3b shows '4;0C43=4BB@11 scores for each terminolo-
gies. According to Figure 4.3b, GVPickings and MDPOrd show a similar relatedness
score distribution over the terminologies while AggRelOrd and PageRankTS show
some significant performance drop for some of the terminologies.
What do these scores indicate in the orders? We pick two technical terminolo-

gies to demonstrate the relation between the '4;0C43=4BB difference and the order
difference. Figure 4.4 shows the orders generated by the four methods. In formal
specification, 215 is considered necessary to take and it is not ordered within the
top 11 courses generated by AggRelOrd, which leads to a '4;0C43=4BB score of 0.
Meanwhile, three lower positions of 215 (Software Engineering) in PageRankTS results
in around 0.1 drop in the '4;0C43=4BB compared with GVPickings and MDPOrd. In
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debugging, the domain experts annotate both 215 and 217 (Programming Methods)
as necessary. All the methods successfully rank 217 in its optimal position while Ag-
gRelOrd and PageRankTS place 215 five and two lower positions than GVPickings and
MDPOrd, respectively. The two lower positions for 215 result in a decrease of 0.03
in the '4;0C43=4BB of the order. The drop of 0.03 is small in the evaluation metric.
However, the order forces the students to learn two more courses before they can reach
the one which is helpful for the acquisition of knowledge on the terminology.
Comparison between the two terminologies indicates that the positioning of the first

related course substantially influences the final '4;0C43=4BB score. While following
related courses in the order do not give a large impact on the '4;0C43=4BB score, the
wrong positioning of them results in extra learning cost in actual cases. In summary,
we believe that GVPickings and MDPOrd work well.
To further discuss why GVPickings and MDPOrd work better than AggRelOrd

and PageRankTS, we analyze the frameworks of four methods for the terminology
debugging. Figure 4.5a shows the estimated course-terminology relatedness scores,
in which 217 (Programming Methods), 210 (Operating Systems), and 215 (Software
Engineering) give the top three scores 0.177, 0.129, and 0.106, respectively. However,
only 217 (Programming Methods) and 215 (Software Engineering) are annotated as
necessary by the domain experts. Thus, the relatedness of 210 (Operating Systems)
is overestimated in STP1. Figure 4.5b illustrates how the order is determined in each
method and how 210 affects the ordering process.
AggRelOrd aggregates the score of a course based on its most related descendant.

As Figure 4.5b shows, 21 and 22 obtain their scores from the relatedness of 217, namely,
0.177 with the corresponding small value X. As a result, the order is determined by
ranking the most related courses— 217, 210, and 215 with their ancestors, respectively.
PageRankTS computes the score of each course from the scores of their children
recursively. As shown in Figure 4.5b, the relatedness of 217, 210, and 215 is substantially
transferred to other courses. Note that the PageRank scores of 215 and 210 are partially
moved to their parents and partially comes from their children. In this case, 210 only has
a non-related child 220, resulting in a lower score (0.048) than the one of 215 (0.058).
GVPickings picks paths based on their average relatedness. As shown in Figure 4.5b,
the path from 27 to 215 gets a higher average value (0.072) than the paths from 218 to
210 (0.057), resulting in lower rank for 210 while it has a higher relatedness than 215.
The decision maker inMDPOrd compares the expected values amongmultiple possible
orders. For example, placing 210 prior to 215 results in an increase of expected value
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(a) Course graph with the estimated course-terminology relat-
edness scores.

(b) Frameworks of the four methods determining the orders.

Figure 4.5: Analysis on the frameworks of AggRelOrd, PageRankTS, GVPickings, and
MDPOrd for the terminology debugging.

from 210 but a larger decrease of that from 215. Therefore, the upper order is finally
selected.
In summary, AggRelOrd work well in prioritizing a highly-related course no matter

how deep it locates in the graph. Consequently, it cannot globally optimize relatedness
of the order and wrongly estimated course often generates wrong order. PageRankTS
does keep a balance between the relatedness of a course and the relatedness of its
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descendants. However, the courses with more children tend to be overestimated and
the courses without any child tend to be underestimated. In contrast, GVPickings
and MDPOrd consider the impact of selecting a course from a long-term perspective.
Therefore, GVPickings and MDPOrd are more robust for wrongly estimated course-
terminology relatedness and demonstrate more stable performances than AggRelOrd
and PageRankTS.

Pedagogical metrics

Figures 4.6 and 4.7 show the (?42�3<, �4=�3<, and �'� scores for the orders
generated by the four methods, AggRelOrd, PageRankTS, GVPickings, and MDPOrd.
We observe similar trends for (?42�3< and �4=�3<. Note that (?42�3< and
�4=�3< scores for the orders obtained by the four methods are relatively close to
1, which is due to the prerequisite relationships. In other words, a course that is
prerequisite for more courses is usually ordered in a higher position, resulting in
better fundamentality score. Among the four methods, AggRelOrd and PageRankTS
outperform GVPickings and MDPOrd in both of the fundamentality scores, which can
be inferred from the framework of AggRelOrd and PageRankTS. AggRelOrd chooses
the maximum value among the course and its descendants as the aggregated value of
this course. As a result, a course with more descendants, which is more fundamental
one, is ordered higher in most cases. In PageRankTS, 80% of the priority of a course
comes from the outgoing edges, which shows the fundamentality of the course. On the
other hand, in �'�, we observe different trends as shown in Figure 4.7. The difference
between (AggRelOrd, PageRankTS) and (GVPickings, MDPOrd) is getting larger as
the value of : increases. GVPickings explores the courses in the unit of paths, which
makes it easier to sequentially order a path of courses. In MDPOrd, if the first course
of a path is not so closely related, the courses on the path tend to be ordered lower.
In other words, the decision maker in MDPOrd tends to choose courses in the current
path to starting a new path. In contrast, AggRelOrd and PageRankTS tend to prioritize
courses with more descendants in the graph, resulting in more jumps in the order from
one course to another without any prerequisite relationships.
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(a) (?42�3<.

(b) �4=�3<.

Figure 4.6: (?42�3< and �4=�3< obtained by AggRelOrd, PageRankTS, GVPick-
ings, and MDPOrd, varying position : .

4.5.5 Discussion

Analysis on performance obtained by STP1 and STP2

In this work, we put much emphasis on STP2 to identify an order of related courses for
the technical terminology and adopt TF-IDF scheme to estimate course-terminology
relatedness. As described in Section 4.5.2, we use the course-terminology relatedness
annotated by the domain experts as the input of STP2 to explore the upper bounds of
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Figure 4.7: �'� obtained by AggRelOrd, PageRankTS, GVPickings, and MDPOrd,
varying position : .

Figure 4.8: '4;0C43=4BB obtained by AggRelOrd, PageRankTS, GVPickings, and
MDPOrd by using ground truth and TF-IDF based relatedness in STP1, varying position
: .

the performance of STP2.
Figure 4.8 shows that using the ground truth in STP1 results in a better '4;0C43=4BB

than using TF-IDF scheme-based course-terminology relatedness. As described in Sec-
tion 4.5.4, the relatedness of debugging and 210 (Operating Systems) is overestimated
by TF-IDF scheme. This is because the terms such as “system” and “memory” have a
high frequency scores in 210, and debugging contains these terms. However, if these
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(a) GVPickings (b) MDPOrd

Figure 4.9: Comparison between GVPickings andMDPOrd frameworks using a simple
example.

terms are treated with more textual information, such as “operating system”, “main
memory”, or “memory cache” in 210, the relatedness with debugging is expected to be
lowered. Therefore, improving the accuracy of relatedness estimation is one of future
work.

Comparison between MDPOrd and GVPickings frameworks

As discussed in Section 4.5.4, MDPOrd and GVPickings show similar performances
in all the metrics. However, they work in completely different ways, which gives
impact on the utilization of their outputs and the refinement for more complex problem
settings. Figure 4.9 illustrates a simple example of the difference, in which we use
the same course graph and course-terminology relatedness values. At the top and
bottom in Figure 4.9, we assume that the student has not completed any courses and
completed course 0 and 1, respectively. GVPickings and MDPOrd generate different
course orders.
In GVPickings shown in Figure 4.9a, whenever it selects a path (or paths) with the

highest average score, the value of each course on the path is discounted by the length
of the path. In this example, the presence or absence of course 0 and 1 influences the
order of course 2, 3, and 4. This indicates that GVPickings requires the cost of taking
the courses. GVPickings needs to be re-run for a new input of courses. To this end,
GVPickings is not flexible to more complex problem settings.
On the other hand, MDPOrd works from a future-oriented perspective. The middle
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part in Figure 4.9b shows the state-action transition pattern in the MDP model, where
a rectangle represents a state, an arrow represents an action, and a bold arrow indicates
the best policy for a state. As long as the input set of courses is a valid state, the
best policy (i.e., the order of taking courses) can be found in the same model. This
characteristic derives from Markov property, which assumes that, given a current state,
the probability of transition to a new state is independent of the past. In other words, the
same model can be used to deal with different input of courses, resulting in a limitation
that it ignores the cost of taking courses.
In other words, the frameworks to identify the best order in GVPickings andMDPOrd

are different though they demonstrate similar performances in our work. MDPOrd is
more flexible and promising to address more complicated tasks such as personalized
course ordering.

4.6 Summary

In this work, we have addressed the problem of ordering the related courses for a given
technical terminology while following the prerequisite relationships among courses.
We also evaluated the effectiveness in the orders from pedagogical perspectives such
as specific/general fundamentality, and local reference. We observed that our proposed
method works well in prioritizing related courses and ordering them with a shorter
reference distance.
In future work, we plan to address the followings: We used courses collected from

one curriculum in which prerequisite information is available. Thus, we plan to explore
whether we can apply our method to order courses in much larger learning resources
such as Massive Open Online Courses (MOOC). In addition, we only evaluated the
orders generated by our methods from a pedagogical point of view. It would be more
useful if we can use another pedagogical perspectives to further improve the orders.
Furthermore, while we did not consider a personalized input of the courses in this work,
some models can actually personalize the orders, which is also one of major challenges
in our future work.
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CHAPTER 5

Conclusion and Future Work

This thesis tackled the problems of course content analysis and course ordering from a
knowledge-based perspective. We addressed three tasks and obtained the achievements
as follows:

Task 1 Course content modeling. We assumed that mapping course content with a
domain knowledge categorization helps identify course content in the process
of selecting courses. We proposed a method to estimate the relatedness of a
course and a domain knowledge category by computing their connections under
the Wikipedia article and category structure. The experimental results show
that we can estimate the knowledge distribution of a course over the knowledge
category KU at an accuracy rate of 0.537 in terms of cosine similarity. For
the more challenging task, i.e., estimating the relative knowledge distribution,
the Wikipedia structure-based method achieves a better performance than the
baseline method.

Task 2 Knowledge coverage estimation. In this task, we firstly defined the knowledge
coverage of a knowledge category by a course as the extent to which the knowl-
edge required in the category is also taught in the course. Then, we proposed
a centrality-based computation method to estimate the concept importance to
the knowledge categories, which is then aggregated to compute the knowledge
coverage. The experimental results show that our method can generate closer
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knowledge coverage values to the ground truth assigned by human experts, com-
pared to the uniform computation method.

Task 3 Course ordering. We addressed the problem of ordering the related courses
for a given technical terminology while following the prerequisite relationships
among courses. We also evaluated the effectiveness of the orders from peda-
gogical perspectives such as specific/general fundamentality, and local reference.
From the experimental results, we concluded that our proposed method works
well in prioritizing related courses and ordering them with a shorter reference
distance.

To solve a wider spectrum of problems, we plan to address the followings in future
work:

• Comparison of intrinsic and extrinsic aspects of courses. In this thesis, we
put emphasis on the intrinsic aspect of course content, namely, the knowledge
taught in a course. As a clean representation of the knowledge, we utilized
the course syllabi in the experiments. However, other course materials such as
lecture videos, slides, and assignments demonstrate not only the knowledge but
also how it is conveyed in the course. Comparing the body of the knowledge and
the way it is presented can provide insights on the difficulty and teaching styles
of the courses.

• Detection of knowledge duplication. Generally, there is no need to repeat learn-
ing the same knowledge if the students prioritize efficiency over steadiness. To
this end, identifying the duplicate knowledge is essential when combining mul-
tiple courses. Integrating and improving existing works on course segmentation
and course content clustering will be a promising direction.

• Generalization of course ordering problem. In Task 3, we explored the effec-
tiveness of the orders from pedagogical perspectives. It would be more useful if
we can generalize the model in which different preferences over the pedagogical
perspectives are acceptable. Besides, we did not consider the students’ back-
ground knowledge and the mastery level of those knowledge. In future work, we
plan to personalize the ordering results to various learning goals and learning
abilities of students.

• Applications in other problems. Although the proposed methods are tailored
to solve the educational problems we have defined, they are not limited to solve
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these problems. For instance, the Wikipedia structure-based method we propose
in Task 1 is supposed to work well in differentiating documents especially when
they are semantically close and can be modeled as sets of Wikipedia concepts.
In addition, the centrality-based importance estimation in Task 2 can effectively
discriminate a set of objects if a high-quality taxonomy is available. Validating
the methods in solving other problems could be an interesting research direction.
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Appendix

A Course information in Chapter 4

Table A.1: Course information used in our experiments.

ID Course Title Prerequisite ID
21 Computer Programming 1 -
22 Computer Programming 2 21
23 Introduction to Computer Systems 22, 218
24 Data Structures and Algorithm Analysis 22, 224
25 Mobile App Development 22
26 Web Site Design and Development 21
27 Software Architecture & Design 22
28 Computer Network Security 29
29 Computer Networks 23, 24
210 Operating Systems 23, 24
211 Human Computer Interaction Design 26
212 Advanced Web Design and Programming 24, 26
213 Database Systems 24
214 Applied Artificial Intelligence 24
215 Software Engineering 27
216 Computing Science Project 215
217 Programming Methods 22
218 Discrete Structure 1 for Computer Science -
219 Algorithm Design and Analysis 24
220 Distributed Systems 29, 210, 213
221 Web-based Information Systems 212, 213
222 Expert Systems 214
223 Systems Software Design 215
224 Discrete Structure 2 for Computer Science 218
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Appendix

Figure A.1: Course graph information used in our experiments.

B Technical terminology information in Chapter 4
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Appendix

Table B.2: Technical terminologies used in our experiments.

ID Technical terminology ID Technical terminology
C1 Web application C35 Computer program

C2 Object-oriented programming C36 Web service

C3 Database C37 World Wide Web

C4 SQL C38 Computer hardware

C5 Knowledge representation and reasoning C39 Machine learning

C6 Programming language C40 Subroutine

C7 JavaScript C41 Graphical user interface

C8 Software development process C42 Software bug

C9 Software testing C43 Knowledge base

C10 HTML C44 Unit testing

C11 Operating system C45 Debugging

C12 Microsoft SQL Server C46 Data management

C13 Java virtual machine C47 Agile software development

C14 Software engineering C48 Modular programming

C15 Java (programming language) C49 JavaServer Pages

C16 Cascading Style Sheets C50 Java Platform, Enterprise Edition

C17 Software maintenance C51 Data structure

C18 MySQL C52 Test case

C19 PHP C53 Stored procedure

C20 Formal specification C54 Algorithmic efficiency

C21 Active Server Pages C55 Transact-SQL

C22 Web server C56 Hypertext Transfer Protocol

C23 Computer network C57 Relational database

C24 Scripting language C58 HTML5

C25 Unix C59 Test automation

C26 ASP.NET C60 Client-server model

C27 Ajax (programming) C61 Software deployment

C28 Computational problem C62 Internet protocol suite

C29 Software design pattern C63 Software project management

C30 Algorithm C64 Software documentation

C31 Digital signature C65 Apache HTTP Server

C32 User interface C66 Version control

C33 Web development C67 Java servlet

C34 JQuery
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