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Preface

Network virtualization aims to reduce the capital expenditure (CAPEX) and
the operating expenditure (OPEX) of network infrastructure by leveraging
commercial off-the-shelf (COTS) hardware such as general-purpose computers
and virtual network functions (VNFs) instead of conventional dedicated net-
work equipment. Network functions comprise various packet processing tasks
such as classification, table lookup for searching, packet modification, and
queueing, each of which issues memory accesses and requires high memory
performance. Conventional network equipment comprises purpose-built dedi-
cated components such as processors, memory devices, and bus architecture to
satisfy the specifications and requirements of network services. In particular,
large-scale service providers such as telecom operators have depended on such
conventional equipment to satisfy the service level agreement (SLA) and to ac-
commodate various and a large amount of traffic from subscribers, which pre-
vents the service providers from benefiting from network virtualization. This
thesis studies four problems about parallel memory system architectures for
packet processing in network virtualization. Each problem corresponds to the
main memory parallelism, integration of on-chip cache memories of the CPU
with the parallel main memory, capacity and parallelism of the on-chip cache
memories in the presence of parallel main memory, and accumulated latency
of data transfers between processors and memories when there are multiple
packet processing tasks with memory accesses, respectively.

Firstly, this thesis proposes a memory system architecture that uses a three-
dimensional (3D)-stacked memory to increase the main memory parallelism for
packet processing in network virtualization. In current general-purpose com-
puters such as servers based on x86 central processing unit (CPU), while the
overall performance is increasing due to the increasing number of CPU cores,
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the main memory parallelism is much less than the number of CPU cores,
which limits packet processing performance in network virtualization. This
work augments main memory parallelism by leveraging both channel-level par-
allelism and bank interleaving of a 3D-stacked dynamic random access memory
(DRAM). In the 3D-stacked DRAM, a database for packet processing, such
as a lookup table, is split into partial databases, each of which is allocated to
each set of memory channel and bank. A hash-function-based distributor dis-
tributes incoming memory requests to an appropriate memory channel-bank
set that has the corresponding partial database for the requests. This work
introduces an analytical model of the proposed memory system architecture
for two traffic patterns, one with random memory request arrivals and one
with bursty arrivals. The numerical results observe that the proposed mem-
ory system architecture increases packet processing performance up to around
80 Gbps for the smallest-sized Internet Protocol (IP) packets involving random
and bursty memory request arrivals.

Secondly, this thesis proposes a memory system architecture that integrates
on-chip private cache memories with the off-chip 3D-stacked memory to reduce
memory access latency in the existence of main memory parallelism for packet
processing in network virtualization. In general-purpose computers, CPUs
usually have several levels of on-chip cache memories to obscure the main
memory latency. The on-chip cache memories comprise private cache memories
that belong to each CPU core and the last-level-cache (LLC) that is shared
among all the CPU cores. The proposed architecture integrates the private
cache memories of each CPU core with the 3D-stacked DRAM-based main
memory. This work explores the memory system architecture in terms of
integrating the on-chip cache memories with the off-chip 3D-stacked DRAM,
with considering two reference architectures, one with the on-chip private cache
memories and the on-chip shared LLC and one without any on-chip cache
memories. The evaluation results observe that the proposed memory system
architecture reduces memory access latency by 58 % and 1.8 % and increases
throughput by 104 % and 1 % with reducing the blocking probability by 91 %
and 18 %, compared to the reference architectures with the on-chip private
cache memories and the on-chip shared LLC and that without any on-chip
cache memories, respectively.
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Thirdly, this thesis proposes a memory system architecture that uses the
3D-stacked memory, the on-chip private cache memories, and on-chip LLC
slices to increase capacity and parallelism of the on-chip cache memories in
the integration with the off-chip parallel main memory for packet processing
in network virtualization. The on-chip shared LLC in the latest CPU comprises
multiple LLC slices, each of which belongs to one of the CPU cores and can be
accessed from each CPU core via a mesh or ring bus. A system operator can
assign some of the LLC slices to a specific packet processing task. The proposed
architecture integrates the LLC slices with the on-chip private cache memories
and the off-chip 3D-stacked DRAM. In the proposed architecture, the cached
data is distributed to each LLC slices according to a memory address-based
hash function so that CPU cores can access the LLC slices in parallel. This
work analyzes the memory performance dependency on the number of assigned
LLC slices when integrated with the off-chip 3D-stacked DRAM-based parallel
main memory and the on-chip private cache memories that belong to each CPU
core. The evaluation results observe that the proposed architecture reduces
memory access latency by 62 % and 12 % and increases throughput by 108 %
and 2 % with reducing the blocking probabilities by 96 % and 50 %, compared
to the reference architectures with the on-chip private cache memories and the
on-chip shared LLC and that with the on-chip private cache memories and
without the on-chip shared LLC, respectively.

Fourthly, this thesis proposes a memory system architecture that uses a
network of 3D-stacked memories to increase throughput and reduce accumu-
lated latency of data transfers between processors and memories when there
are multiple packet processing tasks with memory accesses. Packets that en-
ter the memory network receive packet processing at each 3D-stacked DRAM
without going back and forth between the memories and the processors un-
til the packet processing is completed. Each 3D-stacked DRAM has several
DRAM layers on top of a logic die. The logic die consists of a logic for mem-
ory accesses and device interfaces and a user-defined programmable logic, in
which each packet processing task is placed. If a packet processing task needs
to search a database, the database is stored in the same 3D-stacked DRAM as
the task is allocated. The database is replicated and allocated in every mem-
ory channel to leverage memory parallelism of 3D-stacked DRAMs. In each
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3D-stacked DRAM, the user-defined logic for a packet processing task issues
memory requests to the memory channels. For a packet processing task that
requires more memory accesses than the other tasks, additional 3D-stacked
DRAMs are assigned for the task. The evaluation results observe that the
proposed architecture reduces the blocking probability by issuing the next
memory request inside the 3D-stacked DRAM just after the previous memory
access, instead of allowing the arrivals of incoming packets during the data
transfers between the memory and processor. Consequently, the proposed ar-
chitecture increases throughput and reduces the accumulated latency when
there are multiple packet processing tasks, compared to the architecture with
3D-stacked DRAM-based parallel main memory, where every memory access
requires data transfers between the processors and memories. The proposed ar-
chitecture also reduces the blocking probability and latency by assigning more
3D-stacked DRAMs for a packet processing task that requires more memory
accesses than the other tasks.

This thesis is organized as follows. Chapter 1 introduces the background of
packet processing, computer architectures of dedicated equipment and general-
purpose computers, and major hardware devices in computers. Chapter 2
describes related works. Chapter 3 presents the parallel memory system ar-
chitecture using the interleaved 3D-stacked memory. Chapter 4 presents the
parallel memory system architecture using the interleaved 3D-stacked mem-
ory and the on-chip private cache memories. Chapter 5 presents the parallel
memory system architecture using the interleaved 3D-stacked memory, the on-
chip private cache memories, and the on-chip LLC slices. Chapter 6 presents
the memory system architecture using the network of interleaved 3D-stacked
memories. Finally, chapter 7 concludes this thesis.
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Chapter 1

Introduction

1.1 Packet processing

1.1.1 Packet processing types

A network consists of various network equipment, each of which corresponds
to some of the network functions such as routers, switches, gateways, firewalls,
and load balancers. Each network function comprises several types of packet
processing tasks between the arrival and departure of the packet. Examples
of packet processing tasks include framing, parsing, classification, searching,
forwarding, modification, queueing, and traffic management [1]. Note that
not all of these packet processing tasks are always required for every network
functions. The required packet processing tasks are decided according to the
network functions that the equipment has. Each packet processing task has
to understand the information of the packet, update the packet content, or
lookup the database in the memory. Therefore, packet processing tasks issue
memory accesses to read/write the packet content and the data stored in the
memory.

The rate of performance improvement in processors has been higher than
that in memories [2–8], which increases the importance of memory perfor-
mance in packet processing. The more memory requests are processed in a
certain time, the more packets are processed. Therefore, as we will see in
Section 1.3, dedicated system architectures are adopted in dedicated network
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equipment, where several function dedicated memories and parallel memories
are assigned for some memory-intensive tasks such as classification, searching,
and queueing.

In the following subsections, this thesis presents brief descriptions of each
packet processing task. This thesis uses the word “packet” in a broad sense,
which means a generic term of independent data unit in a network.

1.1.2 Framing

In the framing process, the received or transmitted packets undergo several
processes. For instance, packets receive the following processes: error detec-
tion to make sure that the bits in the received packets have no error, error
corrections if there are some bit errors when the packets have redundant in-
formation for corrections, and fragmentation/assembly to transmit/receive the
data larger than the maximum per-packet data size, which is defined in the
protocol of the packets. Thus the framing process is usually located in the first
or last step of packet processing.

For error detection, there are several algorithms, each of which is used for
different purposes with considering its calculation complexity and reliability.
For example, Ethernet uses cyclic redundancy check (CRC) algorithm [9] in the
frame check sequence field of the packet. The CRC is based on the remainder
calculation of a modulo-2 division of a polynomial with coefficients of 0 and 1
by an agreed-upon generator polynomial. The CRC assumes that the packet’s
bit string represents a polynominal with coefficients of 0 and 1. The remainder
is sent with the packet and compared with the recalculated remainder using
the same agreed-upon generator polynomial at the other end. If the remainder
is 0, there is no error in the received packet; otherwise it is wrong. Typically,
=-bit CRC can detect any single error burst not longer than = bits. Ethernet
uses 32-bit CRC, usually called CRC-32, which is defined in IEEE 802.3 [10].
On the other hand, IP uses simple checksum, where the sum of all the specific
bits of a packet is calculated [11]. The checksum is sent with the packet and
compared with the recalculated one at the other end. If the two are equal, the
received packet has no error; otherwise it has errors.

When an original packet is fragmented into multiple packets, additional
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information is added to the headers of each fragmented packet so that each
fragmented packet can travel the network independently. In the case of IP, the
additional information corresponds to the FLAGS and FRAGMENT OFFSET
fields, which show if the packet is fragmented or not and the position of the
packet in the fragmented packets, respectively. When the fragmented packets
are received at the other end, the receiver assembles them into the original
packet using the additional information in the packet headers of each frag-
mented packet.

1.1.3 Parsing and classification

In parsing and classification processes, packets are analyzed and classified ac-
cording to the contents of the packets. Usually, parsing cooperates with clas-
sification.

Packet parsing examines the packet to understand the packet structure
and identify each field of the packet. For example, the destination IP address
of an Internet Protocol version 4 (IPv4) packet has to be identified in the
parsing process, which will be used to lookup the routing table and forward
the packet in searching and forwarding processes. A more complex parsing
example is to detect several management information base (MIB) variables
in some of the IPv4 packets which contain user datagram protocol (UDP)
packets running simple network management protocol (SNMP) in order to
classify these packets for the network operation.

Packet classification categorizes the packets into several “flows” according
to some of the fields and/or the content in each packet. In each flow, the
classified packets go through similar packet processing. For instance, the type
of service (TOS) field of an IP packet is used to prioritize the incoming packets.
In addition, multiple fields of an incoming packet are used for the packet
classification. A set of five different values which consist of the source IP
address, the source port number, the destination IP address, the destination
port number, and the protocol, usually called 5-tuple, is commonly used to
filter the incoming packets. Moreover, deep packet inspection (DPI) function
is a complicated example of packet classification, where the packet content is
inspected to detect any specific uniform resource locator (URL) or keywords
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for packet filtering.

1.1.4 Searching and forwarding

Searching is one of the most important operations in packet processing. Usu-
ally, searching operation is also included in packet classification, forwarding,
and queueing to decide the appropriate action for the packet, which means
that searching is an atomic operation rather than an independent packet pro-
cessing task. For packet classification to filter the incoming packet, an access
control list (ACL) that contains some packet processing rules must be searched.
The ACL is a database usually formed as a table, whose searching key is the
detected packet information at the packet parsing process. For IP packet for-
warding, IP address lookup is required, where the key is the destination IP
address of the packet.

Methods for the searching operation are categorized into software-based
methods and hardware-based methods. In software-based methods, they are
distinguished based on their data structures of the database and algorithms.
Examples of commonly used structures are, list structures such as linked lists
and skip lists, table structures such as hash tables and associative arrays, tree
structures such as binary search tree, and tries [12] such as Patricia tries and
multi-bit tries.

In hardware-based methods, dedicated hardware devices, usually called
search engines, such as content addressable memory (CAM) and ternary CAM
(TCAM) are used. In each method, the fundamental operations for the data
handling are as follows: to search the data structure and get the result, to
insert an additional entry to the database and maintain the data structure, to
delete an entry from the database, to modify the content of the entry in the
database. Each software/hardware-based method has different characteristics
such as time complexity to perform an operation, size efficiency of the database,
and scalability. In addition, power efficiency, device cost, and peripheral cir-
cuits around the search engines are also taken into account for hardware-based
methods.

In particular, IP address lookup requires the longest prefix match (LPM),
which has been one of the most complicated, common, and important oper-
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ations in packet processing. In the LPM, the longer the match is, the better
the routing that will be selected for the packet. This means that the packet
processing system has to search the best-matched entry in the entire database
rather than the just matched one. There have been several works and hard-
ware/software implementation for the LPM in IP address lookup [13–17], which
shows the difficulty and importance of the searching operation in packet pro-
cessing.

1.1.5 Modification

Packet modification is the operation to edit the packets, which is sometimes
a part of other packet processing tasks. The fundamental packet modification
operations are as follows.

• Changing the contents of the packets such as some header fields and the
payload to update the time-to-live (TTL) filed, IP addresses fields, the
checksum of an IP packet, and so on.

• Deleting some packet content or headers for such as de-encapsulation of
packets.

• Adding additional information to the packets for such as encapsulation.

• Removing the entire packet for such as dropping packets that do not pass
the filtering based on an ACL and dropping bandwidth exceeded traffic.

• Copying the entire packet for such as multicasting and port mirroring.

1.1.6 Encryption

Encryption is used to maintain data privacy and data integrity and to au-
thenticate the identities of the communicating parties. There are several pro-
tocol standards for secure communication, such as Internet Protocol security
(IPSec) [18], secure socket layer/transport layer security (SSL/TLS) [19], and
so on. IPSec is usually used in virtual private network (VPN) communications.
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SSL/TLS is typically used in client-server applications, such as web commu-
nication in hypertext transfer protocol secure (HTTPS) and secure email ser-
vices.

Packet processing in such protocols for secure communication is the trans-
formation of information from unsecured information to coded information and
vice versa by using some key and the transformation algorithm. To execute
such transformation algorithm requires additional computing power, which
makes packet processing that includes security protocol processing difficult to
run at wire speed. Therefore, packet encryption is often implemented using a
dedicated encryption engine in a processor or in a discrete chip.

1.1.7 Queueing and traffic management

Usually, queueing and traffic management are the last tasks in packet pro-
cessing just before the packet transmission. In classification, searching, and
modification, the parameters of the packet such as the destination port and the
priority are determined according to the results of each processing. In queue-
ing and traffic management process, packets are forwarded to the appropriate
queues and scheduled for the transmission according to the parameters of the
packet and other conditions of the receivers and the transmission lines, and
so on. Also, queueing and traffic management process meters the packets and
shapes the transmission pattern to an intended rate and burstiness.

1.2 Network virtualization

Internet traffic has been growing due to the increasing number of Internet users
and connected devices. This trend is considered to be continue [20, 21]. New
network services such as Internet of Things (IoT), fifth generation (5G) mobile
networks, and mobile edge computing (MEC) increase the network traffic and
diversify the traffic patterns and requirements of networks [22–29]. Therefore,
network equipment should be more scalable to accommodate the increasing
network traffic and be more adaptive to the rapid deployment of new network
functions.

Network virtualization is the technological movement to realize more flexi-
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ble and efficient network infrastructure by using software-defined network op-
eration and inexpensive COTS hardware. Network virtualization roughly con-
sists of software defined networking (SDN) approach and network functions
virtualization (NFV) approach [30], each of which is explained in the subse-
quent subsections.

1.2.1 Software defined networking (SDN)

SDN is the separation of the control plane (C-plane) and the user plane (U-
plane), also known as data plane, in network equipment. In conventional
networks, a network operator has to directly configure each network equip-
ment and physically change the network connection such as cabling. On the
other hand, by separating C/U-plane in physical network equipment, a net-
work operator can construct and manage logical networks by programming
each network equipment via an SDN controller without changing the underly-
ing physical network.

In addition, the C/U-plane separation enables the network operator to use
the commodity hardware such as white-box switches that have merchant silicon
devices instead of conventional purpose-built network equipment. The well-
known examples of the merchant silicon devices are Broadcom’s switch chips
such as the Trident series [31], which has more than several Tbps switching
capacity and some simple packet processing functions such as forwarding and
encapsulation. A network operator can program these chips in the SDN-aware
switches and routers via the SDN controller to design and construct desired
virtual networks.

Protocols and languages are provided between an SDN controller and SDN-
aware network equipment in order to program the network equipment in a
flexible and efficient way without considering the specific vendors and models
of each network equipment. The flexible and efficient programming scheme
also allows the network operator to choose the network equipment from more
various vendors and models than the conventional vertically integrated network
equipment.

A well-known protocol example is OpenFlow [32], which is standardized in
Open Networking Foundation (ONF). The corresponding SDN controllers are
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ONF’s Open Network Operating System (ONOS) [33]. Faucet [34] is another
SDN controller for OpenFlow. There are several software switches that can be
programmed using OpenFlow, such as Open vSwitch [35] and Lagopus [36],
whereas there are some hardware switches and routers that are compatible with
OpenFlow. In OpenFlow architecture, C-plane functions are centerlized in
OpenFlow controller, which means that the same OpenFlow controller directly
controls all the OpenFlow switches and routers in the same network.

Network configuration protocol (NETCONF) [37] is another well-known
protocol for SDN. Yet another next generation (YANG) [38], a data model-
ing language, is usually used to write the configurations for the NETCONF-
compatible switches and routers. In contrast to OpenFlow, the NETCONF-
based SDN scheme provides programmability of network equipment, whereas
C-plane functions still work in network equipment without moving them to
the SDN controllers. The NETCONF-based SDN scheme allows each switch
or router behaves independently according to the programmed configurations.
To program network equipment, the vendors release plugins for NETCONF-
compatible SDN controllers to obscure the particular parameters and attributes
of each equipment so that the network operator can construct the network
without being conscious of the vendors/models differences.

In addition to C/U-plane separation in network equipment, U-plane func-
tions of the chips are becoming more open and programmable compared to con-
ventional dedicated network equipment. Programming protocol-independent
packet processors (P4) [39] is a high-level language that enables the users and
operators of networks to design and program the packet processing functions
to the chips without being conscious of the type of processors and the details
of packet processing. In conventional network equipment and its chip, the
implemented U-plane functions are determined by the chip designer, which
sometimes prevents the network users and operators from using their desired
functions due to its lack of programmability. Segment routing IP version 6
(SRv6) [40], a type of source routing protocols, is an example of emerging
networking protocols, which is first implemented in a software router [41] and
then implemented in the physical hardware routers. Thus SRv6 is suitable
for hardware implementation using programming language such as P4. In
fact, several projects implemented SRv6 functions to hardware devices us-
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ing P4 language [42]. If U-plane functions are fully and easily programmable
by network users and operators, both C/U-plane are programmable by using
SDN technologies, which makes network equipment as open and flexible as the
general-purpose computers.

1.2.2 Network functions virtualization (NFV)

NFV is the separation of software and hardware in computer networks, where
the network functions are extracted as software, called virtual network func-
tions, and the hardware of conventional purpose-built network equipment is
replaced with inexpensive general-purpose computers. With this separation
of software and hardware, the network operator can operate the network in
more flexible and efficient way. For instance, the operator can migrate VNFs
running on a computer to another computer when there is trouble in the origi-
nal computer and dynamically increase/decrease the number of VNF instances
according to the network service demand.

NFV is standardized at European Telecommunications Standards Institute
(ETSI) NFV Industry Specification Group (ISG). NFV standardization has
been conducted since its first proposal [30] in 2012. Figure 1.1 shows an NFV
reference architecture [43], where conventional network infrastructure is broken
down into several fundamental components. VNFs work on top of the NFV
infrastructure (NFVI). NFVI consists of physical hardware resources, a virtu-
alization layer, and virtual resources that comprise virtualized computers. The
physical hardware resources include computing hardware such as CPUs and
memories, storage hardware, and network hardware. The virtualized comput-
ers are usually instantiated as virtual machines (VMs) and containers. Also,
the virtualized computers are mapped to the physical resources via the vir-
tualized layer software such as kernel-based virtual machine (KVM) for VMs
and Docker for containers. Operation support system/business support system
(OSS/BSS) are the components that are used by telecom operators for order
management, network inventory management, billing, customer relationship
management. NFV management and orchestration (MANO) manages the life-
cycle of all the components of NFVI and VNFs via several interfaces shown in
Figure 1.1. NFV MANO consists of an orchestrator, VNF managers (VNFMs),
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and a virtualized infrastructure manager (VIM). Usually, VNF vendors release
the corresponding VNFM for the VNF, whereas there are approaches to re-
alize a generic VNFM [44, 45]. The VIM manages the resources of NFVI
in cooperation with the VNFMs and the orchestrator. OpenStack [46] is a
de facto standard of the VIM, which is widely used in commercial networks.
NFV MANO is the main scope of the NFV standardization at ETSI NFV
ISG, which means that other components such as NFVI and VNFs are not
standardized in detail at ETSI NFV ISG.
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Figure 1.1: NFV reference architecture.

In order to benefit from NFV, performance of VNFs has to satisfy the
requirements of network services even when the VNFs run on top of the virtu-
alized infrastructure. When implementing a network function that was previ-
ously on top of the dedicated equipment as an application software of general-
purpose computers, architecture differences between the dedicated hardware
and the general-purpose one must be taken into account so that the VNF on
top of general-purpose computers properly work with acceptable performance,
which leads to the motivation of this thesis.
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1.3 Computer architectures for packet process-
ing

Not only general-purpose computers but also dedicated network equipment
such as switches and routers are computers, whereas there are several archi-
tecture differences in terms of the processors, memories, networking interfaces,
interconnection between the devices, and the processing parallelism. This
section briefly explains the computer architectures of conventional dedicated
equipment and general-purpose computers for packet processing.

Note that there are two basic design philosophies for packet processing;
store-and-forward and cut-through. In the store-and-forward method, the
received packet is first stored in the memory temporarily and goes through
several packet processing tasks. After the decision is made for the packet,
the packet is transmitted and removed from the memory. Since the store-
and-forward method buffers the entire packet, the packet processing system
can perform complex and detailed packet processing. In particular, DPI is
an example of complex and detailed packet processing and requires parsing,
classification, and queueing. On the other hand, packet buffering in the store-
and-forward method introduces additional packet processing latency.

In the cut-through method, packet processing begins as soon as the packet
arrival by examining some specific bit patterns in the packet in real-time.
While the cut-through method minimizes the buffering latency compared to
the store-and-forward method, it only allows simple packet processing based
on the limited field in the packet, where complex packet processing such as
DPI and CRC cannot be implemented. Usually the store-and-forward method
is applied when multiple packet processing functions are needed for network
services. On the other hand, the cut-through method is selected when lower
buffering latency is preferred rather than rich packet processing functions in
networks for high-performance computing (HPC) [47–49].

In this thesis, computer architectures for packet processing are supposed
to be based on the store-and-forward method.
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1.3.1 Dedicated architecture

In order to cope with a large traffic of various network services, conventional
network equipment has dedicated computer architecture, where purpose-built
processors, memories, and interconnection among chips are utilized. Figure 1.2
shows a high-level computer architecture of conventional network equipment,
where incoming packets are processed in parallel at the packet processing pro-
cessor with the assistance of the several peripheral devices connected to the
packet processing processor [50].
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Figure 1.2: High-level computer architecture of conventional network equip-
ment.

While the details of the packet processing processor are explained in Sec-
tion 1.4, it conducts some of the packet processing tasks such as framing,
parsing, classification, searching, modification, encryption, queueing, and traf-
fic management as described in Section 1.1. The peripheral devices connected
to the packet processing processor are categorized into two types; the devices
for C-plane processing and the devices for U-plane processing. For C-plane
processing, there are usually control processors and dedicated route proces-
sors. The control processor is usually a general-purpose CPU and is used to
run the operating system (OS) of the entire equipment, which enables the net-
work operators and developers to control and program the equipment. While
the route processor is usually a general-purpose CPU as well, whose purpose is
different from the control processor. The route processor manages and updates
the routing information base (RIB) and forwarding information base (FIB) by
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communicating other network equipment. For U-plane processing, there are
several peripheral devices for packet processing. The program memory con-
tains the program or microcode of packet processing software executed by the
packet processing processor. The search engine is an accelerator of the classifi-
cation and searching process. Usually, a TCAM is used because a TCAM can
return the lookup result always in a certain number of clock cycles. The mech-
anism of a TCAM is explained in Section 1.6. A packet buffer and a queueing
memory are used in the queueing and traffic management process for traffic
shaping and QoS control. Since the queueing and traffic management process
requires fast memory accesses and sufficient memory capacity for queueing,
static random access memory (SRAM) is usually used. A cryptographic en-
gine is an accelerator device of cryptography, in which complex calculation is
conducted by using a dedicated circuitry.

Figure 1.3 shows a high-level system architecture of modular network equip-
ment, which is usually used in aggregation networks and core networks of tele-
com networks or service provider networks, in which a large amount of traffic
is assembled. In order to augment packet processing performance of the entire
system, such modular network equipment comprises multiple line cards, each
of which corresponds to the basic architecture shown in Figure 1.2.
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Figure 1.3: High-level system architecture of a modular network equipment.

C-plane components such as the control processors and route processors
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are not usually included in each line card and separate in the control module.
All the line cards are connected to the switching fabric or backplane of the
rack so that they can communicate with one another. The control module is
also connected to the switching fabric so that some packets can be sent to and
from the control module for routing information updates and other signaling.
In addition, the control module is connected to every line card via a dedicated
interface that is different from the switching fabric.

This system architecture allows the network operator to scale packet pro-
cessing performance to meet network service demands by increasing or de-
creasing the number of line cards. In addition, some of the modules and line
cards may be standby, whereas the others are active to increase the system
availability.

1.3.2 General-purpose architecture

Apart from dedicated network equipment, general-purpose computers are used
to execute various application software, which is not limited to packet process-
ing. Figure 1.4 shows a schematic computer architecture of general-purpose
computers based on Intel x86 CPU. There are CPUs, DRAMs as CPU’s main
memories, a chipset that integrates connection between the CPU and the pe-
ripheral devices such as universal serial bus (USB) for various devices and serial
advanced technology attachment (SATA) for storage devices, and peripheral
component interconnect express (PCIe) for other accelerator devices such as
graphic processing units (GPUs) or field programmable gate arrays (FPGAs).

The CPU has multiple CPU cores, on-chip cache memories, a DRAM con-
troller, PCIe connections, and the inter-CPU link such as Intel ultra path
interconnect (UPI). Modern servers based on x86 CPUs can install multiple
CPUs, usually up to eight CPUs depending on the specifications of CPU, in the
same computer hardware, in which each CPU is connected via the inter-CPU
link. The details of CPU, DRAM, memory systems, and FPGA are explained
in Sections 1.4.4, 1.5.2, 1.7, 1.4.2, respectively.

Unlike dedicated network equipment, general-purpose computer architec-
ture is not designed solely for packet processing. Instead, hardware and soft-
ware of general-purpose computers are separated clearly, which means that
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Figure 1.4: High-level architecture of general-purpose computers based on x86
CPU.

various application software can be executed on different computers by us-
ing the compiler which corresponds to a specific instruction set architecture
(ISA) of the CPU. The CPU is the center of the general-purpose computer
architecture, in which most of the packet processing is usually done, which
means that C-plane processing and U-plane processing are not separated in
the hardware architecture. Therefore, it is common to assign separate CPU
cores to U-plane processing and C-plane processing, or U-plane and C-plane
processing are performed on different computers. In addition, packet process-
ing flow is not determined in general-purpose computer hardware, which means
that every packet treatment such as the reception of incoming packets, packet
parsing, classification, lookup, modification, queueing, shaping, and packet
transmission is described in software including the OS of the computer.

There are several approaches to increase the performance of each packet
treatment, some of which are explained in Section 2.1. Moreover, although
some of the packet processing tasks such as checksum calculations are offloaded
to the dedicated hardware in the network interface card (NIC), there are no
dedicated engines or circuitry for specific processing such as traffic management
and searching in general-purpose computers. Due to the lack of purpose-built
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hardware, packet processing performance on general-purpose computers suffers
a significant handicap compared to the dedicated network equipment.

1.4 Processor types in computer systems

A processor is one of the essential parts of every computer architecture. This
section explains the basic knowledge of the processor devices. Note that the
word “processor” is used in the broad meaning, which includes the hardware
devices that execute a software program and the integrated circuit devices in
packet processing systems.

1.4.1 Application specific integrated circuit (ASIC)

ASIC is the purpose-built integrated circuit device which contains the required
circuitry for multiple functions. The desired functions are directly implemented
as hardware circuitry instead of software programs on top of processors, which
makes ASIC high-performance in terms of throughput, latency, and power
efficiency. Therefore, dedicated network equipment in telecom networks and
large service provider networks depends on the ASIC for high-performance
packet processing to satisfy the SLA.

On the other hand, since circuitry in ASIC can never be modified once it
is designed and manufactured, ASIC usually requires very careful, long-term,
and costly development. Therefore, if network functions are implemented in
the ASIC of network equipment, even a small function addition requires such
long time-to-market of ASIC, which prevents the network operator from using
the latest network protocol and rapidly adopting the change of traffic patterns
and requirements due to the emerging network services.

Network virtualization aims to replace the ASIC and its associated dedi-
cated system architecture with general-purpose computers and software-based
network functions as many as possible for CAPEX reduction. Additionally,
network virtualization also lowers the ASIC usage in network equipment so
that ASIC is only used in simple layer two or layer three switches, controlled
in a software-defined way, which process large amount of traffic using limited
packet processing functions. Figure 1.5 shows a schematic architecture of such
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simple switch ASIC device [51], in which each ingress and egress pipeline ex-
ecutes fixed packet processing such as parsing, tunnel termination, switching,
and modification [52].
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Figure 1.5: High-level architecture of switch ASIC.

1.4.2 Programmable logic device (PLD)

PLD is a general term for large-scale integrated circuit (LSI) device, in which a
designer can deploy desired logical circuits for multiple times by programming.
While PLDs are programmable, there may be some circuits that cannot be
implemented in particular PLDs depending on the size of the circuits, the
operating frequency of the PLDs, and delay requirements of the circuit design,
which requires higher-performance PLDs with a larger number of logic elements
and higher operating frequency. This thesis mainly focuses on FPGAs among
PLDs, which have a large circuit that can be used for packet processing.

Traditionally, FPGAs have been used as auxiliary devices, such as pro-
totyping ASICs and circuits to connect between ASICs and other peripheral
devices, in order to avoid the long-term and costly development of ASICs.
The increased integration density of semiconductor devices has increased per-
formance and circuit capacity of FPGAs, which makes FPGAs to be used for
the acceleration of general-purpose processors, such as latency reduction and
power efficiency improvement, instead of using ASICs.
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An FPGA is composed of arrays of logic blocks (LBs), IO blocks, and
the wiring between them including switches. Figure 1.6 shows a schematic
architecture inside an FPGA. The logic block consists of a lookup table (LUT)
that contains a truth table corresponding to a combinational circuit and a flip-
flop circuit as a register that stores the output of the combinational circuit. The
LUT usually has four inputs and one output, and the output is connected to the
register input. The inputs to the LUT specify the address of the truth table,
and the corresponding value of the specified address represents the behavior
of the desired combinational circuit such as AND, OR, and more complicated
operations.

To program an FPGA, based on the programming language describing the
desired logic circuits, compilers or design tools determine the optimal place-
ment of logic operations to logic blocks and the routing between the logic
blocks with considering the actual FPGA pin assignment including hard-coded
dedicated high-speed interface circuits, delay requirements directed by the de-
signer, and the circuit size compared to the circuit capacity of the FPGA.
After the placement and routing, the LUT values of each assigned logic block
is configured via dedicated interfaces such as joint test action group (JTAG)
or loaded from memory devices connected to the FPGA.
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Figure 1.6: Schematic architecture inside an FPGA.

The hardware description language (HDL) is used to describe the logic
circuits to be implemented in FPGAs or ASICs. There are several different
levels of abstraction in HDLs, which range from the level of system architec-
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ture and algorithms to the level of flip-flops and logic gates. In FPGAs and
ASICs development, the register transfer level (RTL) is usually used, which
describes registers, logic operators, and the wiring between them. Therefore,
when describing the logic circuits in RTL, the proper usage of combinational
circuits and sequential circuits, clock synchronization are must be explicitly
taken into account. Also, it must be carefully verified that the designed cir-
cuits can operate at the desired timing and speed on the target FPGA before
implementation. Typically, FPGA development tools have target-specific tim-
ing simulators and verification features. Along with the programming of the
logic circuits, it is also necessary to define the pin assignment, which maps the
logic circuits to be implemented in the FPGA to the actual FPGA pins, based
on the schematics of the circuit board on which the FPGA is mounted.

Although hardware development using HDLs is generally considered to
be difficult because various hardware-related knowledge is required, easy-to-
implement methods such as programming logic circuits in high-level languages
are also developed. There are several tools from multiple FPGA vendors that
compile program written in high-level languages, such as C and C++, into
HDL. The P4 language explained in Section 1.2.1 is also an easy-to-implement
language specialized in the description of packet processing applications. It
converts the high-level description of packet processing into a programming
language suitable for various chips including FPGAs. Therefore, due to these
emerging methods to program FPGAs in high-level languages, FPGAs have
attracted as much attention as general-purpose processors in network virtu-
alization. There are several products such that integrate FPGAs into CPUs,
NICs on which FPGAs are mounted, and PCIe extension cards that have FP-
GAs in general-purpose computers.

1.4.3 Network processor (NP)

NPs are the processors that are specialized in packet processing and are con-
trolled by software. However, unlike general-purpose processors, NPs are de-
signed to achieve packet processing at wire rate. Traditionally, packet process-
ing at wire rate is achieved by using ASICs associated with costly development
and long time-to-market. Therefore, NPs have gradually replaced the ASICs

19



Chapter 1

in packet processing.

Compared to general-purpose processors, NPs have different processor ar-
chitecture and programming model. The architectural features of NPs include
the parallel and pipelined packet processing, dedicated circuits for such as traf-
fic management, and interfaces to external hardware engines such as TCAMs
for searching, SRAMs for queueing. The programming models of NPs depend
on the NP vendors and the processor architectures in terms of heterogene-
ity and complexity of each NP. In order to satisfy the strict performance re-
quirements such as packet processing at wire rate, programming models of
NPs are usually based on real-time programming, which includes event-driven
processing according to the incoming packets, parallel and pipelined packet
processing, and non-preemptive scheduling. In particular, a programmer of
NPs may be required to program with an explicit awareness of the the par-
allel and pipelined architecture, which may lead to programming in low-level
languages or vendor-specific microcode. Therefore, programming NPs is con-
sidered to be more difficult than programming general-purpose processors. On
the other hand, some NP vendors release their development tools that obscure
the processor architecture so that the packet processing can be programmed
in high-level languages such as C-language.

Cisco Flow Processor [50] is an example of NP, which is used in the ag-
gregation routers of telecom networks and routers for enterprise and service
providers, whose system architecture is shown in Figure 1.2. Figure 1.7 shows
the internal architecture of Cisco Flow Processor [50]. In the NP, there are 40
packet processor engines (PPEs), each of which has four threads and can be
programmed in C-language. Each PPE thread executes the necessary packet
processing program according to each incoming packet. Each PPE and its
threads can work in parallel and are not a fixed pipeline. The PPE is a
reduced instruction set computer (RISC)-based 32-bit core, which does not
include the dedicated queueing and scheduling functions. Therefore, there is
a dedicated traffic manager with a dedicated queueing engine. The NP also
has several high-speed interfaces, to which TCAMs for fast searching and clas-
sification, DRAMs for packet buffering, SRAMs for queueing and scheduling,
and encryption engines are connected.
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Figure 1.7: Internal architecture of Cisco Flow Processor.

1.4.4 Central processing unit (CPU)

CPU is the central processor in general-purpose computers and executes soft-
ware programs. Intel x86 architecture-based CPUs are widely used in per-
sonal computers and general-purpose servers, whereas ARM architecture-based
CPUs are also widely used in mobile devices and embedded systems. This the-
sis mainly focuses on x86 architecture-based CPUs, which are used in general-
purpose servers in network virtualization.

CPUs are not built to specialize in a particular process but have basic
arithmetic instructions required for a wide range of programs. While pipelining
is usually utilized in CPUs, their programming models do not require explicit
awareness of pipelining. Modern CPUs also have parallel processing features
such as single instruction, multiple data (SIMD) execution, multiple CPU
cores with multiple threads. These features are usually used by optimization
functions of compilers and some of the OS functions rather than by explicitly
describing in programming languages.

In x86 architecture-based CPUs, there are several to dozens of CPU cores,
each of which is capable of running two threads. The CPU has a main memory
system that consists of DRAM modules, on-chip several levels of cache mem-
ories, some of which are dedicated to each CPU core and the other is shared
among all the CPU cores. The details of the main memory system and on-chip
cache memories are explained in Sections 1.7.1 and 1.7.2, respectively.
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Since CPUs are not designed for specific processing, CPUs in general-
purpose servers perform packet processing in cooperation with peripheral de-
vices connected via PCIe interfaces. As described in Section 1.3.2, a CPU
in general-purpose computers is connected to the NICs, FPGAs, and GPUs.
These CPUs, NICs, and the memory system are the key devices in general-
purpose computer hardware to perform packet processing of VNFs. In particu-
lar, packets are received from the NIC and stored in the memory, tables in the
memory are searched, and the packets in the memory are modified. FPGAs
and GPUs may be used for acceleration of some specific packet processing
tasks, such as parsing, searching, and so on [53,54].

1.5 Memory types in computer systems

Memory devices in computer systems have an array structure to accommodate
large data effectively. A memory array usually has a pair of %-bit address input
and &-bit data port, which consists of 2%×& bit cells. Each bit cell stores one-
bit data and is connected to a word line and a bit line. Figure 1.8 shows the
high-level structure of a 4×3-sized memory array, in which there are four word
lines corresponding to two-bit address input and three bit lines corresponding
to three-bit word width. When a data in a specific word is read out from the
memory array, the corresponding word line is pulled up, then the bit cells in
the corresponding row drive each bit line. The data can be retrieved by reading
the state of each bit line. When a data is written to the memory array, the bit
lines are driven according to the data to be written, and then a specific word
line is pulled up. The data in the bit lines are written to the bit cells in the
row whose word line is in a high state.

1.5.1 Static random access memory (SRAM)

An SRAM bit cell in the SRAM array consists of a pair of CMOS-based invert-
ers connected to a word line, a bit line, and an inverse of the bit line. Figure 1.9
shows a schematic SRAM bit cell in (a) logic circuit and (b) transistor-level
circuit, where WL, BL, BL represent a word line, a bit line, and an inverse of
the bit line, respectively [55].
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Figure 1.8: High-level structure of a 4 × 3-sized memory array.
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Figure 1.9: SRAM bit cell circuit.
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The bit date is stored in the pair of CMOS-based inverters. When the
word line is activated, the pair of inverters is connected with the bit line and
its inverse, which allows the data to be read out or written. While the inverse
of the bit line is not necessary in principle, it is usually used in addition to
the bit line in order to improve the signal to noise ratio. Additionally, by
measuring the electrical potential difference between the BL and BL, the data
can be read out faster and more effectively than sensing the voltage of BL
alone.

Accessing SRAM is faster than accessing DRAM based on a capacitor as
explained in Section 1.5.2. On the other hand, as shown in Figure 1.9 (b),
an SRAM bit cell requires six transistors to store one bit, which degrades the
area efficiency of the SRAM array. Based on these characteristics, SRAMs are
usually used for the cache memories in the processors and LUTs of FPGAs,
where memory speed is preferred to memory capacity. Note that there is an-
other SRAM bit cell circuit, in which only four transistors are used. However,
four transistor SRAM is not used in memory devices of computer systems
such as cache memories due to the high standby leakage current that increases
the power consumption. While other implementation methods to reduce the
standby leakage current of four-transistor SRAMs have been considered [56],
in any case, an SRAM bit cell requires a relatively large number of transistors
and corresponding area per bit.

1.5.2 Dynamic random access memory (DRAM)

A DRAM bit cell consists of a capacitor and a transistor, in which the capacitor
is connected to a bit line whose connection is switched by the transistor. The
capacitor stores one-bit data depending on whether the capacitor is charged
or not. Figure 1.10 shows a schematic circuit of a DRAM bit cell, where WL

and BL represent a word line and a bit line, respectively [55].
The capacitor, which represents one-bit information, is directly driven by

the connected bit line, and its electrical charge changes dynamically. When
the word line of a DRAM bit cell is activated, the capacitor in the DRAM bit
cell is connected to the bit line. A data in the DRAM bit cell can be read out
or written by measuring or driving the bit line.
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Figure 1.10: DRAM bit cell circuit.

When the data is read out from the DRAM bit cell, the electrical charge
in the capacitor is discharged and transferred to the bit line, which eventually
breaks the stored one-bit information in the DRAM bit cell. Therefore, the
original data in the DRAM bit cell must be rewritten to the DRAM bit cell
just after the readout. When the data is written to the DRAM bit cell, the
capacitor is directly driven by the bit line. Additionally, since the electrical
charge in the capacitor gradually discharges even if there is no readout, a
DRAM bit cell must be rewritten, which is called refresh. Typically, a DRAM
bit cell has to be refreshed every two or three milliseconds.

Compared to an SRAM bit cell, a DRAM bit cell is slower and has lower
throughput due to the slow electrical charge transfer and periodical refresh
operations. On the other hand, as shown in Figure 1.10, a DRAM bit cell only
requires one transistor and one capacitor to store one bit, whereas an SRAM
bit cell requires six transistors, which means that DRAM bit cells are more
area efficient than SRAM bit cells. Therefore, there is a trade-off between the
area efficiency and the memory access latency, which is reflected in the price
of the memory devices and determines where each memory type is applied.

1.5.3 Emerging memory types

SRAMs and DRAMs have been the mainstream semiconductor-based memory
types for random access memory (RAM) devices. There are also emerging
memory types for non-volatile RAM (NVRAM) devices such as spin-torque
transfer magnetic random access memory (STT-MRAM) [57], phase change
memory (PCM) [58], resistive random access memory (ReRAM) [59], ferro-
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electric random access memory (FeRAM) [60], and nanotube random access
memory (NRAM) [61].

Since these emerging memory types are studied and developed for NVRAM
devices that hold the stored data even if there is no power supply, they are
targeted for embedded devices such as wearable devices and storage devices,
where power efficiency and data stability are inevitable. However, some of
these memory types also aim to replace the main memory of general-purpose
computers. In particular, it is reported that STT-MRAM and NRAM have the
potential to replace DRAM in terms of memory access latency, area efficiency,
and power efficiency [61–66].

1.6 Content addressable memory (CAM)

CAM is a special type of memory device that returns the memory address as
a result of searching operations based on the input data. Figure 1.11 shows
a high-level structure of CAM that has %′ words, each consists of &′ bits,
where ML and SL represents the search line and match line, respectively [67].
Typically, CAMs have 36 to 144 bits per word and several hundreds of kilo
words.
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Figure 1.11: High-level structure of CAM.
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Each word has &′ CAM core cells, each of which contains one bit of the
word and a comparison circuit. Each bit of an incoming key is broadcasted to
CAM core cells through the corresponding search line. In each CAM core cell,
the incoming bit is compared to the stored bit to judge if the incoming bit
equals the stored bit. The horizontal array of CAM core cells are connected
via a match line; each horizontal array corresponds to the stored word. In
each horizontal array of CAM core cells, the comparison result of each CAM
core cell is aggregated by calculating “and” logic via the a match line, which
means that the match line eventually indicates if the incoming key is identical
to the stored word or not. In other words, if the match line is high, it indicates
that the match line is in a matched state; otherwise, it is in a mismatch
state. The comparison results in each match line are sensed and amplified
separately and transferred to the encoder that outputs the location (address)
of the matched key in the database stored in the CAM. Therefore, the incoming
key is simultaneously compared to all the words stored in the CAM in one clock
cycle.

TCAM is a special type of CAMs, which have “don’t care” bit in each
core cell in addition to 0 and 1. The “don’t care” bit does not contribute
to the state of the match line regardless of the input key bit. The existence
of “don’t care” bit in a stored word corresponds to masking some bits of the
searched word, which is required in LPM of IP address lookup, complex string
lookup. In comparison with TCAMs, normal CAMs are also called binary
CAMs (BCAMs).

In the searching operation, all the match lines are initially pulled up and set
in a matched state. Then the search word is broadcasted to all the CAM core
cells via search lines. In each CAM core cell, the broadcasted bit is compared
with the stored bit. By taking and of all the comparison results of each CAM
core cell in the same match line, including the “don’t care” bits, the final state
of the match line is determined. If there is any mismatch in at least one CAM
core cell in the match line, the match line is eventually in the mismatch state,
which is pulled down to indicate the mismatch. If there is no mismatch in
the match line, the match line remains activated, which indicates the matched
state.

The difference between TCAMs and BCAMs is the method to prioritize
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the multiple matched lines. Figure 1.12 shows an example implementation of
IP address lookup subsystem based on a TCAM and a RAM [1,68].

In the TCAM shown in the left-hand side of Figure 1.12, the searching key
01011 is compared with all the stored words in the TCAM. Considering the
“don’t care” bits, denoted as X in Figure 1.12, it is clear that both ML2 and
ML3 are to be in the matched state. In TCAM that has “don’t care” bits, the
encoder can more flexibly choose the final match location from the multiple
matched lines based on such as the increasing or decreasing order of the address
of the word, the longest matched prefix, or the number of matched CAM bit
cells. Even in BCAMs, multiple matched lines can be prioritized based on the
increasing or decreasing order of the address of the word. However, BCAMs
cannot prioritize the multiple matched lines based on the longest prefix or
number of matched CAM bit cells, which is not applied to complex searching
operations such as LPM in the IP address lookup task.

In Figure 1.12, the encoder of the TCAM chooses the ML2 as the final
match location based on the longest prefix match. Then the searching results
of the TCAM are transferred to the RAM that is connected to the TCAM
to get the forwarding port of the router and next hop IP address [68]. When
using TCAMs for LPM of IP address lookup, all the routing prefixes must
be stored in the TCAM in decreasing order of their prefix length, with “don’t
care” bits padded in the rightmost side of the stored words.

Due to its dedicated architecture, CAMs can execute over hundreds of mil-
lions of searches per second. However, the architecture is completely different
from the normal types of memories, in which the data is returned according to
the address input, which means that CAMs are the dedicated memory devices
solely for the searching operations. In addition, CAMs require large silicon
area to implement the CAM cells and logic, which degrade the area efficiency
compared to other types of memories and increases the device price. Addi-
tionally, since the searching operation is executed in all the CAM core cells
simultaneously, CAMs consume a large amount of power and produce lots of
heat, which increases the operational cost.
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Figure 1.12: TCAM-based IP address lookup subsystem.

1.7 Memory systems in general-purpose com-
puters

1.7.1 Main memory system

The main memory systems in general-purpose computers are usually based
on the DRAM memory system. The DRAM memory system consists of a
memory controller and memory devices, as shown in Figure 1.13. The memory
controller handles memory requests from requestors, such as CPUs or direct
memory accesses (DMAs), to read the data from memory devices or write the
data to memory devices. The memory controller logic is usually integrated
inside the CPUs. The memory controller and memory devices are connected
by a command bus and a data bus. Both buses are accessible in parallel, which
means that one requestor can use the command bus while another requestor
uses the data bus at the same time. However, no more than one requestor can
use the same bus simultaneously.

Modern DRAM systems have a dual inline memory module (DIMM) inter-
face with multiple channels, which allows requestors to access multiple DIMMs
simultaneously using multiple command bus and data bus units. Note that
multiple DIMMs might be attached to a channel to share the buses in the chan-

29



Chapter 1

����

����	�

�	

����

����

	
����

����

���

���

����

������	

����

����

����

����
���

������	

����

����

	
����

����

���

���

����

����

����

����

����
���

Figure 1.13: DRAM system overview.

nel among the DIMMs, which means that the DIMMs attached to the channel
cannot be accessed at the same time. A DIMM is organized into ranks, and
only one rank can be accessed at a time. This thesis considers DRAMs with a
single rank in the proposed architectures for simplicity.
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Figure 1.14: Architecture of DRAM chip.

Each rank consists of multiple DRAM chips. Furthermore, each DRAM
chip comprises multiple banks that can be accessed in parallel if there are no
collisions on either bus. Each bank has a row buffer and a DRAM memory
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array shown in Figure 1.14. Requestors can only access the content of the row
buffer, not the data in the memory array. To access a specific memory location,
the row that contains the desired data must be loaded into the row buffer by
an activate command. When the controller wishes to load a different row, the
current row buffer must be written back to the array by a precharge command
in advance. The actual read or write commands only handle the data in the
row buffer. A row that is cached in the row buffer is usually referred to as an
open row. On the other hand, a row that is not cached in the row buffer is
considered as a closed row.

Figure 1.15 shows a schematic diagram of DRAM bank interleaving. Fig-
ures 1.15 (a) and (b) correspond to the diagram without bank interleaving and
with bank interleaving, respectively. By issuing read commands to an open
row at one bank to another, these banks can be interleaved to increase memory
access performance with no additional hardware modification.
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Figure 1.15: DRAM accessing without and with bank interleaving.
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1.7.2 Cache memory system

There are several levels of on-chip cache memories in a multi-core CPU. Each
CPU core has one or two levels of its private cache memories, usually called
level 1 (L1) cache memory and level 2 (L2) cache memory. The LLC is shared
among every CPU core inside the same CPU. Usually, the L1 cache memory
is the fastest and has the smallest memory capacity; on the other hand, LLC
is the slowest with the largest memory capacity.

Figure 1.16 shows a basic mechanism of a cache memory system includ-
ing off-chip main memory. A cache line is an elementary block of data trans-
ferred between the cache and the off-chip memory. Usually, the data physically
around a particular data, shown as the target data in Figure 1.16, is likely to be
accessed next, which is known as data spatial locality. By assuming the data
spatial locality, cache lines improve the hit probabilities of cache memories.

If a cache line including the target data that corresponds to a memory
request is found in a certain level of cache memory, which is called a hit,
the cache memory returns the corresponding cache line of the request to the
CPU core that issued the request. If any cache line including the target data
is not found in a certain level of cache memory, which is called a miss, the
request accesses the next level of cache memory or the off-chip memory until
the request finds the corresponding cache line. A cache line is replaced so that
a newly loaded cache line can be accommodated in the cache memory. The
policy that decides which cache line is replaced next is defined in the system.
Typically, the least-recently-used (LRU) policy is used, where the LRU cache
line in the L1 cache memory or the L2 cache memory is evicted to the L2 cache
memory or the LLC, and the LRU cache line in the LLC is dropped.

Modern CPUs have the on-chip LLC that comprises distributed slices, each
of which belongs to each CPU core, as shown in Figure 1.17. Every CPU core
including its LLC slice is connected via an inter-core bus that is usually a bi-
directional ring or mesh architecture [69,70]. According to [71], Intel’s Skylake
generation processor introduces mesh-interconnect among on-chip components.
The multiple LLC slices and the interconnect among them may make the
memory system more complicated than those of the shared LLC that consists
of a single LLC slice. A power and area efficient router architecture for a
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Figure 1.16: Basic mechanism of cache memory systems.

2D mesh interconnect among CPU cores and LLC slices of each CPU core
was presented in [72]. Thus, although the details of the microarchitecture of
such CPUs are not publicly known, the work in [72] considered that today’s
multi-core CPU uses such energy and area efficient technology to implement
the interconnects among CPU cores and their LLC slices. Additionally, the
analysis of power and area of an on-chip LLC was presented in [73].

Although the physical LLC slices are separated, each LLC slice is address-
able, which enables each CPU core to access every LLC slice as a single logical
LLC. Each LLC slice has the same capacity as the other LLC slices in the
CPU. Thus the capacity of the logical LLC equals the product of the number
of CPU cores and the capacity of an LLC slice. Each LLC slice can be accessed
in parallel from different CPU cores unless multiple CPU cores access the same
LLC slice simultaneously, which improves the effective memory bandwidth of
LLC.

Memory addresses of data and requests are mapped to each LLC slices
according to a hash-function-based rule so that the number of requests to
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Figure 1.17: Architecture of LLC that consist of LLC slice connected via mesh
inter-core bus. Inter-core bus is shown in green lines.

each LLC slice can be evenly balanced. While the detail of the hash function
is usually undocumented and not open to the public, the mapping is known
to be conducted by a calculation based on a particular part of the physical
memory address of a data or a request. Thus several studies reverse-engineered
the hash function of recent CPUs [74, 75]. Figure 1.18 shows an example of
memory address mapping to LLC slices. In this example, the memory address
range of each cache line is mapped to one of the LLC slices evenly. The memory
address range of =CL-th cache line is mapped to (=CL mod #Slice + 1)-th LLC
slice, where #Slice represents the total number of LLC slices in this example.
The hash function of memory address mapping decides which address range of
cache line is to be stored in which LLC slice and to which LLC slice a request
that misses L2 cache memory is transferred.

In the NFV environment, various applications may run in the same hard-
ware system simultaneously. Sometimes, applications that require frequent
memory accesses, usually called memory-intensive applications, dominantly
use LLC slices including LLC slices that belong to the other CPU cores which
are not assigned to the application. These applications are usually called noisy
neighbors as they consume extra LLC slices in which the other applications
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Figure 1.18: Example of address mapping to LLC slices.

are to allocate. Regarding this problem, LLC slices are also becoming one
of the major computing resources as well as the other resources such as the
CPU cores and memory capacity. For the assignment of the LLC slices to each
CPU core that runs a certain process, several slice-aware memory management
technologies such as Intel cache allocation technology (CAT) [76] are becoming
popular in the operation of NFVI [74].

1.7.3 Three-dimensional (3D)-stacked DRAM

3D-stacked DRAM is an emerging type of memory device that consolidates
multiple DRAMs in a single memory device. It consists of vertically stacked
DRAM layers, each of which is connected by using through silicon via (TSV)
technology so that memory requestors can access every DRAM layer. Con-
ventional double data rate x (DDRx) DRAM devices require more area ineffi-
cient wires between a processor and memory devices than 3D-stacked DRAMs,
which prevents a CPU from using more memory channels due to the limited
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wiring space in general-purpose server chassis. The higher density of memory
channels in the 3D-stacked DRAMs enables CPU to be connected with more
number of memory channels than using conventional DDRx DRAM devices.
Thus 3D-stacked DRAM provides more memory channels without losing the
versatility of conventional DDRx DRAM devices, which becomes the motiva-
tion to use a 3D-stacked DRAM as a parallel main memory in the proposed
architectures.

A hybrid memory cube (HMC) [77, 78] and a high bandwidth memory
(HBM) [79,80] are example types of 3D-stacked DRAMs. Both HMC and HBM
consolidate conventional DRAMs in a single memory device, which enhances
memory access parallelism compared to the conventional DRAM devices by
consolidating more memory channels and banks.

Figure 1.19 shows the structure of an HMC. An HMC comprises several
DRAM layers on top of the bottom layer, the logic base [81]. Each DRAM
layer of a vault has several banks. A vault, which is a vertical unit that consists
of a part of each DRAM layer with several banks, corresponds to a memory
channel in traditional DRAM devices. Each vault is accessible in parallel.
In the logic base, simple operations against the data stored in the DRAM
layers can be performed, which is used in emerging computing architecture,
known as computing near memory or processing-in-memory (PIM) [82–84].
The external memory controller of an HMC is connected to the logic base of
the HMC through several high-speed serial links. The high-speed serial links
are also used to connect multiple HMCs.

Figure 1.20 shows the schematic structure of an HBM. As with HMCs, an
HBM has several core dies (DRAM layers), each of which comprises conven-
tional DRAM connected through TSV. An HBM has a wider I/O bus compared
to an HMC to enhance the memory bandwidth. The bottom layer of an HBM
is called base logic die [79].

The thermal feasibility of memory systems using 3D-stacked DRAMs was
studied in [85–87]. These works consider the PIM architectures, which pro-
duce more heat than conventional DRAM systems due to the aggressive use
of the logic layer functionalities. In particular, a challenge is that the heat
generated from the logic layer raises the temperature of the DRAM layers.
The typical operating temperature range for DRAM is under 85 ◦C. When the
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Figure 1.19: Structure of hybrid memory cube.
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Figure 1.20: Structure of high bandwidth memory.
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temperature exceeds the threshold, the required DRAM refresh rate must be
doubled for every 10 ◦C increase [88]. Higher DRAM refresh rates result in
higher power consumption and DRAM performance degradation. These works
concluded that 3D-stacked DRAMs are feasible if the systems have high-end
active cooling, which is typically used in conventional computer systems.

Note that this thesis uses the word “3D-stacked DRAM” in a broad sense,
which means a memory device that has a logic layer, several serial intercon-
nects, and several DRAM layers with several channels and banks, and is not
limited to HMCs and HBMs.

1.8 Challenges of packet processing in network
virtualization

As explained in Section 1.2, while network virtualization is expected to bring
cost reduction of network infrastructure and network operation, there are still
performance issues to be addressed in order to satisfy the network service re-
quirements when general-purpose computers are used to run VNFs with packet
processing. These issues limit the type of network functions to which network
virtualization can be applied, which makes it difficult for service providers and
telecom operators to benefit from network virtualization.

Every network function includes packet processing tasks, each of which
contains various types of operations, as described in Section 1.1. In particular,
packet processing tasks such as classification, searching, queueing, and modi-
fication issue memory requests to read or write the memory to understand the
packet information, update the packet content, and search the databases.

The rate of performance improvement in microprocessor has been higher
than that in memory over recent decades [2–8], which increases the importance
of memory performance in packet processing. In other words, the more mem-
ory accesses are completed in a certain period of time, the more packets are
processed in the network equipment or computer systems on which network
functions run. Due to the memory bottleneck, conventional computer archi-
tectures have increased the memory performance by using parallel memories
rather than depending on the slow increase in per-device memory speed [50].
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Additionally, several works have presented research directions in computer
architectures such as memory-centric computing and 3D-stacking for further
performance improvement [89–92].

Conventional network equipment uses dedicated computer architecture and
purpose-built hardware devices to increase packet processing performance.
While its main processor may be a general-purpose, multi-core processor, its
memory system consists of several function-dedicated memories, and has mem-
ory parallelism, where TCAMs are used to search the databases quickly and
some parallel SRAMs and DRAMs are used to execute packet modification
tasks and queueing and traffic management tasks in parallel.

In network virtualization, network functions with packet processing tasks
are implemented as software on general-purpose computers whose computer
architectures are significantly different from that of dedicated network equip-
ment. Apart from dedicated network equipment, general-purpose computers
do not have the function-dedicated memories. While general-purpose comput-
ers have processors with several tens of cors, the number of memory channels
are much less than the number of processor cores. VNFs on top of general-
purpose computers are more likely to wait for the completion of memory ac-
cesses, which eventually degrade throughput and increase waiting time. There-
fore, it is challenging to increase packet processing performance, eventually the
VNF performance, on general-purpose computers.

1.9 Problem statements

This thesis studies four problems about parallel memory system architectures
for packet processing in network virtualization. Each problem corresponds to
the main memory parallelism, integration of the on-chip cache memories of the
CPU with the parallel main memory, capacity and parallelism of the on-chip
cache memories in the presence of parallel main memory, and accumulated
latency of data transfers between processors and memories when there are
multiple packet processing tasks with memory accesses, respectively.
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1.9.1 Memory parallelism in main memory

There are concerns about lack of packet processing performance of VNFs run-
ning on general-purpose computers. As described in Section 1.3.1, in con-
ventional network equipment, high-performance packet processing is achieved
by parallel processing based on dedicated computer architecture and purpose-
built hardware devices. However, general-purpose computers have neither such
architectures nor purpose-built chips that have dedicated instruction set ar-
chitectures, which means that general-purpose computers are not originally
suitable for U-plane processing in network virtualization.

While there are various approaches to accelerate packet processing in net-
work virtualization such as Intel Data Plane Development Kit (DPDK) [93],
Single Root I/O Virtualization (SR-IOV) [94], and software switches and
routers [53, 95–98], they mainly increase packet I/O performance or signifi-
cantly depend on cache memory performance of the CPU with limited mem-
ory capacity, which cannot be applied to every packet processing. Moreover,
in service providers and telecom networks, each VNF usually comprises vari-
ous complicated packet processing tasks, each of which has large databases for
large traffic flows or complicated functions such as DPI. Therefore, for virtual-
ization of such large-scale networks, off-chip main memory performance needs
to be increased for packet processing. There is a lack of memory parallelism
in conventional main memory systems in general-purpose computers, where
the number of concurrently accessible memory blocks is much less than the
increasing number of CPU cores in multi-core CPUs.

Therefore, the problem is to design the parallel main memory system ar-
chitecture of general-purpose computers to increase packet processing perfor-
mance with large databases in network virtualization. This thesis studies this
problem in Chapter 3.

1.9.2 Integration of on-chip cache memories with parallel
main memory

CPUs in general-purpose computers have on-chip cache memories to obscure
the latency of the main memory. Since there is usually a trade-off between
memory response speed and capacity, modern multi-core CPUs have several
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levels of on-chip cache memories, which contain the L1 cache memory that
is the fastest but smallest, the L2 cache memory that has medium speed
and capacity, and the LLC that is the slowest but the largest. Usually, the
LLC is shared among all the CPU cores on the same chip. Software-based
high-performance switches and routers make the most of these on-chip cache
memories of CPUs by limiting the implemented packet processing tasks and
compressing the database for packet processing [14,99].

Since the problem stated in Section 1.9.1 considers the parallel main mem-
ory system architecture of general-purpose computers, the existence of on-chip
cache memories of the CPU is not taken into account. Even if there is a par-
allel main memory in general-purpose computers, on-chip cache memories of
CPU are also fundamental components of memory systems. Therefore, it is
inevitable to explore the integration of the on-chip cache memories with the
parallel main memory, in which each level of cache memory has different char-
acteristics, for packet processing in network virtualization. In particular, the
effectiveness of the on-chip cache memories is not clear when integrated with
the parallel main memory that improves packet processing performance, rather
than conventional main memory that has little memory parallelism.

Therefore, the problem is to explore the integration of the on-chip cache
memories with the parallel main memory of general-purpose computers for
packet processing in network virtualization. This thesis studies this problem
in Chapter 4.

1.9.3 Capacity and parallelism of on-chip cache memo-
ries in presence of parallel main memory

While the on-chip shared LLC in the CPU has the largest memory capacity, it
lacks the memory parallelism, which may be a performance bottleneck when
there is an off-chip parallel main memory. On the other hand, the on-chip
shared LLC comprises LLC slices, each of which belongs to each CPU cores like
the L1/L2 cache memories, via a ring bus or a mesh interconnection among the
CPU cores. Therefore, the LLC slices can be accessed in parallel and increase
the per-core capacity of cache memories.

While the problem stated in Section 1.9.2 explores the integration of the on-
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chip cache memories including the shared LLC with the off-chip parallel main
memory, capacity and parallelism of the LLC slices are not considered. There
is a technology to assign some of the LLC slices to a specific application run-
ning on the general-purpose computers [76], as described in Section 1.7.2. The
work in [74] introduces the data replication among the LLC slices to increase
the effective memory bandwidth in parallel processing, which means that the
LLC slice can be one of the fundamental components in memory systems of
general-purpose computers. By using the LLC slices as the independent cache
memory that belongs to each CPU core, both memory parallelism of CPU
cache memories and the per-core total memory capacity are expected to be in-
creased. It is necessary to understand the dependency of memory performance
on the number of assigned LLC slices when combined with the off-chip parallel
main memory and the on-chip L1/L2 cache memories of each CPU core.

Therefore, the problem is to design the memory system architecture that
integrates the LLC slices with the parallel main memory and the on-chip L1
and L2 cache memories in order to increase capacity and parallelism of the
on-chip cache memories for packet processing in network virtualization. This
thesis studies this problem in Chapter 5.

1.9.4 Accumulated latency of data transfers between pro-
cessors and memories

While the problems stated in Sections 1.9.1, 1.9.2, and 1.9.3 consider the par-
allel memory system architectures to increase packet processing performance
on general-purpose computers, there are still data transfers between the pro-
cessors and the memories for every memory access. The data transfer latency
is accumulated when there are multiple memory accesses in packet processing.
Moreover, the accumulated latency increases when there are an increasing
number of packet processing tasks and necessity to access the memories for
multiple times to complete a task, which eventually degrade throughput and
latency of VNFs. Regarding the data transfer latency, there are PIM archi-
tectures, in which a part of processing is executed in the logic of 3D-stacked
DRAMs [5, 82–84, 100, 101]. While PIM architectures reduce the number of
data transfers, the majority of processing is still in the processors, which re-
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quires a number of data transfers when there are multiple packet processing
tasks.

Therefore, the problem is to design the memory system architecture to
increase throughput and reduce accumulated latency of data transfers between
processors and memories when there are multiple packet processing tasks with
memory accesses. This thesis studies this problem in Chapter 6.

1.10 Overview and contributions of this thesis

Figure 1.21 shows the chapter overview of this thesis. Chapter 2 describes the
related works.

Chapter 3 proposes a parallel main memory system architecture that uses
a 3D-stacked memory for packet processing in network virtualization. The
proposed architecture enhances memory parallelism of the main memory of
general-purpose computers by leveraging both channel-level parallelism and
bank interleaving. In the proposed architecture, the database for packet pro-
cessing is copied and split into multiple partial databases, each of which is
distributed to each set of channel and bank. Incoming memory requests are
distributed by a hash-function-based distributor so that the memory requests
can concurrently access the corresponding partial database in the main mem-
ory. This work also introduces an analytical model of the proposed architecture
for two traffic patterns, one with random memory request arrivals and one with
bursty arrivals. The results observe that the proposed main memory system
architecture increases packet processing performance up to around 80 Gbps
for the smallest-sized IP packet involving random and bursty traffic.

Chapter 4 proposes a parallel memory system architecture that integrates
the on-chip L1 and L2 cache memories of each CPU core with the off-chip par-
allel main memory based on a 3D-stacked memory, where frequently accessed
entries of the database in the main memory are cached in the on-chip cache
memories. This work explores the integration of the on-chip cache memories
with the off-chip parallel main memory, where the proposed architecture is
compared with two reference architectures, one with the on-chip L1 and L2
cache memories and the on-chip shared LLC, and one without any on-chip
cache memories. The results observe that the proposed memory system archi-
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tecture performs the best in the three architectures, which reduces memory
access latency and increases the throughput even in the existence of the main
memory parallelism.

Chapter 5 proposes a parallel memory system architecture that integrates
the on-chip LLC slices with the off-chip parallel main memory and the on-chip
L1 and L2 cache memories to increase capacity and parallelism of on-chip cache
memories. In the proposed architecture, a cache line evicted from the on-chip
L2 cache memory is stored in one of the corresponding on-chip LLC slices ac-
cording to a memory-address-based hash function. The proposed architecture
also has a skip selection logic to skip the on-chip LLC slices when the LLC
miss rate exceeds a threshold. This work compares the proposed architecture
with two reference architectures in terms of the integration of the on-chip cache
memories with the off-chip 3D-stacked memory: one with the on-chip shared
LLC, one without any on-chip cache. The results observe that the proposed
memory system architecture outperforms the other architectures in terms of
memory access latency and the throughput. Also, the number of assigned LLC
slices does not significantly increase memory performance when more than a
certain number of LLC slices are assigned. Additionally, the results imply that
the skip selection logic can avoid the performance degradation when the size of
the database is larger than a certain point, where the LLC miss rate increases.

Chapter 6 proposes a parallel memory system architecture that uses a net-
work of 3D-stacked memory to increase throughput and reduce accumulated
latency of data transfers between processors and memories when there are mul-
tiple packet processing tasks with memory accesses in network virtualization.
The proposed architecture has a memory network, in which incoming packets
receive packet processing at each 3D-stacked memory without data transfers
between the processors and the memories until the packet processing is com-
pleted. Each packet processing task is allocated in the logic of 3D-stacked
memories, and the required memory accesses for the task are completed in
each 3D-stacked memory. The results observe that the proposed architecture
reduces the blocking probability by issuing the next memory request inside the
3D-stacked DRAM just after the previous memory access, instead of allowing
the arrivals of incoming packets during the data transfers between the memory
and processor. Consequently, the proposed architecture increases the through-
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put and reduces the accumulated latency when there are multiple packet pro-
cessing tasks, compared to the architecture with 3D-stacked DRAM-based
parallel main memory, where every memory access requires data transfers be-
tween the processors and memories. The proposed architecture also reduces
the blocking probability and latency by assigning more 3D-stacked DRAMs for
a packet processing task that requires more memory accesses than the other
tasks.

Finally, Chapter 7 concludes this thesis and discusses the directions for the
future works in packet processing in network virtualization.

Chapter 1: background and problem statements

Chapter 2: related works

Parallel memory system architectures
for packet processing in network virtualization

3D-stacked Private LLC Memory
memory cache slices network

Chapter 3 X — — —
Chapter 4 X X — —
Chapter 5 X X X —
Chapter 6 X — — X

Chapter 7: conclusions and future works

Figure 1.21: Chapter overview of this thesis.
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Related works

2.1 Packet processing technologies in network
virtualization

Several works presented packet processing software on general-purpose com-
puters [14, 36, 53, 95, 96, 102, 103]. Click Modular Router [95] is a software
framework for various packet processing, in which a software router can be com-
prised of several packet processing modules called elements. RouteBricks [96]
is the first study that makes the most of the parallelism of modern multi-
core CPUs. While the number of CPU cores in general-purpose computers
has increased since the work presented, the number of memory channels in
general-purpose computers has been constant. Therefore, the parallelism gap
between the CPU and the main memory has widened. Lagopus [36,102,103] is a
high-performance OpenFlow-compatible software switch that achieves 10 Gbps
switching with 1 M flow entries by using DPDK and the on-chip cache mem-
ories. While this approach improves packet processing performance compared
to the previous packet processing applications running on single-core CPUs,
capacity of on-chip cache memories is too small to accommodate multiple and
large databases for packet processing, which requires faster, more parallel, and
larger memory systems. The proposed architectures increase parallelism of the
main memory and cache memories.

GPU is used in order to augment the parallelism of packet processing in [53].
The study assumes that every packet goes through the same processing in or-
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der to leverage the GPU’s SIMD parallelism. In general, NFV applications
process the packets from various users, each of which may have different des-
tinations, priorities, and packet sizes. Thus the SIMD-based parallel packet
processing may not be applicable to packet processing in service provider’s
networks such as telecom carrier networks. Poptrie [14] is a software scheme
for high-performance IP routing. While it provides 200 M lookups per second
performance on a single CPU core by compressing the lookup tables and by
using the popcnt instruction [104] to execute pattern matching efficiently, this
software scheme depends on the small on-chip cache memories. Also, since this
approach is specialized for the table lookup for IP routing, additional methods
are required for other packet processing in general NFV applications. The pro-
posed architectures increase the overall memory performance for various NFV
applications rather than a specific application. The proposed architectures
also enhance parallelism of the on-chip cache memories and the main memory,
which increases packet processing performance whose data size does not suit
the small on-chip cache memories.

The work in [97] presented vectorized packet processing, in which a group
of packets, called a packet vector, is processed at a time by using vector in-
structions such as streaming SIMD extensions and Intel advanced vector ex-
tensions [104] instead of processing one packet at a time. In the vectorized
packet processing, there are ready-made packet processing functions that can
be chained to form desired routers. Since it efficiently executes the required
instructions for packet processing, it may be combined with the proposed ar-
chitectures in this thesis to increase the packet processing performance further.

There are several software libraries or frameworks that improve packet I/O
performance in general-purpose computers [105,106]. The following approaches
are some of the most commonly used ones. Intel DPDK [93] is a hardware-
aware framework to increase packet transfer performance between the network
interfaces and the VNFs in general-purpose computers by reducing the packet
transfer cost of network stacks in OSes. DPDK requires the DPDK-compatible
processor architecture, OS, and NIC, whereas they are commodity components
in general-purpose computers. DPDK consists of the following technologies: a
poll mode driver that enables userspace processes to avoid interrupts and con-
text switching as well as minimize memory copies, Intel direct data I/O that
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directly copies received packets from NICs to the on-chip cache memories of
CPUs, and larger memory pages, called huge pages, to reduce data translation
lookaside buffer misses. SR-IOV [94] virtualizes the physical network interfaces
and presents the virtualized network interfaces to VMs as if the VMs have the
physical network interfaces natively by using PCIe passthrough. Since most
of these approaches increase packet I/O performance based on standard hard-
ware devices and OSes in general-purpose computers, they can be integrated
with the proposed architectures in this thesis to increase packet processing
performance.

Methods to improve packet processing performance in the NFV-aware en-
vironment were introduced in [107, 108]. The work in [107] showed that the
number of memory copies and the number of memory accesses to remote pro-
cessors in non-uniform memory access environments significantly affect packet
processing performance. The work in [107] also demonstrated that larger table
data size degrades packet processing performance due to an increasing number
of cache misses as the table data size increases, which leads to the motivation to
introduce the 3D-stacked DRAM in the proposed architectures. The work also
presented the assignment of resources such as packet queues in NIC hardware
and CPU cores to VNFs should be optimized. The work in [108] introduced
smart NICs to COTS hardware for NFV. A smart NIC is a NIC that has a
network processor or an FPGA so that some part of packet processing in NFV
applications can be offloaded to the NIC. In the work, the distributed denial
of service (DDoS) mitigation function is offloaded to a smart NIC in order to
improve the packet processing performance at the CPU by releasing the CPU
from DDoS mitigation function. These methods to use packet processing ac-
celerators such as smart NICs are compatible with the proposed architecture,
which increase the overall memory access performance.

2.2 3D die-stacked memory architectures

In order to address the memory wall problem [2], several architectures that
place memory closer to the processor by stacking the memory directly on top
of the processor were studied in literature. The works in [109–112] presented
the approaches that directly stack DRAM-based cache memories on top of
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the CPU, which lowers access latency to the DRAM-based cache memories
compared to the off-chip DRAMs. In addition, 3D die-stacked DRAM cache
extends the capacity of cache memories instead of using small on-chip SRAM-
based cache memories. The proposed architectures presented in Chapters 3,
4, and 5 increase the memory parallelism and capacity of cache memories in
general-purpose computers using off-chip 3D-stacked main memory and on-
chip cache memories. The proposed architecture presented in Chapter 6 elim-
inates the data transfers between processors and memories using the network
of 3D-stacked memories, where each 3D-stacked memory has a programmable
logic in the logic die.

The work in [113] presented a die-stacked memory architecture in which
not only DRAMs but also NVRAMs such as ReRAMs and NRAMs are consid-
ered as the stacked memory. The stacked memory is connected to the on-chip
L2 cache memories of each CPU core, which eliminates the I/O pin count con-
straints and reduces the memory bus latency. Since the main problems of the
work in [113] were related to the design of die-stacked memory, the parallelism
of the on-chip cache memories and the stacked DRAMs or NVRAMs were not
considered extensively. The work considered up to four memory channels of
the die-stacked memories, which is no different from the baseline memory par-
allelism of today’s general-purpose computers. The proposed memory system
architectures increase parallelism of off-chip main memory and on-chip cache
memories, which increases the memory performance.

2.3 Emerging computer architectures

With the emergence of multi-core processor and accelerator hardware devices
and the approaching end of Moore’s Law [114, 115], several works considered
new computer architectures, such as disaggregated computing architectures,
memory-centric computing architectures, near memory computing architec-
tures.

The works in [7,8] presented disaggregated server architectures where pro-
cessors and memories are disaggregated to address memory wall in terms of
memory capacity by scaling them independently. These works introduced com-
pute blades and memory blades, each of which contains a pool of processors
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and memory modules, respectively. The blades are connected via a backplane.
Thus a user can allocate some of the processors and memory capacity from the
pooled resources for specific applications and VMs without constrains on mem-
ory capacity in physical server hardware. Intel rack scale architecture [116]
presented a scalable computer architecture that provides scalability of com-
puter resources such as processors, memories, storage, and network interfaces
by assigning the pooled resources on demand. It allows the service provider
to scale the computing power within the resources in a rack instead of those
in a physical server chassis. The work in [117] introduced software-defined
hardware infrastructures, which bring hardware modularity, scalability, and
flexibility to virtualized infrastructure for NFV and SDN. It also considered
other layers in computer systems, such as networking, infrastructure man-
agement, and virtualization platform. Although these approaches provided
more flexible, modular, and scalable computer architectures for virtualization,
they did not consider packet processing performance of VNFs nor memory
parallelism in their computer architectures, which is quite different from the
proposed parallel memory system architectures.

The disaggregated computer architectures are categorized as processor-
centric computing, in which the processing results are produced inside the
processors. On the other hand, there are emerging memory-centric computer
architectures such as computing in memory array, computing in peripheral cir-
cuitry, and computing near memory [118] to increase memory performance by
reducing memory access overhead and the number of data transfers between
processors and memories.

The works in [119–122] presented computer architectures that perform com-
puting in memory array. These works use modified bit cells in their memory
arrays, each of which can perform simple primitive operations. In this type of
architectures, ReRAM-based memory arrays are often considered. The works
in [119–121] were based on ReRAM. On the other hand, the work in [122]
considered DRAM-based bit cells. The basic structure of these architectures
is similar to that of CAMs or TCAMs, in which a bit in the searched word
is compared in each bit cell and the result is transferred via a match line.
While these architectures are designed for more general-purpose processing,
compared to CAMs or TCAMs, which can be used only for searching, they
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require a redesign of bit cells and their bit lines and word lines to support the
additional logic in bit cells. These approaches offload some of the instructions
from the CPU to the memory and increase the processing performance by re-
ducing memory access overhead. On the other hand, the proposed memory
system architectures enhance the overall memory parallelism for packet pro-
cessing. Therefore, the architectures for computing memory array are different
from the proposed architectures.

The works in [123,124] presented computer architectures that perform com-
puting in memory peripheral circuitry. Since these approaches are independent
of the design of bit cells in a memory array, the type of memory arrays are
not limited, in which DRAMs, SRAMs, and other NVRAMs can be used. The
work in [123] reads multiple memory rows and executes SIMD-like instructions
against the multiple rows at the modified sense amplifier of the memory periph-
eral circuitry, instead of reading and transferring such rows and writing back
the computing results from the processor to the memory. It reduces the total
number of memory read/write operations, necessary clock cycles, and power
consumption. The work in [124] presented data parallel processor, which is
a ReRAM-based architecture that leverages instruction- and data-level paral-
lelism for the acceleration of dot-product operations. It also supports other
primitive operations such as arithmetic and shift operations, which can be
used for general-purpose computing. While architectures for computing in
memory peripheral circuitry may be applied to some of the packet processing
tasks, they require significant hardware modification inside the memory de-
vices. In contrast, the proposed architectures increases memory performance
using general-purpose hardware devices.

There are several works that studied the computer architectures that per-
form computing near memory, also known as near-memory-computing and
PIM. The works in [5,82,100,101] presented architectures for computing near
memory based on 3D-stacked memory devices, whose embedded logic circuits
are used for the computing. The work in [82] presented an HMC-based ar-
chitecture that performs large vector operations in the logic die of an HMC.
It consists of a host processor and an HMC. Some of the instructions are of-
floaded from the processor to the logic die in the HMC. The HMC returns
the execution results to the host processor. The work in [5] presented an ar-
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chitecture for computing near memory that automatically decides whether to
execute an instruction in memory or processors depending on the data locality
without changing the existing programming model. The architecture consists
of a host processor and an HMC. The work introduced some additional com-
ponents between the host processor and the HMC to execute some parts of the
instructions in the HMC seamlessly. The works in [100, 101] presented archi-
tectures that perform computing near memory in the network of HMCs. In the
architecture of [100], an in-network computation on the way is conducted in
the network of 3D-stacked memory devices. The architecture consists of a host
CPU and a memory network that comprises multiple HMCs. In the network
of HMCs, HMCs are chained together using the embedded packet switches
in the HMCs. The architecture introduces three phases for processing: tree
construction phase to create a flow from the processor to the specific HMC
that has the required data, update phase for data processing in which each
operation against specific data is executed in the same HMC and is chained
in the flow, and gather phase for reduction operation. The proposed architec-
ture presented in Chapter 6 uses the network of 3D-stacked memories, where
each 3D-stacked memory has a packet processing task, to increase packet pro-
cessing performance by eliminating the data transfers between processors and
memories until the packet processing is completed in the memory network.

2.4 Computer architecture simulation

The emergence of new computer architectures accelerates the demands on
the computer architecture simulation to allow researchers to evaluate the new
architectures [125,126]. The computer architecture simulation is used to model
new ideas for a part of computer systems, such as microprocessor, memory, and
I/O system, or an entire computer system in order to estimate the performance
improvement in terms of throughput, latency, and power efficiency.

There were several computer architecture simulators, which were used in
the works [127–129]. All these simulators support x86 architecture and other
major architectures such as ARM architecture. The work in [127] provided
gem5 that is an event-driven full-system simulator. It is based on M5 [130]
for CPU modeling and GEMS [131] for memory system modeling. It supports
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several ISA other than x86 and ARM. Out-of-order and simultaneous multi-
threading are supported in CPU simulation. It can run some part of the target
software code that is executed in full-system simulation on the physical hard-
ware in order to accelerate the simulation speed. The work in [128] presented
Sniper that is a fast simulator based on the interval simulation method [132].
It is specialized for x86 architecture and supports out-of-order and parallel pro-
cessing. It also supports on-chip private and shared cache memories, dynamic
voltage and frequency scaling, and Intel x86-64 ISA, which makes the Sniper
relatively realistic simulator. Additionally, it is officially validated against the
Intel Core 2 microarchitecture. The work in [129] presented McSimA+ that
simulates x86-based asymmetric many-core microarchitectures, including both
core and uncore subsystems. It supports out-of-order. It is positioned between
a full-system simulation and an application-level simulation. The simulation is
executed in an application-driven way considering the thread management for
many-core processing independent from the host OS and physical hardware on
which the simulator runs. Hence, the simulation based on McSimA+ can run
faster than full-system simulators.

This thesis mainly focuses on the hardware aspect of the parallel memory
system architectures in general-purpose computers, which is inevitable to in-
crease the general packet processing performance in network virtualization.
Additionally, the proposed memory system architectures use a 3D-stacked
DRAM and an FPGA to enhance the main memory parallelism in addition
to the standard hardware components in commodity general-purpose servers,
whereas the additional devices are general-purpose ones. Therefore, although
these computer architecture simulators can model and simulate the newly de-
signed architectures, they do not fit the purpose of performance evaluation
of the proposed architecture in this thesis due to the mainly three points de-
scribed as follows. (1) The computer architecture simulators introduced in
this section so far are complicated due to various system parameters and their
tuning, multiple options to select the mode of the simulators, and dependence
on several third-party software tools to model specific parts of the computer.
The complexity of simulators may make it difficult to understand which system
parameter gives what performance impact on which part of the architecture.
(2) While these simulators can model and simulate the components or entire
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systems of existing computer architectures, modeling and simulating the ad-
ditional components, device connections, and system architectures require the
modification of the existing simulators and additional development of the sim-
ulation software. (3) These simulators are assumed to run the real applications
on top of the simulators or to input the traces taken from the real applications.
Therefore, the applications or their traces for simulation might be modified so
that they can be properly executed on the simulated computer architecture,
which may make it difficult to distinguish the performance evaluation of the
simulated computer architecture and optimization of the existing application
that runs on the simulated computer architecture.

Based on the above consideration, this thesis evaluates performance of the
proposed architectures by using analysis and simulations based on queueing
models, in which the fundamental memory parallelism of the proposed archi-
tectures are modeled independent from implementation of other components
in computer systems such as OSes, application types, and memory address
translations.
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Parallel memory system
architecture using interleaved
3D-stacked memory

This chapter proposes a parallel memory system architecture that uses a 3D-
stacked memory to increase the memory parallelism of the main memory for
packet processing in network virtualization based on general-purpose hard-
ware. A part of the work in this chapter was presented in [133]. While the
on-chip cache memories are effective in fast packet processing in network virtu-
alization, main memory is still a key component of general-purpose computers,
in which large databases such as lookup tables for routing traffic of the sub-
scribers and complex packet classification, which cannot fit into the on-chip
cache memories, are accommodated. Additionally, lack of memory parallelism
in main memory compared to the number of CPU cores is a bottleneck in
packet processing with multi-core CPUs in network virtualization.

The proposed architecture enhances memory parallelism by using channel-
level parallelism and memory bank interleaving based on 3D-stacked DRAM.
In the proposed architecture, the database for packet processing is copied along
all the memory channels of the 3D-stacked DRAM, and the database in each
memory channel is equally divided into several partial databases, each of which
is stored in one of the banks in the memory channel. The proposed architecture
uses the hash-function-based distributor that distributes memory requests to
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an appropriate channel-bank set that has a partial database according to the
incoming packet content.

This work introduces analytical models of the proposed architecture for two
traffic patterns, one with random memory request arrivals and one with bursty
arrivals. This work extensively describes the states and the state transitions,
and formulates the equilibrium equations for both memory request arrivals.
The numerical evaluation results observe that the proposed architecture in-
creases packet processing performance up to 80 Gbps for the smallest-sized IP
packet involving random and bursty memory request arrivals. This work also
presents a direction for expanding the analytical model to a general case.

The rest of this chapter is organized as follows. Section 3.1 presents the
proposed architecture. Section 3.2 describes the system modeling. Sections 3.3
and 3.4 provide analyses of the proposed architecture for random and bursty
request arrivals, respectively. Section 3.5 presents performance evaluations of
the proposed architecture. Section 3.6 describes a direction in which to expand
the analytical model in this work. Section 3.7 summarizes this chapter.

3.1 Proposed architecture

Figure 3.1 shows the proposed parallel memory system architecture. It con-
sists of a multi-core CPU, an FPGA, a 3D-stacked DRAM, a DRAM and net-
work interfaces. Although the proposed architecture can have multiple CPUs,
FPGAs, HMCs, and DRAMs, for simplicity, this work describes and models
the proposed architecture as depicted in Figure 3.1.

Each incoming packet is processed as follows.
(Step 1) A packet that comes from the network interface is directly trans-

ferred to the DRAM by using DMA, where the packet is buffered in the packet
buffer. The packet is randomly assigned to one of the CPU cores. The assigned
CPU core reads the header information of the packet from the packet buffer
in the DRAM.

(Step 2) The CPU core issues memory requests to read the database stored
in the 3D-stacked DRAM in order to decide the next action for the packet.

(Step 3) After finishing the lookup and determining the next action, the
CPU core sends the packet including its payload from the packet buffer in the
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Figure 3.1: Overview of proposed memory system architecture.

DRAM through the network interface.

As explained in Section 2.1, performance of the packet processing steps 1
and 3 can be improved by using the packet I/O acceleration methods such as
Intel DPDK. This work focuses on the packet processing step 2 in the above
description, which in particular executes the table lookup tasks, as shown in
Figure 3.2. The 3D-stacked DRAM holds the database for packet process-
ing such as lookup tables in the following manner in order to leverage both
memory channel-level parallelism and memory bank interleaving. In the 3D-
stacked DRAM, the database for packet processing is copied along all the
memory channels. In every memory channel, the database is equally divided
into several partial databases so that the original database in each memory
channel comprises the partial databases in the memory channel. The num-
ber of partial databases equals the number of banks in each memory channel,
and the number of copies equals the total number of memory channels in the
3D-stacked DRAM.

The 3D-stacked DRAMs have much more memory channels than the con-
ventional DRAMs. For example, according to HMC specifications [81], an
HMC has up to 32 memory channels per device; however, an Intel Xeon CPU
of Skylake generation has only six memory channels [134]. In addition, the
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Figure 3.2: Main memory system of the proposed architecture.

conventional main memory system architecture has little room to increase the
number of memory channels for DRAM devices due to the complex electrical
wiring for the DRAM buses between a CPU and DRAM devices. Therefore,
the proposed architecture has an advantage in terms of memory channel-level
parallelism over the conventional main memory system architecture, in which
distributed databases in the 3D-stacked DRAM can be simultaneously accessed
by multiple CPU cores. In addition to memory bank interleaving, this advan-
tage increases the packet processing performance in network virtualization.

An FPGA is used to connect the CPU to the 3D-stacked DRAM. The
hash-function-based distributor circuit is deployed in the FPGA. According to
the incoming packet content, the distributor distributes the memory requests
to an appropriate channel-bank set of the 3D-stacked DRAM that contains the
corresponding partial database of the packet so that the number of interleaved
banks in each channel is minimum. The distributor has an internal table in
the FPGA that records the state of each channel-bank set, which is utilized
to determine the appropriate channel-bank set. The memory controller logic
of the 3D-stacked DRAM is also deployed in the FPGA, which interfaces the
3D-stacked DRAM.
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Several semiconductor companies have already released the intellectual
property core products of the 3D-stacked DRAM controller for FPGAs [135–
139]. Intel released an FPGA that has integrated HBMs in a single device
package, which can utilize the maximum bandwidth of up to two HBM de-
vices [140]. This FPGA-based product may also make it easier to use the 3D-
stacked DRAMs with less hardware modification from today’s COTS hard-
ware, compared to newly designing and implementing the hard-coded logic.
Since LUTs in FPGAs are based on SRAMs, the processing latency of FPGAs
is sufficiently smaller than the DRAM access latency. Therefore the memory
parallelism and bandwidth are more critical metrics than the additional la-
tency introduced by the FPGA. Thus this work considers that an FPGA is a
candidate to connect the 3D-stacked DRAM and the CPU. Recent CPUs have
inter-chip links such as UPI, which can be used to connect the CPU and the
FPGA [141–143].

In the proposed architecture, memory requests are served simultaneously
by using multiple memory channels of 3D-stacked DRAM. This may change
the order of egress packets from the processor, which affects the performance
of upper layer such as transmission control protocol (TCP) [144]. In order to
eliminate the misordered packets, there are several approaches: to exchange
signals among multiple processes or threads so that every packet can be served
in order and to buffer the packets and sort them before transmitted from the
processor [145,146].

This work assumes that dividing the database for packet processing into
partial databases is conducted based on the database structure. For example,
the works in [15, 147, 148] consider dividing the original database into several
partial databases in order to make the database more memory efficient so that
the database fits within a specific memory capacity.

This work also assumes that the database accommodated in the 3D-stacked
DRAM is in a stable condition, in which there is no database update such as
routing table updates. This work assumes that the database in the 3D-stacked
DRAM is updated using the corresponding functions of a specific database
structure, if necessary. For example, database update schemes are considered
in several database structures such as [13, 14, 147]. Additionally, since the
database is replicated and placed in every memory channel in the proposed
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architecture, the databases are updated sequentially for each memory channel.

3.2 System model

This section describes the behavior of the main memory system in the proposed
architecture shown in Figure 3.2. The 3D-stacked memory device accommo-
dates tables such as IP routing tables. The proposed architecture consists of
a distributor based on hash function, # queues, and the 3D-stacked DRAM.
The 3D-stacked DRAM consists of ( memory channels, each memory channel
has # banks. In every memory channel, a whole lookup table is separated into
# partial tables, each of which is allocated to one of the banks in the memory
channel. ( copies of every partial table across memory channel are made; each
memory channel has the same table entries.

When a memory request enters the distributor, the hash function in the
distributor classifies the request to one of # queues by using packet informa-
tion, such as destination IP address. The calculation in this hash function is
as simple as to classify the result of an logical operation for some bits of packet
header, which is usually finished in one clock cycle in FPGA. Requests enter-
ing queue =, where = ∈ [1, #], are served in a first come first served (FCFS)
manner. Queue = has ( servers, each of which corresponds to a memory chan-
nel. The Bth server for queue =, where B ∈ [1, (], is denoted by server (=, B).
The maximum number of requests that can be accommodated, including all
the queues and servers, is  , where  ≥ #(. A request entering the main
memory system is blocked if the number of requests already being handled
by the main memory system is  . The packet generating the blocked request
is discarded. The memory resources are shared by # queues under the con-
dition that the total number of accommodated requests in the main memory
system does not exceed  . In the worst case,  − ( requests are waiting for
service in one particular queue and ( requests are served by the corresponding
( servers. The memory access rate by queue = to bank = at memory channel B
is the service rate of server (=, B); each server serves one request. When more
than one server, each of which corresponds to a different bank, at memory
channel B are active, or more than one request is being served, bank interleav-
ing is performed among them. Otherwise, no bank interleaving is performed.
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When bank interleaving is performed using | banks at memory channel B, this
work calls the interleaving |-degree bank interleaving; no bank interleaving is
performed when | = 1.

This work describes the analytical model. Each server is in one of three
states, idle, busy without bank interleaving, and busy with bank interleaving.
A server in idle state does not serve any request. A server in busy state without
bank interleaving serves a request without bank interleaving. A server in busy
state with bank interleaving serves a request with bank interleaving. When at
least a server in idle state for queue = exists, a request at the head of line is
served in the following server selection rule. If there is any server in idle state
that moves to busy state without bank interleaving, it is selected. Otherwise,
a server in idle state that moves to busy state with bank interleaving that has
the least degree of interleaving, is selected.

Figure 3.3 shows a state transition diagram for each server. When sever
(=, B) in idle state serves a request, the state moves to busy state with |-degree
bank interleaving so as to minimize the value of |. When server (=, B) in busy
state with |-degree bank interleaving finishes serving a request and does not
serve any request, it enters idle state. When server (=′, B) in idle state starts
to serve a request, server (=, B) (= ≠ =′) in busy state with |-degree bank
interleaving moves to busy state with (| + 1)-degree bank interleaving. When
server (=′, B) finishes serving a request and does not serve any new request,
server (=, B) (= ≠ =′) in busy state with |-degree bank interleaving enters busy
state with (| − 1)-degree bank interleaving.

This work assumes that a request arrives at the main memory system
following a Poisson arrival process with average rate of _, and the distributor
based on a hash function distributes the request among # queues. Therefore,
a request is assumed to arrive at each queue based on a Poisson arrival process
with average rate of _

#
. Since the processing time of DRAM depends on the

DRAM mechanism, in which precharge is required before loading another row,
this work assumes that the service rate of server (=, B) follows an exponential
distribution with average service rate of `| for |-degree bank interleaving,
where `1 ≥ `2 ≥ · · · ≥ `# with |`| ≥ `1.

This work focuses on analyzing the case for # = 2, as it is the simplest
case that includes bank interleaving. This work builds two queueing models
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to analyze the performance of proposed architecture under two types of traffic
models. For each traffic model, this work describes all feasible states of system
with the proposed architecture and analyze the transitions between them with
considering the case of # = 2

Figure 3.4 shows a state transition diagram for each server. When server
(=, B) in idle state serves a request, the state moves to busy state with or with-
out bank interleaving. When server (=, B) in busy state with bank interleaving
finishes serving a request and does not serve any new request, it enters idle
state. When server (=′, B) in idle state starts to serve a request, server (=, B)
(= ≠ =′) in busy state without bank interleaving moves to busy state with bank
interleaving. When server (=′, B) finishes serving a request and does not serve
any new request, server (=, B) (= ≠ =′) in busy state with bank interleaving
moves to busy state without bank interleaving.
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Figure 3.3: State transition for each server.
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Figure 3.4: State transition for each server in # = 2.

3.3 Analysis for random arrival of memory re-
quests

3.3.1 States description

This work describes the analytical model of the proposed architecture with
# = 2 to analyze its performance. Since a Markov process for request arrivals
and service times with and without bank interleaving is assumed, a state in the
main memory system is expressed by (8, 9 , ?), where 8 ∈ [0,  ] is the number
of requests for bank 1, 9 ∈ [0,  ] is the number of requests for bank 2, and
? ∈ [0, (] is the number of requests being served with 2-interleaving for both
banks. The service rates for requests being served without memory interleaving
and with 2-interleaving are different. There can be some states with the same
(8, 9) but different ?, for each of which the outgoing transfer rates to the states
with (8−1, 9) or (8, 9 −1) due to the termination of service of a request depend
on the corresponding number of requests being served with 2-interleaving for
both banks. Therefore, ? is required to be included to identify a state. Since
the memory resources are shared by queues 1 and 2, 8+ 9 ≤  must be satisfied.
Let - denote [0,  ].

This work describes all possible feasible states to derive the number of
states. The states are divided into three cases for the values of 8 and 9 , two of
which are further divided to several sub cases with considering the range of ?.
In case 1, 8, 9 , and ( are not equal to each other. In case 2, only two of them
are equal. In case 3, all of them are equal. W1, W2 and W3 denote the number of
feasible states for case 1, case 2, and case 3, respectively. � denotes the total
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number of feasible states in the main memory system, where � = W1 + W2 + W3.
In case 1, 8, 9 , and ( are not equal to each other (8 ≠ 9 , 8 ≠ (, 9 ≠ (). As

the range of ? depends on 8, 9 , 8 + 9 , and (, case 1 is divided into three sub
cases, case 1a, case 1b, and case 1c, which depend on the range of 8. W01 , W

1
1 ,

and W21 denote the number of feasible states for case 1a, case 1b and case 1c,
respectively.

In case 1a, 8 ∈ [0, b(/2c], where the symbol of bGc denotes the maximum
integer that does not exceed G. When 8 = 0, 9 ∈ (0, () ∪ ((,  ] and ? = 0

are obtained. Therefore, there are (( − 1) + ( − () =  − 1 feasible states in
this situation. When 8 ∈ [1, b(/2c], the range of 9 is [0, 8) ∪ (8, ( − 8] ∪ (( −
8, () ∪ ((,  − 8]. If 9 ∈ [0, 8), which means 9 < 8 < ( and 8 + 9 ≤ (, ? ∈ [0, 9]
is obtained, which has 9 + 1 feasible states for each 9 . Therefore, there are∑8−1
9=0( 9 + 1) =

∑8
C=1 C feasible states in total for each 8 when 8 ∈ [1, b(/2c] and

9 ∈ [0, 8). If 9 ∈ (8, ( − 8], which means 8 < 9 < ( and 8 + 9 ≤ (, ? ∈ [0, 8] is
obtained, which has 8 + 1 feasible states for each 9 , where there are ( − 8 − 8
possibilities. Therefore, there are (( − 28) (8 + 1) feasible states in total for each
8 when 8 ∈ [1, b(/2c] and 9 ∈ (8, ( − 8]. If 9 ∈ (( − 8, (), which means 8 < 9 < (

and 8 + 9 > (, ? ∈ [8 + 9 − (, 8] is obtained, which yields ( − 9 + 1 feasible states
for each 9 . Therefore, there are

∑(−1
9=(−8+1(( − 9 + 1) =

∑8
C=2 C feasible states in

total for each 8 when 8 ∈ [1, b(/2c] and 9 ∈ (( − 8, (). If 9 ∈ ((,  − 8], which
means 8 < ( < 9 , ? = 8. Therefore, there are  − ( − 8 feasible states in total
for each 8 when 8 ∈ [1, b(/2c] and 9 ∈ ((,  − 8]. As a result, by summing all
of the number of feasible states for each 8 ∈ [0, b(/2c], the total number of
feasible states for case 1a is given by

W01 =  − 1 +
b(/2c∑
8=1

[
8∑
C=1

C + (( − 28) (8 + 1) +
8∑
C=2

C + ( − ( − 8)
]
. (3.1)

In case 1b, 8 ∈ [b(/2c +1, () and the range of 9 is [0, (−8] ∪ ((−8, 8)∪ (8, ()∪
((,  − 8]. If 9 ∈ [0, ( − 8], which means 9 < 8 < ( and 8 + 9 ≤ (, ? ∈ [0, 9]
is obtained, which has 9 + 1 feasible states for each 9 . Therefore, there are∑(−8
9=0( 9 + 1) =

∑(−8+1
C=1 C feasible states in total for each 8 when 8 ∈ [b(/2c + 1, ()

and 9 ∈ [0, ( − 8]. If 9 ∈ (( − 8, 8), which means 9 < 8 < ( and 8 + 9 > (,
? ∈ [8 + 9 − (, 9] is obtained, which yields ( − 8 + 1 feasible states for each 9 ,
where there are 8 − (( − 8) − 1 = 28 − ( − 1 possibilities. Therefore, there are
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(28−(−1) ((−8+1) feasible states in total for each of 8 when 8 ∈ [b(/2c+1, () and
9 ∈ (( − 8, 8). If 9 ∈ (8, (), which means 8 < 9 < ( and 8 + 9 > (, ? ∈ [8 + 9 − (, 8]
is obtained, which has ( − 9 + 1 feasible states for each 9 . Therefore, there are∑(−1
9=8+1((− 9+1) =

∑(−8
C=2 C feasible states in total for each 8 when 8 ∈ [b(/2c+1, ()

and 9 ∈ (8, (). If 9 ∈ ((,  − 8], which means 8 < ( < 9 , ? = 8. Therefore,
there are  − ( − 8 feasible states in total for each 8 when 8 ∈ [b(/2c + 1, () and
9 ∈ ((,  − 8]. As a result, by summing all of the number of feasible states for
each 8 ∈ [0, b(/2c], the total number of feasible states for case 1b is given by

W11 =

(−1∑
8=b(/2c+1

[
(−8+1∑
C=1

C + (28 − ( − 1) (( − 8 + 1) +
(−8∑
C=2

C + ( − ( − 8)
]
. (3.2)

Case 1c is divided into the four cases of 8 ∈ ((, b /2c], 8 ∈ (b /2c,  − (),
8 =  −(, and 8 ∈ ( −(,  ]. If 8 ∈ ((, b /2c], 9 ∈ [0, ()∪ ((, 8)∪ (8,  −8]1, and
there are  − 8− 1 possibilities of 9 . If 8 ∈ (b /2c,  − (), 9 ∈ [0, () ∪ ((,  − 8],
and there are  − 8 possibilities of 9 . If 8 =  − (, 9 ∈ [0,  − 8), and there are
 − 8 possibilities of 9 . If 8 ∈ ( − (,  ], 9 ∈ [0,  − 8], and there are  − 8 + 1
possibilities of 9 . As a result, the total number of feasible states for case 1c is
given by

W21 =

b /2c∑
(+1
( − 8 − 1) +

 −(∑
b /2c+1

( − 8) +
 ∑

 −(+1
( − 8 + 1). (3.3)

Therefore, the total number of feasible states for case 1 is given by

W1 = W
0
1 + W

1
1 + W

2
1. (3.4)

In case 2, only two of them are equal. There are six sub cases, which are
8 = 9 < ( for case 2a, ( < 8 = 9 for case 2b, 8 < 9 = ( for case 2c, 9 = ( < 8

for case 2d, 9 < 8 = ( for case 2e, and 8 = ( < 9 for case 2f. W02 , W
1
2 , W

2
2, W

3
2 ,

W42, and W
5

2 denote the number of feasible states for case 2a, case 2b, case 2c,
case 2d, case 2e, and case 2f, respectively. In case 2a, if 8 ∈ [0, b(/2c], which
means 8 + 9 ≤ (, ? ∈ [0, 8] is obtained, which yields 8 + 1 feasible states for each
8, so there are

∑b(/2c
C=0 (C + 1) feasible states. If 8 ∈ [b(/2c + 1, (), which means

8+ 9 > (, ? ∈ [28−(, 8] is obtained, which yields (− 8+1 feasible states for each
1When  is an even number and 8 =  /2, (8,  − 8] is (8, 8], which is an empty set.
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8, so there are
∑(−1
C=b(/2c+1(( − C + 1) feasible states. Therefore, the number of

feasible states for case 2a is given by W02 =
∑b(/2c
C=0 (C + 1) +

∑(−1
C=b(/2c+1(( − C + 1).

In case 2b with ( < 8 = 9 , clearly, ? = ( if 8 ∈ ((, b /2c]. Therefore, b /2c − (
feasible states can be obtained for case 2b, or W12 = b /2c − (. In case 2c with
8 < 9 = (, clearly, ? = 8 if 8 ∈ [0, (). Therefore, ( feasible states are obtained
for case 2c, or W22 = (. In case 2d with 9 = ( < 8, clearly, ? = ( if 8 ∈ ((,  − (].
Therefore,  − 2( feasible states are obtained for case 2d, or W32 =  − 2(. In
case 2e with 9 < 8 = (, clearly, ? = 9 if 9 ∈ [0, (). Therefore, ( feasible states
are obtained for case 2e, or W42 = (. In case 2f with 8 = ( < 9 , clearly, ? = (

if 9 ∈ ((,  − (]. Therefore,  − 2( feasible states are obtained for case 2f, or
W
5

2 =  − 2(. As a result, W2 is given by

W2 = W
0
2 + W

1
2 + W

2
2 + W

3
2 + W

4
2 + W

5

2

=

b(/2c∑
C=0

(C + 1) +
(−1∑

C=b(/2c+1
(( − C + 1) + b /2c + 2 − 3(. (3.5)

In case 3, all of 8, 9 and ( are equal (8 = 9 = (). ? is always equal to ( and
there is just one feasible state for case 3, W3 = 1.

Therefore, by summing all the number of states for each case, the total
number of feasible states in the main memory system is given by,

� = W1 + W2 + W3

=

b(/2c∑
8=1

[
8∑
C=1

C + (( − 28) (8 + 1) +
8∑
C=2

C + ( − ( − 8)
]

+
(−1∑

8=b(/2c+1

[
(−8+1∑
C=1

C + (28 − ( − 1) (( − 8 + 1) +
(−8∑
C=2

C + ( − ( − 8)
]

+
b /2c∑
(+1
( − 8 − 1) +

 −(∑
b /2c+1

( − 8) +
 ∑

 −(+1
( − 8 + 1)

+
b(/2c∑
C=0

(C + 1) +
(−1∑

C=b(/2c+1
(( − C + 1) + b /2c + 3 − 3(. (3.6)

Based on the discussion on feasible states in the main memory system, the
range of ? is obtained as ? ∈ [min(max(0, 8 + 9 − (), 8, 9 , (),min(8, 9 , ()]. Let
. (8, 9) denote [min(max(0, 8 + 9 − (), 8, 9 , (),min(8, 9 , ()].
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3.3.2 State transition for (8, 9 , ?)

Figure 3.5 shows the state transitions incoming to and outgoing from state
(8, 9 , ?), where eight states are incoming to and eight states are outgoing from
state (8, 9 , ?). Table 3.1 describes the rate and condition for each transition,
where each case is numbered from 1 to 16.

(i, j, p)

(i+1, j, p+1)(i+1, j, p) (i, j+1, p) (i, j+1, p+1)

(i-1, j, p-1)(i-1, j, p) (i, j-1, p) (i, j-1, p-1)

(i-1, j, p-1)(i-1, j, p) (i, j-1, p) (i, j-1, p-1)

(i+1, j, p+1)(i+1, j, p) (i, j+1, p) (i, j+1, p+1)

Figure 3.5: State transitions incoming to and outgoing from state (8, 9 , ?).

3.3.3 Equilibrium states

Let %(8, 9 , ?) be the probability that the main memory system is in state
(8, 9 , ?). Let * be the set of states (8, 9 , ?), where 8 ∈ -, 9 ∈ -, and ? ∈ . (8, 9).
In the equilibrium state, the total incoming flows to state (8, 9 , ?) are equal
to the total outgoing flows from state (8, 9 , ?). The equilibrium equations for
(8, 9 , ?) ∈ * are given by,

(@1 + @2 + @3 + @4 + @5 + @6 + @7 + @8)%(8, 9 , ?)
= @9%(8 − 1, 9 , ?) + @10%(8 − 1, 9 , ? − 1) + @11%(8, 9 − 1, ?)
+ @12%(8, 9 − 1, ? − 1) + @13%(8 + 1, 9 , ?) + @14%(8 + 1, 9 , ? + 1)
+ @15%(8, 9 + 1, ?) + @16%(8, 9 + 1, ? + 1), (3.7)

where @2, 2 ∈ [1, 16], equals the transfer rate of case 2 if the conditions of case
2 are satisfied and 0 otherwise.
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Table 3.1: State transitions incoming to and outgoing from state (8, 9 , ?).
Direction Case State Transfer rate Condition

In
co
m
in
g
st
at
es

9 (8 − 1, 9 , ?) _/2 (0 ≤ 8 − 1 < ( and ( − (8 − 1 + 9 − ?) > 0) or 8 − 1 ≥ (
10 (8 − 1, 9 , ? − 1) _/2 ( − (8 + 9 − ?) ≤ 0 and 0 ≤ 8 − 1 < ( and ? > 0

11 (8, 9 − 1, ?) _/2 (0 ≤ 9 − 1 < ( and ( − (8 + 9 − 1 − ?) > 0) or 9 − 1 ≥ (
12 (8, 9 − 1, ? − 1) _/2 ( − (8 + 9 − ?) ≤ 0 and 0 ≤ 9 − 1 < ( and ? > 0

13 (8 + 1, 9 , ?) (8 + 1 − ?)`1 8 + 1 ≤ ( and (8 + 1 + 9) ≤  
(( − ?)`1 + ?`2 ( < 8 + 1 ≤  and (8 + 1 + 9) ≤  

14 (8 + 1, 9 , ? + 1) (? + 1)`2 8 + 1 ≤ ( and (8 + 1 + 9) ≤  
15 (8, 9 + 1, ?) ( 9 + 1 − ?)`1 9 + 1 ≤ ( and (8 + 9 + 1) ≤  

(( − ?)`1 + ?`2 ( < 9 + 1 ≤  and (8 + 9 + 1) ≤  
16 (8, 9 + 1, ? + 1) (? + 1)`2 9 + 1 ≤ ( and (8 + 9 + 1) ≤  

O
ut
go
in
g
st
at
es

1 (8 − 1, 9 , ?) (8 − ?)`1 8 ≤ (
(( − ?)`1 + ?`2 8 > (

2 (8, 9 − 1, ?) ( 9 − ?)`1 9 ≤ (
(( − ?)`1 + ?`2 9 > (

3 (8 − 1, 9 , ? − 1) ?`2 0 < 8 ≤ ( and ? > 0

4 (8, 9 − 1, ? − 1) ?`2 0 < 9 ≤ ( and ? > 0

5 (8 + 1, 9 , ?) _/2 (8 < ( and ( − (8 + 9 − ?) > 0 and (8 + 1 + 9) ≤  )
or (( ≤ 8 <  and (8 + 1 + 9) ≤  )

6 (8 + 1, 9 , ? + 1) _/2 ( − (8 + 9 − ?) ≤ 0 and 8 < ( and (8 + 1 + 9) ≤  

7 (8, 9 + 1, ?) _/2 ( 9 < ( and ( − (8 + 9 − ?) > 0 and (8 + 9 + 1) ≤  )
or (( ≤ 9 <  and (8 + 9 + 1) ≤  )

8 (8, 9 + 1, ? + 1) _/2 (( − (8 + 9 − ?) ≤ 0 and 9 < ( and (8 + 9 + 1) ≤  )
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The condition that the sum of all state probabilities equals one is given by,∑
(8, 9 ,?)∈*

%(8, 9 , ?) = 1. (3.8)

The probability of each state %(8, 9 , ?) ∈ * can be computed by solving
the multiple equations of (3.7) and (3.8).

3.3.4 Blocking probability and average waiting time

This work defines the blocking probability %R
b as the probability that a request

incoming to the main memory system is blocked with the condition of 8+ 9 =  ,
or the request is not able to enter the queue. %R

b is given by

%R
b =

∑
8∈-

∑
?∈. (8, 9)

%(8,  − 8, ?). (3.9)

This work defines the average waiting time at the main memory system,
,R, as the average duration time from when a request enters the main memory
system until the request exits the main memory system. The average number
of requests in the main memory system, !R, is given by

!R =
∑
8∈-

∑
9∈-

∑
?∈. (8, 9)

8%(8, 9 , ?) +
∑
8∈-

∑
9∈-

∑
?∈. (8, 9)

9%(8, 9 , ?)

= 2
∑
8∈-

∑
9∈-

∑
?∈. (8, 9)

8%(8, 9 , ?). (3.10)

The first/second terms on the right hand side of the first equality indicate the
average number of requests waiting at queue 1/queue 2 and those being served,
respectively. The right hand side for the second equality is derived by using∑
8∈-

∑
9∈-

∑
?∈. (8, 9) 8%(8, 9 , ?) =

∑
8∈-

∑
9∈-

∑
?∈. (8, 9) 9%(8, 9 , ?).

By using Little’s formula [149],

,R =
!R

_
. (3.11)

Let _R
e be the throughput, which is defined by

_R
e = _

(
1 − %R

b

)
. (3.12)

Let ,R
e be the average effective average waiting time, which is defined by,

,R
e =

!R

_R
e

. (3.13)
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3.4 Analysis for bursty arrival of memory re-
quests

This work adopts the Interrupted Poisson Process (IPP) as the packet arrival
process to analyze the main memory system under bursty traffic conditions in
the steady state. For the transient analysis of the queueing systems, several
works presented analytical models for specific problems [150, 151] and meth-
ods to reduce the amount of computation [152, 153]. In particular, the work
in [151] studied the transient solutions in statistical multiplexing. The statis-
tical multiplexing is used in the UDP and TCP protocols, where the traffic
of data stream with variable packet length is shared among multiple channels
identified by the port number. The works in [154, 155] use machine learning
technologies to optimize the control of queueing systems.

3.4.1 Overview of IPP

There are two states as regards the arrival of memory requests, ON and OFF
states. The durations of ON and OFF states follow exponential distributions
with average inter-arrival times 1

U
and 1

V
, respectively. Once the ON state

finishes, the OFF state starts, and vice versa. The ON state includes a Poisson
arrival process of requests with average rate _. There is no request arriving
at the main memory system when the state of the arrival of requests is OFF.
The state transition diagram of IPP is shown in Figure 3.6.

�� ���

Figure 3.6: State transition diagram of IPP.

This work assumes that, in the ON state, requests are consecutively des-
tined to the same bank until the ON state finishes. Let : ∈ [0, #] denote the
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Table 3.2: State transitions incoming to and outgoing from state (8, 9 , ?, 0) in
IPP.

Direction Case State Transfer rate Condition

In
co
m
in
g
st
at
es

16 (8 + 1, 9 , ?, 0) (8 + 1 − ?)`1 8 + 1 ≤ ( and (8 + 1 + 9) ≤  
(( − ?)`1 + ?`2 ( < 8 + 1 ≤  and (8 + 1 + 9) ≤  

17 (8 + 1, 9 , ? + 1, 0) (? + 1)`2 8 + 1 ≤ ( and (8 + 1 + 9) ≤  
18 (8, 9 + 1, ?, 0) ( 9 + 1 − ?)`1 9 + 1 ≤ ( and (8 + 9 + 1) ≤  

(( − ?)`1 + ?`2 ( < 9 + 1 ≤  and (8 + 9 + 1) ≤  
19 (8, 9 + 1, ? + 1, 0) (? + 1)`2 9 + 1 ≤ ( and (8 + 9 + 1) ≤  
21 (8, 9 , ?, 1) U

22 (8, 9 , ?, 2) U

O
ut
go

in
g
st
at
es

1 (8 − 1, 9 , ?, 0) (8 − ?)`1 8 ≤ (
(( − ?)`1 + ?`2 8 > (

2 (8, 9 − 1, ?, 0) ( 9 − ?)`1 9 ≤ (
(( − ?)`1 + ?`2 9 > (

3 (8 − 1, 9 , ? − 1, 0) ?`2 0 < 8 ≤ ( and ? > 0

4 (8, 9 − 1, ? − 1, 0) ?`2 0 < 9 ≤ ( and ? > 0

10 (8, 9 , ?, 1) V/2
11 (8, 9 , ?, 2) V/2

state of the arrival of a packet; : is set to = ∈ [1, #] when it is ON state in
which the packet is destined to bank = ∈ [1, #], and zero otherwise. Conse-
quently, for the main memory system with # = 2, a state in the main memory
system is expressed as (8, 9 , ?, :).

The total number of feasible states of (8, 9 , ?, :) is 3�. Equation (3.6) gives
�, which is the total number of feasible states of (8, 9 , ?). In IPP, for each
(8, 9 , ?), there are three states where : = 0, 1, 2.

3.4.2 State transition for (8, 9 , ?, :)

Figure 3.7 shows the state transitions incoming to and outgoing from states
(8, 9 , ?, 0), (8, 9 , ?, 1), and (8, 9 , ?, 2). Tables 3.2, 3.3 and 3.4 describe the rates
and conditions for states (8, 9 , ?, 0), (8, 9 , ?, 1), and (8, 9 , ?, 2), respectively,
where each transition case is numbered from 1 to 22.
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(i+1, j, p+1, 1)(i+1, j, p, 1) (i, j+1, p, 1) (i, j+1, p+1, 1)

(i+1, j, p+1, 0)(i+1, j, p, 0) (i, j+1, p, 0) (i, j+1, p+1, 0)

(i, j, p, 1)

(i+1, j, p+1, 1)(i+1, j, p, 1)

(i-1, j, p-1, 1)(i-1, j, p, 1) (i, j-1, p, 1) (i, j-1, p-1, 1)

(i-1, j, p-1, 1)(i-1, j, p, 1)

(i, j, p, 0)

(i-1, j, p-1, 0)(i-1, j, p, 0) (i, j-1, p, 0) (i, j-1, p-1, 0)

(i+1, j, p+1, 2)(i+1, j, p, 2) (i, j+1, p, 2) (i, j+1, p+1, 2)

(i, j, p, 2)

(i, j+1, p, 2) (i, j+1, p+1, 2)

(i-1, j, p-1, 2)(i-1, j, p, 2) (i, j-1, p, 2) (i, j-1, p-1, 2)

(i, j-1, p, 2) (i, j-1, p-1, 2)

Figure 3.7: State transitions incoming to and outgoing from states (8, 9 , ?, 0),
(8, 9 , ?, 1), and (8, 9 , ?, 2).
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Table 3.3: State transitions incoming to and outgoing from state (8, 9 , ?, 1) in
IPP.

Direction Case State Transfer rate Condition

In
co
m
in
g
st
at
es

12 (8 − 1, 9 , ?, 1) _ (0 ≤ 8 − 1 < ( and ( − (8 − 1 + 9 − ?) > 0) or 8 − 1 ≥ (
13 (8 − 1, 9 , ? − 1, 1) _ ( − (8 + 9 − ?) ≤ 0 and 0 ≤ 8 − 1 < ( and ? > 0

16 (8 + 1, 9 , ?, 1) (8 + 1 − ?)`1 8 + 1 ≤ ( and (8 + 1 + 9) ≤  
(( − ?)`1 + ?`2 ( < 8 + 1 ≤  and (8 + 1 + 9) ≤  

17 (8 + 1, 9 , ? + 1, 1) (? + 1)`2 8 + 1 ≤ ( and (8 + 1 + 9) ≤  
18 (8, 9 + 1, ?, 1) ( 9 + 1 − ?)`1 9 + 1 ≤ ( and (8 + 9 + 1) ≤  

(( − ?)`1 + ?`2 ( < 9 + 1 ≤  and (8 + 9 + 1) ≤  
19 (8, 9 + 1, ? + 1, 1) (? + 1)`2 9 + 1 ≤ ( and (8 + 9 + 1) ≤  
20 (8, 9 , ?, 0) V/2

O
ut
go
in
g
st
at
es

1 (8 − 1, 9 , ?, 1) (8 − ?)`1 8 ≤ (
(( − ?)`1 + ?`2 8 > (

2 (8, 9 − 1, ?, 1) ( 9 − ?)`1 9 ≤ (
(( − ?)`1 + ?`2 9 > (

3 (8 − 1, 9 , ? − 1, 1) ?`2 0 < 8 ≤ ( and ? > 0

4 (8, 9 − 1, ? − 1, 1) ?`2 0 < 9 ≤ ( and ? > 0

5 (8 + 1, 9 , ?, 1) _
(8 < ( and ( − (8 + 9 − ?) > 0 and (8 + 1 + 9) ≤  )

or (( ≤ 8 <  and (8 + 1 + 9) ≤  )
6 (8 + 1, 9 , ? + 1, 1) _ ( − (8 + 9 − ?) ≤ 0 and 8 < ( and (8 + 1 + 9) ≤  
9 (8, 9 , ?, 0) U

Table 3.4: State transitions incoming to and outgoing from state (8, 9 , ?, 2) in
IPP.

Direction Case State Transfer rate Condition

In
co
m
in
g
st
at
es

14 (8, 9 − 1, ?, 2) _ (0 ≤ 9 − 1 < ( and ( − (8 + 9 − 1 − ?) > 0) or 9 − 1 ≥ (
15 (8, 9 − 1, ? − 1, 2) _ ( − (8 + 9 − ?) ≤ 0 and 0 ≤ 9 − 1 < ( and ? > 0

16 (8 + 1, 9 , ?, 2) (8 + 1 − ?)`1 8 + 1 ≤ ( and (8 + 1 + 9) ≤  
(( − ?)`1 + ?`2 ( < 8 + 1 ≤  and (8 + 1 + 9) ≤  

17 (8 + 1, 9 , ? + 1, 2) (? + 1)`2 8 + 1 ≤ ( and (8 + 1 + 9) ≤  
18 (8, 9 + 1, ?, 2) ( 9 + 1 − ?)`1 9 + 1 ≤ ( and (8 + 9 + 1) ≤  

(( − ?)`1 + ?`2 ( < 9 + 1 ≤  and (8 + 9 + 1) ≤  
19 (8, 9 + 1, ? + 1, 2) (? + 1)`2 9 + 1 ≤ ( and (8 + 9 + 1) ≤  
20 (8, 9 , ?, 0) V/2

O
ut
go
in
g
st
at
es

1 (8 − 1, 9 , ?, 2) (8 − ?)`1 8 ≤ (
(( − ?)`1 + ?`2 8 > (

2 (8, 9 − 1, ?, 2) ( 9 − ?)`1 9 ≤ (
(( − ?)`1 + ?`2 9 > (

3 (8 − 1, 9 , ? − 1, 2) ?`2 0 < 8 ≤ ( and ? > 0

4 (8, 9 − 1, ? − 1, 2) ?`2 0 < 9 ≤ ( and ? > 0

7 (8, 9 + 1, ?, 2) _
( 9 < ( and ( − (8 + 9 − ?) > 0 and (8 + 9 + 1) ≤  )

or (( ≤ 9 <  and (8 + 9 + 1) ≤  )
8 (8, 9 + 1, ? + 1, 2) _ (( − (8 + 9 − ?) ≤ 0 and 9 < ( and (8 + 9 + 1) ≤  )
9 (8, 9 , ?, 0) U
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3.4.3 Equilibrium states

Let %(8, 9 , ?, :) be the probability that the main memory system is in state
(8, 9 , ?, :). Let + be the set of states (8, 9 , ?, :), where 8 ∈ -, 9 ∈ -, and
? ∈ . (8, 9). In the equilibrium state, the total incoming flows to state (8, 9 , ?, :)
are equal to the total outgoing flows from state (8, 9 , ?, :). The equilibrium
equations for (8, 9 , ?, :) ∈ + are given by,

(A1 + A2 + A3 + A4 + A10 + A11)%(8, 9 , ?, 0)
= A16%(8 + 1, 9 , ?, 0) + A17%(8 + 1, 9 , ? + 1, 0) + A18%(8, 9 + 1, ?, 0)
+ A19%(8, 9 + 1, ? + 1, 0) + A21%(8, 9 , ?, 1) + A22%(8, 9 , ?, 2), (3.14a)

(A1 + A2 + A3 + A4 + A5 + A6 + A9)%(8, 9 , ?, 1)
= A12%(8 − 1, 9 , ?, 1) + A13%(8 − 1, 9 , ? − 1, 1) + A16%(8 + 1, 9 , ?, 1)
+ A17%(8 + 1, 9 , ? + 1, 1) + A18%(8, 9 + 1, ?, 1) + A19%(8, 9 + 1, ? + 1, 1)
+ A20%(8, 9 , ?, 0), (3.14b)

(A1 + A2 + A3 + A4 + A7 + A8 + A9)%(8, 9 , ?, 2)
= A14%(8, 9 − 1, ?, 2) + A15%(8, 9 − 1, ? − 1, 2) + A16%(8 + 1, 9 , ?, 2)
+ A17%(8 + 1, 9 , ? + 1, 2) + A18%(8, 9 + 1, ?, 2) + A19%(8, 9 + 1, ? + 1, 2)
+ A20%(8, 9 , ?, 0), (3.14c)

where A2, 2 ∈ [1, 22], equals the transfer rate of case 2 if the conditions of case
2 are satisfied and 0 otherwise.

The condition that the sum of all state probabilities equals one is given by,∑
(8, 9 ,?,:)∈+

%(8, 9 , ?, :) = 1. (3.15)

By considering the symmetric feature of states (8, 9 , ?, 1) and ( 9 , 8, ?, 2),

%(8, 9 , ?, 1) = %( 9 , 8, ?, 2) (3.16)

is satisfied. In (3.14a) and (3.15), %( 9 , 8, ?, 2) is substituted by %(8, 9 , ?, 1)
with (3.16). Then, (3.14c) can be omitted. The number of decision variables
to be solved is reduced from 3� to 2�.
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3.4.4 Blocking probability and average waiting time

Blocking probability %B
b , which is the probability that a request incoming to

the main memory system is blocked with 8 + 9 =  , or the request is not able
to enter the queue, under the condition of ON state, is given by the following
conditional probability.

%B
b =

∑
8∈-

∑
?∈. (8, 9)

2∑
:=1

%(8,  − 8, ?, :)
/ 1

U

1
U
+ 1
V

=
U + V
V

∑
8∈-

∑
?∈. (8, 9)

2∑
:=1

%(8,  − 8, ?, :), (3.17)

note that
1
U

1
U
+ 1
V

=
V

U+V is the probability of ON state.

The average waiting time at the main memory system, ,B is the average
duration time from when a request enters the main memory system until the
request exits the main memory system. The average number of requests in the
main memory system, !B, is given by

!B =
∑
8∈-

∑
9∈-

∑
?∈. (8, 9)

2∑
:=0

8%(8, 9 , ?, :) +
∑
8∈-

∑
9∈-

∑
?∈. (8, 9)

2∑
:=0

9%(8, 9 , ?, :)

= 2
∑
8∈-

∑
9∈-

∑
?∈. (8, 9)

2∑
:=0

8%(8, 9 , ?, :). (3.18)

The right hand side for the second equality is derived by using∑
8∈-

∑
9∈-

∑
?∈. (8, 9)

2∑
:=0

8%(8, 9 , ?, :) =
∑
8∈-

∑
9∈-

∑
?∈. (8, 9)

2∑
:=0

9%(8, 9 , ?, :). (3.19)

By using Little’s formula [149], ,B is given by,

,B =
!B

_′
. (3.20)

_′ is the average arrival rate over both ON and OFF states in the main memory
system. _′ is given by

_′ =
_
U

1
U
+ 1
V

=
_V

U + V . (3.21)
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As with the analysis of random arrival of requests, let _B
e be the throughput

and ,B
e be the average effective waiting time, which are defined by

_B
e = _′(1 − %B

b ) (3.22)

and

,B
e =

!B

_B
e

, (3.23)

respectively.

3.5 Evaluation

Based on the analytical results calculated with the model and its analyses
shown in Sections 3.3 and 3.4, this work observes performance dependency
on each system parameter and arrival pattern of requests of the proposed
architecture.

3.5.1 Numerical results for random arrival of memory
requests

This work evaluates %R
b , _

R
e and ,R

e of the proposed architecture and in-
vestigate their dependency on dR and `2, by using the analysis presented in
Section 3.3. The M/M/S/K model is used as a reference model. This work
sets  = 100, and the arrival rate of _ is the same for both models. This work
sets ( = 32 for both models unless otherwise stated. In M/M/S/K, the service
rate is ` = 1, and, in the proposed architecture, `1 = ` = 1. Let dR be the
traffic load, which is defined by,

dR =
_

(`
. (3.24)

The analytical results are obtained by using a computer with 3.60GHz Intel
Core i7-7700 CPU and 32GB memory. In the case of ( = 32 and  = 100,
the average computation time to obtain %R

b for each set of `2 and dR in the
proposed architecture is 252 [sec], where the number of states in the analy-
sis is 10607.
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Figure 3.8 shows the blocking probability dependency on dR with different
`2. In the proposed architecture, the blocking probability increases with dR,
and decreases as `2 increases. The blocking probability of the proposed archi-
tecture with `2 = 0.5 is close to, but slightly higher than, that of M/M/S/K.
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Figure 3.8: Blocking probability depending on dR with different `2.

This is explained by the observation that, when two main memory systems
have the same value of the product of the number of servers and the service
rate, the one with larger service rate outperforms the other. In addition, 32
servers with service rate ` = 1, all requests queued in the main memory system
are served, outperform 64 (= 32 × 2) servers with service rate `2 = 0.5, half of
which serve requests queued in one of the two separate queues; the former has
greater statistical multiplexing effect than the latter.

Figure 3.9 shows the blocking probability dependency on `2 with dR = 1.2.
In the proposed architecture, the blocking probability decreases as `2 increases.
The blocking probability of the proposed architecture with `2 = 1 is close to,
but slightly higher than, that of M/M/S/K with ( = 64. This is explained by
comparing 64 servers with service rate ` = 1 and 64 (= 32 × 2) servers with
service rate `2 = 1 as with the observation on Figure 3.8.

Figure 3.10 show the throughput dependency on dR with different `2. The
throughput in M/M/S/K increases with dR ≤ 1, and is saturated with dR > 1.
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Figure 3.9: Blocking probability depending on `2 with dR = 1.2.

On the other hand, the throughput of the proposed architecture saturates at
a larger point than M/M/S/K. The saturated throughput increases with `2.

Figure 3.11 show the effective waiting time dependency on dR with different
`2, where the effect of blocked requests is eliminated. The effective waiting
time decreases as `2 increases. Figure 3.12 shows the effective waiting time
dependency on `2. Similar dependency to that on Figure 3.9 are observed.

3.5.2 Numerical results for bursty arrival of memory re-
quests

This work evaluates %B
b , _

B
e and ,B

e of the proposed architecture for IPP and
investigate their dependency on dB and `2, by using the analysis presented
in section 3.4. This work compares the proposed architecture for IPP with a
Poisson arrival process. This work sets  = 100 and ( = 32 unless otherwise
stated. Let d be the traffic load, which is defined by,

dB =
_′

(`
=

_V

(U + V)(` . (3.25)

In the second equality, (3.21) is used.
For performance comparison, this work uses the same dB for different mod-

els. The analytical results are obtained by using a computer with 3.60GHz Intel
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Figure 3.10: Throughput depending on dR with different `2.
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Figure 3.11: Effective waiting time depending on dR with different `2.
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Figure 3.12: Effective waiting time depending on `2 with dR = 1.2.

Core i7-7700 CPU and 32GB memory. In the case of ( = 32 and  = 100,
the average computation time to obtain %b for each set of `2 and dB in the
proposed architecture is 853 [sec], where the number of states in the analy-
sis is 21214.

This work introduces parameters, ℎ > 0 and ; > 0, which are defined by
; = U

_
and ℎ = U

V
. Then, _′ = U

(ℎ+1); and dB = U
(ℎ+1);(` . When ℎ → 0, IPP

approaches a Poisson arrival process. Note that, with ℎ → 0, each packet
continues to have the destination of the same bank, which is different from
the model presented in Section 3.3. For any ℎ, when ; → ∞, IPP approaches
a Poisson arrival process and the proposed architecture with IPP approaches
the model presented in Section 3.3, where the destination of each packet is
randomly assigned to either bank.

Figure 3.13 shows the blocking probability dependency on ; and ℎ with
dB = 1.2 for `2 = 0.7. As ℎ becomes large, the blocking probability increases.
As ; becomes large, the blocking probability decreases. This work observes
that, when ; → ∞, the blocking probability of IPP approaches that of the
Poisson arrival process presented in Section 3.3 for any ℎ. The lower ℎ is, the
faster the blocking probability of IPP approaches that of the Poisson arrival
process. ℎ → 0 indicates that ON state probability is close to 1, and ; → ∞
indicates that ON state period is close to zero. Each situation is equivalent to
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the Poisson arrival process, which is a special case of IPP.

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

B
lo

ck
in

g
 p

ro
b
ab

il
it

y

l 

0.00001

0.5

1

poisson

Poisson arrival process

IPP

h = 10-5

h = 0.5

h = 1.0

Figure 3.13: Blocking probability depending on ; and ℎ with dB = 1.2 and
`2 = 0.7.

Figure 3.14 shows the blocking probability dependency on dB and ℎ with
; = 1.0 for `2 = 0.7.

Figures 3.15 and 3.16 show the throughput and effective waiting time de-
pendency on ; and ℎ with dB = 1.2 for `2 = 0.7, respectively.

3.5.3 Packet Processing Performance

Packet processing performance of the proposed architecture can be calculated
by using the numerical results shown in Sections 3.5.1 and 3.5.2, assuming
that packet processing performance in network virtualization based on the
general-purpose computers is bounded by memory performance. In the fol-
lowing calculation of packet processing performance, this work focuses on IP
routing as an example packet processing application.

This work considers DIR-24-8-BASIC [13] for an example IP address lookup
algorithm, in which packet processing of IP routing is finished within one or
two memory accesses at most. Its lookup table has, 232 entries, in nature,
which correspond to the whole IPv4 address space. The content in each entry
is the next hop information corresponding to the prefix of the entry. In detail,

83



Chapter 3

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0 1.2 1.4 1.6 1.8 2.0

B
lo

ck
in

g
 p

ro
b
ab

il
it

y

�B

0.00001

0.5

1

poisson

IPP, h = 10-5

IPP, h = 0.5

IPP, h = 1.0

Poisson

Figure 3.14: Blocking probability depending on dB and ℎ with ; = 1.0 and
`2 = 0.7.

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

T
h
ro
u
g
h
p
u
t

l 

0.00001

0.5

1

poisson

Poisson arrival process

IPP

h = 10-5

h = 0.5

h = 1.0

Figure 3.15: Throughput dependency on ; and ℎ with dB = 1.2 and `2 = 0.7.

84



Section 3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.2 0.4 0.6 0.8 1.0

E
ff

ec
ti

v
e 

w
ai

ti
n

g
 t

im
e

l 

0.00001

0.5

1

poisson

Poisson arrival process

IPP

h = 10-5

h = 0.5

h = 1.0

Figure 3.16: Effective waiting time dependency on ; and ℎ with dB = 1.2 and
`2 = 0.7.

based on typical traffic patterns, the lookup tables comprise two lookup tables
called TBL24 and TBLlong, each of which has the entries corresponding to
the upper 24 bits and lower 8 bits, respectively. In the algorithm, TBL24
is firstly accessed, and if the table lookup result of TBL24 is the next hop
information, the LPM is finished. If a pointer to TBLlong is returned as a
result of searching TBL24, TBLlong is also accessed to obtain the next hop
information. Thereby, the LPM is finished within two memory accesses.

Consequently, the packet processing performance of IP routing can be cal-
culated using the number of acceptable memory accesses per unit of time as
obtained from the numerical results in Sections 3.5.1 and 3.5.2 and the number
of necessary memory accesses to the IP address lookup per packet, and the
additional delay of the distributor based on a hash function. Packet processing
latency is obtained as the number of required memory accesses times the sum
of the average effective waiting time and the additional delay of the distributor.

This work assumes that the hash function works as a pipeline, where it does
not affect any other performance metric of the proposed architecture except
for the latency.
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For example, let service rate ` be 8 M services per second, which is an
estimate since typical latency inside the HMC itself is usually taken to be
between 100-180 ns with an average of 125 ns [156,157], and let the traffic load
be 1.2. In this example, this work assumes the service rate of interleaved bank
`2 = 0.7`, ; = 0.1, ℎ = 0.5, and the additional delay of the distributor is 10 ns,
which corresponds to one clock cycle at 100 MHz circuits in the FPGA. This
work also assumes that each IP address lookup requires two memory accesses,
each of which is associated with a request distribution based on a hash function.
Table 3.5 lists the calculation results for proposed architecture with random
arrival of requests that with bursty arrival of requests, and M/M/S/K for
reference, respectively.

Table 3.5: Example of packet processing performance.
Model Throughput (Gbps) Latency (ns)

at 64B packet
Proposed (Poisson) 79 471
Proposed (IPP) 78 542
M/M/S/K 66 887

3.6 Direction to expansion of analytical model
for general # ≥ 2

This work considers the analytical model for a system with general # ≥ 2.
A state in the system is expressed by a vector, that consists of the following
components. First, 8= ∈ [0,  ] is the number of requests for bank = ∈ [1, #].
Second, ?8=8=′ ∈ [0, (], where =, =′ ∈ [1, #] and = ≠ =′, is the number of requests
being served with 2-interleaving for banks = and =′. The number of ?8=8=′ is

#�2, where =�< = =!
(=−<)!<! . Third, ?==′=′′ ∈ [0, (], where =, =′, =′′ ∈ [1, #],

= ≠ =′, =′ ≠ =′′, and =′′ ≠ =, is the number of requests being served with 3-
interleaving for banks =, =′, and =′′. The number of ?==′=′′ is #�3. In the same
way, ?==′=′′=′′′··· is the number of requests being served with (#−1)-interleaving.
The number of ?==′=′′=′′′··· for (# − 1)-interleaving is #�#−1 = # − 1. Finally,
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?123···# ∈ [0, (] is the number of being served requests with #-interleaving for
all banks.

3.7 Chapter summary

This chapter proposed a parallel memory system architecture that uses a
3D-stacked memory to increase the memory parallelism of main memory in
general-purpose computers for packet processing in network virtualization. A
database searched in packet processing is divided into several partial databases,
each of which is deployed in memory banks in a memory channel, and the
database in the memory channel is copied to the other memory channels in
the 3D-stacked DRAM so that the proposed architecture enhances the memory
parallelism by leveraging the memory channel-level parallelism and bank inter-
leaving. Incoming memory requests are distributed based on a hash function,
according to the packet content, into an appropriate memory channel-bank set
that contains a partial database in the 3D-stacked DRAM. This work intro-
duced an analytical model of the proposed main memory system architecture
that considers the bank interleaving, for two traffic patterns where the arrivals
of memory requests are either random or bursty. The analytical results for
random arrival of memory requests observed the performance dependency of
the proposed architecture on traffic load and the number of bank interleav-
ing. The analytical results for bursty arrival of memory requests observed the
performance dependency of the proposed architecture on input traffic bursti-
ness. Based on these analytical results, the calculated packet processing perfor-
mance, for which IP routing is taken as an example, showed that the proposed
architecture increases packet processing performance up to 80 Gbps for the
smallest-sized IP packet involving both arrival patterns of random and bursty
memory requests.
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Parallel memory system
architecture using interleaved
3D-stacked memory and private
cache memory

This chapter proposes a parallel memory system architecture that uses a 3D-
stacked memory and on-chip private cache memories to reduce memory access
latency in packet processing in network virtualization. A part of the work
in this chapter was presented in [158]. Modern multi-core CPUs in general-
purpose computers have several levels of on-chip cache memories, some of
which are private to each CPU core, and the other is shared among all the
CPU cores. This work explores the memory system architectures that integrate
the on-chip cache memories with the off-chip interleaved 3D-stacked DRAM-
based main memory. The proposed architecture integrates the private cache
memories of each CPU core and the off-chip 3D-stacked DRAM. Frequently
accessed entries of the packet processing database stored in the 3D-stacked
DRAM are cached in the on-chip cache memories.

The proposed architecture is compared to the following two reference mem-
ory system architectures: one with the on-chip private cache memories, the on-
chip shared LLC, and the off-chip 3D-stacked DRAM and one without on-chip
cache memory and with the off-chip 3D-stacked DRAM. In this chapter, these
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reference architectures are hereinafter referred to as the architecture with LLC
and the architecture without any cache, respectively. As a result of the queue-
ing model-based simulations, this work observes that the proposed memory
system architecture reduces memory access latency by 58 % and 1.8 % and
increases throughput by 104 % and 1 % with reducing the blocking proba-
bility by 91 % and 18 %, compared to the reference architecture with LLC
and the architecture without any cache, respectively. The simulation results,
in which the proposed architecture with the on-chip private cache memories
outperforms the reference architecture with LLC, also suggest that memory
parallelism in the on-chip cache memories is inevitable for packet processing
in network virtualization when the main memory parallelism exists.

The rest of this chapter is organized as follows. Section 4.1 presents the
proposed architecture. Section 4.2 describes the system models of the proposed
architecture and the reference architectures. Section 4.3 presents performance
evaluation, in which the proposed architecture is compared with the reference
architectures. Section 4.4 summarizes this chapter.

4.1 Proposed architecture

Figure 4.1 shows an overview of the proposed memory system architecture. It
consists of a multi-core CPU that includes on-chip two levels of cache memories
dedicated to each CPU core, an FPGA, a 3D-stacked DRAM, a DRAM, and
network interfaces.

The packet processing flow in the proposed architecture is similar to that in
Section 3.1. However, the proposed architecture has on-chip cache memories
in addition to the architecture in 3.1. Therefore, each incoming packet is
processed as follows.

(Step 1) A packet that comes from the network interface is directly trans-
ferred to the DRAM by using DMA, where the packet is buffered in the packet
buffer. The packet is randomly assigned to one of the CPU cores. The assigned
CPU core reads the header information of the packet from the packet buffer
in the DRAM.

(Step 2) The CPU core issues memory requests to read the database stored
in the on-chip cache memories and the 3D-stacked DRAM in order to decide
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Figure 4.1: Overview of proposed architecture.

the next action for the packet. When searching the database, the on-chip cache
memories is firstly accessed. If the required entry is not found in the on-chip
cache memories, the 3D-stacked DRAM is accessed, and the cache line that
includes the found entry is cached based on a particular cache replacement
policy.

(Step 3) After finishing the lookup and determining the next action, the
CPU core sends the packet including its payload from the packet buffer in the
DRAM through the network interface.

This work focuses on the packet processing step 2 in the above description,
which requires high memory performance, compared to the steps 1 and 3. As
described in Section 2.1, performance of the steps 1 and 3 can be improved
by using the packet I/O acceleration methods such as DPDK. This work con-
siders packet classification and database searching for table lookup tasks. Ad-
ditionally, the database, such as lookup table data, is separated into several
partial databases as many as the number of banks in a memory channel. Each
database in a memory channel is copied to the other memory channels in the
3D-stacked DRAM, as described in Section 3.1. In the proposed architecture,
since the on-chip LLC is not integrated in the CPU, the 3D-stacked memory-
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based main memory behaves like an off-chip LLC that has a larger capacity
and memory parallelism than on-chip shared LLC.

An FPGA is used for the same purpose as presented in Section 3.1, where
it is used to connect the CPU with the 3D-stacked DRAM via inter-chip con-
nections such as Intel QPI or UPI [141–143, 159]. In the FPGA, as with
in Section 3.1, the logic circuit for the hash-function-based memory requests
distributor and the memory controller of the 3D-stacked DRAM is deployed.
The hash-function-based distributor distributes memory requests into an ap-
propriate memory channel-bank sets in the 3D-stacked DRAM. The memory
requests that enter the FPGA are the memory requests that miss the on-chip
L2 cache memory and are destined to the main memory that is the 3D-stacked
DRAM. The mechanism and behavior of cache memories are explained in Sec-
tions 1.7.2 and 4.2. The memory controller of the 3D-stacked DRAM interfaces
the 3D-stacked DRAM.

4.2 System model

This work considers the three system models shown in Figures 4.2, 4.3, and 4.4,
where each system model corresponds to the proposed architecture and two
reference architectures. Every architecture has the off-chip 3D-stacked DRAM
that is connected to the CPU. The behavior of each architecture is described
in the subsequent subsections. Since the database placement and memory
request distribution are explained in detail in Section 3.1, the description of
each system model is focused on the on-chip cache memory systems in the
CPU. Additionally, in this work, the on-chip cache memories in the CPU store
the copies of frequently used data in the 3D-stacked DRAM based on the LRU
policy.

4.2.1 System model of proposed architecture

Figure 4.2 shows the system model of the proposed architecture that integrates
the on-chip two levels of private cache memories of each CPU core with the off-
chip 3D-stacked DRAM. The on-chip private cache memories are the L1 cache
memory and L2 cache memory, each of which is dedicated to the corresponding

92



Section 4.2

CPU core.
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Figure 4.2: System model of proposed architecture.

When a packet enters the system, it is randomly assigned to one of the CPU
cores regardless of the CPU core state. After its assignment to the CPU core,
the packet is enqueued into the corresponding queue in front of the assigned
CPU core and is processed following the FCFS policy. The total number of
requests, which includes waiting requests for all the queues and the requests
being processed by the CPU cores, is limited in the system. The processed
request firstly accesses the private cache memories of the CPU core in an
increasing order of cache levels, where the L1 cache memory is firstly accessed.
If the corresponding table entry of the request is not found, which is called
a miss, in any level of cache memory, the request accesses the next level of
cache memory if there is; otherwise, the request is transferred to a queue to
wait for being distributed to an appropriate memory channel-bank set of the
3D-stacked DRAM.

The main memory system model for table lookup is explained in Chapter 3.
Note that at any time, only one request is processed by each CPU core; the
processing of a request is completed when its corresponding table entry is
found, which is called a hit in any part of the system. All the requests from
different CPU cores access the 3D-stacked DRAM according to the FCFS
policy.

After the hit, the copy of the cache line that includes the corresponding
table entry of the request is stored in the L1 cache memory of the corresponding
CPU core as the most recently used content. For any level cache memory of the
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corresponding CPU core, if it is a miss, the LRU content in the cache memory
is evicted to the next level cache memory. For example, if the corresponding
table entry of the request is found in the 3D-stacked DRAM, the cache line
including it is copied to the L1 cache memory of the corresponding CPU core,
and the LRU content in the L1 cache memory is evicted to the L2 cache
memory. Meanwhile, the LRU content in the L2 cache memory is dropped.

Let �sys denote the number of CPU cores in the system. Let #ent represent
the total number of entries in the system. The maximum number of requests
in the system is represented by  . A request incoming to the system is blocked
if the number of accommodated requests in the system is  . The size of each
queue associated with each CPU core is at least  , which means that no loss
of request occurs in each queue. The size of queue associated with the 3D-
stacked DRAM controller is considered to be equal with the number of CPU
cores, �sys. The memory capacities of L1 cache memory, L2 cache memory,
and 3D-stacked DRAM are considered as "L1, "L2, "3D, respectively. Let �
denote the size of a cache line. The size of each table entry is represented by
1. �/1 table entries are copied to the L1 cache memory when there is a miss.

4.2.2 System models of reference architectures

Figure 4.3 shows the system model of the reference architecture, where the
off-chip 3D-stacked DRAM is combined with the multi-core CPU with L1 and
L2 cache memories of each CPU core and on-chip shared LLC. Figure 4.4 is
the system model of the reference architecture, where the off-chip 3D-stacked
DRAM is combined with the multi-core CPU without any on-chip cache mem-
ories.

The behavior of these models follows that of the proposed architecture; the
differences are as follows. In the system model of the reference architecture
that has the on-chip shared LLC, a request that misses the L2 cache memory
is transferred to a queue in front of the on-chip shared LLC to wait for the
access to the on-chip shared LLC. If it is a request that misses the shared LLC,
the request is transferred to the 3D-stacked DRAM. When the LRU content in
the L2 cache memory is evicted to the on-chip shared LLC, the LRU content
in the on-chip shared LLC is dropped.
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In the system model of the reference architecture without any on-chip cache
memories, every request directly transferred to a queue to wait for the access
to the 3D-stacked DRAM. All the requests from different CPU cores access the
on-chip shared LLC or the 3D-stacked DRAM according to the FCFS policy.
The memory capacity of the on-chip shared LLC is denoted as "LLC.

���

����

�
�

�

�� �	

���

�����	
�

���

��������	�

���

�����	
�

���

���

����
�� �	

���

����
�� �	

�
�

�

�
�

�

���


����


����


����


����

������

��������

��������

��������

���

Figure 4.3: System model of reference architecture with LLC.
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Figure 4.4: System model of reference architecture without any cache.

4.3 Evaluation

4.3.1 Traffic model

To evaluate the effectiveness of caching, some studies use the actual traffic
traces, such as the works in [160–162], and others generate the synthetic traces
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with considering the content popularity, such as the works in [163,164], where
the content in traffic, such as the Web page requests and the IP addresses
lookup requests, is considered to follow a Zipf-like distribution [165]. It indi-
cates a behavior of the traffic that a few most popular contents are requested
in high probabilities, and a large proportion of contents are requested in low
probabilities.

This work assumes a traffic model of memory requests, in which a request
arrives at the memory system based on a Poisson arrival process with the aver-
age rate of _. Let #ent represent the total number of table entries stored in the
system, which are sorted in decreasing order of popularity. This work assumes
that the requested content follows a Zipf-like distribution, where the relative
probability of requesting for the 8th most popular table entry is expressed as
1
8U
, which leads to the probability with normalizing constant as

1
8U∑#ent

8=1
1
8U

. Note

that the Poisson and Zipf-like distributions in the traffic model of this work
are orthogonal or independent from each other.

According to the work in [165], the value of U in the Zipf-like distribution
varies for different traffic traces. It is reported that the special case of U = 1,
which is known as the strict Zipf’s law, is not appropriate for the content
distributions in traffics, such as the Web page requests and the IP addresses
lookup requests. Typically, the value of U is in the range of 0 < U < 1. U

in traces from a homogeneous environment appears to be larger than that in
traces from a more diversified user population. In other words, as U increases,
more requests are concentrated on a few most popular contents. This work
sets the value of U as 0.83 [165].

This work assumes that the probability of accessing each memory bank
of the 3D-stacked DRAM is equal when the content popularity is considered.
This work adopts the model for the memory system architecture presented
in Chapter 3, where requests are randomly assigned to memory banks in the
3D-stacked DRAM.

4.3.2 System assumption

This subsection introduces the assumptions of the system model for the sim-
plicity of the numerical simulations.
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This work assumes in-order CPU cores and blocking cache memories. Each
CPU core processes only one request at a time. Thus the number of issued
memory requests at a time is at most the number of CPU cores that the system
has, �sys.

This work assumes that the processing times of cache memories and 3D-
stacked DRAM follow exponential distributions. This work considers that the
clock frequency of CPU cores and its associated L1/L2 caches may dynami-
cally change in operation. For instance, Intel’s Turbo Boost Technology [166]
automatically increases clock frequency of CPU cores for peak loads if the
power consumption and temperature of the CPU are below the specification
limits. Consequently, the processing times in cache memories are assumed to
follow exponential distributions. The processing time of 3D-stacked DRAM
includes the DRAM access latency due to DRAM specific behavior such as
precharging the row buffer when accessing another row. This work assumes
that the processing rate of the interleaved banks in the off-chip 3D-stacked
DRAM is 0.7 times of that of without bank interleaving.

This work also assumes that the memory system is in the steady condition
in which there is no memory write request such as updating the table, which
allows the system models to ignore cache coherency. In addition, the CPU
reads data from each level of cache memory or the 3D-stacked DRAM in 8-
byte groups.

This work assumes that the total number of entries, #ent, the maximum
number of memory requests in the system,  , and the memory capacities of
each level of cache memory, "L1, "L2, "LLC, are smaller than those of today’s
general-purpose computers. These assumptions allow the model to finish the
numerical simulations within a practical time. Without this assumption on
the memory capacity of each cache memory and the number of table entries,
the numerical simulations do not finish in a reasonable time. For instance, if
simulation parameters are set as "L1 = 64 [KiB], "L2 = 512 [KiB], "LLC =

28 [MiB], the estimated time to obtain a one-plot result is at least one month
by using the simulation environment that is described in Section 4.3.4.
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4.3.3 Blocking probability and average waiting time

Let ' represent a set of requests incoming to the system during a certain period
time. |' | denotes the total number of requests in '. The number of rejected
requests that come to the system during the period is represented by |'b |,
where 'b denotes the set of rejected requests. Blocking probability %b, which
is a probability that a request incoming to the system is rejected, is defined by
%b =

|'b |
|' | . Throughput, _e, is defined by _e = _(1 − %b). For accepted request

A ∈ '\'b, let CA represent its waiting time to be processed by corresponding
CPU core. Average effective waiting time, ,e, is defined by ,e =

∑
A ∈'\'b CA
|' |−|'b | .

In the numerical analysis, this work considers a 3D-stacked DRAM with
two banks and ( memory channels. The processing rates of a memory channel
of the 3D-stacked DRAM with and without memory interleaving are denoted
as `2 and `1, respectively. Let d be a traffic load, which is defined by d = _

(`
.

This work considers the IP address lookup based on DIR-24-8-BASIC [13]
for the benchmark of the packet processing, where the size of each entry is 2
byte. Thus this work sets 1 = 2 [B]. This work considers that the multi-core
CPU has �sys = 28 CPU cores, and the off-chip 3D-stacked DRAM has ( = 32

memory channels. The memory capacity of the off-chip 3D-stacked DRAM is
considered to be "3D = 4 [GiB], which is large enough to store all the entries
in the memory system. This work sets the service rates of each level of cache
memory and that of the off-chip 3D-stacked DRAM as `L1 = 100, `L2 = 50,
`LLC = 10, ` = `1 = 1, according to the works in [156, 157, 167]. Based
on the aforementioned descriptions and assumptions, this work sets  = 100,
U = 0.83, "L1 = 128 [B], "L2 = 512 [B], "LLC = 4096 [B], #ent = 2 × 104, and
`2 = 0.7. This work uses d = 0.7 unless otherwise stated.

4.3.4 Numerical results

This work uses Intel Xeon Silver 4216 2.10 GHz 16-core CPU with 128 GB
memory to run the simulations based on Python 3.7.

This work presents the numerical simulation results of three system models,
each of which corresponds to the following architecture: (a) proposed architec-
ture, (b) architecture with LLC, and (c) architecture without any cache. This
subsection labels these three as Proposed, With LLC, and Without any cache.
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Figure 4.5 shows the blocking probabilities for the proposed architecture,
the architecture with LLC, and the architecture without any cache; the set of
values of d is considered as {0.1, 0.2, 0.3, · · · , 1.8, 1.9, 2.0}. This work observes
that as the traffic load increases, the blocking probability increases for every
architecture. The blocking probability of the architecture with LLC increases
rapidly compared to those of the other two architectures. This indicates that
the on-chip shared LLC becomes a bottleneck due to the concentration of
memory requests from multiple CPU cores as the traffic load increases. When
d = 0.7, the blocking probabilities for the proposed architecture and the archi-
tecture without any cache are less than 10−1.
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Figure 4.5: Blocking probability depending on traffic load for different archi-
tectures.

Figure 4.6 shows the blocking probabilities for the proposed architecture,
the architecture with LLC, and the architecture without any cache; the set of
"L1 is considered as {128, 192, 256, 384, 512} [B]. This work observes that the
proposed architecture outperforms the other two architectures. In addition,
the blocking probabilities are almost independent of the capacity of the L1
cache memory, which does not need to increase the capacity of the expensive
L1 cache memory.

Figures 4.7, 4.8, and 4.9 show the blocking probabilities, average effective
waiting times, and throughputs for the proposed architecture, the architecture
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Figure 4.6: Blocking probability depending on memory capacity of L1 cache
for different architectures.
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Figure 4.7: Blocking probability depending on number of entries in each cache
line for different architectures.
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Figure 4.8: Average effective waiting time depending on number of entries in
each cache line for different architectures.
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Figure 4.9: Throughput depending on number of entries in each cache line for
different architectures.
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with LLC, and the architecture without any cache, respectively; the set of
numbers of entries in each cache line is considered as {1, 2, 4, 16, 32, 64}. This
work observes that the proposed architecture reduces memory access latency by
58 % and 1.8 % and increases throughput by 104 % and 1 % with reducing the
blocking probability 91 % and 18 %, compared to the architecture with LLC
and the architecture without any cache, respectively, when �/1 = 32, which is
a typical value of the general-purpose processors. In addition, if the proposed
architecture can use smaller cache lines with smaller �/1, the performance of
proposed architecture can be improved.

4.4 Chapter summary

This chapter proposed a parallel memory system architecture that uses a 3D-
stacked memory and on-chip private cache memories to reduce memory access
latency in the existence of main memory parallelism for packet processing in
network virtualization. The proposed architecture integrates the on-chip pri-
vate cache memories of each CPU core, that is the L1 and L2 cache memories,
with the off-chip 3D-stacked DRAM. Frequently accessed database entries in
the 3D-stacked DRAM are copied and stored in the on-chip cache memories.
This work explored the memory system architecture in terms of the integra-
tion of the on-chip cache memories with the off-chip 3D-stacked DRAM, in-
cluding the architecture with LLC and the architecture without any cache.
The queueing model-based simulation results observed that the proposed ar-
chitecture reduced memory access latency by 58 % and 1.8 % and increased
throughput by 104 % and 1 % with reducing the blocking probability 91 % and
18 %, compared to the architecture with LLC and the architecture without
any cache, respectively, when �/1 = 32, which is a typical value of the general-
purpose processors. The memory performance would be improved by using
the smaller cache lines with smaller �/1. The simulation results also observed
that the on-chip shared LLC becomes a bottleneck due to the concentration of
memory requests from multiple CPU cores as the traffic load increases, which
implies that memory parallelism in on-chip cache memories is inevitable for
packet processing in network virtualization when the main memory parallelism
coexists.
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Parallel memory system
architecture using interleaved
3D-stacked memory, private cache
memory, and LLC slices

This chapter proposes a parallel memory system architecture that uses a 3D-
stacked memory, on-chip private cache memories, and on-chip LLC slices to
increase capacity and parallelism of the on-chip cache memories for packet
processing in network virtualization. A part of the work in this chapter was
presented in [168]. In modern multi-core CPUs, the on-chip LLC comprises the
multiple LLC slices, each of which belongs to a CPU core and connected via
a mesh or ring interconnection. A user or an operator of the general-purpose
computers with such multi-core CPUs can assign some of the LLC slices to a
specific VNF. In the proposed architecture, the LLC slices are used as the next
level cache memory of the L2 cache memory, where a cache line evicted from
the L2 cache memory is distributed one of the assigned LLC slices according
to a memory address-based hash function so that CPU cores can access the
LLC slices in parallel.

This work presents performance evaluation of the proposed architecture
using the queueing-model simulations, in which the proposed architecture is
compared with two reference architectures: one with the on-chip private cache
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memories, the on-chip shared LLC, and the off-chip 3D-stacked DRAM and one
with the on-chip private cache memories and the off-chip 3D-stacked DRAM.
In this chapter, these reference architectures are hereinafter referred to as
the architecture with LLC and the architecture without LLC, respectively.
The evaluation results observe that the proposed architecture reduces memory
access latency by 62 % and 12 % and increases throughput by 108 % and
2 % with reducing the blocking probabilities by 96 % and 50 %, compared
to the reference architectures with LLC and the architecture without LLC,
respectively.

The rest of this chapter is organized as follows. Section 5.1 presents the
proposed architecture. Section 5.2 describes the system modeling the proposed
architecture and two reference architectures. Section 5.3 presents performance
evaluation. Section 5.4 summarizes this chapter.

5.1 Proposed architecture

Figure 5.1 shows the proposed memory system architecture. It consists of
a multi-core CPU, an FPGA, a 3D-stacked DRAM, a DRAM, and network
interfaces. Each CPU core has its dedicated L1 and L2 cache memories. The
on-chip LLC of the multi-core CPU comprises multiple LLC slices, each of
which belongs to a CPU core and connected via an interconnection. The
performance counter counts the statistics related to the CPU performance,
such as the number of LLC misses and the number of elapsed core clock ticks.
An FPGA connects a CPU and an off-chip 3D-stacked DRAM. An external
DRAM is used as a packet buffer.

While most of the packet processing flow in the proposed architecture fol-
lows that in Sections 3.1 and 4.1, the proposed architecture has the on-chip
LLC slices, into which a cache line evicted from the L2 cache memory is dis-
tributed. In the proposed architecture, each incoming packet is processed as
follows.

(Step 1) A packet that comes from the network interface is directly trans-
ferred to the DRAM by using DMA, where the packet is buffered in the packet
buffer. The packet is randomly assigned to one of the CPU cores. The assigned
CPU core reads the header information of the packet from the packet buffer
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Figure 5.1: Overview of proposed architecture.

in the DRAM.

(Step 2) The CPU core issues memory requests to read table entries stored
in the on-chip cache memories and the 3D-stacked DRAM in order to decide
the next action for the packet.

(Step 3) The CPU core sends the packet including its payload from the
packet buffer in the DRAM through the network interface.

This work mainly explores the integration of LLC slices with the on-chip
private cache memories and off-chip 3D-stacked DRAM-based parallel main
memory. Thus the packet processing step 2 in the above description is fo-
cused. In addition, performance of the packet processing steps 1 and 3 can be
improved using the packet I/O acceleration methods such as DPDK, as de-
scribed in Section 2.1. This work considers packet classification and database
searching for examples of table lookup tasks. As with the explanations in
Sections 3.1 and 4.1, the database stored in the 3D-stacked DRAM is split
into several partial ones. Each partial database is located in the bank of a
memory channel so that the original database is comprised of all the partial
databases in a memory channel. The database, which is split into partial ones
in a memory channel, is copied along with the memory channels so that every
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memory channel has the same database. This database placement allows the
3D-stacked DRAM to make the most of the memory-level parallelism and bank
interleaving to increase memory performance for packet processing in network
virtualization.

The FPGA accommodates the logic circuits for the following functions: a
memory controller of the 3D-stacked DRAM, the skip selection logic, and a
hash-function-based distributor of memory requests. The hash-function-based
distributor distributes issued memory requests into an appropriate memory
channel-bank sets in the 3D-stacked DRAM so that the number of interleaved
banks in each channel is minimum according to the bank selection rule pre-
sented in Section 3.2.

An operator of the proposed architecture assigns a certain number of CPU
cores and LLC slices to an application. If none of the LLC slices is assigned
to an application, the application skips accessing the on-chip LLC. In other
words, the application directly accesses the off-chip 3D-stacked DRAM when
there is a miss in the L2 cache memory. Also, the operator sets the threshold of
the LLC miss rate to the skip selection logic in the FPGA. The skip selection
logic determines whether an application should skip the on-chip LLC slices by
comparing the statistics of the LLC miss rate measured in the performance
counter of the CPU with the threshold. This work explains this feature in
Section 5.3.4.

5.2 System model

5.2.1 System model of proposed architecture

Figures 5.2 and 5.3 show the system models of the proposed architecture for
two example cases. Figure 5.2 shows the case, in which all the CPU cores and
LLC slices are assigned. Figure 5.3 shows the case, in which the numbers of
assigned CPU cores and LLC slices are less than the numbers of CPU cores
and LLC slices that the system has. Both models have multiple CPU cores in
the CPU, 3D-stacked DRAM that is connected to the CPU via a 3D-stacked
DRAM controller. Each CPU core has a queue and dedicated L1 and L2 cache
memories. The on-chip shared LLC comprises multiple LLC slices, each of
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which has a queue. The queues in front of the LLC slices and all the CPU
cores are connected via inter-core bus so that each CPU core can access every
LLC slice.

Let the system has �sys CPU cores and !sys LLC slices. The operator
of the system assigns some of the �sys CPU cores and !sys LLC slices to a
specific application. This work defines the number of assigned CPU cores
and LLC slices to the application as � and !, where 0 ≤ � ≤ �sys and
0 ≤ ! ≤ !sys, respectively. Figure 5.2 shows the system model of proposed
architecture where � = �sys CPU cores and ! = !sys LLC slices in the system
are assigned. Figure 5.3 shows system model of proposed architecture where
� < �sys CPU cores and ! < !sys LLC slices are assigned.
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Figure 5.2: System model of proposed architecture, in which all queues, CPU
cores, and LLC slices are assigned.

The on-chip L1 cache memory, L2 cache memory, and LLC slices in the
CPU store the copies of frequently used data based on an LRU manner. Each
LLC slice can be accessed by at most one CPU core at a time. There is no
duplicate cache line throughout the logical LLC to simplify the data coherency
among LLC slices. Therefore, requests to the same cache line need to wait until
the LLC slice that contains the corresponding cache line finishes serving the
previous request.

The main memory system for database searching, such as for table lookup,
is explained in Chapter 3. When a memory request arrives at the 3D-stacked
DRAM controller, the hash-function-based distributor classifies the request
to one of the queues that correspond to each partial table located in a bank
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Figure 5.3: System model of proposed architecture, in which gray queues, CPU
cores, and LLC slices are not assigned.

of 3D-stacked DRAM. The banks in the same memory channel can be inter-
leaved, which enables the multiple partial tables in the same memory channel
to be accessed efficiently. A request entering the queue is served at a memory
channel-bank set in a FCFS policy. The memory channel-bank set to which a
request transferred is selected so that the number of interleaved bank in each
channel is minimum as described in Section 3.2.

When a packet comes to the system, a CPU core that processes the packet
is randomly selected from the assigned CPU cores. Then, the packet waits at
the queue in front of the selected CPU core. At each CPU core, the packet
is processed as an FCFS policy. The CPU core issues a memory request to
process the packet. Each issued request accesses the L1 cache memory of
the CPU core at first. When there is a miss, the request accesses the L2
cache memory. The inter-core bus transfers a request that misses the L2 cache
memory to the queue in front of an appropriate LLC slice according to the
memory address of the request. In this system model, the memory address
range that corresponds to the =-th cache line in the memory address space is
mapped to the (= mod !+1)-th LLC Slice. In each LLC slice, a request in the
queue in front of the LLC slice is processed as an FCFS policy. A request that
misses the LLC slice is transferred to the 3D-stacked DRAM controller to wait
for being distributed to one of memory channel-bank sets in the 3D-stacked
DRAM.

Figure 5.4 describes an example state of the system model of the proposed
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architecture. In the example, the system model consists of five assigned CPU
cores, three assigned LLC slices, 3D-stacked DRAM, and its controller; this
example corresponds to the case presented in Figure 5.3. Each CPU core and
LLC slice has its own queue in front of it. There are ten incoming packets in
the order of P1, P2, · · · , P10. The first five of them are processed in the five
CPU cores, and the other five packets are randomly distributed to the queue
of each assigned CPU core regardless of the state of each CPU core. Each
CPU core issues a memory request that corresponds to the packet. In other
words, the five memory requests R1, R2, · · · , R5 correspond to the first five
incoming packets P1, P2, · · · , P5. R1 misses all the levels of cache memories,
and then it is in the queue of the 3D-stacked DRAM controller. R2 and R3
are transferred to the topmost LLC slice according to their memory addresses
via inter-core bus. R2 is accessing the LLC slice. R3 is waiting in a queue of
the same LLC slice as R2. R4 is transferred to the third LLC slice from the
top according to its memory address via an inter-core bus. R5 is accessing L2
cache memory.
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Figure 5.4: Example of system model of proposed architecture where �sys = 6,
!sys = 6, � = 5, ! = 3. There are ten packets P1, P2, · · · , P10.

A memory request finishes when its corresponding table entry is found in
any part of the system. In the system, the total number of requests is limited
including all the waiting requests in each queue and the requests that are
processed by each CPU core. Let  be the maximum number of requests in
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the system. A newly issued memory request by a CPU core is blocked when
the total number of requests that are in the system equals  . Each queue in
front of each CPU core stores the incoming packets to the system. The size
of each queue is not less than  , which means that there is no packet loss in
each queue.

Let "L1, "L2, "Slice, and "3D denote the capacities of L1 cache memory,
L2 cache memory, LLC slice, and 3D-stacked DRAM, respectively, each of
which is given in the system model. The sizes of each cache line and each table
entry are represented by �, 1, respectively. When there is a miss in LLC, �/1
table entries are copied to L1 cache memory from off-chip 3D-stacked DRAM.
Then, the LRU cache line in the L1 or L2 cache memory of the corresponding
CPU core is evicted to the L2 cache memory of the CPU core or LLC slice
according to the aforementioned address mapping rule, and the LRU cache
line in the LLC slice is dropped.

When there is a hit, the cache line that has the requested table entry is
allocated in the L1 cache memory as the most recently used cache line. When
there is a miss, the LRU cache line in the L1 or the L2 cache memory is evicted
to the L2 cache memory or LLC.

5.2.2 System model of reference architectures

Figures 5.5 and 5.6 show the system models of two reference architectures,
which are compared with the proposed architecture: the architecture with LLC
and the architecture without LLC. The devices that comprise the reference
architectures are the same as those in the proposed architecture.

Figure 5.5 shows the system model of a reference architecture that has the
on-chip physically shared LLC. The LLC is shared among all the CPU cores
in the CPU. Memory capacity of the shared LLC is given and is defined as
"LLC. The behavior of this system model is the same as the system model
shown in Figures 5.2 and 5.3, except for how a request that misses L2 cache
memory moves before it hits or misses the on-chip shared LLC. This work
assumes that the on-chip shared LLC in this model comprises a single LLC
slice whose memory capacity is "LLC, which has a shared queue. A request
that misses L2 cache memory waits for the access to the on-chip shared LLC

110



Section 5.2

in the shared queue in front of the on-chip shared LLC.
Figure 5.6 shows the system model of the reference architecture without

LLC. All the behavior of this system model is the same as the other system
models in this work except for the on-chip LLC. A request that misses L2 cache
memory is transferred to a common queue and enters the 3D-stacked DRAM
controller as an FCFS policy.
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Figure 5.5: System model of reference architecture with LLC.
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Figure 5.6: System model of reference architecture without LLC.

Figure 5.7 describes an example state of the system model of the reference
architecture with LLC shown in Figure 5.5. In this example, the system model
consists of a CPU equipped with six CPU cores, each of which has a queue in
front of it and has dedicated L1 and L2 cache memories, an on-chip shared LLC
with a queue in front of it, a 3D-stacked DRAM and its controller. The five of
the six CPU cores are assigned for packet processing. As well as the example
shown in Figure 5.4, there are ten incoming packets in the order of P1, P2,
· · · , P10. The first five of them are processed in the five assigned CPU cores,
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and the other five packets wait in each queue in front of the randomly selected
CPU core until the processing of the previous packet finishes. Each CPU core
issues memory requests that correspond to the packet. In other words, the five
memory requests R1, R2, · · · , R5 that correspond to the first five incoming
packets P1, P2, · · · , P5. R1 misses all the levels of cache memories, and then
it is in the queue of the 3D-stacked DRAM controller. R2 and R3 also miss the
L2 cache memory of each CPU core, and then they are transferred to shared
LLC. R2 is accessing LLC, and R3 is waiting for access to LLC until LLC
finishes serving R2. R4 is accessing the L2 cache memory, and R5 is accessing
the L1 cache memory. If R4 and R5 miss both the L1 and L2 cache memories,
they will be transferred to shared LLC.
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Figure 5.7: Example state of reference architecture with LLC, where �sys = 6,
� = 5. There are ten packets P1, P2, · · · , P10.

For both system models that correspond to Figures 5.5 and 5.6, the system
parameters �sys, �,  , "L1, "L2, "3D, �, and 1 are common with the de-
scription in Section 5.2.1. When the LRU cache line in the L2 cache memory is
evicted, the cache line is transferred to the on-chip shared LLC in the system
model that corresponds to Figure 5.5. For the system model that corresponds
to Figure 5.6, the LRU cache line in the L2 cache memory is dropped when the
LRU cache line in the L1 cache memory is evicted to the L2 cache memory.
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5.3 Evaluation

5.3.1 Traffic model

In this work, the traffic model for the memory requests follows that presented
in Chapter 4. In other words, a memory request arrives at the memory system
based on a Poisson arrival process whose average rate is _. The total number
of table entries stored in the system is denoted as #ent. This work assumes
that the requested content follows a Zipf-like distribution, in which the nor-
malized probability of requesting the 8th most popular table entry is expressed
as

1
8U∑#ent

8=1
1
8U

. The typical value of U is in the range of 0 < U < 1. As U increases,

more requests are concentrated on a few most popular contents. This work
sets the value of U as 0.83 [165] unless otherwise stated.

5.3.2 System assumption

This subsection introduces the assumption of the system model for the sim-
plicity of the numerical simulations.

This work assumes in-order CPU cores and blocking cache memories. Each
CPU core processes only one request at a time. Thus the number of issued
memory requests at a time is at most the number of CPU cores that the system
has, �sys. Thereby this work assumes that the size of the queue in front of
each LLC slice, the shared LLC, and 3D-stacked DRAM controller equals the
number of CPU cores, �sys.

This work considers that the clock frequency of CPU cores and its associ-
ated L1/L2 caches may dynamically change in operation. For instance, Intel’s
Turbo Boost Technology [166] automatically increases clock frequency of CPU
cores for peak loads if the power consumption and temperature of the CPU
are below the specification limits. Thus, in the simulations, this work assumes
that the processing times in L1/L2 caches follow exponential distributions.
According to [74], the access time to LLC slice varies depending on the dis-
tance between a CPU core and an LLC slice. In the simulations, this work
assumes that the processing time of LLC slices follows an exponential distri-
bution. The processing time of 3D-stacked DRAM is considered based on the
DRAM mechanism, such as precharge, where the row buffer is written back to
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the DRAM cell before loading another row.
This work also assume that the system is in a stable condition, where there

is no memory write requests for such as table update. This assumption allows
us to ignore cache coherency. Every data transfer between each level of cache
memory and the off-chip 3D-stacked DRAM is performed in 8-byte blocks.

This work assumes that, the database that associate with multiple packet
processing tasks in VNFs may not be accommodated in the on-chip caches due
to a large number of subscribers or complex rules for searching and classifica-
tion process. While this work takes the table lookup as an example of packet
processing, the type of database in such VNFs are not limited to the lookup
tables, and there can be other types of database considered for the VNFs.
As a result, some of the data may be accommodated outside of the on-chip
caches. To reproduce this situation, the memory capacity of each cache and
the number of table entries are considered to be smaller than those of today’s
general-purpose computers in the evaluation. Without this assumption on the
memory capacity of each cache and the number of table entries, the numerical
simulations cannot finish within a practical time. For instance, if simulation
parameters are set as "L1 = 64 [KiB], "L2 = 512 [KiB], "Slice = 1 [MiB],
"LLC = 28 [MiB], the estimated time to obtain a one-plot result is at least one
month.

5.3.3 Blocking probability and average waiting time

Let ' denote a set of requests that are issued by CPU cores during a certain
period of time. The total number of requests in ' is represented by |' |. A
memory request is blocked if the total number of already accommodated re-
quests in the system equals  . Let 'b be the set of blocked requests, where |'b |
denotes the number of blocked requests. Blocking probability is a probability
that a newly issued memory request is blocked. Thus, blocking probability
is defined by %b =

|'b |
|' | . Throughput, _e, is defined by _e = _(1 − %b). For

accepted request A ∈ '\'b, this work defines CA as the waiting time until it
is processed by the CPU core. Thereby, this work defines ,e as the average
effective waiting time by ,e =

∑
A ∈'\'b CA
|' |−|'b | . The sets of requests that hit the L1

cache memory, the L2 cache memory, and the LLC are represented by 'L1,
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'L2, and 'LLC, respectively. Hit probabilities in the L1 cache memory, the
L2 cache memory, and the LLC are defined by %L1 =

|'L1 |
|' | , %L2 =

'L2
|'\'L1 | , and

%LLC =
|'LLC |

|'\'L1\'L2 | , respectively.
This work considers the 3D-stacked DRAM that has ( channels each of

which has two banks. The processing rates of 3D-stacked DRAM channel with
and without bank interleaving are ` = `2 and `1, respectively. Let d be a
traffic load, which is defined by d = _

(`
. (` means the average number of

memory requests that a system can process per unit time.
Let # denote the number of table entries stored in the 3D-stacked DRAM.

This work considers the IP addresses lookup based on DIR-24-8-BASIC [13]
algorithm for the benchmark of the packet processing, where the size of each
entry is 2 byte. Thereby, this work sets 1 = 2 [B]. This work also sets the
following values for each system parameter unless otherwise stated,  = 100,
U = 0.83, "L1 = 128 [B], "L2 = 512 [B], "Slice = 146 [B], "LLC = 4096 [B],
�sys = 28, !sys = 28, d = 0.7, #ent = 2 × 104, `L1 = 100, `L2 = 50, `LLC = 10,
` = `1 = 1, `2 = 0.7, ( = 32. The memory capacity of 3D-stacked DRAM is
considered as "3D = 4 [GiB], which is large enough to store all the entries in
the system.

5.3.4 Numerical results

This work presents the numerical simulation results of three system models,
each of which corresponds to the following architecture: (a) proposed archi-
tecture, (b) reference architecture with LLC, and (c) reference architecture
without LLC. In this subsection, this work labels these three as Proposed,
With LLC, and Without LLC.

Figures 5.8, 5.9, and 5.10 show the blocking probabilities, average effective
waiting times, and throughputs for different numbers of entries in each cache
line with different architectures, respectively, where � = 28, ! = 28, d = 0.7,
and #ent = 2×104; the set of numbers of entries in each cache line is considered
as {1, 2, 4, 16, 32, 64}. This work observes that, as the number of entries
in each cache line increases, the blocking probability increases; the average
effective waiting time increases; the throughput decreases. This is because that
more entries which are unpopular but are stored in the same cache line with
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some popular entries appear in each cache memory as the number of entries
in each cache line increases. As a result, the capacity of each cache is utilized
inefficiently, which decreases the hit probability in each level of cache memory
and degrades the system performances in terms of the blocking probability, the
average effective waiting time, and the throughput. This work observes that
the proposed architecture outperforms the other two architectures in terms
of each considered aspect. Today’s typical general-purpose computer systems
have 64-byte cache lines, which corresponds to �/1 = 32. When �/1 = 32, the
proposed architecture reduces memory access latency by 62 % and 12 % and
increases throughput by 108 % and 2 % with reducing the blocking probability
by 96 % and 50 %, compared to the architecture with LLC and the architecture
without LLC, respectively.
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Figure 5.8: Blocking probability depending on number of entries in each cache
line.

These results can be converted to packet processing performance by using
the required number of memory accesses of a packet processing application to
process a packet in the similar method presented in Section 3.5.3. For instance,
let the system have a lookup table for IP addresses lookup, where table entry of
each IP address is allocated in a flat manner so that every lookup for a packet
finishes with one memory access. Typical latency of single memory access to
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Figure 5.9: Average effective waiting time depending on number of entries in
each cache line.
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Figure 5.10: Throughput depending on number of entries in each cache line.
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HMC is usually between 100-180 [ns] with an average of 125 [ns], according
to [156, 157]. Thus this work assumes that the service rate of the 3D-stacked
DRAM, `, is 8 M services per second. As well as the same configuration for
Figures 5.8, 5.9, 5.10, this work sets � = 28, ! = 28, ( = 32,  = 100, d = 0.7,
U = 0.83, �/1 = 32, and #ent = 2 × 104. Based on these configurations, this
work calculates the throughput of processing 64 [B] packets and latency of
single memory access. The calculated throughput and latency of the proposed
architecture, the architecture without LLC, and the architecture with LLC
are 89.8 [Gbps] and 333 [ns], 87.8 [Gbps] and 381 [ns], and 43.0 [Gbps] and
896 [ns], respectively.

Figures 5.11, 5.12, and 5.13 show the dependencies of blocking probabilities,
average effective waiting times, and throughputs in different levels of caches to
the number of assigned LLC slices1, respectively, with considering three values
of U, � = 28, �/1 = 32, d = 0.7, and #ent = 2 × 104; the set of numbers of
assigned LLC slices, !, is considered as {1, 4, 8, 16, 28}. This work observes
that, as the number of assigned LLC slices increases, since the LLC can process
more packets at the same time, which reduces the total time processing each
packet, the system performs better in terms of each considered aspect. When
! is relatively small compared to �, the system performance increases rapidly
as ! increases. The on-chip cache memories become more effective for larger
U where only a few most popular entries are frequently requested.

Figures 5.14, 5.15, and 5.16 show the blocking probabilities, average effec-
tive waiting times, and throughputs for different numbers of assigned CPU
cores considering different numbers of assigned LLC slices with different archi-
tectures, respectively, where �/1 = 32, d = 0.7, and #ent = 2 × 104; the set of
numbers of assigned CPU cores is considered as {4, 8, 12, 16, 20, 24, 28}. As
the number of assigned CPU cores increases, more requests can be processed
at the same time. Consequently, the blocking probability decreases; the aver-
age effective waiting time decreases; the throughput increases. As the number
of assigned LLC slices increases, the performance of the proposed architec-
ture becomes better. Especially, the architecture without LLC outperforms
the proposed architecture with ! = 4, but when ! is set to 16 and 28, the
proposed architecture outperforms the architecture without LLC.

1Note that the same value of `LLC is used for different values of !.
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Figure 5.11: Blocking probability depending on number of assigned LLC slices.
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Figure 5.12: Average effective waiting time depending on number of assigned
LLC slices.
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Figure 5.13: Throughput depending on number of assigned LLC slices.
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Figure 5.14: Blocking probability depending on number of assigned CPU cores
�/1 = 32.
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Figure 5.15: Average effective waiting time depending on number of assigned
CPU cores �/1 = 32.
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Figure 5.16: Throughput depending on number of assigned CPU cores �/1 =

32.
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Figures 5.17, 5.18, 5.19, and 5.20 show the blocking probabilities, aver-
age effective waiting times, throughputs, and hit rates of each level of cache
memory for different total numbers of entries in the system with different ar-
chitectures, respectively, where � = 28, ! = 28, �/1 = 32, and d = 0.7; the set
of total numbers of entries in the system is considered as {103, 104, 2× 104, 3×
104, 4 × 104, 5 × 104, 6 × 104}. This work observes that, as the total number of
entries in the system increases, the blocking probability increases; the average
effective waiting time increases; the throughput decreases. This is because, as
the total number of entries in the system increases, the proportion of entries
stored in the cache memories decreases, which degrades the efficiency of the
cache. As a result, the hit rate in each level of cache memory decreases, and
the system perform worse in terms of each considered aspect.

Figures 5.17, 5.18, and 5.19 observe that the increasing speeds of block-
ing probability and average effective waiting time and the decreasing speed
of throughput are slower as the total number of entries increases. When the
value of #ent is small, or #ent = 104, the proposed architecture significantly
outperforms the architecture without LLC. The benefit of proposed architec-
ture decreases as the value of #ent increases; when the value of #ent is greater
than one point, the architecture without LLC slightly outperforms the pro-
posed architecture.

For better operation of the proposed architecture when the benefit of on-
chip LLC slices decreases, there are several approaches: to skip the on-chip
LLC [169, 170], which allows the requests that miss the L2 cache memory
directly access the off-chip 3D-stacked DRAM or to skip the on-chip LLC
when allocating unlikely to be reused cache line instead of replacing the LRU
content of the LLC for every cache miss [171–176].

In the proposed architecture, an application may skip the on-chip LLC
slices based on the operator’s assignment of LLC slices or the determination of
the skip selection logic in the FPGA. By considering the skip of on-chip LLC
slices, the proposed architecture will behave similar to the architecture without
LLC when the total number of entries is larger than a certain point where
the architecture without LLC starts to outperform the proposed architecture.
Meanwhile, the released LLC slices may be assigned to other applications in
the multi-tenant NFV environment.
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Figure 5.17: Blocking probability depending on total number of entries.
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Figure 5.18: Average effective waiting time depending on total number of
entries.
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Figure 5.19: Throughput depending on total number of entries.
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Figure 5.20: Hit rate of each cache level depending on total number of entries.
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5.4 Chapter summary

This chapter proposed a parallel memory system architecture that uses a 3D-
stacked memory, on-chip private cache memories, and on-chip LLC slices to
increase capacity and parallelism of the on-chip cache memories for packet
processing in network virtualization. The on-chip shared LLC comprises mul-
tiple LLC slices, each of which belongs to a CPU core and is connected to the
other CPU cores via a ring or mesh interconnection. An operator of a general-
purpose computer system that has the CPU with LLC slices can assign some
of the LLC slices to a specific application. The proposed architecture inte-
grates the LLC slices with the on-chip private cache memories and the off-chip
3D-stacked DRAM-based parallel main memory. The proposed architecture
also contains the skip selection logic that determines if a memory request
that misses the L2 cache memory skips the LLC based on the statistics of
performance counters. The queueing model-based simulation results observed
that the proposed architecture reduces memory access latency by 62 % and
12 % and increases throughput by 108 % and 2 % with reducing the blocking
probability by 96 % and 50 %, compared to the architecture with LLC and
the architecture without LLC, respectively. When more CPU cores and LLC
slices are assigned, the performance of proposed architecture increases. The
evaluation results also implied that the benefit of LLC slices decreases as the
database size in the system is larger than one point; the architecture without
LLC slightly outperforms the proposed architecture. For such a case, the skip
selection logic in the proposed architecture can select skipping the LLC to
avoid performance degradation.
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Parallel memory system
architecture using network of
interleaved 3D-stacked memories

This chapter proposes a parallel memory system architecture that uses a net-
work of 3D-stacked DRAMs to increase throughput and reduce accumulated
latency of data transfers between processors and memories when there are
multiple packet processing tasks with memory accesses [177]. Packets that en-
ter the memory network receive packet processing at each 3D-stacked DRAM
without going back and forth between the memories and the processors. Each
3D-stacked DRAM has several DRAM layers on top of a logic die. The logic
die consists of a logic for memory accesses and device interfaces and a user-
defined programmable logic, in which each packet processing task is placed. If
a packet processing task needs to search a database, the database is stored in
the same 3D-stacked DRAM as the task is allocated. The database is repli-
cated and allocated in every memory channel to leverage memory parallelism of
3D-stacked DRAMs. For a packet processing task that requires more memory
accesses than the other tasks, additional 3D-stacked DRAMs in the memory
network are assigned for the task.

The evaluation results observe that the proposed architecture reduces the
blocking probability by issuing the next memory request inside the 3D-stacked
DRAM just after the previous memory access, instead of allowing the arrivals of
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incoming packets during the data transfers between the memory and processor.
Consequently, the proposed architecture increases the throughput and reduces
the accumulated latency when there are multiple packet processing tasks, com-
pared to the conventional architecture with 3D-stacked DRAM-based parallel
memory, where every memory access requires data transfers between the pro-
cessors and memories. The proposed architecture also reduces the blocking
probability and latency by assigning more 3D-stacked DRAMs for a packet
processing task that requires more memory accesses than the other tasks.

The rest of this chapter is organized as follows. Sections 6.1 presents the
proposed architecture. Section 6.2 describes the system modeling. Section 6.3
presents numerical results. Section 6.4 summarizes this chapter.

6.1 Proposed architecture

Figure 6.1 shows the proposed memory system architecture for packet pro-
cessing in memory network. The proposed architecture comprises network
interfaces, an FPGA, a CPU, DRAMs, and a memory network that consists
of 3D-stacked DRAMs. The FPGA interfaces the network interfaces and han-
dles the ingress packets and egress packets. The FPGA also parses the ingress
packets and classifies them to distribute the packets to the CPU or the memory
network according to the packet content. The CPU and the DRAM execute
the control plane processing. The FPGA and the memory network execute
the data plane processing. Each 3D-stacked DRAM has an interface logic, a
programmable custom logic, and multiple memory channels, each of which has
several banks. In the 3D-stacked DRAM, the custom logic accesses memory
channels. The interface logic of a 3D-stacked DRAM has up to four connec-
tions, and an additional 3D-stacked DRAMs can be chained to the 3D-stacked
DRAM. Each packet processing task of a VNF is programmed to the custom
logic of each 3D-stacked DRAM in advance. If a packet processing task needs
to search a database, the database is placed in every memory channel of the
same 3D-stacked DRAM where the packet processing tasks are allocated. The
packet processing tasks of the VNF are allocated to the 3D-stacked DRAMs so
that the original packet processing flow comprises the chain of the 3D-stacked
DRAMs. The FPGA also has some packet processing tasks in the rest of the
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logic area when necessary.

��������	
������

����

������

�
�
��
��
�
�
	


�

�
�

�
��
�
�
��
�
��
	
�

�����	�	��

���

���� ���������

����

��������������

�
�
�
�
�
	
�

�����

�
�
�
�
�
	
�

�
�������

���	

�������

���	

�
�
�
�
	
��
��
�

�
�
�
�
	
��
��
�
�

�
�
�
�
�

�����

��

����

����

	
�������


���

��������������

�
�
�
�
�
	
�

�����

�
�
�
�
�
	
�

�
�������

���	

�������

���	

��������������

�
�
�
�
�
	
�

�����

�
�
�
�
�
	
�

�
�������

���	

�������

���	

��������������

�
�
�
�
�
	
�

�����

�
�
�
�
�
	
�

�
�������

���	

�������

���	

�����

��������������

�
�
�
�
�
	
�

�����

�
�
�
�
�
	
�

�
�������

���	

�������

���	

��������������

�
�
�
�
�
	
�

�����

�
�
�
�
�
	
�

�
�������

���	

�������

���	

�
�
�
�
�

�
�
�
�
�

Figure 6.1: Proposed architecture.

When a packet arrives at the network interface, the packet is processed as
follows.

(Step 1) The packet received at the network interface is transferred to
the FPGA and is parsed by the packet parser function in the FPGA. Then
the classifier logic determines whether the packet should be destined to the
memory network or the CPU, according to the packet content. When the
packet is for the control plane processing for such as a routing protocol, a
monitoring protocol, and a management protocol, the packet is destined to
the CPU, and the CPU executes application software for the control plane
processing. When the packet is for the data plane processing, the packet is
destined to the first 3D-stacked DRAM of the memory network.

(Step 2) The packet that enters the first 3D-stacked DRAM receives the
first packet processing task. Each 3D-stacked DRAM corresponds to a single
packet processing task, which is executed by the custom logic of the 3D-stacked
DRAM. The custom logic issues the required number of memory requests to
access the memory channels of the 3D-stacked DRAM to complete the pro-
grammed packet processing task for the packet. When the packet processing
task for the packet is completed in the 3D-stacked DRAM, the next action for
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the packet is determined by the custom logic. If the packet needs to receive the
next packet processing task, the packet is transferred to one of the adjacent
3D-stacked DRAMs in which the next packet processing task is programmed as
described in step 3. If the packet does not have any further packet processing
task, the packet is transferred to the FPGA.

(Step 3) The packet from the previous 3D-stacked DRAM enters the sec-
ond and following 3D-stacked DRAMs and receives the corresponding packet
processing task that each 3D-stacked DRAM has. As with step 2, the cus-
tom logic of each 3D-stacked DRAM issues memory requests and determines
the next action of the packet. If there is no more packet processing task for
a packet, the packet is transferred to the FPGA. If there is further packet
processing task for a packet, the packet is transferred to one of the adjacent
3D-stacked DRAMs that have the task.

(Step 4) When packet processing in the CPU or the network of 3D-stacked
DRAMs is completed, the packet is returned to the FPGA from the CPU or
the memory network. Then, the packet is transferred to the network interface
and transmitted from the system. If there is any further packet processing
task, the FPGA processes the packet before the packet is transferred to the
network interface.

This work focuses on the data plane packet processing as it requires high
memory performance. Thus, the description above mainly presents the pro-
cessing flow of the data plane packet processing. Furthermore, this work mainly
considers the packet processing at step 2 and 3, which directly relate to mem-
ory performance in terms of memory parallelism and memory access latency.
Therefore, Section 6.2 models the behavior of the memory network of 3D-
stacked DRAMs.

This work assumes that there are a sufficient number of 3D-stacked DRAMs
in the architecture to allocate the packet processing tasks of VNFs. For
example, if there are four packet processing tasks, four 3D-stacked DRAMs
are horizontally cascaded and connected to the FPGA. Each of the allocated
packet processing tasks can also be allocated to vertically cascaded 3D-stacked
DRAMs in addition to the 3D-stacked DRAM to which the packet processing
task is allocated. Figure 6.2 depicts an example situation, where four packet
processing tasks and data are allocated to each 3D-stacked DRAM, and addi-
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tional 3D-stacked DRAMs are allocated for packet processing tasks 2 and 3.
The grey 3D-stacked DRAMs are not used, whereas their interface logic re-
mains active so that packets can pass through them when necessary.
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Figure 6.2: Example situation of proposed architecture.

6.2 System model

6.2.1 System model of memory network

This work considers the system model for the memory network of 3D-stacked
DRAMs in the proposed architecture. The memory network consists of mul-
tiple 3D-stacked DRAMs, each of which is connected via horizontal links and
vertical links. Figure 6.3 shows an overview of the system model for the mem-
ory network of 3D-stacked DRAMs in the proposed architecture, where there
are !" 3D-stacked DRAMs in the memory network. For the following descrip-
tion, this work defines the four directions in the memory network as depicted
in Figure 6.3; north, east, south, and west. The maximum number of 3D-
stacked DRAMs in the network in an east-west direction and a north-south
direction are represented by " and !, respectively. Each 3D-stacked DRAM
in the memory network is denoted as 3D-stacked DRAM (8, 9) for 8 ∈ [1, !]
and 9 ∈ [1, "]. Note that not all the !" 3D-stacked DRAMs are always ac-
tive and have packet processing tasks; usually some of the 3D-stacked DRAMs
are active and the others are vacant as depicted in Figure 6.2.
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Figure 6.3: Overview of system model.

The packet processing tasks for a VNF are distributed and allocated to
each 3D-stacked DRAM. Each 3D-stacked DRAM has a packet processing
task, and its associated data is allocated in every memory channel in the 3D-
stacked DRAM. A packet that enters the memory network goes through the
memory network from west to east and receives the packet processing tasks one
by one from each 3D-stacked DRAM. There may be a packet processing task
that is allocated to multiple 3D-stacked DRAMs in a north-south direction to
increase the memory parallelism, depending on the number of required memory
accesses to process a packet.

This work assumes that each packet processing task and its associated data
are firstly allocated to the northmost 3D-stacked DRAMs (1, 9), where 9 ∈
[1, "]. Additionally, this work assumes that, if the 9th task and its associated
data are to be allocated to additional 3D-stacked DRAMs, the 3D-stacked
DRAM (8, 9) is selected in an increasing order of 8, where 8 ∈ [2, !]. This
work defines the required number of memory accesses to process a packet for
the 9th packet processing task by l 9 , where 9 ∈ [1, "]. This work introduces
the one-way packet transfer latency between the FPGA and the 3D-stacked
DRAM, which is denoted as gtr.
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6.2.2 System model of 3D-stacked DRAM

Figure 6.4 shows the system model of each 3D-stacked DRAM in the memory
network. Each 3D-stacked DRAM has three input interfaces and their associ-
ated queues and three output interfaces and their associated queues. The three
input interfaces correspond to the inputs from west, north, and south, and their
associated queues are denoted as queue IW (input from west), queue IN (input
from north), and queue IS (input from south), respectively. Also, the three
output interfaces correspond to the outputs to east, south, and north, and
their associated queues are denoted as queue OE (output to east), queue OS
(output to south), and queue ON (output to north), respectively. Packets that
enter these input and output queues are served in an FCFS policy.
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Figure 6.4: System model of 3D-stacked DRAM.

Each 3D-stacked DRAM has ( memory channels, which can be accessed in
parallel. Each memory channel has # banks, which can be accessed efficiently
using bank interleaving technique. Therefore, each channel-bank set behaves
as a server and is denoted as (=, B), where = ∈ [1, #] and B ∈ [1, (]. A server
that belongs to bank = has queue =, which is served according to the FCFS
policy. If the allocated packet processing task has its associated data, the
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data is stored in the 3D-stacked DRAM so that incoming packets can access
the data in parallel as presented in [133]. The data is equally split into #

partial data and stored in a memory channel. Then the data in the memory
channel is copied to the other memory channels of the same 3D-stacked DRAM.
Consequently, each server has its partial data.

Packets may enter a 3D-stacked DRAM from the west or north. The west
corresponds to the FPGA or the 3D-stacked DRAM that has the previous
packet processing task, and the north corresponds to the vertically adjacent
3D-stacked DRAM in the upper direction that has the same packet processing
task as the current 3D-stacked DRAM. The incoming packet first enters the
load balancer, which determines whether the packet is processed in the current
3D-stacked DRAM or in the vertically adjacent 3D-stacked DRAM in the lower
direction if any. If the packet is determined to be processed in the current 3D-
stacked DRAM, the packet enters the distributor based on a hash function. If
the packet is destined to the southbound, the packet enters the queue OS and
waits for the transfer to the adjacent 3D-stacked DRAM. When the packet is
transferred to and arrives at the adjacent 3D-stacked DRAM, the packet is
enqueued in the queue IN of the adjacent 3D-stacked DRAM and processed in
the same way as the current 3D-stacked DRAM.

The packet from the load balancer is processed by the packet processing
task that is allocated in the custom logic. The logic issues the required number
of memory requests for the packet processing task. The issued memory requests
are processed by the memory subsystem that consists of a hash-function-based
distributor, #( servers, and # queues, as presented in [133]. The memory
request that enters the hash-function-based distributor is distributed to one
of the queues associated with each bank of the memory channels in the 3D-
stacked DRAM. The distribution to queue = is conducted according to the
packet content so that the packet is destined to the appropriate servers that
have corresponding partial data or memory address. The maximum number
of memory requests that can be accommodated in the # queues and all the
servers is  , where  ≥ #(. A memory request is blocked if the number
of memory requests in the memory subsystem exceeds  . A packet whose
associated memory request is blocked is discarded. Memory resources for #
queues are shared under the condition that the total number of accommodated
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memory requests in the memory subsystem does not exceed  , which means
that, in the worst case,  − ( memory requests are waiting in one particular
queue and ( memory requests are served by the corresponding ( servers. The
sizes of queue IN, queue IW, queue IS, queue OS, queue OE, and queue ON
are  .

The service rate of server (=, B) is the memory access rate of bank = at
memory channel B. When more than one server at the same memory channel B
is serving memory requests, these servers perform bank interleaving; otherwise
there is no bank interleaving. When there are | banks that perform bank
interleaving at the memory channel B, this work calls that the |-degree bank
interleaving. Consequently, there is no bank interleaving when | = 1.

When a server finishes its service, the response to the memory request is
returned to the custom logic. If the packet processing task is completed by
receiving the response, the corresponding packet departs the memory subsys-
tem and its next action is determined out of the three: returns to the FPGA,
enters to queue OE, and enters to queue ON. If the packet has no more packet
processing task in the memory network, the packet returns to the FPGA. If the
packet needs to receive the next packet processing task, the packet is destined
to queue OE or queue ON. When there is an adjacent 3D-stacked DRAM to
the east, the packet is enqueued in queue OE and waits for the transfer to
the east 3D-stacked DRAM. When there is no adjacent 3D-stacked DRAM to
the east, the packet is destined to the queue ON to waits for the transfer to
the north 3D-stacked DRAM. The next action of an incoming packets from
queue IS is determined in the same way as the packet that departs the memory
subsystem.

If the packet processing task allocated in the custom logic needs to access
the memory again, the additional memory request is distributed to the ap-
propriate queue by the hash-function-based distributor and waits for the next
service. If the packet processing task is completed as a result of the memory
access, the corresponding packet departs the memory subsystem, and its next
action is determined as with the description above.
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6.3 Numerical results

6.3.1 Performance metrics and evaluation settings

This work evaluates the blocking probability, throughput, and average effec-
tive waiting time as performance metrics of the proposed architecture. Let )
represent a set of packets that enter the memory network during a certain pe-
riod of time. The total number of packets in ) is denoted by |) |. The number
of discarded packets in the memory network during the period is represented
by |)1 |, where )1 denotes the set of discarded packets. This work defines the
blocking probability %1 as a probability that a packet is discarded in the mem-
ory network, which is represented by %1 =

|)1 |
|) | . Consequently, throughput _4 is

defined by _4 = _(1−%1). For processed packet without being discarded in the
memory network C ∈ ) \ )1, this work defines its waiting time to be returned
to the FPGA by gC . This work introduces average effective waiting time ,4,
which is defined by,4 =

∑
C ∈) \)1 gC
|) |\|)1 | . This work introduces a traffic load d, which

is defined by d = _
(`
.

This work assumes that a packet departs the FPGA and arrives at the
queue IW of the first 3D-stacked DRAM of the memory network following a
Poisson arrival process with average rate of _. Since the processing time of
DRAM depends on the DRAM specific mechanism, such as precharge before
loading another row, this work assumes that the service rate of server (=, B)
follows an exponential distribution with average service rate of `| for |-degree
bank interleaving, where `1 ≥ `2 ≥ · · · ≥ `# with |`| ≥ `1.

In the numerical simulations, this work considers that each 3D-stacked
DRAM in the memory network has ( = 32 memory channels with # = 2

banks. Thus, the service rates of each server in the 3D-stacked DRAM with
and without bank interleaving are represented as `2 and `1, respectively. This
work sets ` = `1 = 1 and `2 = 0.7`1 = 0.7. Consequently, the average time
required for a single DRAM access without bank interleaving is considered as
1
`
= 1. This work also sets  = 100 as with the works in [133]. According

to the works in [157,178,179], the average time required to access the DRAM
inside an HMC is reported to be around 40 ns, and the typical time required
for a single access to an HMC is reported to be between 100–180 ns with an
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average of 125 ns, when there is no load. Based on these observations, this
work assumes that the required time for a round-trip packet transfer between
the FPGA and the 3D-stacked DRAM is around 80 ns. Consequently, this
work assumes that an one-way packet transfer latency between the FPGA and
the 3D-stacked DRAM, gtr, is around 40 ns, which is approximately equal to
the DRAM latency. This work sets gtr = 1.

6.3.2 Performance dependency on number of packet pro-
cessing tasks and traffic load

This work considers a memory network with " = {1, 2, 4, 8} and ! = 1 as de-
picted in Figure 6.5. Each of the " 3D-stacked DRAMs has a packet processing
task, whose required numbers of memory accesses are l8 = 2 for 8 ∈ [1, "].
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Figure 6.5: Memory network for evaluation of dependency on number of packet
processing tasks and traffic load.

This work introduces a reference architecture that consists of an FPGA
and " = {1, 2, 4, 8} 3D-stacked DRAMs, as shown in Figure 6.6. The reference
architecture is introduced to model a conventional memory system architec-
ture, where the packet processing tasks are executed in the FPGA, and every
memory access is accompanied by the data transfer between the FPGA and
3D-stacked DRAMs. The 3D-stacked DRAMs in the reference architecture
has the same memory subsystem as presented in Figure 6.4, where there are a
hash-function-based distributor, # queues, and #( servers. Each 3D-stacked
DRAM corresponds to one of the " packet processing tasks, each of which
requires two memory accesses, where l8 = 2, to complete the task.

Figures 6.7, 6.8, and 6.9 show the blocking probabilities, throughputs, and
average effective waiting times for different numbers of packet processing tasks,
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Figure 6.6: Reference architecture for evaluation of dependency on number of
packet processing tasks and traffic load.

", with different architectures, respectively; the set of traffic load d is con-
sidered as {0.1, 0.2, · · · , 1.9, 2.0}. This work denotes the proposed architecture
with different " values and the reference architecture with different " values
as “Proposed, " = {1, 2, 4, 8}” and “Ref., " = {1, 2, 4, 8},” respectively.

Figure 6.7 observes that, as d increases, the proposed architecture out-
performs the reference architecture for each d and ", whereas the blocking
probability of both architectures increase. Figure 6.8 observes that, in terms
of throughput, the proposed architecture slightly outperforms the reference ar-
chitecture for small d, and as d increases, the throughput gap between the two
architectures becomes large, where the throughput of the reference architec-
ture decreases. This is because, in the reference architecture, memory requests
of both first memory accesses and second memory accesses are more likely to
be blocked compared to the proposed architecture, as d increases. In the pro-
posed architecture, a memory request for the second memory access is issued
in the 3D-stacked DRAM just after the first memory access is completed. On
the other hand, in the reference architecture, there might be a longer time
interval between the first memory access and the second memory access; a
memory request for the second memory access is issued after the response
of the first memory access is returned to the FPGA, and the issued memory
request for the second memory access enters the memory subsystem in the
3D-stacked DRAM after the data transfer from the FPGA to the 3D-stacked
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DRAM. As a result, in the reference architecture, the memory request for the
second memory access arrives at the memory subsystem after the arrivals of
some new memory requests during the time interval from the first memory
access, where the queues of the memory subsystem are likely to be full.
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Figure 6.7: Blocking probability depending on number of packet processing
tasks and traffic load.

Figure 6.9 observes that the proposed architecture outperforms the ref-
erence architecture for each number of packet processing tasks, ". The gap
between the proposed architecture and the reference architecture becomes large
as " increases. This is because, as " increases, the total number of data trans-
fers between the FPGA and the 3D-stacked DRAMs increases in the reference
architecture. In contrast, the proposed architecture has a constant number
of data transfers between the FPGA and the 3D-stacked DRAMs when the
number of packet processing tasks increases.

Figure 6.9 also observes that the average effective waiting times of the
reference architecture with " > 1 have peaks when d is around 0.7. This
is because, in the reference architecture with " > 1, packet arrival rates of
the second and following packet processing tasks depend on the throughput
of the previous packet processing task. Let _ 94 denotes the throughput of 9th
packet processing task, where 9 ∈ [1, "]. Since _14 ≥ _24 ≥ · · · ≥ _"4 , the
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Figure 6.8: Throughput depending on number of packet processing tasks and
traffic load.
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Figure 6.9: Average effective waiting time depending on number of packet
processing tasks and traffic load.
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throughput decreases when d is larger than a certain point, which is observed
in Figure 6.8, is supposed to be most significant in the first packet processing
task. Consequently, as _14 decreases when d > 0.7, the packet arrival rates of
the second and following packet processing tasks decrease, which eventually
decreases the average effective waiting time. Figure 6.9 also observes that the
behavior of the average effective waiting times of the reference architecture with
" > 1 becomes significant as " increases. This is because, as " increases,
the number of packet processing tasks increase, whose average effective waiting
time depends on the throughput of the previous task.

6.3.3 Performance dependency on number of vertically
cascaded 3D-stacked DRAMs and traffic load

This work considers a memory network with " = 4 and ! = {1, 2, 4, 8} for the
packet processing task 2 as depicted in Figure 6.10. Each 3D-stacked DRAM
has a packet processing task, whose required numbers of memory accesses are
l1 = l3 = l4 = 2 and l2 = 6.
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Figure 6.10: Memory network for evaluation of dependency on number of
vertically cascaded 3D-stacked DRAMs for task 2 and traffic load.

Figures 6.11, 6.12, and 6.13 show the blocking probabilities, throughputs,
and average effective waiting times for different numbers of vertically cascaded
3D-stacked DRAMs for the packet processing task 2, !, respectively; the set
of traffic load d is considered as {0.1, 0.2, · · · , 1.9, 2.0}.
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Figure 6.11: Blocking probability depending on number of vertically cascaded
3D-stacked DRAMs and traffic load.
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Figure 6.12: Throughput depending on number of vertically cascaded 3D-
stacked DRAMs and traffic load.

142



Section 6.3

�

�

��

��

��

��

��

��� ��� ��� ��� ���

�
�
��
��
��
��
��
	

��
��
�
��

�

�
�

��

�

���������	�
���

��	
	����������������

��	
	����������������

��	
	����������������

��	
	����������������

��	
	����� ������ ���

��	
	����� ������ ���

��	
	����� ������ ���

��	
	����� ������ ���

�
�
��
��
��
��
��
	

��
��
�
��

�

�
�

��

�

Figure 6.13: Average effective waiting time depending on number of vertically
cascaded 3D-stacked DRAMs and traffic load.

Figure 6.11 observes that, as ! increases, the blocking probability decreases
for each d. This is because, as ! increases, memory parallelism for the packet
processing task 2 increases, which enables the memory network to distribute
the traffic load to multiple 3D-stacked DRAMs. Since the required number of
memory accesses to complete the packet processing task 2, l2, is larger than
those of the other tasks, the blocking probability of the 3D-stacked DRAMs for
the packet processing task 2 is higher for smaller !, which becomes a bottleneck
in the memory network. Additionally, this work observes that, the blocking
probability of the proposed architecture with ! = 8 is almost the same as that
with ! = 4. This result suggests that ! = 4 3D-stacked DRAMs are sufficient
to perform the packet processing task 2 at the same speed as the other tasks,
and more 3D-stacked DRAMs do not increase the performance of the memory
network further in this configuration.

Figures 6.12 and 6.13 observe that, as ! increases, throughput increases
and average effective waiting time decreases. This observation corresponds
to the behavior of the blocking probability with respect to ! and d, where
the blocking probability is reduced by distributing the traffic load to ! 3D-
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stacked DRAMs. Additionally, Figure 6.13 observes that, as d increases, the
average effective waiting time for ! = 1 increases more rapidly, compared to
the cases for ! = {2, 4, 8}. This rapid increase of the average effective waiting
time corresponds to the rapid increase of the blocking probability for ! = 1,
as observed in Figure 6.11, where the blocking probability for ! = 1 is higher
than the other condition of !, for smaller d.

6.4 Chapter summary

This chapter proposed a parallel memory system architecture that uses a net-
work of 3D-stacked DRAMs to increase throughput and reduce accumulated
latency for memory accesses and data transfers between the processors and
memories when there are multiple packet processing tasks. In the proposed
architecture, packets that enter the memory network receive packet processing
tasks at each 3D-stacked DRAM without data transfers between the processors
and memories until the packet processing is completed. For a packet process-
ing task that requires more memory accesses to complete the task than the
other tasks, the task is allocated to the additional 3D-stacked DRAMs in the
memory network to increase memory parallelism. This work evaluated the
proposed architecture in terms of the blocking probability, throughput, and
average effective waiting time considering different numbers of packet process-
ing tasks and assigned 3D-stacked DRAMs for a particular task, with respect
to input traffic load. The evaluation results observed that the proposed archi-
tecture reduces the blocking probability by issuing the next memory request
inside the 3D-stacked DRAM just after the previous memory access, instead of
allowing the arrivals of incoming packets during the data transfers between the
memory and processor. Consequently, the proposed architecture increases the
throughput and reduces accumulated latency when there are multiple packet
processing tasks, compared to the conventional architecture with 3D-stacked
DRAM-based parallel memory, where every memory access is accompanied by
data transfers. The proposed architecture also reduces the blocking probabil-
ity and the average effective waiting time by scaling the number of 3D-stacked
DRAMs for a particular packet processing task that requires more memory
accesses than the other tasks.

144



Chapter 7

Conclusions

Packet processing requires high memory performance for packet classification,
searching, modification, queueing, and so on. Network virtualization is ex-
pected to reduce both CAPEX and OPEX by using inexpensive and flexible
COTS hardware such as general-purpose computers instead of dedicated net-
work equipment. However, the lack of memory parallelism in general-purpose
computers significantly degrades the packet processing performance of VNFs.
In particular, large-scale service providers such as telecom operators have de-
pended on conventional dedicated network equipment in order to satisfy the
SLA of heavy-duty VNFs that accommodates a large number of subscribers,
which prevents network operators from benefiting from network virtualiza-
tion. This thesis studied four problems regarding parallel memory system
architectures for packet processing in network virtualization. Each problem
corresponds to the main memory parallelism, integration of the on-chip cache
memories of the CPU with the parallel main memory, capacity and parallelism
of the on-chip cache memories in the presence of parallel main memory, and
accumulated latency of data transfers between processors and memories when
there are multiple packet processing tasks with memory accesses, respectively.

Firstly, this thesis proposed a parallel memory system architecture that
uses a 3D-stacked memory to increase the memory parallelism of the main
memory in general-purpose computers for packet processing in network virtu-
alization. A database searched in packet processing is split into several partial
databases, each of which is stored in a memory bank in a memory channel so
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that the original database comprises all the partial databases in the memory
channel. The database in a memory channel is copied to the other memory
channels in the 3D-stacked DRAM so that the proposed architecture enhances
the memory parallelism by leveraging the memory channel-level parallelism
and bank interleaving. According to the packet content, a hash-function-based
distributor distributes incoming memory requests into an appropriate memory
channel-bank set that contains a partial database in the 3D-stacked DRAM.
This work introduced an analytical model of the proposed main memory sys-
tem architecture that considers the bank interleaving, for two traffic patterns
where the arrivals of memory requests are either random or bursty. The analyt-
ical results for random arrival of memory requests observed the performance
dependency of the proposed architecture on traffic load and the number of
bank interleaving. The analytical results for bursty arrival of memory requests
observed the performance dependency of the proposed architecture on input
traffic burstiness. Based on these analytical results, the calculated packet pro-
cessing performance, for which IP routing is taken as an example, showed that
the proposed architecture increases the packet processing up to 80 Gbps for the
smallest-sized IP packet involving both arrival patterns of random and bursty
memory requests.

Secondly, this thesis proposed a parallel memory system architecture in
general-purpose computers that uses a 3D-stacked memory and on-chip private
cache memories to reduce memory access latency in the existence of main mem-
ory parallelism for packet processing in network virtualization. The proposed
architecture integrates the on-chip private cache memories of each CPU core,
that is the L1 and L2 cache memories, with the off-chip 3D-stacked DRAM.
Frequently accessed database entries in the 3D-stacked DRAM are copied and
stored in the on-chip cache memories. This work explored the memory system
architecture in terms of the integration of the on-chip cache memories with
the off-chip 3D-stacked DRAM, considering two reference architectures, one
with the on-chip L1 and L2 cache memories and the on-chip shared LLC and
one without on-chip cache memory. The results observed that the proposed
architecture reduces memory access latency by 58 % and 1.8 % and increases
throughput by 104 % and 1 % with reducing the blocking probability about
91 % and 18 %, compared to the architecture with the on-chip shared LLC
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and the architecture without any on-chip cache memory, respectively. The
results also observed that the on-chip shared LLC becomes a bottleneck due
to the concentration of memory requests, which implies that memory paral-
lelism in on-chip cache memories is inevitable for packet processing in network
virtualization when the main memory parallelism coexists.

Thirdly, this thesis proposed a parallel memory system architecture that
uses a 3D-stacked memory, on-chip private cache memories, and on-chip LLC
slices to increase both capacity and parallelism of the on-chip cache memories
in the integration with the parallel main memory for packet processing in net-
work virtualization. The on-chip shared LLC comprises multiple LLC slices,
each of which belongs to a CPU core and can be accessed from the other CPU
cores. The number of assigned LLC slices to a specific application is config-
urable. The proposed architecture integrates the LLC slices with the on-chip
private cache memories and the off-chip 3D-stacked DRAM. It also has the
skip selection logic that determines if a memory request that misses the L2
cache memory skips the LLC based on the statistics of performance counters.
The results observed that the proposed architecture reduces memory access
latency by 62 % and 12 % and increases throughput by 108 % and 2 % with
reducing the blocking probability by 96 % and 50 %, compared to the architec-
tures with the on-chip shared LLC and that without on-chip LLC, respectively.
In addition, with a larger number of assigned LLC slices, performance of the
proposed architecture increases, while the number of assigned LLC slices does
not significantly increase the memory performance if more than a certain num-
ber of LLC slices are assigned. Additionally, the results also implied that the
benefit of LLC slices decreases as the database size in the system is larger than
one point. For such a case, the skip selection logic in the proposed architecture
can select skipping the LLC to avoid performance degradation.

Fourthly, this thesis proposed a parallel memory system architecture that
uses a network of 3D-stacked memories to increase throughput and reduce ac-
cumulated latency of data transfers between processors and memories when
there are multiple packet processing tasks with memory accesses. In the pro-
posed architecture, packets that enter the memory network receive packet pro-
cessing tasks at each 3D-stacked DRAM without data transfers between the
processors and memories until the packet processing is completed. For a packet
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processing task that requires more memory accesses to complete the task than
the other tasks, the task is allocated to the additional 3D-stacked DRAMs
to increase memory parallelism. This work evaluated the proposed architec-
ture in terms of the blocking probability, throughput, and average effective
waiting time considering different numbers of packet processing tasks and as-
signed 3D-stacked DRAMs for a particular task, with respect to input traffic
load. The evaluation results observed that the proposed architecture reduces
the blocking probability by issuing the next memory request inside the 3D-
stacked DRAM just after the previous memory access, instead of allowing the
arrivals of incoming packets during the data transfers between the memory and
processor. Consequently, the proposed architecture increases the throughput
and reduces accumulated latency when there are multiple packet processing
tasks, compared to the architecture with 3D-stacked DRAM-based parallel
main memory, where every memory access is accompanied by data transfers.
The proposed architecture also reduces the blocking probability and the av-
erage effective waiting time by scaling the number of 3D-stacked DRAMs for
a particular packet processing task that requires more memory accesses than
the other tasks.

The four proposed architectures studied the three fundamental compo-
nents, which are the main memory, the on-chip private cache memories, and
the on-chip LLC slices, respectively, and the memory network, in the par-
allel memory system of general-purpose computers for packet processing in
network virtualization. This thesis provided the parallel memory system ar-
chitectures to increase VNF performance on top of general-purpose computers
by using the 3D-stacked DRAM, the on-chip cache memories, and the dis-
tributed placement of the database. These proposed architectures enable the
large-scale network operators to apply network virtualization to the burden-
some network functions that have large databases, which cannot be the target
of network virtualization based on the conventional architectures. This thesis
also provided the memory network of 3D-stacked DRAMs for future general-
purpose computer architectures, inspired by the memory-centric computing
architectures. The memory network architecture eliminates the data transfers
between processors and memories during packet processing, which will con-
tribute to the low-latency network and energy-efficient NFVI. The parallelism
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of the 3D-stacked DRAM-based main memory architecture and the distributed
database placement increase the overall memory performance for packet pro-
cessing. An operator of the computer systems can also select the assignment of
parallel LLC slices to an application and whether to skip the LLC depending
on the database size and the occurrence of LLC misses to increase memory
performance further. The memory network of 3D-stacked DRAMs reduces
the blocking probability of multiple memory accesses required for a particu-
lar packet processing task, which eventually increases throughput and reduces
accumulated latency of data transfers between processors and memories when
there are multiple packet processing tasks with memory accesses.

For future works, there can be two directions in packet processing in net-
work virtualization. First, this thesis considers the memory accesses to search
the databases in the steady state in which there is no memory write operations.
In the network in operation, memory write operations for such as updates of
routing tables and classification rules may happen. Therefore, the first direc-
tion by expanding the proposed architectures is to consider the memory write
operations. Second, this thesis studies parallel memory system architectures
in general-purpose computers for packet processing in network virtualization.
For packet processing, there are other hardware and software components in
general-purpose computers, such as processors, accelerators, virtualization hy-
pervisors, OSes, and programming models to utilize the memory parallelism.
Therefore, the second direction is to consider the other components in general-
purpose computers for packet processing in network virtualization in addition
to the proposed memory system architectures.
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