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Abstract 

The fluctuation structure of the freezing limit in finite-dimensional 
random matrix ensembles, in which the inverse temperature parameter(3 
tends to infinity, has been a topic with several recent developments. It is 
known that in this regime, the joint probability density of the eigenvalues 
obeys a multivariate Gaussian distribution. Recently, it was found that 
the covariance matrix involved in this distribution shows a surprisingly 
regular structure, and a complete description of its eigenvalues and eigen-
vectors was given by Andraus, Hermann and Voit for the Hermite (or 
Gaussian), Laguerre (or Wishart) and Jacobi ensembles of random matri-
ces. In this paper, we showcase an application of these results to the hard 
edge statistics of the Laguerre ensemble. We show that the eigenvalue 
variance in the hard edge region is given asymptotically by a specific in-
tegral involving Bessel functions, which is itself derived from asymptotics 
of the covariance eigenvector matrix. 

1 Introduction 

Historically, random matrix ensembles were defined as real symmetric, complex 

Hermitian or quaternion self-dual, a process which is summarized as Dyson's 

threefold way [1, 2]. For each of these symmetries, it was found that the eigen-

value distribution had the form of the partition function of a one-dimensional 

system of log-interacting charged particles at an inverse temperature f3 equal to 

1, 2 or 4, corresponding to the matrix symmetry in question. Decades later, Du-

mitriu and Edelman [3] introduced tridiagonal random matrix ensembles with 

eigenvalue distributions similar to those of the threefold-way, with the important 

distinction that f3 could be chosen as a positive real parameter. 

Then, it became meaningful to study the limiting cases of these eigenvalue 

distributions, and in particular a description of the freezing (large-{]) asymp-

totics of the Hermite and Laguerre ensembles was given in [4]. There, it was 

shown that the freezing asymptotics of the eigenvalue distributions follow a 

multivariate Gaussian distribution, and an elaborate form of the covariance 

matrices was found. More recently, a study of the freezing regime was carried 

out in [5, 6], where the properties of the inverse covariance matrix were clarified 

for the Hermite, Laguerre and Jacobi cases. Specifically, the eigenvalue struc-

ture for all three cases was derived, and the corresponding eigenvectors were 

identified as being generated by a finite family of orthogonal polynomials with 

respect to discrete measures localized at the zeros of Hermite, Laguerre and 

Jacobi polynomials, respectively. 
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The most recent development on this topic concerns the concrete form of 

the inverse covariance matrix eigenvectors and of the covariance matrix itself. 
It was shown by Andraus, Hermann and Voit [7] that the polynomials which 
generate the covariance matrix eigenvectors are in fact the de Boor-Saff dual 

polynomials of the Hermite, Laguerre and Jacobi polynomials [8, 9]. Moreover, 
with the explicit form of the eigenvectors, significantly simpler new forms for 
the covariance matrix in the Hermite and Laguerre case were found, while the 

covariance matrix in the Jacobi case was previously unknown. 
In this paper, we make use of the results in [7] to investigate the variances 

in the hard edge for the Laguerre case. Consider the /3-Laguerre ensemble in 

N dimensions; after an appropriate rescaling by a factor of y/5, its eigenvalue 
density PN,/3,a(Y) is given by 

N 

PN,/3,a(Y) = CN,/3,ae―/3IIYll2 /2. IT (yJ _ yり9.rry,f3(a+1), （1) 

i<j i=l 

where y E WB,N := {x E 股N : 0さ X1:S ・ ・・こ邸｝（theclosed Weyl 
chamber of type B砂 /3> 0, a > -1 , CN,fJ,a is a normalization constant 
that is obtained from a Selberg integral [2], and II ・ II is the L2 norm. Con-
sider a random variable YN,fJ,a whose distribution is PN,fJ,a, and denote by 

T ZN,a = (z1,N,a,..., ZN,N,aY E W B,N the ordered vector of zeros of the Nth 
Laguerre polynomial 

犀(x) ：＝竺—l)j (: ~ ;) *・ 
Lemma 1.1 (Andraus, Voit [5]). In the freezing limit, 

YN,(3，a/vlJ-ZN,a(3→00 

→ YN,a 
1/vlJ 

(2) 

(3) 

weakly. YN,a follows a centered multivariate Gaussian distribution with inverse 
covariance matrix given by 

[s(a+l)]ii = 

1 +(a+ l)(zi,N,a)-2十ご伯，N,a-Zl,N,a)-2 + (zi,N,a + Zl,N,a)-2], (4) 

and 

[S(a+1加＝（Zi,N,a+ Zj,N,a)-2 -(zi,N,a -Zj,N,a)-2 (5) 

with i =J j and 1 :S i,jさN.

The covariance matrix r;(a+l) = [S(<>+1)]―1 can be characterized as follows. 

Theorem 1.2 (Andraus, Hermann, Voit [7]). The matrix 3(a+l) has eigenval-

ues入j= 2j, j = 1,..., N, and eigenvectors 

Vj,a = (,/釘Na L訊~,...,~言ご―L塁(zNN,a))T
¥I N(N + a) L悶 (z1,N,a)'・ ・ ・'V N(N + a) L塁 (zN,N,a))'

(6) 
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Figure 1: Plot of ar,a for r = 1 (gray), 2 (black), 3 (dashed), and 4 (dot-
ted). Note that while each of the curves is monotonically increasing in a, their 
steepness is strongly dependent on r. 

where｛が叫
J 

x)}~0 denotes th j=O thonormal L e orthonormal Lague汀 epolynomials, and l :::; j :::; 

N. Then, th e covariance matrix reads 

N ~（a) 
［炉伽＝石戸戸ぷこ上LN-K(zi,N,a)L瓢 z]，N,a)

N(N+a) 2ki(a) 
(7) 

k=1 N-1(zi,N,a)L炉凸，N,a)

We emphasize here that similar results for the Hermite and Jacobi cases are 
given in [7], as well as a detailed study of the soft edge statistics on both the 
Hermite and Laguerre cases. The main objective of this paper is to prove the 

following statement, where we denote by la(x) the Bessel function of the first 
kind, and by]叶 itsrth zero. 

Theorem 1.3. Consider the rth smallest eigenvalue of the Lague汀 eensemble 

in the freezing regime, Yr,N,a, which obeys a centered Gaussian distribution. Its 
variance 

叫 N,a:=［炉）］斤

follows the asymptotic limit 

叫 a:＝ limNm,N,a =J 1 2Ja(Ja,パ1l=y)2
dy. 

N→00 。y[Ja-1(J.a,r)-Ja+1(J.a,r)］2 

(8) 

(9) 

We show a plot of(Jr,a as a function of a for various values of r in Fig. 1. 

There, it can be seen that these variances increase with a, which is consistent 
with the intuition that as a grows, the eigenvalues are pushed away from the 
origin and hence have more space to fluctuate. 

As is apparent from Thm. 1.3, the proof of this statement is based on the 
asymptotics of 

Zr,N,a £似k(zr,N,a)

N+aL瓢(zr,N,a)
(10) 

as N→oo. We first introduce a cubic spline to interpolate each of the points 
given by this quantity in Sec. 2. Then, we show that the spline converges 
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uniformly to the Bessel function of the first kind by using the recurrence relation 

of Laguerre polynomials in Sec. 3. We complete the proof by showing that the 
sum in (7) for i = j = r converges to the integral given in Thm. 1.3 in Sec. 4. 
We end the paper with a few concluding remarks in Sec. 5. 

2 Interpolation by cubic splines 

Let us introduce the cubic spline砂 (y)E C2([0, 1]) following [10]. For every 
j = 0,..., N, we impose 

Zr,N,a £訊ー1(zr,N,a) 
砂 (j/N)= ~/~~ =: Fj, j = 0,...,N. 

N+a L悶 (zr,N,a)
(11) 

where we have abbreviated the parameter a and introduced the notation Fj for 
brevity.切vinterpolates between j / N and (j + l) / N via a third-order polynomial 
such that'PN and its first two derivatives are continuous for ally E (0, 1). This 
means that when j/N ~ y ~ (j + 1)/N, the second derivative of砂 (y)must be 

a linear function, and introducing the notation峰 (j/ N) = Mj, we can write 

公(y)= N(MH1 -Mj)(y -j/N) + Mj 

= N(MH1(Y -j/N) + Mj((j + 1)/N -y)), j/N ~ y ~ (j + 1)/N. 

Integrating twice and imposing砂 (j/N)= Fj,砂 ((j+ 1)/N) = Fj+1 allows 
us to write 

NMj+1 NM・

砂 (y)=~(y -j/N)3 + T((j + l)/N -y)3 
6 

+ (NFJ+1 -MJ+1/6N)（y-j/N) 

+ (NFj -Mj/6N)((j + 1)/N -y). (12) 

The most important equation is obtained from the requirement of continuous 

derivatives at every j/N, as it allows us to compute all of the {Mt}f=r/ gi J Jj=O given 

the｛凡｝似 andtwo of the M's. 

炉 (FJ+1-2凡＋Fj-1)= (Mj+l + 4Mj + Mj-1)/6,j = 1,..., N -2. (13) 

There exist several ways to choose two of the M's for solving this system of 

equations. Here, we will only assume that M。=M1= 0, that is, the first 

section of the spline is a linear function. Then,やN(y) is determined uniquely. 

3 Recurrence and convergence to the Bessel dif-

ferential equation 

Our strategy is predicated in understanding the behavior of r.p N as n→oo. In 
order to do this, we look at the recurrence relation obeyed by the de Boor-Saff 

dual polynomials of { i,(a)}：＝計 [9].It was shown in [7] that the dual polynomials 

{Q臼｝f=ol satisfy 

釘 (zr,N,a)= 
L塁ー1(zr,N,a) 
がa).
N-1(zr,N,a) 

(14) 
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Moreover, it can be shown that the recurrence relation for 

is 

附 (x)= 
f(a + l)j! 
r(j+a+l) 

叩(x)

x互叫X)= -~)互乳(x)+(2j 十 a+ 叫叫x)

(15) 

—占二互竺(x). (16) 

It turns out that the defining characteristic of the dual polynomials is that the 

coefficients in their recurrence relation have the same form, with some indexes 
reversed. Specifically, j + 1 and j in the first and third coefficients are replaced 
by N -j + 1 and N -j respectively, while j in the second coefficient is replaced 

by N -j + l. The result is 

xQ臼(m)＝-V(N-j-1)（N-j-1+a)Q昇ー］（叫

+ (2(N -j) + a -l)Q;°'¥x) 

-V(N -j)（N -j +a)Q図(x),j=O,...,N-2. (17) 

By convention, we set Q竺{(x)= 0 and Q~°'\x) = 1. By (11) and (14), we can 
transform (1 7) into 

Zr,N,a乃＝一 J(N-j -l)(N -j -1 + a:)Fj+l 

+ (2(N -j) + a -l)Fj 

一 ~Fj-1, j = 0,..., N -2. (18) 

We are now ready to prove the following claim. 

Lemma 3.1. The spline'-PN(Y) converges uniformly to the solution of 

(1-y)勺”(y)-(1-y)『（y)＋髯，r(l-y) -aりf(y)= 0 (19) 

with boundary conditions 

f(O) = 0 and f'(O) = ]a,r/2. (20) 

Proof. We begin by finding asymptotics for the difference equation (18). We 
recall the asymptotics of Zr,N,a due to [11], 

Zr,N,a = 
j記

4N + 2(a十 1)
+ O(N-2), (21) 

as well as the expansions 

a-2 ふ
凶1-m)（1+ （a-1)x) ＝ 1 + x- —丑＋ 0（企）， and

2 8 
2 a a 

』二＝ 1＋ -x- —丑＋0（企）．（22)
2 8 
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Let us now fix y E (0, 1). Then, for every N, we can find a k(y, N) such that 

k(y, N)-1/2 < yN < k(y, N)+l/2, and it is clear that limN→oo k(y, N)/N = y. 
In (18), we fix j = k(y, N) while writing k = k(y, N) for brevity, and use the 
expansions to obtain 

jふ(N-K) 2 

Fk + (N -k)2 [ 1 + 
a-2 a 

~Fk + (N-k)2[1+ ~— 8(N-K)2]FK+1 

2 a-11_, __ --~r a a 
-(N-k)2[2+B]凡十 (N-k)2[1+~ ― 8(N- K)2]FK-1 

=O(N―1). 

Rearranging terms, we get 

(N -k)2 [Fk+l -2H + Fk-1] 

+ (N -k) [Y(Fk+l -F'.砂一切(Fk-Fk-1)] 
2 2 

1 
+¾り応(1 -k/N)Fk -a 

2Fk+l +Fk-1 
~] = O(N-1). (23) 

Now we estimate砂 (y)by making use of the fact that IY -k/NI is of order 
N-1. We obtain 

砂 (y)＝且＋O(N-1)= 
Fk+l +Fk-1 

2 
+ O(N-1), and 

ん(y)=N(Fk+l -Fk) + O(N―1) = N(Fk -Fk-1) + O(N-1). 

Now, note that the first line is just the lhs of (13), which itself can be rewritten 
as 

1 MK+1 -Mk 叫ー Mk-1
炉 [FK+1-2FK +FK-1] ＝ 3[ 2 +MK + 2 ] 

1 r,, (k + 1/2 
= -［公（）＋公(KIN)＋”

k -1/2 
3 N %(N)l. 

This is an equally weighted average of the second derivative for k -1/2 < y < 
k + 1/2, and this value can deviate from点 (y)at most a quantity of order 
N-1 because the variation of r.p'ん(y)at each interpolation segment is linear. 
Therefore we can write 

公(y)= N打FK+1-2凡＋ Fk-l]+ O(N―1). (24) 

We combine all of these results together with the fact that k(y, N)/N = y + 
O(N-1) to write 

1 
(1-y)賃 (y)-(1 -y)ゃ砂(y)+ i[jふ(1-y) -a2]砂 (y)= g(y, N), (25) 

where g(y, N) is a function of order N-1 for every y E (0, 1). Taking the limit 
proves pointwise convergence to the differential equation, so it remains to show 
that the boundary conditions are correct. First, we can write 

•2 

J四OO砂（0)= J杷OO｀戸＝日OO((N+a)(4点'~ =0. (26) 
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Secondly, using (18) with j = 0, we obtain 

四00r.pk(O)＝J呼00NV [ 
Zr,N,a I 2N + a -1 -Zr,N,a 

N+a ✓(N-1) （N-1+a) ] 2' 
-1=4f., (27) 

because we set the first segment of the spline so that it would be linear. Finally, 

we make use of Thm. 1 of [12], which guarantees the uniform convergence of 
笠v(y) now that we have shown that it converges pointwise to the solution of 

(19)．ロ

The solution of (19) can be found immediately. 

Corollary 3.2. The solution J(y) of (19) is given by 

f(y) = 
2Ja(J.aハパ万）

Ja+1(J.a,r)-J0-1(ja,r) 
(28) 

Proof. Performing the variable substitution u = ]a,r✓「万 in (19) yields the 
Bessel differential equation of parameter a. Because the solution must vanish at 
y = 0, the solution of the Bessel diザerentialequation must vanish at u = ]a,r, 
which rules out the Bessel function of second kind. Finally, computing the 

derivative at zero completes the calculation. ロ

4 Asymptotic behavior of the variance 

In this section we give the proof of Thm. 1.3. The main strategy will be to 
argue that the summand is positive and bounded by a quantity independent of 

N or y in order to make use of the dominated convergence theorem. 

Proof of Thm. 1.3. We begin by rewriting the expression of the rth variance in 

terms of砂・

N-1 

叫 N,a=L 1 1 

k=O 
2(k+l)N 

—¢知(k/N). (29) 

We have included the subscripts r and a to make explicit the dependence of the 

sum on these parameters. One can immediately rewrite this object in terms of 
a Lebesgue integral. 

N-1 
N 1 N 

翫，N,a=と 2（K+1）万r.p知（k/N)= i 11 ~」+ 1ふ (lyN」/N)dy. 

(30) 

By construction,四N,r(Y)is a continuous function. Moreover, because the matrix 
(v1,..., v N) is orthogonal, both its row and its column vectors are mutually 
orthonormal. This means that theび normof the rth row reads 

N-1 
1 t~r.p知(k/N) = 11 r.p知(lyN」/N)dy = 1, 

k=O ゜



74

and by the Holder inequality, 

Jい，r(lyN」/N)dy＝ビ如ふ(k/N)

゜ k=O 

N-1 _ N-1 
1 1 

< A|（といこ ”r.p知(k/N))<::'. 1, 
k=O k=O 

which means that the spline'PN,r(Y) is an integrable function on (0, 1). Con-
sequently,'PN,r(Y) is a continuous and bounded function for every N that con-
verges uniformly to a function proportional to Ja(Jaハバて可）． Therefore,the 

only problem lies in the behavior of N / (LYN」+1)close to y = 0, as it is clearly 
bounded elsewhere in the limit and it converges pointwise to y―1. First note 

that for 0さy< l/N, 

0 < N 2 

LYN」+1
外，r(lyN」/N)::=:;Nr.p知(1/N)

=N石，N，a[2N + a -1 -Zr,N,a ]2 •2 =五 +O(N―1), (31) 
N+aL~J N 

which me皿 sthat for N sufficiently large and O :<S; y < 1/N, 

N 

lyN」+1
点，r(lyN」/N)さは，r・

This bound is independent of N, which means that there exists a constant C 
which bounds the integrand of (30) for every y E (0, 1) and every N. Therefore, 
we can use the dominated convergence theorem to prove our claim. ロ

5 Concluding remarks 

In our main result, we obtained an asymptotic expression for the variance of 

the rth smallest eigenvalue of a Laguerre random matrix in the freezing regime 
which is given by the integral of a Bessel function. This is natural, as it is well-

known that the hard edge is ruled by Bessel statistics [13]. In this sense, we 
expect a similar result for the extreme eigenvalues of a Jacobi random matrix 

in the freezing regime, which are also characterized by Bessel statistics. 

The results in this paper are only a small sample of the many aspects that 

can be studied in the freezing limit of random matrix ensembles. We expect 
many more developments in the future, such as the calculation of eigenvalue 
density profiles, correlation functions and other quantities of interest. 
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