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A forward-backward distribution dependent SDE: 

a drift-less backward case 
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School of Computer Science and Engineering, the University of Aizu. 

Abstract 

We show that a local existence and uniqueness condition implies the global solution on drift-less 
one-dimensional forward and high dimensional backward stochastic differential equations with Lipschitz 
coefficients. 

1 Introduction 

A global solution of Forward Backward Stochastic Differential Equations (FBSDEs for short) has a rich 
mathematical structure and there exists a lot of various contributions, we refer an excellent book [6]. For 
an application to Neural Ordinary Differential Equations [1], it plays an important role to develop to Neural 

Stochastic Differential Equations via a stochastic flow approach [5]. However, the solvability have been not 
disclosed for the following fundamental system, 

{X(r) ＝X(t) ＋[a(s,X(s)，Y(s)，Z(s)）dw(s) 

Y(r)＝ゃ(X(T;)'-1T Z(s)dW(s), r E [t,T]. (l) 

Thanks to Delarue in [2]: If the diffusion coefficient satisfies a non-degenerated condition and it is independent 
of Z, the smoothness of the coefficients is sufficient to obtain the global unique solution. For Z-dependent 
diffusion coefficients, the smoothness does not imply the well-definedness of the solution. To be more precise, 
the local solution exists if the Lipschitz continuous coefficient and terminal function satisfy 

L<p，xLr,,zく 1, (2) 

where L'Pぶ andLcr,z are defined by the infirnurn of the collection of the Lipschitz constants. This is a local 
property close to the maturity T. To extend the solution, we need to estimate the Lipschitz continuity of a 

so called decoupling field, 

sup Lu(t,-),x < L凸

tE[O,T] 
(3) 

which is formalized by Fromm's contradiction method [3, Lemma 2.5.12]. Recently, a unified approach have 
been proposed in [6]. Their approach relies on the well-posedness of a one dimensional ordinary differential 
equation. As it is strong tool to solve one-dimensional linear FBSDE, it is not clear the following degenerate 
case; for an instance a(s,x,y,z) = sinz and <pけ） ＝ （x /2) + cos x in (1). Fromm et. al. solved a specific 
FBSDE that is related to a stochastic utility maximization problem in [4]. They considered that the terminal 
function is uniformly bounded to tame a quadratic structure with respect to Z. Moreover, we note that the 
assumption allows us to tame the singular term of so called characteristic BSDEs. 

In this paper, we consider a different approach. We work on a framework such that the forward process 
takes one dimensional value but the backward process may be high dimensional system: 
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Theorem 1. We suppose that a and <p are Lipschitz continuous satisfying (2). Then, we have (3) holds. 
Moreover, we obtain that there exists the unique global solution of (1). 

The paper is organized as follows. Section 2 is to prepare notion and assumptions. The main result is 

provided in Section 3. In Section 4, we show the key estimate using an argument of stochastic flow. 

2 Preliminaries 

Let W be a standard Brownian motion with values in配 definedon some complete probability space (!1，§,IP'). 
｛名｝t:>cois an argument of natural filtration of W which satisfies usual condition. JR_mxd is identified with 
the space of ream matrices with m rows and d columns. If z E飛mxd,we have lzl2 = trace (zz*) where I ・ I 
stands for the Frobenius norm. 

For any real l E N and T > 0,ダ圏）， denotesthe set of尉 valued,adapted and cadlag process 

{X(t)}tE[O,TJ such that IIXII = lE [sup。:;t:,TIX(t)l2]らく＋oo.A collection炉（股mxd)denotes the set of 

T 
(equivalent classes of) predictable processes {Z(t)}tE[O,T] with values in JR_mxd such that IIZII = lE [ (J。|Z平dr)］古く
+oo. We write a Banach spaceダ徊） xダ刊正） x炉（即mxd)三ダ2Xダ2X炉 ifthere is no risk to 
confuse. For (X, Y, Z) Eダ2Xダ 2X炉， wenote that 

(X, Y, Z, W) : [O, T] x !1→配 x町 l X町mxdX記

Assumption 1. We say that the functions(Jandゃsatisfy(Al) if 

(Al.1) Vt E [O, Tl, ¥:/(x, y, z) E配 xJR.m x JR.mxd, the functions (x,y,z)→u(t,x,y,z) and x f--t“J(x) are 
infinitely differentiable with uniformly bounded derivatives. 

(Al.2) There exists a constant A such that Vt E [O, Tl, ¥:/(x, y, z) E恥lX股mX Rmxd9 

a(t,x,y,z)I ~ A(l + lxl + IYI + lzl), lcp(x)I ~ A(l + lxl). 

Assumption 2. We say that the function a and <p satisfy (A2) if it holds 

(A2.1) The fo'T"Ward SDEs takes a one dimensional process: l = 1. 

(A2.2) L'PぶLu,zく 1,

where we set 
L'P,X全inf{ L > 0 : ¥:/xi E良1(i = 1, 2), Iゃ（X1)-凸）I-S: Llx1-x2I} 

L,,,z全inf{ L > 0 : Vt E [O, T], ¥;/（叫，い） E配 x町 x戸 (i= 1,2), 

la(t,x1,Yい 1)-a(t心2,Y2互）I<:'.L(lx1 -四|＋|Yi -Y2I + lz1 -z叶）｝．

If¥:/t E [O,T], ¥:/(x,y,z) E膨 x良mx恥mxd,the function x→u(t, x) is differentiable, we denote 

如
▽四(s,x)={~(s,x):j=l,...,l, i=l,...,m}E良lxm_

釦 J

Similarly, when a satisfies the condition (Al.I), we write 

▽位(s,x,y,z)=｛詈戸x,y,z):i,p= 1,...,m, j,q = 1,...,d} E艮mxd⑧艮mxd.
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3 Drift-less coupled FBSDEs 

It is known that it does not follow existence and uniqueness of the solution of FBSDEs only from smoothness 
like (Al). In spite of constructing a local solution, we need an additional condition such that (A2). The 
purpose of this section is to show that the local solution's condition (A2) becomes the condition to construct 
the global solution of FBSDEs when it is drift-less type (1). 

3.1 An  iterated scheme via implicit function theorem 

In order to prove Theorem 1, we shall introduce the following iteration scheme. 

Lemma 2. Suppose that (Al) and (A2) hold. Denote 

X6'{(t) = ~, (t,~) E [0,T] x尉

Then, for all n EN, there exists a pair of smooth functions (un-l, Vn-i) and a unique weak solution Xn Eダ 2
such that 

Un-1(s,x)全IE[cp(X~竺'1(T))] , (s,x) E [O,T] x lFせ，

（▽四n-1)(s,x)a(s,Un-1(s,x),vn-1(s,x)) = Vn-1(s,x), (s,x) E [O,T] x叫

ふ (r)=x+ ir a(sぷ (s),Un-1(s, Xn(s)), Vn-1(s，ふ（s))), r E [t,T]. 

Proof. When n = l, we have and denote 

uo(s,x) 今 lE[“つ (Xi•x(T))] =“ぅ(x), (s,x) E [O,T] x JR1, 

Fo(s, x, z)全z-v'xuo(s, x)a(s,x,u0(s,x),z), (s,x,z) E [O,T] x尉 x良mxd.

For all (s0,x0) E [O,T] x記 weconsider the map from (I・ [1，恥mxd)to ([ ・松艮mxd)such that 

G。:z>---+▽四o(so,xo)a (so, xo, uo(so, xo), z). 

As we have 

[Go(z1) -Go（硲） 2:S L'P，缶L,,,zlz1-z2l1, zぃ砂 E町mxd.

It shows that G。iscontraction from (A2). Therefore, we have F0(s0, x0, z0) = 0 for some z0 E恥mxd_Again 
by the assumption (A2), applying the implicit function theorem, we obtain a unique smooth function v0 on 
a neighborhood B(so,xo) such that 

▽xuo(s, x)a(s, uo(s, x), z) = z, z = vo(s, x), (s, x) E B(so,xo) C [O, T] X尉

As we have L,,0,xLrr,z = Lゃ，ェL,,,z,the construction of v0 is independent of the selection (s0, x0). Thus, v0 
can be extended to [O, T] x尉 Aswe have a(s,u0(s,x),v0(s,x)) is Lipschitz continuous, we have a unique 
solution inダ 2such that 

ふ（r)=ハ[a(s，ふ（s),uo(s,X1(s)ふ），vo(s，ふ（s)))dW(s). 

Now, let us assume that there exists desired (un-1(s,x),vn-1(s,x)) and Xn Eダ 2.It defines Un・ For all 
(so,xo) E [O,T] x尉 weconsider the map from (I ・ 11，恥mxd)to (I・ b，恥mxd)such that 

Gn : z >---+▽xUn(so, xo)a (so, xo, un(so, xo), z) 

and we have 

IGn(z1)-Gn（硲） 2:SL叫，xLrr,zlz1ー叫1, Zい硲 E町mxd.

It follows from Lemma 8 and (A2) that it is contraction. Thus, we obtain Vn via the implicit function theorem. 
The continuity of the coefficients a(s, un(s, x), vn(s, x)) implies that there exists a weak unique solution in 
ダ 2such that 

Xn+1(r) =x+ 1'a(s,Xn+1(s),uo(s,Xn+1(s)),vo(s,Xn+l(s))) dW(s). 

For the weak existence and uniqueness via the continuity, see [9]. 口
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Remark 3 (Loss of derivatives). To relax the smooth condition (Al.I), we may face a problem, so called 
loss of derivatives; 

Uo E Ck⇒Vo E Ck-l⇒UnECk-n, n:c;k. 

As it may overcome using an argument of Nash-Moser theorem, we do not go this direction in this paper. 

For any t'.'o T, let us define 

Yn(r)全%-1(r,Xn(r)), Zn(r)全%-1(r,Xn(r)), r E [t,T]. 

and we write (X n, Y n, Zn) = (Xn+l -Xn, Yn+l -Yn, Zn+l -Zn) for n E N. 

Lemma 4. Suppose that (Al) and (A2) hold. There exists a constant 6 > 0 determined by a-, cp and l such 
that 

VT> 0, （ぶYn,Z叫
が xが x炉 [T-6,T]

,(X,Y,Z), 
n→OO 

where (X, Y, Z) is a local solution to (1) on [T -6, T]. 

Proof. Applying Lemma 8, we have for all r E [t, T], 

厄[|兄(r)|2ds］こ L中立[|瓦(r)ド］，
and 

厄[1T広(s)12ds]:s:E[I兄(T)ド］ :S:L'P，事[|兄(T)l2]

Since we have, 

瓦 (r)= [ a(s,Xn+1(s),Yn+1(s),Z正 1(s)）ーa(s,Xn(s)ぷ (s),Zn(s)) dW(s) 

we obtain a constant C > 0 such that 

四[|兄(rll2]:,;c[JE[I又 (s)|2]＋厄[|兄(T)|2]ds 

It follows from the Gronwall inequality that 

lE [I瓦(r)ド］:,;CeCT [lE [I瓦(T)ド］ ds

Therefore, taking 8 E (0, 1) such that CeCT 8:,; ½ and T -t < 8, we obtain that瓦 (t)= 0 for T-t < 8 and 

囮 [I瓦 (T)|2]<化[I瓦 (T)ド］
Therefore, by the Burkholder-Davis-Gundy inequality shows that Xn→X inダ2on the local interval 
[T-8, T]. It induces the convergence (Yn, Zn)→(Y,Z) inダ2x洸丸 Moreover,from the continuous of the 
coefficients. this is the desired solution. ロ

Remark 5. Generally, the above constant 8 is depends on time tor T. On the drift-less case, this can be 
selected by the small length and it is independent of the time. 

Lemma 6 (Stability problem). Suppose that for any m E N,びm and'Pm satisfy (Al) and (A2) and the 
Lipschitz constants is uniformly bounded, 

sup (L'Pm,X + Lびm,X+ L,,m,Y + Lびm,z)< 00. 
mEN 

Let (Xm, Ym, Zm) E..'72 xダ 2X炉 bethe corresponding solution with initial condition X叫0)= TJ for an 
integrable random variable TJ. Then, there exists C > 0 such that 

厄[。:!ぢ|Xm+i(s)-Xm(s)l2] + lE[。翌)Ym+1(s)-Ym(s)12] + lE [1T IZm+i(s) -Zm(s)l2 ds] 

こClE[|'Pm+1 -'Pm 2 （い（T)）＋ JT 1%+1 -%|2 0 s)，Ym+1(s)，zぃ (s)）ds ］ 
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Proof. Note that for all m E N it holds that 

l'Pm+1(Xm+1(T)) -'Pm(Xm(T))I :S: L'Pm,X IXm+1(T) -Xm+1(T)I + l'Pm+l -'Pml (Xm(T)). 

It follows from the same argument of Lemma 4. 口

Proof of Theorem 1. For a given Lipschitz continuous coefficients, it can be uniformly approximated by the 
smooth function satisfying (Al). Thus, it follow from Lemma 6 and the completeness of the Banach space 
ダ 2Xダ 2X炉 thatit is sufficient to prove the existence and uniqueness when cr and <p satisfy (Al) and 
(A2). 

Now, let us consider the following FBSDEs, 

{X(r) ＝x+［び(s,X(s)，Y(s)，Z(s)）dW(s)， 

Y(r) =u(T-8,X(T-8))-iT-/jZ(s)dW(s), rE[t,T-8]. 

It follows from Lemma 4 that (X, Y, Z) can be constructed on [T -28, T -o]. By the uniqueness of the 

forward SDEs, (X, Y, Z) can be constructed uniquely on [T-28, T]. Applying the same argument, we obtain 
that X can be constructed by the patched forward processes on the whole interval, 

X(r) = X(O) + L u(s,X(s),u(s,X(s)),v(s,X(s))) dW(s), r E [O,T]. 

゜We note that Un converges uniformly to a function denoted by u and it satisfies 
Y(t) = u(t,X(t)), t E [O,T]. 

It shows YEダ 2.Finally, it concludes that (X, Y, Z) is a desired result. 口

;0•！こfi：口1:；こ［ S゚1三；『！［〗，th/eXq:1:Ten□z゚n(ds~tニ(sL)<pXLcz ヂ 1 to get the global solutIOn to the 

Y(r) = L<p,xX(T)-[ Z(s)dW(s), r E [O,T]. 

The condition can be extended to dimensional FBSDEs under a non-degenerate condition. 

Assumption 3. We say a and <p satisfies Assumption (A3) if there exist positive constants l'P,"'and 
lu,z such that 

(A3.1) l'P，山，z> 1 and m = 1 

(A3.2)'ef(s,x,y) E [t,T] x政lx町 and'efz1，砂 E町mxd,

l'P,ェ|XJ-X叶三孤叫ー孤叫， m，四 E尉
lu,zlz1 -硲|::;la(s,x,y,z1)-a(s,x,y,砂）．

Corollary 7. Suppose that the assumptions (Al) and (A3) are in force. Then, it admits a unique existence 
of the solution to (2). 

Proof. It is sufficient to prove the existence and uniqueness of (1) when l<p,xlu,z > 1. The lower Lipschitz 
condition implies that the functions x←<p(x) and z→a(s,x,y,z) for any fixed (s,x,y) are bijection maps, 
see [8, Section 4]. Thus, consider the inverse functions and we have 

l'P―1（函）一戸（西）I::;l;土|ふ -i:21,

la―1(s, X, yふ）一 6―1(s,x,y,わ)|::;l；；＇：均ー刻，

ふ，西 E尉 (s,x,y)E [t,T] x沢叫ふ，ゑ2E罠mxd.
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Then, we obtain L戸，ェL -1 
咋，z — <pぶ咋,z

< l-「 <1.Thus, let us consider the following FBSDE, 

｛Y(r） ＝ Y(t)＋[6―1 (;,X(s)，Y(s)，2(s)) dw(s)， 

X(r) = <p―1 (Y(T)) -[ Z(s)dW(s). 

It follows from Theorem 1 that the uniqueness and existence of the solution. Moreover, we have 

Z(s) =び-1(s,X(s),Y(s),Z(s)), 

Z(s) = !7 (s, X(s), Y(s), Z(s)), s E [t, T]. 

This implies the existence and uniqueness of the desired FBSDE (1). 

4 Appendix 

口

Roughly, on drift-less and smooth coefficient SDEs, the spatial derivative of the decoupling field is given by 
the stochastic flow. Moreover, it is a non-negative exponential martingale｛▽,,xt,x(r)}rE[t,T] such that 

▽四(t,x)=E[v'四 (xt,x(T)).▽,,xt,x(T)].

Formally, we show the following lemma. 

Lemma 8 (Key lemma). Suppose that c, and <p satisfy (Al) and c,(x, y, z) = c,(s, x) and X takes one 
dimensional value; l = 1. Let xt,x = { X曰）｝r)}.er+ Tl be a solution to the equation, rE[t,T] 

X(r) = x+ [ c,(s,X(s)) dW(s), t Sr ST. 

Then, for all O S t S r and x, h E尉
IE ['P (xt,x+h(r)) -<p (xt,x(r))] Is L,p,x lhl. 

In particular, denoting u(t, x) = E［ゃ（正（T))],it shows that 

sup Lu(t，・），ェ<Lゃ，x・
tE[O,T] 

Proof. From the mean-value theorem that it holds that for all t S r S T, 

<p (xt,x+h(r)) _ <p (xt,x(r)) = H(r) (xt,x+h(r) _ xt,"'(r)), 

where H(s)(w) is a linear map from罠lto茫 suchthat 

H(r)U =［知((1-0)Xt,x+h(r) + 0Xt，予）） Ud0, U E酎．

Thus, we have 
IH(r) (xt,x+h(r) -xt,"'(r)) I ::; L'P,X I (xt,x+h(r) -xt,"'(r)) I, r E [t, T] 

Applying Jensen's inequality, we have 

IE ['P (xt,x+h(r)) -'P (xt,"'(r))] I::; L<p,xE [lxt,x+h(r)-xt,"'(r)I] -

Again, it follows from the mean-value theorem that it holds that for all t ::; r ::; T and 

炉 叫）一正(r)= h十芦［外(s,xt,x+h(s)) -ak (s, X叫））dWk(s)

d 

=h+t[伍 (s)(xt,x+h(s) -xt,x(s)) dWk(s) 
k=l t 

= hexp [-~[<G(s),G(s)>]Rd ds＋芦［伍(s)dWk(s)]
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where Gk(s) is a functions, 

伍 (s)= [(v四 k)(s, (1 -0)Xに＋h(s)+ 0Xt,x(s)) d0. 

Note that the exponential term is a scalar under l = 1, cf. [7, Lemma 3.2.3]. Thus, we obtain that 

1xt,x+h(r) -xt,x(r)I 

[-~[ = lhl exp [-L~ 〈G(s),G(s)加 ds 十苫l 伍(s)dWk(s)]
As we have IG(s)I'.'::: L叩；， theexponential local martingale is non-negative martingale. Then, we obtain that 

E [lxt,x+h(r) -xt,h(r)I] = lhl. 

In short, we obtain 

IE ['P (xt,x+h(r)) -'P (xt,"(r))] I :c; L<p,x lhl. 

ロ

Acknowledgements 

I would like to express my sincere gratitude to Dr. Hamaguchi at Kyoto University for useful comments on 
the thesis. This work was supported by the Research Institute for Mathematical Sciences, an International 
Joint Usage/Research Center located in Kyoto University. 

References 

[1] Ricky T Q Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud, Neuml Ordinary Differen-
tial Equations, Advances in Neural Information Processing Systems (S Bengio, H Wallach, H Larochelle, 
K Grauman, N Cesa-Bianchi, and R Garnett, eds.), vol. 31, Curran Associates, Inc., 2018, pp. 6571--6583. 

[2] Franc;ois Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenemte case, 
Stochastic Processes and their Applications 99 (2002), no. 2, 209--286. 

[3] Alexander Fromm, Theo内 andapplications of decoupling fields for Jo加 ard-backwardstochastic differential 
equations, Ph.D. thesis, Humboldt-Universitiit zu Berlin, Mathematisch-Naturwissenschaftliche Fakultiit 
II, 2015. 

[4] Alexander Fromm and Peter Imkeller, Utility maximization via decoupling fields, 2017. 

[5] Hiroshi Kunita, Stochastic Flows and Jump-Diffusions, Probability Theory and Stochastic Modelling, 
vol. 92, Springer Singapore, Singapore, 2019. 

[6] Jin Ma, Zhen Wu, Detao Zhang, and Jianfeng Zhang, On well-posedness of forward-backward SDEs --a 
unified approach., Ann. Appl. Probab. 25 (2015), no. 4, 2168ー2214.

[7] Xuerong. Mao, Stochastic differential equations and applications. 2nd ed., 2nd ed. ed., Chichester: Hor-
wood Publishing, 2007. 

[8] Etienne Pardoux and Shige Peng, Adapted solution of a backward stochastic differential equation, Systems 
& Control Letters 14 (1990), no. 1, 55--61. 

[9] Anatoli Vladimirovich Skorokhod, Studies in the theory of mndom processes, Courier Dover Publications, 
1965. 


